DEAKIN

UNIVERSITY

Comparison of methods for imputing limited-range variables: a simulation
study

Citation:

Rodwell, Laura, Lee, Katherine J, Romaniuk, Helena and Carlin, John B 2014, Comparison of
methods for imputing limited-range variables: a simulation study, BMC medical research
methodology, vol. 14: 57, pp. 1-11.

DOI: http://www.dx.doi.org/10.1186/1471-2288-14-57

© 2014, The Authors

Reproduced by Deakin University under the terms of the Creative Commons Attribution Licence

Downloaded from DRO:
http://hdl.handle.net/10536/DRO/DU:30113852

DRO

Deakin Research Online,
Deakin University’s Research Repository Deakin University CRICOS Provider Code: 00113B



http://www.dx.doi.org/10.1186/1471-2288-14-57
https://creativecommons.org/licenses/by/2.0/
http://hdl.handle.net/10536/DRO/DU:30113852

Rodwell et al. BMC Medical Research Methodology 2014, 14:57
http://www.biomedcentral.com/1471-2288/14/57

BMC
Medical Research Methodology

RESEARCH ARTICLE Open Access

Comparison of methods for imputing
limited-range variables: a simulation study

Laura Rodwell"?", Katherine J Lee'?, Helena Romaniuk'*? and John B Carlin'?

Abstract

on those that restrict the range of the imputed values.

scenario.

Background: Multiple imputation (M) was developed as a method to enable valid inferences to be obtained in
the presence of missing data rather than to re-create the missing values. Within the applied setting, it remains
unclear how important it is that imputed values should be plausible for individual observations. One variable type
for which Ml may lead to implausible values is a limited-range variable, where imputed values may fall outside the
observable range. The aim of this work was to compare methods for imputing limited-range variables, with a focus

Methods: Using data from a study of adolescent health, we consider three variables based on responses to the
General Health Questionnaire (GHQ), a tool for detecting minor psychiatric illness. These variables, based on
different scoring methods for the GHQ, resulted in three continuous distributions with mild, moderate and severe
positive skewness. In an otherwise complete dataset, we set 33% of the GHQ observations to missing completely at
random or missing at random; repeating this process to create 1000 datasets with incomplete data for each

For each dataset, we imputed values on the raw scale and following a zero-skewness log transformation using:
univariate regression with no rounding; post-imputation rounding; truncated normal regression; and predictive
mean matching. We estimated the marginal mean of the GHQ and the association between the GHQ and a fully
observed binary outcome, comparing the results with complete data statistics.

Results: Imputation with no rounding performed well when applied to data on the raw scale. Post-imputation
rounding and imputation using truncated normal regression produced higher marginal means than the complete
data estimate when data had a moderate or severe skew, and this was associated with under-coverage of the
complete data estimate. Predictive mean matching also produced under-coverage of the complete data estimate.
For the estimate of association, all methods produced similar estimates to the complete data.

Conclusions: For data with a limited range, multiple imputation using techniques that restrict the range of
imputed values can result in biased estimates for the marginal mean when data are highly skewed.

Keywords: Multiple imputation, Limited-range, Skewed data, Missing data, Rounding, Truncated regression

Background

Multiple imputation has become a commonly used and
increasingly recommended method for the analysis of in-
complete data in observational studies and clinical trials
[1,2]. The method involves two stages. First, an imput-
ation procedure is used to predict values for the missing
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data in multiple copies of the incomplete dataset, thus
creating multiple completed datasets. Second, a standard
complete-data analysis is conducted on each of these
completed datasets, and the results combined to provide
overall estimates for the parameters of interest and asso-
ciated standard errors using Rubin’s rules [3].

The objective when applying the method of multiple
imputation to analyse incomplete data is to draw valid
inferences while taking account of the missing data [4].
In this study we consider data where the missingness is
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ignorable. This assumes the data are either missing com-
pletely at random (MCAR), that is the missingness does
not depend on observed or unobserved data, or are
missing at random (MAR), where the probability of a
value being missing depends on the observed but not
unobserved data. For more information on these defini-
tions and non-ignorable missingness see Schafer and
Graham [5]. There are currently two main approaches
for imputing data when the missingness mechanism is
ignorable. The first of these involves the specification of
a multivariate normal (MVN) model for all the variables
that are included in the imputation model [6]. The sec-
ond method is fully conditional specification or multi-
variate imputation with chained equations (MICE) [7],
which requires the specification of a univariate condi-
tional model for each incomplete variable. This latter ap-
proach allows for a range of (univariate) imputation
models to be specified that closely represent the distri-
butions of the variables with missing data such as linear,
logistic, ordinal logistic, poisson, negative binomial and
truncated normal regression models.

Even with the more flexible MICE approach, there is a
potential mismatch between the assumptions of the im-
putation model and the distribution of the incomplete
variable. This may result in imputed values that are im-
plausible or impossible for the variable. An example
where implausible or impossible values can be generated
is a limited-range variable.

Limited-range variables are continuous, semi-continuous
or ordinal variables that have a restriction to one or both
ends of their range. This can either be through the specifi-
cation of an expected range on a clinical or demographic
variable, such as weight or age, where plausible values are
determined by the researchers, or it could be a function of
the measure itself where there is a restricted range by
definition and values outside this range are impossible,
such as an ordinal response scale (e.g. a Likert scale), or
the sum of a number of items measured on such a scale.
While nominal variables, such as race, also can have a de-
fined set of values, there is no meaningful ordering in the
potential values. As the methods considered in this study
assume an ordered scale we do not include nominal vari-
ables in our definition of limited-range variables.

When a limited-range variable is imputed using an
MVN or a univariate linear regression model, some of
the imputed values may fall outside the range of the
variable. While the primary goal of multiple imputation
is to obtain valid inferences, and imputed values are not
intended to replace the missing data [4], there is some
uncertainty as to how to treat imputed values that fall
outside the limits of the variable. In the majority of ana-
lyses it is possible simply to retain values that fall out-
side the range, but concern is often expressed that the
imputed values themselves should be plausible and that
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imputation methods should be modified to ensure that
imputed values are within the specified range [6,8-10].

There are a number of methods that have been sug-
gested in the literature for handling values that are
imputed out of range:

1. Post-imputation rounding
One option is to impute the missing values using the
standard imputation technique (via MICE or MVN
imputation) and then round any values that fall
outside the observed or possible range to the limits
of the range. This method has been applied in a
number of methodological and applied studies (see
for example, [10-13]).
The appeal of post-imputation rounding is that, for
MVN imputation, this is the only procedure that has
been proposed to date that brings the imputed
values to within the plausible range. As post-
imputation rounding is conducted after the imputed
datasets have been created, there are concerns that
the rounding of imputed values may cause bias in
the resulting parameter estimates, particularly for
the marginal mean of the imputed variable, and will
inappropriately reduce the variance of the imputed
values [14].

2. Truncated normal regression
A second option that can be used with univariate
imputation or MICE is to impute missing values
using truncated normal regression [6]. Under this
approach, imputation is carried out using a
truncated normal distribution with specified
minimum and/or maximum bounds for the
incomplete variable in a conditional regression
model. The apparent benefit of imputation using
truncated normal regression is that the restriction of
the range is specified within the imputation
procedure, so there are no post-imputation
adjustments made to the imputed data values, unlike
the post-imputation rounding procedure. A possible
issue associated with this method is that it assumes
an underlying normal distribution and may be
sensitive to skewness in the data.

3. Predictive mean matching
Available when performing univariate regression
imputation or MICE for a continuous variable, the
method of predictive mean matching is a partially
parametric approach that first predicts the values for
the missing data using a linear prediction model. For
each missing value, the observed value, or k
observed values that are closest to the predicted
mean of the missing value are selected. If k =1, this
observed value is used to replace the missing
observation; if k> 1 then an observed value is
randomly selected from the k nearest candidates
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[15]. The main attraction of this method is that, as
only observed values are used, the distribution and
range of the data are preserved and plausible
imputed values are guaranteed.

Another issue that arises when imputing missing values
is how to impute variables that are non-normally distrib-
uted, since both MICE and MVN imputation assume con-
ditional normality for imputing continuous variables. One
option that is commonly used in practice to handle such
variables to make the normality assumption more plaus-
ible is to apply a de-skewing transformation, such as the
log or zero-skewness log transformation, prior to imput-
ation [13]. The process of transforming a variable prior to
imputation has been applied in conjunction with a num-
ber of the methods above, such as post-imputation round-
ing [13]. One issue that arises with using a de-skewing
transformation such as the log transformation for posi-
tively skewed data is that when the imputed values are
transformed back to the original scale, the imputed values
can have very large outlying values [14].

A recent paper by von Hippel [14] focused on the im-
putation of non-normal data and compared the methods
of rounding, truncating and transformation when imput-
ing skewed variables with a lower bound. Von Hippel
recommended that imputation be carried out on the raw
scale with no transformation or post-imputation round-
ing, regardless of whether the data are normally distrib-
uted or not. His focus however, was fairly restrictive as
he only considered data from an exponential distribution
with the lower range restricted.

Given the limited comparison of methods for handling
limited-range variables to date, we undertook a systematic
study into the imputation of such variables. We focus on
scenarios where both upper and lower limits are restricted,
as well as examining data from a range of skewed distribu-
tions. We consider imputation using univariate linear
regression and allowing imputed values to fall outside the
range or rounding the values after imputation (post-
imputation rounding); imputing with a truncated normal
regression model; and imputation via predictive mean
matching. We apply each of these methods on the raw
and transformed scales of an incomplete variable with
varying amounts of skewness using a simulation study in
which we redraw missingness from a real data example
with complete data.

Methods

Sample

The Victorian Adolescent Health Cohort Study (VAHCS) is
a repeated measures cohort study of health in adolescents
(waves 1 to 6) and young adults (waves 7 to 9), which was
conducted between 1992 and 2008. The original sample of
1943 participants was randomly sampled from schools in
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Victoria, Australia, when they were aged 14 — 15 years.
Data collection protocols were approved by The Royal
Children’s Hospital’s Ethics in Human Research Commit-
tee. For further details on the cohort, see Reference [16].

Target analysis

The target analysis in the current study was a summary
of minor psychiatric illness, measured by the General
Health Questionnaire (GHQ) [17] at wave 8 (age approxi-
mately 24 years), and the association between GHQ at
wave 8 and the likelihood of a person continuing to live in
the family home at wave 9 (at approximately 29 years).

The exposure of interest, the GHQ, is a 12-item ques-
tionnaire that was developed to measure minor psychi-
atric illness in the community [17]. Each of the 12 items
in the GHQ screens for a symptom that is indicative of
psychological distress and has four response options that
reflect the increasing degree to which the participant has
experienced the symptom. An example of a question in
this scale is: “Have you lost much sleep over worry?” with
the possible responses being: “not at all/no more than
usual/rather more than usual/much more than usual”.

The GHQ can be scored using three different methods,
as described by Donath [18]: the Likert, standard and
C-GHQ scores. The Likert scoring method (possible
range 0 — 36) has a scoring pattern of 0-1-2-3 for each
of the items, with 3 representing the most extreme
presence of the symptom. The total of the Likert scores
provides a measure of the severity of psychological dis-
tress. The standard scoring method (possible range 0 — 12)
has a scoring pattern of 0-0-1-1 for each item, with the
last two responses indicating presence of the symptom
and the total measures psychological distress using a
count of the number of items that have a positive re-
sponse. The C-GHQ scoring (possible range 0 — 12) is an
adaptation of the standard scoring method, with the
positively worded items scored 0-0-1-1 as in the standard
scoring method, and the negatively worded items, such as
the example above, allocated a scoring pattern of 0-1-1-1.
This latter approach was developed to capture the possible
presence of symptoms associated with the response “no
more than usual” [19].

The outcome of interest in the target analysis was a
binary indicator of whether the participants lived at their
parent(s)’ home at wave 9, as determined from a direct
question in the questionnaire administered at this wave.

A third variable used in this simulation study was GHQ
measured at wave 9; this was a four-level categorical vari-
able derived from the Likert scoring method, with categor-
ies of 0-5 (low), 6-8 (moderate), 9-11 (high) and 12-36
(very high). This variable was included as a complete aux-
iliary variable in the imputation model, as it is correlated
with GHQ score at wave 8. To ensure that variation in the
scaling of this auxiliary variable did not confound the
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results, the same categorical variable for GHQ at wave 9
was used in all imputation models, regardless of the scor-
ing method of GHQ at wave 8.

For the sake of this paper we restricted our analysis to fe-
males with complete data on the exposure, outcome and aux-
iliary variable, resulting in a sample size of 714 participants.

Due to the steps involved in the simulation study (de-
scribed below), particularly the reduction of the dataset
to complete data and the omission of key confounders
from the analysis, reported results are not intended to
realistically address the substantive question about asso-
ciation between mental health and living at home in
young adulthood.

Simulation method

The method for this simulation study is based on that
used by Brand et al. [20] and described further by van
Buuren [21]. We start with a sample that have complete
data and simulate the missing data process by repeatedly
setting a proportion of the data to missing.

We examined the imputation methods under both
MCAR and MAR missingness conditions. For MCAR,
missing values were randomly imposed for approxi-
mately 33% of values in the GHQ at wave 8. For the
MAR condition, values were set to missing depending
on the binary outcome (living at home at wave 9) and 4-
level ordinal auxiliary variable (GHQ at wave 9), with a
probability determined by the logistic regression model:

logit Pr(missing) = a + f, Living + 8, GHQ9oderate
+B3GHQ%igh + B,GHQvery nigh
(1)

where Living is an indicator of living at home at wave 9
and GHngaderate’ GHQ9high and GHQ9very high T€Pre-
sent indicators for moderate, high and very high GHQ at
wave 9. We fixed the coefficients of this logistic regression
to be 5; = 1.25 (corresponding to an odds ratio [OR] of
35), B,=02 (OR=1.22), B3=0.3 (OR = 1.35) and B, = 0.4
(OR = 1.5), which represent modest but potentially realis-
tic relationships between these variables and missingness.
The value of @ was chosen empirically in order to pro-
duce missing values in approximately 33% of cases.

For each scoring method of the GHQ at wave 8 and
both missingness scenarios, we conducted the following
steps N = 1000 times:

e Missingness was generated in the complete dataset
as described above.
e The following imputation methods were used with
m =20 imputations performed for each procedure:
— Linear regression imputation (applied using the
Stata command: mi impute regress) with no post-
imputation rounding.
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— Linear regression imputation with post-
imputation rounding, with the limits specified as
0 (min) and 12 (max) for the C-GHQ and
standard scoring and 0 (min) and 36 (max) for
the Likert scoring.

— Truncated normal regression (carried out using
mi impute truncreg), with the lower and upper
limits specified as the same limits used for the
post-imputation rounding method.

— Predictive mean matching (carried out using mi
impute pmm), with the number of nearest
neighbour candidates specified as k =5 [22].

For all imputation analyses, imputation models

included the complete outcome variable (living at

home at wave 9) and the complete auxiliary variable

(GHQ at wave 9, included as a 4-level ordinal

variable).

e Each of the above methods was also applied to the
incomplete GHQ variable transformed using a
shifted log transformation (using the Inskew0 in
Stata version 13 [23]). Where relevant, the
minimum and maximum limits were specified on
the shifted log scale to be equivalent to those on the
raw scale.

o Target parameters of interest for evaluation of the
imputation approaches were the marginal mean of
the GHQ at wave 8 and the log odds of living at
home at wave 9 given GHQ score at wave 8.

Performance measures for evaluating different methods
In order to evaluate these various imputation approaches,
we compared our estimated statistics from the simulations
to the complete data statistics.

Using the notation of Brand et al. [20] and van Buuren
[21], we define Q to be the unknown population param-
eter of interest, for which we have a complete data point
estimate, denoted Q. For each imputation method within
one simulated dataset, we obtain an average point estimate
across the m imputed datasets, which we denote Q,,. In
this simulation design, we consider Q to be both an esti-
mate of Q and an estimand for Q,,. Since we are fixing Q
the performance measures we consider relate to the prop-
erties of Q,, under repeated sampling of the missingness
(assuming that Q is a valid estimate of Q under repeated
sampling of the complete data). We calculated bias (in the
restricted sense described) by comparing the average of
Q,, over our 1000 simulated datasets (E[Q,,]) with the
complete data estimate (Q):

Bias = E[Q,]-Q (2)

To assess the variance estimates from the various im-
putation approaches under this simulation design, Brand
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et al. [20] distinguished between the two components of
variance, within-imputation and between-imputation,
that are estimated and pooled using Rubin’s rules [3] to
estimate the total variance of Q,, as an estimate of Q.
The within-imputation variance (U,,), which is the aver-
age of the square of the standard errors of the point esti-
mates derived from each of the m imputed datasets,
should produce an unbiased estimate (over repeated
sampling of the missingness) of the complete-data vari-
ance estimate, denoted U:

EUn=U (3)

As with the bias measure, we assess the performance
of the within-imputation variance estimates by averaging
U,, across the 1000 simulations and comparing the re-
sult with U.

The second component of variance is the between-
imputation variance, which represents the variability due
to missing data [21], and is estimated by B,,, the empirical
variance of the m estimates of Q obtained across the im-
puted datasets. On average, this quantity should estimate
the actual variability observed in the MI point estimates
across the repeated draws of the missingness (i.e.Var(Q,,))
so that the following condition should hold:

Var(Q,,) = (1+ m™")E[B,] (4)

We therefore assess the performance of the between-
imputation variance B,, in estimating the actual variability
of the estimates Q,,,.
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The final measure of performance we used is a cover-
age property based on the proportion of (nominal) 95%
confidence intervals that contain Q, the point estimate
from the complete data, over repeated draws of the
missingness, which we estimate as:

P[Qm—< (1+ m—l)Bm) Em-1:0975 )SQS

(Qm + ( 1+ m_l)Bm) Em-1,0.975 }
(5)

This coverage proportion should equal 0.95, with both
under and over coverage indicating a problem.

We considered each of the above evaluations of per-
formance for the estimates of the marginal mean of the
GHQ measure at wave 8 and the log odds ratio for the
association between living at home at wave 9 and GHQ
score at wave 8.

Results

Figure 1 shows the distributions of the three GHQ scoring
methods. The Likert score has a weak positive skew; the
C-GHQ scores has a moderate positive skew, and the
standard scores method data has a point mass at zero and
a severe positive skew.

Table 1 presents the average percentage of values im-
puted outside the range of the GHQ under the 3 different
scoring methods, and on the raw and transformed scales
using univariate linear regression with no rounding, across

6
C-GHQ

200 150
150
100
)
o
g
o 100
o
w
50
501
0 6 12 18 24 30 36 0 3
Likert
Figure 1 Distribution of complete data for three scoring methods of GHQ at wave 8 (714 females).
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Table 1 Average percentage of missing values imputed outside the specified range using linear regression imputation,

by scoring method

GHQ raw scale

GHQ transformed

% imputed below lower

% imputed above upper

% imputed below lower % imputed above upper

bound bound bound bound
Scoring method MCAR MAR MCAR MAR MCAR MAR MCAR MAR
Likert 20 20 0.0 0.0 0.0 0.0 0.2 0.2
C-GHQ 122 1.6 0.1 0.1 79 74 1.8 02
Standard 230 240 00 0.0 14.3 14.9 6.5 75

Note: Mean number of missing values per dataset is 238.

the 1000 simulated datasets. We observe that on the raw
scale, for both MCAR and MAR, as the variable became
more positively skewed, a greater percentage of values
were imputed below the lower limit of the specified range.
This pattern was similar for the transformed scales but
there was a higher percentage of values imputed above the
upper bound.

Marginal mean

Table 2 presents the results for estimation of the marginal
mean when the imputation methods were applied to the
GHQ data without transformation.

For the scoring of the GHQ based on the Likert scale,
which was only mildly skewed, all of the MI-based point
estimates (E[Q,,]) were on average close to the complete
data estimate (Q), reflecting minimal bias in the estimates.
The average within-imputation variance estimates (E[U ,])
were also close to the complete-data variance U for all
approaches. Considering the between-imputation variance
((1 + 1/m)E[B,,]), although the non-rounded regression
and truncated regression methods produced estimates
close to the variance of Q,, across the 1000 replications,
post-imputation rounding and predictive mean matching
both produced under-estimates of the actual between-
imputation variance. For the MCAR scenario for the
GHQ Likert scoring, with the exception of predictive
mean matching, the methods had a coverage proportion
close to 0.95. Predictive mean matching had coverage of
0.894, reflecting a small bias in the estimate and under-
estimation of the between-imputation variance. For the
MAR scenario, all methods had a slight under-coverage
of the complete data estimate, with predictive mean
matching again having the lowest coverage.

For the moderately skewed measure, the C-GHQ, im-
putation based on linear regression with no rounding had
the least biased point estimate under both the MCAR and
MAR scenarios. Combined with the estimated between-
imputation variance closely reflecting the variance of Q,,,
this resulted in coverage proportions close to 0.95 for the
unrounded approach in both scenarios. Imputation based
on truncated normal regression, and to a lesser extent

post-imputation rounding, produced point estimates that
were on average higher than the complete data estimate.
The coverage proportions for these two methods were
low, in particular for truncated regression. Predictive mean
matching also produced a slight under-coverage of the
complete data estimate.

The most severely skewed standard scoring method
displayed a very similar pattern of results to those of the
C-GHQ. The non-rounded regression method resulted
in estimates with low bias and the within- and between-
imputation variance estimates performed well. This re-
sulted in coverage close to 0.95 for the MCAR condition
and only slight under-coverage under the MAR condi-
tion. Both the post-imputation rounding and truncated
regression imputation methods produced biased estimates
and poor coverage. Predictive mean matching produced
an average point estimate close to that of the complete
data, but, consistent with the previous observations for
both the Likert and C-GHQ, the estimated between-
imputation variance was low, resulting in under-coverage.

Table 3 presents results for the marginal mean with the
imputation procedures applied following transformation
to the shifted log scale.

For the Likert scoring, there was low bias in the point
estimate across the imputation methods, except for
post-imputation rounding under MAR. Imputation using
regression with no rounding produced the best coverage
for both the MCAR and MAR conditions.

Imputation using regression with no rounding ap-
plied to the transformed C-GHQ outcome produced low
bias in the point estimate but slightly overestimated
within- and between-imputation variances, resulting in
slight over-coverage. The high estimated variance ap-
pears to have been the result of a small number of
high values imputed on the log—scale. Post-imputation
rounding performed well in this scenario, in terms
of both bias and coverage. Predictive mean matching
resulted in low bias for both MCAR and MAR, but
for the MAR condition produced a slight under-
coverage of the complete data estimate. Truncated
regression produced biased point estimates in both
MCAR and MAR scenarios and the estimated within- and
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Table 2 Performance measures for the estimation of the marginal mean, GHQ scores on raw scale

Scenario Validation statistics

Likert Q =10.2311 U=0.1855

MCAR E[Qm] bias E[Um] Var(Qm) (1+m™ E[Bp) coverage for Q
Regression, non-rounded 10.2319 0.0008 0.1862 0.0179 00174 0.943
Post-imputation rounding 10.2445 0.0134 0.1851 0.0180 0.0167 0.941
Truncated regression 10.2206 -0.0105 0.1846 0.0172 0.0172 0.959
Predictive mean matching 10.1805 —-0.0506 0.1832 00176 0.0138 0.894
MAR

Regression, non-rounded 10.2243 —0.0068 0.1838 0.0220 0.0191 0.939
Post-imputation rounding 10.2353 0.0042 0.1828 0.0221 0.0185 0.928
Truncated regression 10.2183 -0.0128 0.1825 0.0219 0.0191 0.936
Predictive mean matching 10.1378 —-0.0933 0.1818 0.0213 0.0158 0.852
C-GHQ Q=33179 U=0.1055

MCAR E[Qm)] bias E[Un) Var(Qp,) (1+m™ DEB, coverage for Q
Regression, non-rounded 33178 —-0.0002 0.1058 0.0055 0.0054 0.956
Post-imputation rounding 33741 0.0561 0.1023 0.0053 0.0044 0.846
Truncated regression 3.5582 0.2402 0.1025 0.0054 0.0077 0.233
Predictive mean matching 32931 —-0.0248 0.1048 0.0058 0.0050 0.925
MAR

Regression, non-rounded 3.3150 —0.0029 0.1055 0.0065 0.0061 0.946
Post-imputation rounding 3.3687 0.0508 0.1021 0.0061 0.0050 0.880
Truncated regression 3.5505 02326 0.1024 0.0060 0.0086 0318
Predictive mean matching 3.2664 -0.0515 0.1045 0.0067 0.0059 0.880
Standard Q =1.8081 U=0094

MCAR E[Qm] bias E[Un) Var(Qp) (1+m™ EBp) coverage for Q
Regression, non-rounded 1.8085 0.0004 0.0951 0.0045 0.0045 0.950
Post-imputation rounding 1.9276 0.1195 0.0894 0.0046 0.0029 0436
Truncated regression 2.2988 04907 0.0982 0.0078 0.0434 0.293
Predictive mean matching 1.7791 -0.0290 0.0934 0.0044 0.0035 0.89%4
MAR

Regression, non-rounded 1.8057 —0.0024 0.0941 0.0056 0.0051 0.933
Post-imputation rounding 19198 01117 0.0887 0.0054 0.0033 0.552
Truncated regression 2.3043 04962 0.0984 0.0082 0.0445 0.291
Predictive mean matching 1.7624 -0.0457 0.0930 0.0053 0.0040 0.848

Key: Q= complete data estimate; U= estimated variance of Q from complete data; E[Q,] = average of MI-based point estimates across 1000
simulated datasets; bias = difference between E[Qn] and Q; E[Un]| = average of estimated within-imputation variance across simulated datasets;
Var(Qm) = variance of the MI point estimates across simulated datasets; (1 +m~"E[B,] = average of estimated between-imputation variance

(with adjustment for number of imputations) across simulated datasets; coverage = proportion of (nominally) 95% confidence intervals that

contain the complete data estimate.

between- imputation variances were low, resulting in
drastic under-coverage.

Performance of the imputation methods was particu-
larly erratic when applied to the transformed version of
the standard scale, which had an extreme skew on the
raw scale, particularly for the non-rounded imputation
method. For this method, there was very high bias in
the estimates, due to some very high imputed values.
When these values were rounded using post-imputation

rounding, the point estimates were less biased, but the
variance was high, resulting in over-coverage. Consistent
with the results for the C-GHQ, truncated regression was
biased and underestimated the variance resulting in none
of the estimated confidence intervals covering the point
estimate from the complete data in either the MCAR or
MAR scenario. Particularly for MCAR, predictive mean
matching performed well for this variable, compared with
the other imputation methods.



Rodwell et al. BMC Medical Research Methodology 2014, 14:57
http://www.biomedcentral.com/1471-2288/14/57

Page 8 of 11

Table 3 Performance measures for the estimation of the marginal mean with transformed GHQ scores

Scenario Validation statistics

Likert Q =10.2311 U=0.1855

MCAR E[Qm] bias E[Upm] Var(Qm) (1 +m DEB, coverage for Q
Regression, non-rounded 10.2366 0.0055 0.1861 0.0181 00174 0.947
Post-imputation rounding 10.1446 —-0.0865 0.1857 0.0416 0.0170 0.820
Truncated regression 10.2227 —-0.0084 0.1840 0.0181 0.0163 0.935
Predictive mean matching 10.1926 —-0.0385 0.1837 00174 0.0148 0916
MAR

Regression, non-rounded 10.2119 —-0.0192 0.1846 0.0223 0.0197 0.928
Post-imputation rounding 10.0985 -0.1326 0.1842 0.0628 0.0193 0.758
Truncated regression 10.2010 —-0.0301 0.1825 0.0217 0.0180 0915
Predictive mean matching 10.1401 -0.0910 0.1819 0.0216 0.0164 0.858
C-GHQ Q=33179 U=0.1055

MCAR E[Qm) bias E[Up) Var(Qnm) (1+m HEB, coverage for Q
Regression, non-rounded 3.3268 0.0088 0.1087 0.0057 0.0063 0.960
Post-imputation rounding 3.3231 0.0051 0.1053 0.0058 0.0052 0.931
Truncated regression 3.5563 0.2384 0.1028 0.0053 0.0048 0.096
Predictive mean matching 3.3009 -0.0170 0.1049 0.0057 0.0053 0.941
MAR

Regression, non-rounded 3.3265 0.0086 0.1094 0.0065 0.0077 0.969
Post-imputation rounding 33185 0.0005 0.1055 0.0065 0.0063 0.954
Truncated regression 3.5452 0.2273 0.1027 0.0060 0.0055 0.160
Predictive mean matching 3.2722 —-0.0457 0.1045 0.0069 0.0059 0.886
Standard Q =1.8081 U=00947

MCAR E[Qm) bias E[Un) Var(Qm) (1+m™ "EB, coverage for Q
Regression, non-rounded 263.63 261.82 30917 53900000 998000000 0.992
Post-imputation rounding 1.7996 —-0.0086 0.1055 0.0037 0.0074 0.992
Truncated regression 22661 04580 0.0953 0.0056 0.0047 0.000
Predictive mean matching 1.8052 -0.0029 0.0943 0.0043 0.0041 0.940
MAR

Regression, non-rounded’

Post-imputation rounding 1.8035 —-0.0046 0.1074 0.0043 0.0095 0.989
Truncated regression 22603 04522 0.0951 0.0061 0.0054 0.000
Predictive mean matching 1.7829 -0.0252 0.0937 0.0053 0.0045 0.909

Values larger than those obtained under the MCAR condition Key: Q = complete data estimate; U = estimated variance of Q from complete data; E[Qn] = average
of Mi-based point estimates across 1000 simulated datasets; bias = difference between E[Q,] and Q; E[U,,] = average of estimated within-imputation variance
across simulated datasets; Var(Q,,) = variance of the Ml point estimates across simulated datasets; (1 + m™ )E[B,,] = average of estimated between-imputation
variance (with adjustment for number of imputations) across simulated datasets; coverage = proportion of (nominally) 95% confidence intervals that contain the

complete data estimate.

Regression coefficient
Given the generally poor results for estimation of the mar-
ginal mean using the transformed GHQ scores we only
consider results for the regression coefficient using the
GHQ scores without transformation. Results for the trans-
formed GHQ scores are given in the Additional file 1.
Results for estimation of the regression coefficient
for the association between GHQ at wave 8 and living
at home at wave 9 (Table 4) were similar for all

imputation approaches across the scoring methods
(Likert, C-GHQ and standard) and both missingness
conditions (MCAR and MAR); we observed low bias
across all of the average point estimates, but there was
a slight over-estimation of the within-imputation variance
and an under-estimation of the between-imputation
variance. Using regression with no post-imputation
rounding produced the coverage closest to 0.95 in all
scenarios, apparently due to better estimation of the
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Table 4 Performance measures for the estimation of the regression coefficient with GHQ scores on raw scale

Scenario Validation statistics

Likert Q =0.03227 U=002143

MCAR E[Qm] bias E[Um] Var(Qp) (1 +m™ HEB,] coverage of Q
Regression, non-rounded 0.03181 —0.00046 0.02211 0.00027 0.00022 0.922
Post-imputation rounding 0.03192 —0.00035 0.02219 0.00027 0.00022 0.920
Truncated regression 0.03247 0.00020 0.02217 0.00028 0.00022 0914
Predictive mean matching 0.02551 —-0.00676 0.02223 0.00019 0.00016 0918
MAR

Regression, non-rounded 0.02888 —0.00340 0.02270 0.00080 0.00067 0.927
Post-imputation rounding 0.02926 —0.00301 0.02279 0.00079 0.00066 0.924
Truncated regression 0.03010 -0.00217 0.02278 0.00084 0.00066 0.926
Predictive mean matching 0.01727 —0.01500 0.02298 0.00036 0.00036 0911
C-GHQ Q =0.04794 U=0.03967

MCAR E[Qn] bias E[Unm] Var(Qp) (1+m™ "EB, coverage of Q
Regression, non-rounded 0.04694 —0.00100 0.04014 0.00077 0.00076 0.946
Post-imputation rounding 0.04805 0.00012 0.04123 0.00080 0.00069 0.932
Truncated regression 0.04360 —0.00433 0.04130 0.00086 0.00073 0.925
Predictive mean matching 0.03738 —0.01055 0.04033 0.00053 0.00056 0939
MAR

Regression, non-rounded 0.04283 —0.00511 0.04056 0.00232 0.00219 0.939
Post-imputation rounding 0.04932 0.00138 0.04158 0.00224 0.00195 0.928
Truncated regression 0.06470 0.01676 0.04133 0.00243 0.00210 0.906
Predictive mean matching 0.02442 -0.02352 0.04087 0.00109 0.00121 0.929
Standard Q =0.05236 U=004202

MCAR E[Qm] bias E[Um] Var(Qpm) (1 +m™ HEB, coverage of Q
Regression, non-rounded 0.05066 —0.00170 0.04336 0.00101 0.00085 0.938
Post-imputation rounding 0.05252 0.00016 0.04550 0.00106 0.00067 0.889
Truncated regression 0.04613 -0.00623 0.04218 0.00101 0.00096 0.930
Predictive mean matching 0.04069 -0.01167 0.04368 0.00065 0.00061 0.929
MAR

Regression, non-rounded 0.04557 —0.00679 0.04441 0.00278 0.00261 0.942
Post-imputation rounding 0.06226 0.00990 0.04590 0.00238 0.00187 0911
Truncated regression 0.09485 0.04249 0.04092 0.00233 0.00259 0.857
Predictive mean matching 0.02669 -0.02567 0.04517 0.00122 0.00139 0.939

Key: Q= complete data estimate; U= estimated variance of Q from complete data; E[Q,] = average of MI-based point estimates across 1000
simulated datasets; bias = difference between E[Q,] and Q; E[Un] = average of estimated within-imputation variance across simulated datasets;
Var(Qm) = variance of the MI point estimates across simulated datasets; [(1 +m~"E[B,] = average of estimated between-imputation variance
(with adjustment for number of imputations) across simulated datasets; coverage = proportion of (nominally) 95% confidence intervals that

contain the complete data estimate.

between-imputation variance compared with the other
approaches.

Discussion

In this study we compared a range of methods for im-
puting limited-range variables with varying amounts of
skewness, with and without applying a de-skewing trans-
formation prior to imputation. We found the perform-
ance of the methods differed depending on the degree of

skewness and the target estimate of interest. While we
saw evidence of some bias and under-coverage of the
complete data estimate when estimating the marginal
mean from some of the imputation approaches, estimat-
ing an association was more robust to the imputation
approach used, particularly when data were imputed on
the raw scale.

The best performance for estimation of the marginal
mean was obtained using linear regression imputation
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on the raw scale with no rounding, for all degrees of
skewness. Although some values were imputed outside
the range of possible values, this method had a low bias
and estimated the within- and between- imputation vari-
ance adequately, resulting in generally good coverage
across repeated sampling of the missingness.

Using post-imputation rounding introduced some bias
in the estimate of the marginal mean and this increased
as the number of values imputed below the minimum
value increased. This bias, coupled with a general under-
estimation of the between-imputation variance from the
post-imputation rounding method, resulted in under-
coverage, particularly for the standard GHQ with the se-
vere skew. This finding is consistent with the results
reported by von Hippel [14]. Although examining a rather
different scenario, Horton [24] also presented evidence
that rounding imputed values of binary variables to ensure
plausible values following normal imputation may intro-
duce bias in the parameter estimate of interest, which in
Horton’s example was a Bernoulli probability of success.

In the current paper, imputation with the truncated
normal regression model was also found to induce bias
when estimating the marginal mean for the scenario of
moderately and extremely skewed data. Similarly, von
Hippel [14] found truncated normal regression resulted
in biased inference. For data with a weak skew, the trun-
cated regression method performed well, particularly in
the MCAR scenario.

For the estimate of the marginal mean, predictive mean
matching produced coverage proportions that were lower
than those produced by the method of imputation with no
rounding. This was due to a combination of a slight bias
in the estimates as well as low estimated between-
imputation variance. The observed under-coverage may
be partly due to the matching algorithm used by -mi
impute pmm- [22].

The results for estimation of the regression coefficient
were less sensitive to the choice of imputation method
when imputation was carried out on the raw scale, with
a low bias observed across all methods. Across all condi-
tions, the coverage was closest to 0.95 when linear regres-
sion with no post-imputation rounding was used.

Although transforming the variables prior to imput-
ation resulted in fewer values imputed outside the range
than imputing on the raw scale, this did not provide any
additional benefit for the Likert and C-GHQ scoring
conditions compared with carrying out imputation on
the raw scale. It did, however, result in some very large
outliers among the imputed values when applied to the
standard scoring method, the method with the largest
skew, therefore limiting the appeal of transforming data
prior to imputation.

One method of imputation that we did not consider
was ordinal logistic regression [25]. While this method
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would preserve the range of the variable, it was not
considered here due to the large number of categories
for the GHQ variable being imputed; for example, in
the case of the Likert scoring of the GHQ with a range
of 0 — 36, there are 37 ordinal categories. It is possible
that imputation methods based on ordinal logistic re-
gression, or similar methods for imputing ordinal data
would perform well for ordinal variables with a small
number of categories.

Our evaluation of alternative approaches to imput-
ation for limited-range variables was conducted within
a simulation framework in which we fixed a particular
complete dataset of interest and repeatedly set data to
missing, comparing the results of MI-based inferences
for two target parameters with the results from the
complete data [20,21]. The appeal of this simulation
approach is that it provides a direct comparison of the
imputation procedures in terms of how well they repro-
duce the results that we would have observed if there
had been no missing data. The approach separates the
evaluation of the MI procedures from the component of
variability associated with repeated sampling of the ori-
ginal dataset, based on the assumption that the complete-
data estimate (and associated variance estimate) is valid
for the complete-data sampling model. A limitation of
the approach is that conclusions strictly only apply to
the particular dataset used for the simulation experi-
ments. However, our results reveal clear differences
between the imputation methods that seem likely to be
generalizable to other datasets.

A further limitation of this study is the restriction to
imputations conducted in a univariate setting. However,
since this is the first study to present a comprehensive
comparison of a range of approaches to handling limited-
range variables it was important to begin with a simple
example to ensure that possible influences on the per-
formance of the imputation models were kept to a mini-
mum. We do, however, recommend further testing of
these imputation approaches in datasets that have mul-
tiple incomplete variables, which will require the use of
MVN imputation or MICE rather than univariate im-
putation models.

Conclusions

The findings of the current study suggest the best method
to impute limited-range variables is to impute on the
raw scale with no restrictions to the range, and with no
post-imputation rounding, as previously recommended
by von Hippel [14]. Although this imputation method
results in some implausible values, it appears to be the
most consistent method with low bias and reliable cover-
age in repeated sampling of missingness, irrespective of
the amount of skewness in the data.
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Additional file

Additional file 1: Performance measures for the estimation of the
regression coefficient with GHQ scores on transformed scale.
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