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ARTICLE

Social environment mediates cancer progression in
Drosophila
Erika H. Dawson 1,2, Tiphaine P. M. Bailly1, Julie Dos Santos1, Céline Moreno1, Maëlle Devilliers3,

Brigitte Maroni3, Cédric Sueur 4,5, Andreu Casali6, Beata Ujvari 7,

Frederic Thomas8, Jacques Montagne3 & Frederic Mery1

The influence of oncogenic phenomena on the ecology and evolution of animal species is

becoming an important research topic. Similar to host–pathogen interactions, cancer nega-

tively affects host fitness, which should lead to the selection of host control mechanisms,

including behavioral traits that best minimize the proliferation of malignant cells. Social

behavior is suggested to influence tumor progression. While the ecological benefits of

sociality in gregarious species are widely acknowledged, only limited data are available on the

role of the social environment on cancer progression. Here, we exposed adult Drosophila, with

colorectal-like tumors, to different social environments. We show how subtle variations in

social structure have dramatic effects on the progression of tumor growth. Finally, we reveal

that flies can discriminate between individuals at different stages of tumor development and

selectively choose their social environment accordingly. Our study demonstrates the reci-

procal links between cancer and social interactions and how sociality may impact health and

fitness in animals and its potential implications for disease ecology.
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In gregarious species, sociality not only offers important posi-
tive benefits associated with reducing predation risk1 and
increasing foraging efficiency2, but also provides additional

adaptive benefits by reducing overall metabolic demand3, pro-
viding thermal advantages4, decreasing stress responses5 and
increasing disease avoidance6. It is therefore, generally accepted
that an individual’s social environment affects a large range of
behavioral, psychosocial, and physiological pathways. Limited
empirical evidence suggests that extreme social environments
such as complete isolation or overcrowding of conspecifics in a
group can potentially induce and accelerate pathological dis-
orders. For example, in mammals, social isolation has been
associated with faster progression of type 2 diabetes7, cardiovas-
cular or cerebrovascular disorders8, and, notably, early and faster
mammary cancer development. Moreover, social overcrowding
has been found to induce psychiatric and metabolic disorders9.
Few human studies have attempted to explore the role of social
interactions on cancer progression (though see ref. 10,11 for non-
human animal studies), and the topic remains controversial.
Adverse psycho-social factors, including traumatic life events,
high levels of depressive symptoms, or low levels of social sup-
port, have been related to higher rates of, for example, breast and
colon cancers12,13. However, these community based studies or
meta-analyses often suffer from the complexity of inter-correlated
factors. For example, low sample sizes, high risk behaviors asso-
ciated with stress (e.g., smoking), and the heterogeneity and
retrospective origins of these studies make it difficult to find a
conclusive causal relationship between cancer progression and
social conditions.

Increasing evidence demonstrates that oncogenic phenomena
are extremely prevalent in host populations, and not just in post-
reproductive individuals as previously believed14. While cancer is
generally viewed as a senescence-related malady, it also exists at
sub-clinical levels in humans and other animals15. Even at early
stages, tumors will impose a heavy burden on the body16 (e.g.,
through tolerance mechanisms), which will undoubtedly have
indirect fitness consequences (such as vulnerability to predation),
and as a result is likely to be a strong selective force from early on
in the lifetime of an organism. Despite cancer (both transmissible
and non-transmissible) being an emerging important factor
influencing life history traits, even early in life17–19, little is known
regarding the reciprocal links between the social environment and
the development and progression of this illness.

Drosophila has the potential to be a powerful model system to
address the relationship between social group composition and
tumor progression. Social interactions are an important life his-
tory trait, particularly in female flies who use social information
to make fitness enhancing decisions20–22. More importantly,
behavioral and physiological processes are influenced by social
interactions. In Drosophila, social isolation leads to a reduced
lifespan23, an increase in aggression24–26, a reduced need for
sleep27,28, and a decrease in the number of fibers in the mush-
room bodies, a center for integration of information in the fly
brain29. Finally, tumor-like over-proliferation of tissues occurs
naturally in Drosophila30,31 and induced tumors influence fitness
traits in individuals19.

Here, we use an established colorectal-like tumor model32 to
explore the reciprocal relationship between social environment
and cancer progression. Using genetic tools available for D.
melanogaster, tumors can be induced during a precise adult
developmental stage and subsequently followed over the lifespan
of the fly. The tumors are generated by inducing clones in
intestinal progenitor cells that are homozygous mutants for the
two Drosophila adenomatous polyposis coli (APC) genes and that
express an oncogenic form of the proto-oncogene Ras. Loss-of-
function of the APC tumor suppressor and expression of

oncogenic Ras are critical steps towards malignancy in the human
colorectal tract33. In the present study, we first exposed tumor-
bearing Drosophila females to various social environments for
21 days and measured tumor progression and social interactions.
We then tested the hypothesis that flies with cancer should
choose social environments that limit cancer progression. Flies
kept in isolation exhibit faster tumor progression than flies kept
in homogeneous groups. More importantly, we also found that
cancerous flies, kept in homogeneous groups, develop tumors at a
lower rate compared to heterogeneous groups, where a single
cancerous fly was kept with other non-cancerous conspecifics,
suggesting a strong impact of social group composition on cancer
growth. Finally, we show that flies can discriminate between
individuals at different stages of tumor development and selec-
tively choose their social environment accordingly. These findings
highlight the importance of the relationship between social
interactions and the development of tumor growth, which may
consequently affect the evolutionary ecology of non transmissible
diseases.

Results
Biological model. Flies bearing heat shock (HS)-induced
MARCM (Mosaic analysis with a repressible cell marker) clones34,
induced in 3-day old adult virgin females intestinal progenitor
cells, were used. The clones were mutant for both Drosophila APC
genes, Apc and Apc2, and expressed the oncogenic form of Ras,
RasV12 and the GFP marker (Apc-Ras clones)32. These compound
Apc-Ras clones, but not clones expressing either RasV12 or
mutated for the APC genes alone, expand as aggressive intestinal
tumor-like overgrowths that reproduce many hallmarks of human
colorectal cancer32. One and two weeks after induction of the
MARCM recombination, GFP-positive cells were dispersed along
the midgut (Supplementary Fig. 1A-B), while 3 weeks after
recombination, GFP-positive cells were condensed mostly in one
single group in the anterior midgut (Supplementary Fig. 1C) or in
the Malpighian tubules. The frontier between groups of tumoral
cells and the surrounding control cells was however, difficult to
precisely delineate (Supplementary Fig. 1D). Conversely, and as
previously shown32, neutral clones were always dispersed along
the midgut at any time after HS induced recombination. Thus,
the number of GFP-positive gut cells was monitored over time
every 7-day by flow cytometry from flies bearing either Apc-Ras
or neutral clones (Supplementary Fig. 2), hereafter referred to as
cancerous and control flies, respectively. In accordance with the
images of dissected guts (Supplementary Fig. 1A-C), a clear
increase in the number of GFP-positive tumor cells was observed
3 weeks after clone induction (Supplementary Fig. 2J (ANOVA)
F1,33= 8.6; P= 0.006). The presence of tumor cells (Apc-Ras
clones) had little impact on fly performance and survival over the
3 weeks of the experimental study32 (Supplementary note 1;
Supplementary Fig. 4).

Cancer progression and social environment. To investigate the
impact of the social environment on tumor progression, we
exposed adult cancerous females for 21 days, post-induction, to
various social environments in 40 ml food tubes. Individual virgin
cancerous females were either kept in tubes alone (social isola-
tion), in groups composed of seven other female cancerous flies
(homogeneous groups) or in groups with seven non-cancerous
control females (heterogeneous groups). Tumor progression was
significantly affected by the social environment (Wald χ22= 6.7,
P= 0.031): after 21 days we observed that tumor progression was
markedly higher in cancerous flies kept in isolation than in
cancerous flies kept in homogeneous groups (Fig. 1). More sur-
prisingly, we also observed that cancerous individuals kept within
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a group of control flies showed an increased number of tumor
cells compared to cancerous flies grouped together (Fig. 1).

Social interactions. We then analyzed how social interactions
were affected by tumor progression and group composition.
Using a video tracking setup, we followed the locomotion and
interactions of groups of flies (3 weeks post-induction) placed in
an arena for 1 h. For social interaction measures we used
homogeneous groups of eight control or eight cancerous flies, and
a heterogeneous group consisting of seven control and one can-
cerous fly which were kept together for 21 days post-induction.
Social interaction analyses confirmed that control and cancerous
flies had similar locomotor activity, independent of their social
environment ((ANOVA) Fig. 2a; log (trail length): group com-
position: F1,84= 2.64, P= 0.1; fly state: F1,84= 0.13, P= 0.7; fly
state × group composition: F1,84= 3.8, P= 0.061). However, the
length of the interaction that a fly had with another was strongly
affected by group composition and fly state ((ANOVA)contact
duration: group composition: F1,84= 14.8, P < 10−3; fly state:
F1,84= 26.8, P < 10−3; fly state × group composition: F1,84= 22.9,
P < 10−3). In homogeneous groups, cancerous flies had longer
interactions compared to homogeneous control groups (Fig. 2b).
However, when placed in a group of control flies (heterogeneous
group), cancerous individuals showed a strong decrease in contact
duration (Fig. 2b). Similarly, the average number of contacts per
fly also differed depending on the social context and fly state
((ANOVA)number of contacts: group composition: F1,84= 17.5,
P < 10−3; fly state: F1,84= 11.4, P= 0.001; fly state × group
composition: F1,84= 4.4, P= 0.038). Groups of cancerous flies
had a higher number of contacts than groups of control flies.
Once again, cancerous individuals showed a decrease in the
number of contacts when placed with control flies (heterogeneous
group) compared to when in a group with other cancerous flies
(Fig. 2c). Taken together this suggests that, individuals are more
aggregated in a homogeneous group of cancerous flies than in a
heterogeneous group or a homogeneous group of control flies.
We thus concluded that, for a cancerous fly, the composition of
the social group strongly affects the level of social interaction.
However, our measure of social contact was constrained by the
small size of the arena and therefore did not allow us to

disentangle the direction of the social contact i.e., whether specific
fly states (cancerous or control) show avoidance or attraction
towards other individuals within a group.

Cancer progression and social environment choice. Based on
the results described above we tested whether cancerous and/or
control flies would show variation in their choice of social
environment and whether this was dependent on the level of their
tumor progression. Using a similar protocol to Saltz35, we
assessed social preference by putting two small mesh cages, each
containing 8 “stimulus flies” (cancerous or control) in a plastic,
transparent box. The small mesh cages were placed on top of a
small petri-dish containing standard food. We introduced a “focal
fly” (cancerous or control) into the enclosed box and recorded
their position over 7 h, i.e., whether the fly was found on one of
the two mesh cages. Focal and stimulus flies were tested at dif-
ferent ages post HS-induction.

Cancerous flies appeared, on average, more attracted than
control flies to other cancerous individuals and we observed a
general decrease of preference by cancerous and control flies for
the cancerous group with age of the focal fly (Fig. 3; focal fly:
Wald χ21= 4.1, P= 0.04; age: Wald χ21= 17.6, P < 10−3; age ×
focal fly: Wald χ21= 2.7, P= 0.1). Furthermore, we find that at
21 days-post-HS, both control and cancer flies prefer to associate
with control over cancer flies (Fig. 3).

To understand whether the preferences seen in the dual choice
test, were due to avoidance or attraction, young (7 days post HS)
focal flies were given a choice between a stimulus group in a mesh
cage (8 flies) and an empty mesh cage using a similar
experimental design. Cancerous flies showed, on average,
attraction for the social group, independent of the age or state
of the stimulus flies (Fig. 4a; intercept: Wald χ21= 8.1, P < 10−3;
stimulus: Wald χ21= 0.06, P= 0.79; stimulus age: Wald χ21= 1.4,
P= 0.23; stimulus × stimulus age: Wald χ21= 0.6, P= 0.44).
While control flies showed, on average, no clear attraction for the
social group, they clearly avoided 3-week-old cancer flies (Fig. 4b;
intercept: Wald χ21= 4.4, P= 0.036; stimulus: Wald χ21= 2.6, P
= 0.1; stimulus age: Wald χ21= 3.37, P= 0.066; stimulus ×
stimulus age: Wald χ21= 6.61, P= 0.01).

Discussion
Here, we show that social environment can significantly shape the
development of an intestinal-like cancer type in Drosophila.
Consistent with previous studies on mammals10,36, cancerous
flies kept in isolation exhibit faster tumor progression than flies
kept in groups of other cancerous individuals. However, more
importantly we found that variation in group composition also
leads to increased proliferation of tumor cells, thus highlighting
how subtle variations in social structure may have dramatic
effects on the progression of non-transmissible diseases. Other
tumor models have been reported in adult Drosophila37,38, which
could be used in future projects to evaluate whether the social
impact on tumor progression is a general or a tumor-specific
effect.

Despite the opportunity to interact with others, individual
cancerous flies, kept in groups with control flies, developed
tumors at similar rates to when cancerous flies were bred in
isolation. Social interaction analyses revealed that despite similar
locomotor activities, cancerous flies interacted considerably less
with control flies compared to when they were housed with other
cancerous conspecifics. This reduction in social contact may
potentially be perceived as a form of social isolation by cancerous
flies, which could result in increased tumor progression, analo-
gous to when flies are kept in true isolation. In humans, it has
been proposed that the subjective perceived feeling of social
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isolation may impact psychological and physiological traits as
much as real social isolation39. Furthermore, the social environ-
ment choice experiment suggests that control flies may actively
recognize and avoid cancerous individuals, especially when tumor
progression is significant. Potentially, this may be a result of
tumor-induced changes in cuticular hydrocarbons, pheromone
profiles or even the gut microbiome. The most parsimonious
explanation for this observation is infection avoidance40,41, a
behavior that has also recently been observed in Drosophila42.
Even if not contagious, cancerous flies may show particular
behaviors, or produce chemical cues, which are generally asso-
ciated with being sick.

We find no such avoidance behavior in cancerous flies towards
other cancerous individuals, suggesting that the benefits of slower
cancer progression outweigh the costs of joining potentially
infectious groups. Moreover, it also suggests that the fitness costs
of joining sick individuals are lower than those of joining a group
of healthy individuals. Firstly, with respect to predation risk, it is
potentially worse to be the only sick individual within a healthy
group than in a group with other vulnerable individuals (dilution
effect). Secondly, since natural selection favors reproduction and
not survival per se, and the probability to reproduce is reduced
for ill individuals within a healthy group (because of avoidance of

sick partners and reduced competitive ability), it is better for sick
individuals to join other ill individuals because sexual partners
will be less selective and/or the disadvantage of sexual competi-
tion is reduced43,44.

These findings offer new perspectives on the reciprocal rela-
tionship between disease and social behavior. While we observe
that social structure has profound effects on disease progression,
our study also suggests that disease might play a fundamental role
in influencing group composition. We observed that cancerous
flies, exhibit strong social attraction towards each other, especially
at the beginning of tumor development, which decreases over
time. At least two reasons could explain this change in preference.
Firstly, at day 7 (when tumor progression is still minimal; Sup-
plementary Figure 1a), it seems likely that flies are relatively
unaffected by any pathological effects so that the decisions that
maximize fitness related traits (i.e., slowing cancer progression
and maximizing reproduction19 can still be made, while at later
stages of cancer progression (when tumor size is much more
significant; Supplementary Figure 1c), the impact on normal
functioning is likely to be high, and therefore the ability to make
such decisions is lost. Secondly, it makes sense to be more
selective during the initial stages of tumor progression, when the
fitness benefits of reduced cancer progression are best maximized
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(e.g., better reproductive output). In later stages, the “damage is
done” and cancer will be too advanced to maximally reap these
benefits. These findings raise questions on the very early impact
of internal oncogenic process on individual behavior and natural
selection pressures on this process45. While, at this stage, tumors
are not found to affect the survival of flies, cancer may affect
fitness in other ways (e.g., reproductive competitiveness, vulner-
ability to predators etc). A previous study showed that female
Drosophila, bearing colorectal tumors, have earlier oviposition
periods suggesting that flies are adapted to minimize the costs of
cancer on fitness19. Further studies would be necessary to
determine the exact proximate factors responsible for the effect
found here, as well as the extent to which generalizations can be
made across other cancer types (or indeed other illnesses) and
animal species.

Our findings highlight the importance of social structure on
disease progression, beyond the context of transmission. This is

the first time that a direct link between social environment,
specifically group composition, and cancer progression has been
shown, while removing all other confounding psycho-sociological
parameters that are frequently encountered in human studies.
More generally, this study brings new light to how sociality
impacts health and fitness in animals and its potential implication
in human disease therapy. Moreover, we provide essential data
for the emerging topic of evolutionary ecology of cancer, and
demonstrate the importance of cancerous tumor progression in
the intestine as a fitness-limiting factor that potentially influences
life history adaptations and strategies.

Methods
Drosophila stocks and genetics. yw, HS-flp;esg-gal4, UAS-GFP;FRT82B,Tub-
Gal80 (line 1), yw,HS-flp;UAS-RasV12, FRT82B, Apc2N175K, ApcQ8 (line 2) and yw,
HS-flp, FRT82B (line 3) flies32 were balanced over co-segregating SM5-TM6B
balancers. In all experiments, cancerous flies were HS-flp;esg-gal4,UAS-GFP/UAS-
RasV12;FRT82B,Tub-Gal80/FRT82B,Apc2N175K,ApcQ8 (offspring 1 of line 1 crossed
to line 2), whereas controls were HS-flp;esg-gal4,UAS-GFP;FRT82B,Tub-Gal80/
FRT82B (offspring 2 of line 1 crossed to line 3). MARCM clones32 were randomly
generated in heterozygous flies by flipase-induced exchange of pairing chromo-
some arms, resulting in mosaic individuals where homozygous Apc2N175K, ApcQ8

mutant cells lacked the Gal80 repressor. This allowed Gal4 activity and the sub-
sequent expression of GFP and RasV12 for clones located in intestinal progenitor
cells. MARCM control clones are wild type for both Apc genes and do not express
RasV12. MARCM clones were generated by heat shocking 3-day old female flies at
37 °C for 1 h32. Several attempts were made to use non-induced (no HS) offspring
flies as controls, however, a few flies developed tumors without HS making this an
inadequate control for our study.

Flow cytometry. These intestinal tumors are polyclonal and tumoral cells are often
intercalated with healthy cells (Supplementary Figure 3), making it hard to
delineate the limits of a tumor. For this reason we chose to quantify tumor size by
flow cytometry (FACS) instead of measuring the area, which would only provide a
rough estimate. Flies were starved overnight, provided only with water prior to the
quantification of GFP-positive cells used to estimate tumor progression. The entire
midgut and the Malpighian tubules (hereafter referred to generally as gut dissec-
tions), were sampled and dissected in PBS (phosphate buffer saline) as described46.
Both tissues exhibited tumor-like structures. Each replicate consisted of the guts
and Malpighian tubules of five flies. Each fly was taken from a separate tube of the
same social environment treatment (for example, one replicate of the homogeneous
treatment consisted of five guts and Malpighian tubules of cancerous flies, with
each fly randomly taken from five different homogeneous tubes) and digested by
collagenase (125 μg in 60 μl PBS) (Sigma-Aldrich) for 2 h at 27 °C with strong
agitation. Sixty microliter Trypsin 10× (Sigma-Aldrich) was then added by gentle
pipetting and nuclei were stained with Hoechst 33342 (0.5 μg/ml) for approxi-
mately 1 h. Dissociated cells were filtered through a cell strainer snap cap (70 μm
size). To set the enzyme digestion protocol, we used Mex-gal4 > UAS-GFP
(intestinal cells), esg-gal4 > UAS-GFP (stem cell and progenitors) and tumor-
bearing guts, and checked the efficiency of the cell dissociation by direct
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observation with a GFP dissecting microscope every 30 min. The collagenase
treatment was very efficient to digest the extracellular matrix, though the post-
trypsin treatment was required to end up with single cells only. For each sample,
50,000 R2 cells were processed on a Partec PAS III and analyzed using the
FlowMax software (Supplementary Figure 2, 3).

Social environment. Flies were sexed at emergence and control or cancerous
females were kept in groups until the third day post emergence. Control and
cancerous virgin females were heat shocked at 37 °C for 1 h. Flies were then put
into their social groups and introduced into new 40 ml food tubes. Social groups
created for experiments measuring tumor size consisted of either a cancerous fly in
isolation, a group of eight all cancerous individuals (homogeneous groups) or a
group of one cancerous individual in a group of seven non-cancerous individuals
(heterogeneous group). Flies were partially wing-clipped on the right or left wing to
distinguish their genotype. Previous behavioral studies have shown that wing
clipping has no effect on social interactions47. Flies were then kept at 25 °C on
standard food (changed every 3 days) until 21 days post-HS (induction). Flies were
housed in small tubes (40 ml) to promote social interactions and limit the possi-
bility of complete social isolation for any given fly. Tumor size was estimated with
flow cytometry. Data (the number of tumor cells relative to the total number of
cells counted) were analyzed using a generalized linear model (binomial distribu-
tion, Pearson correction for over-dispersion) and Tukey’s post-hoc tests.

Social interactions. Again, females flies were put into groups according to the
protocol described above, except this time social groups consisted of a group of
eight all control flies (homogeneous), a group of eight all cancerous flies (homo-
geneous) and a single cancerous fly with seven control flies (heterogeneous). A
group of flies to be tracked was composed of eight flies taken from different food
tubes to ensure that they had never previously interacted. They were introduced
into a semi-opaque white polyoxymethylene (Delrin) arena (diameter 100 mm;
height 5 mm), covered with a transparent Plexiglas for 1 h. We simultaneously
tracked four groups of eight flies over the 1 h. The tracking apparatus consisted of
four synchronized firewire cameras (Guppy pro, Allied vision technologies), each
filming one interaction arena that was backlit by a 150 × 150 mm IR backlight
(R&D vision). We used Vision software to analyze spatial data (open-source C-trax
0.3.748) that allowed us to collect ten positions per second for each fly49,50 in the
group over 1 h video experiments. Tracking corrections were made post C-trax
analysis with fixerrors Matlab toolbox (Ctrax-allmatlab version 0.2.11) using
Matlab software 7.11.0 to ensure that the identity of each fly was maintained when
individuals were close to one another. For each fly, we calculated the total length of
the path, the distance to other flies, the number of contacts with other flies (a
contact was considered when the distance between the centers of two individuals
was smaller than, or equal to, one mean body length of the individuals for 1 s or
more) and the duration of each contact. Interactions were considered between all
individuals within a group. We averaged each measure for all flies of the same
cancer state within a group to obtain a single value for one replicate. For each
measure we performed a general linear model and included the measures of group
composition (homogeneous vs. heterogeneous), fly state (cancerous or control) and
the interaction group composition × fly state as fixed explanatory variables. Tukey
post-hoc contrasts among treatments were tested.

Social environment choice. Flies were sexed at emergence and control or can-
cerous females were kept in groups until the third day post emergence. Control and
cancerous virgin females were heat shocked at 37 °C during 1 h and kept in groups
until the day of the experiment. The experimental setup consisted of a 17 × 12 × 5
cm plastic box in which 2 small 2 × 2 × 2 cm mesh cages were introduced and each
placed on a 3 cm diameter petri dish containing standard food. The two cages were
positioned at opposite ends of the box. Groups of eight flies (hereafter referred to as
stimulus flies) were placed in the mesh cages. In the dual choice experiment, one
mesh cage contained control flies while the other contained cancerous flies. In the
attraction vs. avoidance experiment only one of the two cages contained stimulus
flies. A focal fly (control or cancerous), taken from a separate tube from the
stimulus flies, was introduced in the box 15 h before starting the experiment. The
position of the fly was then visually recorded every 30 min between 10 am and 5
pm. A choice was only recorded when the fly was positioned on a mesh cage or the
associated petri dish. For the dual choice experiment, focal and stimulus flies were
of the same age (7, 14, or 21 days post-induction), whereas for the attraction vs.
aversion experiment the focal fly was always 7 days old post-induction and the
stimulus flies were either 7 or 21 days post-induction. The number of times a focal
fly was observed on a cancerous stimulus cage (for the dual choice experiment) or
the stimulus cage (for the attraction vs. aversion experiment) compared to the total
number of cage landings were then analyzed with a general linear model and a
binary logistic regression. For the dual choice experiment, we first compared the
behavior of cancerous vs. control flies: state of the focal fly was included as a fixed
factor and fly age was included as a covariate. For the attraction vs. aversion
experiment, we separately analyzed the behavior of each focal fly (i.e., cancerous or
control) as a function of stimulus fly state and age. Finally, a binomial test, for each
independent measure, was performed to test for a significant deviation from ran-
dom choice.

Data availability
The data and computer code uses to support the findings of this study are available from
the corresponding author upon request.
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