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INTRODUCTION

Gene flow in the marine environment underpins
the maintenance of genetic diversity and resilience to
change, and has long been considered to reflect the
dispersal potential determined by life history charac-
teristics (Roberts 1997, Faurby & Barber 2012).
Indeed, there is much empirical evidence supporting
a correlation between the length of a pelagic larval
phase and the extent of genetic exchange between
populations. Direct-developing lecithotrophic and
brooding species generally display high genetic

structure, while planktotrophic species with long-
lived planktonic embryonic and larval phases
achieve genetic homogeneity over large scales (see
Hunt 1993, Teske et al. 2007, Underwood et al. 2009,
Haye et al. 2014, Weber et al. 2015 for comparisons).
However, studies that contradict this rule abound,
and a paradigm shift is gaining momentum. In partic-
ular, broadcast-spawning species with long pelagic
larval phases often show surprising levels of genetic
differentiation over small spatial scales (e.g. Taylor
& Hellberg 2003, Miller et al. 2009, Sá-Pinto et al.
2012, Penant et al. 2013).
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ABSTRACT: Patterns and mechanisms of gene flow and larval dispersal in the Antarctic marine
environment are still poorly understood, despite the current threat of rapid climate change and the
need for such information to inform conservation and management efforts. Studies on Antarctic
brooding marine invertebrates have demonstrated limited connectivity, concurrent with life his-
tory expectations; however, no equivalent data are available for broadcast spawning species for
which we might expect a higher capacity for larval dispersal. Here, we have used microsatellite
DNA markers and mitochondrial DNA sequence data to explore patterns of genetic structure and
infer larval dispersal patterns across spatial scales of <500 m to 1400 km in the broadcast spawn-
ing sea urchin Sterechinus neumayeri. We show genetic differentiation at small spatial scales
(<1 km), but genetic homogeneity over moderate (1−25 km) and large spatial scales (1000 km),
consistent with patterns described as chaotic genetic patchiness. Self-recruitment appears com-
mon in S. neumayeri, and genotypes of larvae collected from the water column provide prelimi-
nary evidence that the adult population structure is maintained through variability among larval
cohorts. Genetic similarity at large spatial scales may represent evolutionary connectivity on a
 circum-Antarctic scale, and likely also reflects a history of shelf recolonisation after isolation in
glacial refugia.

KEY WORDS:  Gene flow · Larval dispersal · Migration · Chaotic genetic patchiness ·
 Microsatellites · Echinoid
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Several factors have been identified that may limit
gene flow in benthic marine species with long
pelagic larval phases and high dispersal potential.
Larval retention, localised adaptation, dispersal bar-
riers such as abyssal depths and convergence zones,
and the timing of reproductive events can all isolate
populations (Reeb & Avise 1990, Palumbi 1994,
Lessios et al. 1999, McCartney et al. 2000, Hunter &
Halanych 2008, 2010, Miller & Ayre 2008, Thornhill
et al. 2008, Calderon & Turon 2010, Kelly & Palumbi
2010, Maltagliati et al. 2010, Hoffman et al. 2011,
Ni et al. 2011). However, an increasing number of
broadcast-spawning species are found to be gen -
etically differentiated at the smallest spatial scale
studied, with apparent connectivity over larger
scales (e.g. Hedgecock 1994, Hogan et al. 2010, Lar-
son & Julian 1999). Such patterns, referred to as
chaotic genetic patchiness (Johnson & Black 1982),
prove challenging to explain, yet are likely to be
found frequently as more studies focus at a fine spa-
tial resolution (e.g. Arnaud-Haond et al. 2008, Miller
et al. 2009).

Chaotic genetic patchiness encompasses the ca -
pacity for larval dispersal to homogenise populations
over large scales, while temporal and spatial varia-
tion in the availability and genetic composition of
 larvae may still result in fine-scale genetic structure
(Johnson & Black 1982). Several pre-settlement
mechanisms have been hypothesised to drive this
variation in larval recruits (see Hogan et al. 2010).
These include localised natural selection acting on
larval cohorts, ‘sweepstake reproductive success’
(variability in reproductive success of source pop -
ulations), and collective dispersal of larval cohorts
from spatially/temporally distinct source populations.
Sweepstake reproductive success has perhaps re -
ceived the most attention (Hedgecock 1982, Hedge-
cock & Pudovkin 2011) and predicts that large
 variances in reproductive success occur due to
‘sweepstakes’ where only a small number of indi -
viduals synchronise reproduction with optimal oce -
anographic conditions necessary for successful re -
cruitment. This results in a reduction in effective
population size; and is accompanied by reduced
genetic diversity in larval cohorts compared to adult
populations (Hedgecock 1994, Hedgecock & Pudov -
kin 2011). Most processes leading to chaotic genetic
patchiness are contingent upon the persistence of
cohesive, genetically differentiated cohorts of larvae
remaining aggregated in the water column. There
is only limited empirical evidence of this to date
(Johnson et al. 1993, Riquet et al. 2017) as planktonic
larvae are notoriously difficult to collect, and more

studies of larval genetic structure are needed (Bro-
quet et al. 2013).

The vast majority of research on larval dispersal
and genetic connectivity patterns has focused on
temperate and tropical species (Hess et al. 1988,
McCartney et al. 2000, Lessios et al. 2001, Addison &
Hart 2004, Duran et al. 2004, Waters & Roy 2004,
Banks et al. 2007, Yasuda et al. 2009, Kelly & Palumbi
2010, Maltagliati et al. 2010). Despite being under
greater immediate threat from environmental
change (Peck 2005), Antarctic benthic fauna remain
much less understood in this respect. The nature of
Antarctic waters provides unique conditions that
may influence genetic structure: extremely low and
stable temperatures, a coastline spanning only a few
degrees of latitude, and the presence of strong cir-
cumpolar currents. In combination, these factors
might be expected to homogenise populations; how-
ever, the history of glacial cycles that have drastically
reduced available benthic habitat may have isolated
populations and reduced genetic diversity. That very
few studies of fine-scale genetic structure exist for
Antarctic marine invertebrates limits our capacity to
incorporate small-scale patterns in management and
planning (Féral 2002, Palumbi 2003, Palsbøll et al.
2007). Of the few studies that do exist, most focus on
brooding species, which have no larval stage and
therefore very low dispersal potential, and, unsur-
prisingly, show evidence of fine genetic structure
(Hunter & Halanych 2010, Arango et al. 2011, Baird
et al. 2012, Ledoux et al. 2012). Studies of broadcast-
spawning Antarctic benthic invertebrates with plank -
tonic larvae have mainly focused on large-scale con-
nectivity across major oceanographic barriers (e.g.
Thornhill et al. 2008). To our knowledge, only a
 single study has identified fine-scale population
structure in a broadcast-spawning Antarctic benthic
invertebrate, the mollusc Nacella concinna; however,
the drivers of this structure remain unknown (Hoff-
man et al. 2012).

The Antarctic echinoid Sterechinus neumayeri is an
ideal organism for testing the predictions of life
history characteristics on population genetic structure
in an Antarctic benthic marine broadcast spawner.
This species is an abundant and dominant component
of the nearshore benthos, with a circum-Antarctic dis-
tribution (Brey et al. 1995, Sahade et al. 1998), and is
well studied with regards to its environmental sensi-
tivities (e.g. King & Riddle 2001, Lister et al. 2010,
 Ericson et al. 2012, Byrne et al. 2013, Lister et al. 2015,
Foo et al. 2016). It reproduces annually during the
austral summer from November to De cember (Pearse
et al. 1991), and larvae spend ap proximately 4 mo in
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the water column before metamorphosis and settle-
ment (Bosch et al. 1987, Brey et al. 1995). This ex-
tended larval stage and development time likely re-
flects their reduced metabolic rate in cold waters, as
well as providing a strategy for planktotrophic larvae
to exploit the highly seasonal planktonic food sources
of Antarctic waters (Bosch et al. 1987, Brey et al. 1995,
Brockington et al. 2007). The larval phase of S. neu-
mayeri confers a high dispersal potential compared
to related broadcast-spawning temperate and tropi-
cal echinoids, in which larvae remain in the water col-
umn for only days or weeks. In addition, the presence
of the Antarctic  Circumpolar Current (ACC) poten-
tially provides a mechanism for westward offshore
larval transport, which encompasses the entire conti-
nent (Nowlin & Klinck 1986). Previous studies at the
 phylogenetic level based on mitochondrial DNA sug-
gest that S. neumayeri may sustain considerable con-
nectivity on a circum-Antarctic scale (Díaz et al.
2011), yet have reduced genetic diversity due to his-
torical population reductions during glacial cycles
(González-Wevar et al. 2012).

In the present study, we used microsatellite and
mitochondrial DNA markers to provide a compre-
hensive analysis of genetic structure and connectiv-
ity at small and large scales in S. neumayeri from
East Antarctica. Additionally, we determined genetic
structure of larval cohorts to explore the potential
role of chaotic genetic patchiness in structuring
Antarctic benthic communities.

MATERIALS AND METHODS

Sample collection

Samples of adult Sterechinus neumayeri were col-
lected in East Antarctica during the 2008/2009 sum-
mer field season at Casey station in the Windmill
Islands (66° S, 110° E) and the 2009/2010 summer
field season at Davis station in the Vestfold Hills
(68° S, 78° E; Fig. 1). In order to partition microsatel-
lite variation into different spatial scales to infer pat-
terns of larval dispersal, a hierarchical sampling
design was used. Region represented the largest
 spatial scale, between the Windmill Islands and Vest-
fold Hills, which are separated by approximately
1400 km. Sampling within the Windmill Islands was
from 2 locations 9 km apart and within the Vestfold
Hills from 5 locations separated by 5−30 km (Fig. 1).
Within each location, 25−50 individuals were col-
lected from up to 3 sites approximately 500 m apart,
by dip netting, snorkeling, or surface-supply divers,

and were returned live to the laboratory for process-
ing. All individuals were considered mature based on
the presence of sperm or eggs in gonad tissue, and
were 4−16 cm in test diameter. A small sample of
gonad tissue was dissected from each individual and
stored in 95% ethanol for DNA extraction and
genetic analysis.

Echinoplutei larvae were collected from plankton
tows in the Vestfold Hills region during the 2009/
2010 summer field season at 2 sampling locations
approximately 1 km apart (Fig. 1). Larvae were col-
lected from 3 plankton tows: 2 conducted near Kazak
Island on 4 February 2010 and 8 February 2010, and
1 near Hawker Island on 9 February 2010 (Fig. 1);
additional plankton tows in the region yielded no
echinoplutei. All tows were carried out within 0.5 m
of the water’s surface, and were continued for
20−50 m, using a 200 µm mesh net with a circular
opening of 0.5 m and a 500 ml cod end. Plankton that
accumulated in the cod end and on the internal net
surface was rinsed into a collection jar. Samples were
fixed with 95% ethanol and sorted under a dissecting
microscope (10×). As S. neumayeri is the only species
of regular echinoid found in shallow nearshore wa -
ters of Antarctica (Dell et al. 1972), all echinoplutei
larvae found in samples were assumed to be S. neu-
mayeri and were removed and stored individually in
95% ethanol. All larvae collected were 4- to 8-armed
pluteus stages, with estimated age between 40 and
100 d, and likely to have spent 1–3 mo dispersing in
the water column prior to collection.

DNA extraction and genotyping

DNA was extracted from gonad tissue using Qia-
gen DNeasy Blood and Tissue extraction kits follow-
ing the manufacturer’s protocols. Larval DNA extrac-
tions were performed using whole echinoplutei and
Qiagen QIAamp DNA Micro extraction kits as per
the manufacturer’s protocol. Genomic DNA was
quantified using a Nanodrop 8000 Spectrophotome-
ter (Thermo Scientific).

To assess genetic patterns at the regional scale (i.e.
between the Windmill Islands and Vestfold Hills), we
sequenced the mitochondrial gene regions cyto -
chrome oxidase sub-unit 1 (CO1) and ribosomal sub-
unit 16S from a sub-set of the adult samples from
each region using urchin-specific primers and uni-
versal primers, respectively (Table S1 in the supple-
ment at www-int-res.com/articles/suppl/ m601p153_
supp.pdf). Bidirectional sequencing was performed
by the Australian Genome Research Facility (Bris-
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bane) on an Applied Biosystems 3730 DNA Analyzer
automated sequencer, using the same primers speci-
fied for PCR amplification. Sequence chromatograms
were manually inspected to confirm quality, and
 contiguous sequences were created using MEGA 4.0
(Tamura et al. 2007), aligned using the ClustalW
algorithm, and truncated to a consistent length for
comparison. The final data comprised 813 bp of CO1
(72% of inter-primer region) and 294 bp of 16S (51%
of inter primer region). BLAST searches were per-
formed to confirm that DNA sequence results
matched with published sequences of S. neumayeri.

Regional-level and fine-scale genetic structure in S.
neumayeri adults and larvae were assessed using
microsatellite DNA markers. Microsatellite loci were
developed by Ecogenics GmbH (Zurich, Switzerland)
based on 15 individuals utilising the high-throughput
genomic sequencing approach (Abdelkrim et al. 2009).

Ten microgrammes of genomic DNA was analysed on
a Roche 454 GS-FLX platform (Roche) using a 1/16th
run and the GS FLX titanium reagents. A total of
38 053 reads, with an average length of 294 bp, were
completed. Fragments were screened for micro -
satellite inserts; a total of 312 suitable candidates
were discovered. Primers were designed for 24 of
these, which were then tested for polymorphism.
Eleven loci were deemed suitable for this study and
were amplified in 4 multiplex PCRs (Table S2). PCRs
were completed in a total volume of 20 µl using
 Qiagen Multiplex PCR kits containing a final concen-
tration of 3 mM MgCl, 100−300 ηg of template DNA
and one unit HotStar Taq DNA Polymerase. Primer
concentrations were varied between multiplex reac-
tions to maintain product concentrations within read-
able limits of the sequencer. Analysis of PCR products
was carried out on a CEQ 8000 Genetic Analysis Sys-
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Fig. 1. Sites in the Vestfold Hills and Windmill Islands regions of East Antarctica
where Sterechinus neumayeri were collected. Red markers: adult collections;
blue markers: echinoplutei collections. N: number of individuals genotyped from 

up to 3 sites in each location. Grey shading in left panel: sea ice
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tem (Beckman Coulter) automated sequencer by cap-
illary separation, and alleles were scored as  fragment
size using CEQ 8000 Genetic Analysis System soft-
ware (ver. 8.0). Each fragment was visually checked
for scoring errors and stutter peaks. Micro-checker
2.2.3 (Van Oosterhout et al. 2004) was used to check
for stutter bands and the presence of null alleles.
Loci were also tested for linkage disequilibrium in
Genepop 4.0.10 (Raymond & Rousset 1995), with the
critical level p < 0.05 adjusted for multiple compar-
isons, using the sequential Bonferroni procedure.

Statistical analysis

We calculated FST and used analysis of molecular
variance (AMOVA) in ARLEQUIN 3.5 (Excoffier &
Lischer 2010) to test the hypothesis of no genetic
 subdivision between regions based on mitochondrial
DNA haplotypes. Tests for departures of FST from
those expected under panmixis (i.e. FST = 0) were
based on 10 000 permutations. Tajima’s D statistics
were not calculated as they would not have been
meaningful given the extremely low variability of the
sequence data (see Results).

From the microsatellite genotypes, we calculated
measures of genetic diversity including observed
heterozygosity (HO), expected heterozygosity (HE),
private alleles (PA) and allelic richness (AR) for adults
from each site using Fstat 2.9.3.2 (Goudet 1995). Per-
mutation tests were performed in Fstat to determine
whether the 3 diversity measures were significantly
different between the Windmill Islands and Vestfold
Hills regions (10 000 permutations, 2-tailed p-value).
To identify departures from Hardy-Weinberg equi-
librium (HWE), exact tests were carried out using
Gene pop, with 10 000 dememorization steps and 500
Markov chains to improve standard error to below
the 0.01 threshold. The fixation index (FIS) was used
to determine the nature of the departures from HWE,
where FIS > 0 indicates heterozygote deficiencies and
FIS < 0 indicates heterozygote excess. Significant het-
erozygote deficiencies were attributed to null alleles
by Micro-checker at 8 out of the 11 loci (Stenum 03,
08, 06, 18, 04, 22, 19 and 21), and the Oosterhout cor-
rection algorithm was used to generate corrected
allele frequencies for subsequent population-level
comparisons. Loci were also tested for evidence of
selection in Lositan (Antao et al. 2008) using 20 000
simulations and the recommended ‘neutral mean FST’
option (Hemond & Wilbur 2011). Selection was
assessed on the whole adult data set, as well as on
the 2 regional data sets separately.

Genetic differentiation among adult populations of
S. neumayeri was explored using the Stepwise Muta-
tion Model (RST; Slatkin 1985b) and the Infinite Allele
Model (FST; Kimura & Crow 1964) using SPAGeDi 1.4
(Hardy & Vekemans 2002), with 10 000 permutations
to assess significance. As high within-population
variability of microsatellites can reduce the magni-
tude of FST (Hedrick 2005), the standardised measure
of differentiation, F’ST, was also calculated in
Genalex 6.5 (Peakall & Smouse 2012). A further
measure of differentiation, Jost’s D, was calculated,
as it may be more robust to the high heterozygote
frequencies commonly found in microsatellites (Jost
2008, Ryman & Leimar 2009, Whitlock 2011). Jost’s
unbiased D (DEST) was calculated in R using the
package DEMEtics (Gerlach et al. 2010) with 10 000
bootstrap resampling steps. To determine which pop-
ulations were genetically distinct from one another,
pairwise FST between all sites was calculated in
Genalex using 10 000 permutations to assess sig -
nificance.

In order to partition genetic variation among
regions, among locations within regions, and among
sites within locations, a hierarchical AMOVA was
performed in R using the package Hierfstat (Goudet
2005). Boyd Island was excluded from this analysis as
there was only one site sampled at this location. For
each hierarchical level, 100 000 permutations were
used to determine significant departures from pan-
mixis.

To determine whether genetic differentiation fol-
lowed an isolation by distance (IBD) pattern, a corre-
lation between geographic distance and linearised
genetic distance was assessed using Mantel tests im-
plemented in Genepop, with 100 000 permutations.
Distance was represented by the shortest water-
based route between sites; high-resolution data on
local ocean currents are unfortunately not available
for the area. Mantel tests were performed within re-
gions to determine whether IBD was present at small
scales, and across the entire data set to explore IBD
at a large scale.

In order to estimate gene flow, the number of
migrants per generation (Nem) was calculated using
private alleles following the method of Slatkin
(1985a) in Genepop. To explore migration within and
between regions, Geneclass 2 (Piry et al. 2004) was
used to detect first generation migrants (F0) present
in each site sampled. To account for the possibility of
non-sampled source populations, migration detec-
tion was calculated using the likelihood method
L_home and an exclusion probability of 0.01 (Paetkau
et al. 2004). The threshold for probability computa-
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tions was set to 0.05 with 10 000 simulated indi -
viduals. Individuals identified as F0 migrants were
removed from the data set and re-assigned following
the frequency-based method of Paetkau et al. (2004)
with 100 000 simulated individuals and a type 1 error
rate of 0.05.

In order to identify underlying genetic structure,
the program STRUCTURE 2.3.3 was used to deter-
mine the number of genetic populations within the
sample, and whether these populations related to
geographical sampling locations (Pritchard et al.
2000, Falush et al. 2003, 2007, Hubisz et al. 2009).
Twenty iterations for a K-value of 1−20 were per-
formed with a burn-in period of 50 000 and 500 000
Markov chain Monte Carlo steps. Likelihood esti-
mates of K-values were generated in Structure Har-
vester (Earl & vonHoldt 2011) using the delta K
method of Evanno et al. (2005).

Measures of genetic diversity and HWE in larval
samples were calculated as described for the adult
data set. To test for significant differences in diversity
measures between larval samples and adult popula-
tions from the Vestfold Hills region, permutation tests
for AR, HO and HE were implemented in Fstat 2.9.3.2.
Genetic differentiation statistics FST, RST, F’ST and
Jost’s DEST were calculated as for adults, both glob-
ally and pairwise between samples. We used assign-
ment tests in GeneClass2 to determine the likely
population of origin of larvae, assigned as individuals
and as sampling groups, using the methods as out-
lined above for adults. We also assessed the pairwise
relatedness among larvae using the Wang estimator
in COANCESTRY V1.0.1.8 (Wang 2011), and tested
for differences in the relatedness within and among
larval samples for any evidence of kin-aggregated
dispersal.

RESULTS

Large-scale patterns of genetic differentiation
inferred from mitochondrial DNA

Across 24 individuals and 2 regions in East Antarc-
tica there were only 2 CO1 haplotypes with a single
polymorphic site representing a synonymous substi-
tution. The common CO1 haplotype from both
regions (represented by 23 of 24 individuals) has
been recorded from the Antarctic Peninsula (Gen-
Bank accession HM467227.1) and several locations
within the Ross Sea (GenBank accession GU227089.1,
KF21457.1). Díaz et al. (2011) reported a total of 21
CO1 haplotypes in Sterechinus neumayeri, including

5 from East Antarctica; however, we were unable to
compare these sequences to our own as they are not
publically available.

The 16S sequences were slightly more variable
than CO1, with 4 haplotypes across 24 individuals
from both regions, and 3 polymorphic sites. The most
common 16S haplotype (represented by 21 of the 24
individuals) has also been recorded from the Antarc-
tic Peninsula (GenBank accession HM467250.1) and
the Ross Sea (GenBank accession GU226984.1).
Unsurprisingly, there was no significant genetic dif-
ference between the Windmill Islands and Vestfold
Hills regions based on either the CO1 or the 16S
sequence data (FST = 0, p = 1.00 and FST = 0.071, p =
0.483, respectively). All unique haplotypes gener-
ated in this study are available on GenBank (acces-
sion MH669388–MH669393).

Genetic diversity and differentiation inferred from
microsatellite data

In total, 545 S. neumayeri adults from East Antarc-
tica were genotyped. There was no evidence of link-
age disequilibrium using the default parameters in
any of the 11 loci tested. The total number of alleles
found at each locus was moderate, ranging from 6 to
19 with an average of 10 alleles per locus (Table S2).
Nineteen private alleles were found across all popu-
lations. Genetic diversity was not significantly differ-
ent between regions (for comparisons of HO, HE and
AR, p = 0.059, p = 0.162 and p = 0.814, respectively;
Table S3).

Populations were largely in HWE, with only 51 of
220 locus-by-site tests showing departures from
HWE (Table S4). Departures from HWE were spread
over nearly all sites and loci, yet only one site (Trig-
well Island 3) showed departures at more than half
of the loci tested. After Bonferroni correction, 42
comparisons remained significant, and of these, the
vast majority (40) represented heterozygote deficits.
These were largely attributed to the presence of null
alleles and the data were adjusted accordingly prior
to further analysis.

In contrast to results from mitochondrial DNA
analysis, we found significant genetic differentiation
in adult S. neumayeri among sites based on micro-
satellite data (FST = 0.010, RST = 0.016, DEST = 0.025,
F’ST = 0.024; p < 0.001 for all; Table 1). There was no
evidence of selection acting on any of the loci when
the entire data set was tested, yet balancing selection
was detected at Stenum 13 and Stenum 15 (at a sig-
nificance level of p < 0.01) within the Vestfold Hills
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region alone. Hierarchical AMOVA revealed that dif-
ferentiation was not significant between the 2
regions (FST = 0.005, p = 0.169) nor among locations
within regions (FST = 0, p = 0.470), but was significant
among sites within locations (FST = 0.008, p < 0.001),
i.e. the smallest spatial scale (Table S7). This result
was the same whether the raw data set or the data set
adjusted for null alleles was tested. However, given
that there were only 2 regions at the highest level,
the lack of significant differences between regions
may be linked to low statistical power, and should be
interpreted with caution. There was no isolation by
distance among locations across the entire data set
(R2 = 0.304, p = 0.071), nor among sites within each
region (Windmill Islands R2 = 0.062, p = 0.596; Vest-
fold Hills R2 = 0.023; p = 0.825). The absence of large-
scale population structure within the entire data set
was also evident in the STRUCTURE analysis, which
indicated K = 1 as the most likely number of popula-
tions (based on log likelihood values) and K = 2 based
on delta K (noting the Evanno method cannot resolve
K = 1). However, there was no relationship between
population structure and geographic location, with
all populations showing genetic admixture (Fig. S1).

Within regions, pairwise population estimates of
FST showed that 80% of sites within the Windmill
Islands, and only 30% of sites in the Vestfold Hills,
were significantly differentiated (Table S5). This pat-
tern was also evident when comparing pairwise DEST

values (Table S5).. Values of FST and DEST were gen-
erally higher among sites in the Windmill Islands

than among sites in the Vestfold Hills, yet values for
both regions were considered equally significant
(Windmill Islands: FST = 0.013, DEST = 0.019, p < 0.001;
Vestfold Hills: FST = 0.005, DEST = 0.009, p < 0.001).
When the 2 loci suspected to be under balancing
selection were removed from the data set, values
were more similar within the 2 regions (Windmill
Islands: FST = 0.009, DEST = 0.018, p < 0.001; Vestfold
Hills: FST = 0.007, DEST = 0.012, p < 0.001).

Gene flow in S. neumayeri

Gene flow in S. neumayeri appears limited. Be -
tween 72 and 88% of individuals were assigned to
their natal populations (Table 2) although the overall
Nem of 6.1 calculated from private alleles suggests
sufficient gene flow to reduce the effects of inbreed-
ing associated with local recruitment (inbreeding
connectivity, Nem > 1) but not to counteract the diver-
gence of populations through genetic drift (drift con-
nectivity, Nem > 10; Lowe & Allendorf 2010). Within
the Vestfold Hills region, 20% of individuals were
identified as first generation migrants, as were 22%
of individuals within the Windmill Islands region
(Table 2). The assigned source populations for these
migrants indicates that gene flow within the Vestfold
Hills region appears to occur more frequently
between sites in different locations (separated by
moderate distances of 1−25 km) than between sites
within locations (at small distances of 0.5−1 km), fur-
ther supporting the hierarchical genetic differen -
tiation results. Only 7.5% of the total identified
migrants at Vestfold Hills were assigned to a source
population from the Windmill Islands; however,
migrants within the Windmill Islands region were
assigned almost exclusively to Vestfold Hills popula-
tions (Table 2).

The relationship between larval and adult
 populations of S. neumayeri

A total of 26 echinoplutei larvae from 3 separate
sampling events were genotyped. There was signifi-
cant genetic differentiation between the 3 larval
samples, although sample size was low. Populations
from Kazak Island 2 and Hawker Island were signifi-
cantly differentiated based both on FST and DEST, and
Kazak Island 1 and 2 (the same site sampled 4 days
apart) were significantly differentiated based on DEST

alone (Table 3). Since DEST is generally considered
a superior estimation of genetic differentiation for
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Locus FST             RST           DEST          F ’ST

Stenum 03 0.013*** 0.002 0.046*** 0.052**
Stenum 08 0.004 0.033*** 0.008 0.011
Stenum 11 0.007 0.014* 0.001 0.006
Stenum 06 0.006 0.005 0.035 0.024
Stenum 13 0.005 0.009 0.006 0.011
Stenum 18 0.020*** 0.021** 0.033*** 0.050***
Stenum 04 0.007** 0.016* 0.068** 0.034***
Stenum 15 0 0 0 0
Stenum 22 0.008* 0.016* 0.015* 0.013*
Stenum 19 0.017*** 0.023** 0.046*** 0.055***
Stenum 21 0.018*** 0.014 0.016*** 0.022***
Total 0.010*** 0.016*** 0.025*** 0.024***

Table 1. Genetic differentiation at each of 11 microsatellite
loci among all adult populations of the Antarctic echinoid
Sterechinus neumayeri. These results are from the data set
after adjusting for null alleles. Negative values are con-
verted to 0. Significance: *p ≤ 0.05, **p ≤ 0.01,***p ≤ 0.001.
FST: differentiation based on the Infinite Allele model;
RST: differentiation based on the Stepwise Mutation Model;
DEST: Jost’s unbiased D; F’ST: standardised measure of 

differentiation
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polymorphic markers (Gerlach et al. 2010), this tem-
poral differentiation is likely to reflect real differ-
ences in larval composition, with FST more likely to
be affected by low sample size. F’ST values were also
generally in accordance with DEST (Table 3).

There were significant genetic differences be -
tween the Vestfold Hills larvae and adult populations
(AMOVA, FST = 0.148, p = 0.001) and pairwise com-
parisons indicated that this was the case for all
adult−larval comparisons (FST = 0.080−0.150, p =
0.010; DEST = 0.181−0.336, p = 0.010), although the
small samples sizes preclude major inference from
these results. Genetic diversity was not significantly
different between larvae and adults at Vestfold Hills
(for comparisons of HE, HO and AR, p = 0.962, 0.203

and 0.364, respectively; diversity values for larvae
are provided in Table S6) but observed heterozygos-
ity was higher in larvae than in adults (adults HO =
0.429, larvae HO = 0.467, p < 0.01). The relatedness
among larvae within a single plankton tow (mean =
−0.0779) was not significantly different to the relat-
edness among adults within a site (mean = −0.0682;
Fig. S2a).

Of the 26 larvae genotyped, only 14 could be
assigned unambiguously to a single population of
origin, with 5 originating from Ellis Fjord Site 1, 3
from Trigwell Island Site 1, 3 from Zappit Point Site 1,
2 from Boyd Island and 1 from Zappit Point Site 2
(Table S8). The remaining larvae were assigned with
equally high probability (80−90%) to multiple popu-
lations, providing little insight into larval dispersal
processes. However, when larvae were assigned as
groups (based on plankton tow), the Hawker Island
larvae were highly likely (61%) to have originated
from Ellis Fjord Site 1, Kazak Island 1 larvae from
Zappit Point Site 1 (99.2% likelihood), and Kazak
Island 2 larvae from Zappit Point Site 2 (99.9% likeli-
hood). Larvae within a sampling group were also
more closely related to each other (mean relatedness
= −0.0673) than to larvae from other groups (mean
relatedness = −0.1434; Fig. S2b), although notably
these relatedness values are negative, indicating
 larvae are not close kin.
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Location                                                                    Assigned origin                                                                               Not 
collected       Vestfold Hills Region                               Windmill Islands Region       assigned
                  OW1 OW2 BO1   EL1   EL2   EL3   TR1   TR2   TR3   ZP1   ZP2   ZP3      BP1   BP2   BP3   SB1   SB2           

OW1           76.67 3.33   3.33                                                             6.67                                                                                10
OW2                     77.14 2.86                                                                                                                 2.86                        17.14
BO1                               82.14                                                                                           3.57                                            14.29
EL1                                          73.33 3.33   3.33                                         3.33                                                                    16.67
EL2                                                    78.57                                                                                                                             21.43
EL3                                 4.17             4.17 83.33                                       4.17                                             4.17                  0
TR1                                                               3.57 78.57                   3.57             3.57                                                           10.71
TR2                                           3.33                               83.33                             3.33                                   3.33                6.67
TR3                                                     2.13   2.13                     78.72                                 2.13            2.13                        12.77
ZP1                                                                                                     74.29                                                                           25.71
ZP2                       2.94   2.94                                                                     82.35                                                                 11.76
ZP3                                                                                                                        88.24                                                        11.76
BP1                                           3.85                                                  3.85                        76.92                                           15.38
BP2                       2.86                              2.86                              2.86                                    80                                   11.43
BP3                                 2.03   3.03                                                                                                    81.82                       12.12
SB1                                 3.13                                                            3.13                        3.13                     71.88               18.75
SB2                                 2.78   2.78   2.78   2.78            2.78                                                                                  77.78       8.33

Table 2. Assignment of F0 migrants to source populations of the Antarctic echinoid Sterechinus neumayeri. Values represent
percentage of individuals collected from locations, assigned to a source population, and unassigned. Values on the diagonal
(in bold) represent the proportion of the population that are not F0 migrants. Italicised values represent first-generation migra-
tion between regions. Locations in the Vestfold Hills region are: Old Wallow (OW), Boyd Island (BO), Ellis Fjord (EL), Trigwell
Island (TR), and Zappit Point (ZP). Locations in the Windmill Islands region are Browning Peninsula (BP) and Sparkes Bay (SB)

FST DEST F’ST

Hawker Island Kazak Island 1 0 0 0
Hawker Island Kazak Island 2 0.063** 0.133** 0.140
Kazak Island 1 Kazak Island 2 0.038 0.138* 0.096

Table 3. Pairwise genetic differentiation (as FST, DEST and
F’ST) between larval cohorts of the Antarctic echinoid
Sterechinus neumayeri sampled in 2010 from Hawker Island
on 9 February (n = 13), Kazak Island (1) on 4 February (n =
7), and again from Kazak Island (2) on 8 February (n = 6). 

Significance: *p ≤ 0.05, **p ≤ 0.01
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DISCUSSION

The Antarctic echinoid Sterechinus neumayeri is
characterised by fine-scale population structure. This
is unexpected given its planktotrophic development
and larval dispersal period of up to 4 mo. Sites sepa-
rated by <1 km within both the Windmill Islands and
Vestfold Hills regions showed low but highly signifi-
cant genetic differentiation, and there was evidence
that populations are largely self-recruiting. How-
ever, despite small-scale heterogeneity (at scales of
<1 km), populations from locations within Windmill
Islands and Vestfold Hills separated by tens of kilo-
metres showed no significant genetic differentiation,
consistent with a pattern of chaotic genetic patchi-
ness (Johnson & Black 1982). Genetic differentiation
found among collections of S. neumayeri larvae, and
between larvae and adults, is also consistent with
models such as chaotic genetic patchiness. We found
similar levels of genetic diversity in adults and larvae
and no evidence of kin aggregation in larvae, a
 pattern that would not be expected if sweepstakes
reproductive success was leading to chaotic genetic
patchiness (Hedgecock & Pudovkin 2011). This sug-
gests that other mechanisms are driving this patchi-
ness such as collective dispersal of larvae, and pre- or
post-settlement selection (Eldon et al. 2016). Genetic
similarity across regional scales (1000 km) based
both on microsatellite and mitochondrial DNA data
may reflect occasional long-distance larval transport,
low levels of drift in isolated populations, and/or his-
torical signatures. The latter is apparent in numerous
Antarctic benthic invertebrates and may indicate iso-
lation in glacial refugia during the last glacial maxi-
mum, followed by circum-Antarctic recolonisation
(see Allcock & Strugnell 2012, Carrea et al. 2016).

Fine-scale structure despite high 
dispersal potential

Despite possessing a long pelagic larval phase, S.
neumayeri populations are genetically differentiated
over small distances (<1 km) with a high degree of
natal retention (up to 88%) and no signal of isolation
by distance. Similarly, unexpected genetic structure
with greater differentiation between neighboring
than between distant populations has been found in
a wide range of other marine taxa with high dispersal
potential (e.g. crab: Cornwell et al. 2016; damselfish:
Hogan et al. 2010; lobster: Iacchei et al. 2013; kelp
bass: Gosling & Wilkins 1985, Selkoe et al. 2006,
Hogan et al. 2010; marine goby: Selwyn et al. 2016).

The numerous underlying mechanisms proposed for
this pattern, however, often lack empirical evidence.
Broquet et al. (2013) suggested that the genetic struc-
ture of larvae be explored to tease out factors such as
sweepstake reproductive success in driving chaotic
genetic patchiness. Here, we have provided prelimi-
nary evidence that larval cohorts of S. neumayeri do
not have depressed genetic diversity when compared
to adult populations, as might be expected through
sweepstakes reproductive success (Li & Hedgecock
1998), and larval groups do not represent aggrega-
tions of kin; both factors providing little support for
sweepstakes reproductive success as the driver of the
chaotic genetic structure in this species (but noting
the limited inference from our small sample size).
However, there may be other selective or stochastic
processes that occur in late-stage larvae and prior to
settlement that we have not been able to examine
here, and, notably, different processes may affect lar-
val success among years, which we are unable to
test, as we only sampled in a single year. There is
generally limited support for sweepstakes reproduc-
tive success in studies of temperate echinoids, with
similar levels of genetic diversity found among differ-
ent age classes (e.g. Paracentrotus lividus: Calderon
& Turon 2010, Calderon et al. 2012; Strongylocentro-
tus purpuratus: Flowers et al. 2002 − all based on
juvenile data not larvae), and also in a recent study of
larval genetic diversity in green shore crabs (Corn-
well et al. 2016).

We have also shown some evidence that larvae of
S. neumayeri collected at the same location 4 d apart
and at different locations 1 d apart are genetically
differentiated, although sample sizes were small and
were from only one reproductive season, limiting
strong inference. This suggests that differences in
the genetic composition of settling larvae may drive
patterns of chaotic genetic patchiness in S. neumay-
eri, although we cannot completely rule out the role
of other mechanisms including pre- or post-settle-
ment selection. The concept of collective dispersal of
larvae in the water column has been demonstrated in
other marine organisms (lobster: Iacchei et al. 2013;
fish: Selwyn et al. 2016; barnacles: Veliz et al. 2006;
gastropods: Riquet et al. 2017) and predicted for sea
urchins (e.g. Moberg & Burton 2000), and is hypo -
thesised to reflect spatial and temporal variation in
the oceanographic processes that transport larvae
(Selkoe et al. 2006). That the larval groups of S. neu-
mayeri had similar levels of within-population relat-
edness to that observed in adult populations, but
were more related within their larval group than
between larval groups, supports the concept of col-
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lective dispersal of larvae spawned within a popula-
tion leading to chaotic genetic patchiness.

Inter-annual variation in oceanic currents around
Antarctica is well established (White & Peterson
1996), and inter-annual variability in the recruitment
success of S. neumayeri has been documented (Brey
et al. 1995, Bowden et al. 2009), but the high degree
of self-recruitment evident in this study suggests that
localised currents may facilitate the retention of lar-
vae in natal populations (see Sponaugle et al. 2002).
Furthermore, the fact that the larval populations
were genetically differentiated from adults, noting
that no adults were sampled in the immediate vicin-
ity of larval collections, is also in keeping with the
pattern of local recruitment. It is interesting that the
larvae collected from Hawker Island were assigned
to Ellis Fjord, the most proximal adult population,
although larvae collected at Kazak Island were
assigned to Zappit Point, the most distant adult pop-
ulation. Notably, the collection point of larvae in the
water column may be very different to the final set-
tlement site after 4 mo in the plankton, and hydrolog-
ical data at fine spatial scales that might inform our
understanding of fine-scale dispersal processes is yet
to be generated for nearshore East Antarctica.

Larval behaviour of S. neumayeri is poorly under-
stood but may also be important in shaping adult
population structure. Larval stages of many fish and
some invertebrate species display the ability to
detect and respond to environmental gradients,
actively influencing dispersal (Kingsford et al. 2002,
Paris & Cowen 2004). A recent study on the echinoid
Strongylocentrotus droebachiensis showed that lar-
vae have the ability to control buoyancy and position
in the water column based on current speed
(Sameoto et al. 2010). The ability to detect and
respond to such environmental gradients has not
been shown for S. neumayeri larvae; however, it may
provide a mechanism for cohorts to disperse and set-
tle as a group, leading to the fine-scale structure
observed in adults. Of interest is that Bowden et al.
(2009) found high densities of S. neumayeri larvae
(~80 larvae/5 m3) close to the seabed and in Novem-
ber, whereas we sampled at the surface in February
and only found ~4 larvae/5 m3. This suggests that
many larvae may actually be retained close to or on
the seabed, with only a few larvae dispersing in the
water column. These behavioural observations may
help explain the high levels of self-recruitment indi-
cated by the adult genetic data, which appears con-
trary to the inference of dispersal from the assign-
ment of larvae found in the water column to distant
populations. The small-scale genetic structure of S.

neumayeri may also be related to the limited move-
ment and narrow habitat ranges of adults (e.g.
Dumont et al. 2006).

Large-scale homogeneity

In contrast to the fine-scale structure among sites in
S. neumayeri, populations are not significantly differ-
entiated either at the location or regional scale;
indeed, the hierarchical AMOVA showed levels of
FST at the largest scale to be lower than that at the
smallest within-site scale, contrary to expectations
under a model of isolation by distance. Microsatellite
variation generally reflects contemporary processes
(Selkoe & Toonen 2006), which implies that larval
dispersal may be occurring between the Windmill
Islands and Vestfold Hills regions. This is counter-
intuitive given the high degree of natal retention and
small-scale structure highlighted above. However,
only very low levels of migration (i.e. 1 to 10 migrants
per generation) are necessary to prevent differentia-
tion through genetic drift (Mills & Allendorf 1996)
and our assignment tests suggest a small percentage
of sea urchins in the Windmill Islands may have orig-
inated from the Vestfold Hills. This is in accordance
with the direction of the ACC and the 4 mo larval
pelagic phase of S. neumayeri. In addition, iceberg
drift as a surrogate for current flow has shown a
potential mechanism for the transport of larvae from
the nearshore via re-circulation from the Antarctic
Coastal Current out to the ACC (Aoki et al. 2010).
This would provide a means of easterly passive trans-
port of larvae at speeds of at least 0.2 m s−1 (Hofmann
1985), facilitating the 1400 km journey between the
Vestfold Hills and the Windmill Islands. Contempo-
rary larval dispersal would also explain the genetic
similarity among regions revealed in the mitochon -
drial DNA data.

Equally plausible, however, is that populations in
the Vestfold Hills and Windmill Islands are isolated,
but there are only low levels of genetic drift or weak
selection such that the populations have not
diverged. In the absence of contemporary gene flow,
the presence of identical mitochondrial haplotypes at
the Windmill Islands and Vestfold Hills is likely to
represent historical patterns. The observation of low
diversity and a dominant, widespread haplotype with
one or more closely related, rare haplotypes is a com-
mon phenomenon in Antarctic marine benthic inver-
tebrates (see Allcock & Strugnell 2012). It is thought
to reflect founder effects from the wide recolonisa-
tion of the Antarctic shelf by these species after their
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extensive population reduction and isolation in ice-
free refugia during the last glacial maximum (see
Thatje et al. 2005). Our results therefore concur with
those of studies from the Ross Sea and Antarctic
Peninsula (Díaz et al. 2011, González-Wevar et al.
2012) that indicate that S. neumayeri recolonised the
shelf from glacial refugia to achieve its current
 circum-Antarctic distribution, and this is similar to
patterns found in other echinoids (Carrea et al. 2016).

In summary, our study provides one of the first
examples of fine-scale genetic structure in a broad-
cast-spawning Antarctic benthic invertebrate, and
lends support to a growing paradigm shift away from
the assumption that the duration of the planktonic
larval phase is a direct predictor of gene flow in mar-
ine organisms. Based on our results, we propose that,
despite the potential for long-distance larval disper-
sal in S. neumayeri, most larvae recruit locally and
long-distance dispersal is rare. Genetic similarities at
the regional scale reinforce the importance of glacial
refugia in shaping modern-day populations. Given
the importance of maintaining gene flow in manag-
ing marine populations, particularly in Antarctica, a
region currently threatened by particularly rapid cli-
mate change (IPCC 2001, 2007, Aronson et al. 2011),
it is vital that we develop a more complete under-
standing of the processes governing genetic diversity
and gene flow in marine fauna.
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