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Abstract. Anisotropic hardening response (or evolution of yield surface) is an important issue
for numerical modeling of sheet metal forming and springback. Lee et al. (2017) recently
introduced an improved constitutive model based on the Stoughton and Yoon (2009)’s equation,
called the S-Y2009 model in this paper, in order to capture the anisotropic hardening in
proportional loading conditions. The Lee et al. (2017)’s model was built by coupling the S-
Y2009 model and a non-quadratic model to control the curvature of the yield fitting for more
accurate prediction of the yield surface. The Lee et al. (2017)’s model (called the coupled model
in this paper) showed good agreements with the measured data. However, in the aforementioned
paper, a simulation study for sheet metal forming process with the coupled model was not
reported. This paper presents the coupled model in two points of view. The first is the ability of
the coupled model to capture the evolution of the yield surface. The other is the performance of
the coupled model to describe the anisotropic hardening in a bulge test simulation. Predicting
the anisotropic hardening including the biaxial stress state is important to follow the measured
data. For the simulation, the coupled model was implemented into Vectorized User MATerial
interface (VUMAT) of ABAQUS. The Y1d2000-2d model was also incorporated in the
comparison because the Y1d2000-2d model has been showing good agreements with the initial
anisotropy. The results of this study show that capturing the anisotropic hardening is important
and the presented approach can be a good model in the sheet metal forming simulation under the
proportional loading conditions.

1. Introduction
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Prediction of yield surface is an important issue in sheet metal forming simulations. Since plastic
hardening differs with respect to the texture of material, yield surface evolves as plastic strain increases.
Researchers have proposed some numerical models to capture the evolution of yield surface (or
anisotropic hardening) [1-5]. These models are based on an interpolation method at discrete levels of
plastic strain. Though these models are effective and have made improvements in capturing anisotropic
hardening, they are strongly affected by the interpolation function. In addition, they need a complex
transformation process. Stoughton and Yoon [6] introduced an alternative model, called S-Y 2009 model
in this paper, which does not need an interpolation and optimization at the discrete levels of plastic strain.
The S-Y 2009 model is based on the normalized Hill’s (1948) function [7] and can explicitly incorporate

four stress hardening data in 0°, 45°, 90° to the rolling direction (RD) and the equal biaxial (EB)

condition with a hardening function. Despite this advantage, the S-Y 2009 model cannot control its
curvature of yield surface. In order to improve this weakness of the S-Y 2009 model, Lee et al., [8]
introduced an improved model with coupling of the S-Y 2009 model with a non-quadratic yield function
in order to change the curvature of yield surface; this model is called the coupled model in this paper.
In this paper, the yield surface fitting of the coupled model is compared with the measured data to show
the ability of the coupled model. The target materials are MP980, AA5182-O, AA6022-T43 and 718AT
sheets. Then, a bulge test simulation is conducted with the materials. Since the pole of the bulge test
undergoes a biaxial stress state, accounting for the anisotropic hardening including the biaxial stress
state is important to follow the experimental data. Y1d200-2d model [9] is incorporated in the study for
describing the initial yield surface data. The study shows that the coupled model can follow the measured
data excellently in the bulge test simulation.

2. Numerical model
The S-Y 2009 model under the plane stress condition is described as below [6]:

_ o o 0,0, ~—0,0 4o 0
Foras (87) = [aé (Iép) 3 EZEP)J(”H —oy)t ”325; (5;3 ot 635125;2) ’ @
where Elastic deformation  if f(a,EP) (1
Elastoplastic deformation if f(a,EP) =1

o, , 0, and 0, are stress components. g, (5’”), Ges (EP) s Top (51’) and 7, (gP) are hardening

functions at 0°, 45°, 90° from the RD and EB condition, respectively. Though each hardening function

has different parameters according to a loading direction, the equation form is the same. This paper
employs a modified Hockett-Sherby hardening functions as below:

5(¢")= 4~ Bexp (—C(é”)b ) + D", )

where 4, B, C, b, and D are the model constants of the modified Hockett-Sherby model and they
have different values with respect to a loading condition. The values of the model constants for test
materials are summarized in Table 1. Since the S-Y 2009 model is based on a quadratic form, Lee et al.
[8] made coupling of the S-Y 2009 model with a non-quadratic function as below:

1
FCoup (o.’gp) = |:f:S-Y2009 (o.’gp) ’ fNon-quad (O.):|n+2 ? (3)
where .fNun-quad (‘7) = é‘o_“" +§‘O_H ' + é‘o-l -0y '
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F.. (g, i ) is the coupled model and f, Non-quad (o) is a non-quadratic function to determine curvature

of the whole model, FCW(O-,gP ) . 0, and 0 are the principal stresses. This model employs a non-

associated flow rule to determine the direction of plastic strain and the plastic potential function
employed is given below:

- _ [ 2 2
Op (G) - \/011 + /1‘1)0-22 - 2‘}}7011022 t 2pp0-120-12 ’ 4)
where , _ (o +0)(n*t1), , _ % and  _ 5l tn) 142,
N () B (l+7,) 2

R and r,, are r-values and the values of /lp sV, and p, are summarized in Table 2. This model

was implemented into Vectorized User MATerial interface (VUMAT) of ABAQUS and used for the
bulge test simulation.

Table 1. Hardening parameters

Material Condition Hardening parameters r-values
A (MPa) | B (MPa) C b D (MPa)
718AT 0° 529.54 318.34 9.79 1.00 6.17 1.830
45° 520.33 300.91 10.17 1.00 0.86 2.294
90° 516.09 299.58 10.43 1.00 0.44 2.517
EB 708.38 470.50 10.04 1.00 2.57 0.803
MP980 0° 1011.98 371.15 52.99 0.79 1114.29 0.810
45° 999.57 400.75 61.88 0.81 1290.46 0.995
90° 1028.35 411.03 77.22 0.84 1197.45 1.058
EB 1090.72 507.75 18.77 0.64 435.47 0.977
AA6022-T43 0° 338.86 202.29 10.38 1.00 0.42 1.029
45° 335.22 199.10 8.99 1.00 0.38 0.532
90° 322.13 193.64 9.20 1.00 0.0 0.728
EB 362.06 233.21 7.35 1.00 2.55 1.149
AA5182-0 0° 366.75 250.97 11.18 1.00 0.23 0.957
45° 358.44 246.79 9.74 1.00 0.67 0.934
90° 362.39 248.11 9.98 1.00 0.0 1.058
EB 432.33 307.11 6.32 1.00 8.36 0.948
Table 2. Plastic potential parameters
718AT MP980 AA6022-T43 AA5182-0
i 1.2038 y 0.8705 i 0.9036 i 0.9512
P P P P
v, 0.5071 v, 0.4475 v, 0.6466 v, 0.4890
P, 1.2275 P, 1.4583 P, 1.7051 P, 1.3956
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Table 3. Parameters of Y1d2000-2d model

Materials Y1d2000-2d parameters
@, %, a5 %y *s %5 a, «*, "
718AT 1.0434 | 1.0291 | 0.8678 0.8857 | 0.9243 0.8411 1.0175 | 0.8825 6
MP980 0.8943 | 1.1598 1.200 1.0489 1.0561 1.1770 1.0747 | 1.0311 6
AA6022-T43 | 0.9699 | 1.0761 | 1.0339 1.0700 1.0287 1.1312 | 0.9640 | 1.0074 8
AA5182-0 0.9546 | 1.0335 | 0.8260 | 0.9706 | 0.9732 | 0.8425 1.0113 1.1922 8

3. Results and discussions

Fig. 1 compares the yield surface fitting of the coupled and Y1d2000-2d models with the measured data.
The parameter values of the Y1d2000-2d model are shown in Table 3. The Y1d2000-2d and coupled
models have very similar initial yield surfaces in all of the materials, as shown in Fig. 1(a-d). Since the
coupled model is able to change the curvature, this model can have the similar shape with the initial
yield fitting of the Y1d2000-2d model in all of the cases. However, as plastic strain increases, the error
of the Y1d2000-2d model increases especially at the EB stress in each material. On the other hand, the
coupled model can capture all of the measured data by following the evolution of the yield surface. The
maximum difference between two models occurs at the EB stress in the four cases.
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Figure 1. Yield surface fitting of the Y1d2000-2d and coupled models
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A bulge test simulation was conducted as shown in Fig. 2. The bulge test is one of widely used
material tests. In addition, since the two models have the largest difference at the EB condition in each
case, analyzing the stress state at the pole of the bulge test is a good study. Fig. 2 shows a quarter model
of the bulge test. The radius of the die is 70mm and the thickness of the sheet is 1mm. The simulation
was conducted with ABAQUS explicit analysis with the VUMAT. Fig. 3 shows the stress-strain curves
of the models at the pole and the blue triangles present the measured data. The measured data came from
the Stoughton and Yoon’s study [6]. The coupled model has so good agreements with the measured data.
However, the Y1d2000-2d model cannot follow the measured data because the model dose not describe
the evolution of the yield surface. In the 718AT sheet, the difference between two models is almost
200MPa and it is going to affect the fracture prediction with a stress-based forming limit. These results
show that capturing the evolution of yield surface is very important in sheet metal forming simulations
and the coupled model captures the measured data very well in the proportional loading cases.
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Figure 2. Quarter model of the bulge test
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Figure 3. Results of the bulge test

4. Conclusion
This work presents the coupled model in two points of view. The details are summarized as below:

(1) Since the coupled model can control the curvature, this model has almost the same initial
yield shape with the prediction of the Y1d2000-2d model in all of the test materials.

(2) The ability of the coupled model to describe the evolution of yield surface leads to good
agreements with the measured yield data at every level of plastic deformation. On the other
hand, the Y1d2000-2d model leads to big errors as plastic strain increases. The maximum
difference between two models is generated at the EB stress condition. This difference is
going to have an effect on sheet metal forming simulation.

(3) The coupled model can follow the measured data of the stress-strain curve in the bulge test
while the Y1d2000-2d model cannot. This difference will affect prediction of fracture with a
stress-based forming limit.
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