
ORIGINAL RESEARCH ARTICLE
published: 13 August 2014

doi: 10.3389/fnhum.2014.00627

Modulation of corticospinal excitability by transcranial
magnetic stimulation in children and adolescents with
autism spectrum disorder
Lindsay M. Oberman 1,2,3,4*, Alvaro Pascual-Leone 1 and Alexander Rotenberg 1,2*

1 Department of Neurology, Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center – Harvard Medical School, Boston,
MA, USA

2 Neuromodulation Program and Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital – Harvard Medical
School, Boston, MA, USA

3 Neuroplasticity and Autism Spectrum Disorder Program, E. P. Bradley Hospital, East Providence, RI, USA
4 Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, East Providence, RI, USA

Edited by:

Peter G. Enticott, Deakin University,
Australia

Reviewed by:

Paul Croarkin, Mayo Clinic, USA
Melissa Kirkovski, Monash University,
Australia

*Correspondence:

Lindsay M. Oberman, Neuroplasticity
and Autism Spectrum Disorder
Program, E. P. Bradley Hospital,
1011 Veterans Memorial Parkway,
East Providence, RI 02915, USA
e-mail: loberman@lifespan.org;
Alexander Rotenberg,
Neuromodulation Program and
Division of Epilepsy and Clinical
Neurophysiology, Department of
Neurology, Boston Children’s
Hospital – Harvard Medical School,
300 Longwood Avenue, Boston,
MA 02115, USA
e-mail: alexander.rotenberg@
childrens.harvard.edu

The developmental pathophysiology of autism spectrum disorders (ASD) is currently
not fully understood. However, multiple lines of evidence suggest that the behavioral
phenotype may result from dysfunctional inhibitory control over excitatory synaptic
plasticity. Consistent with this claim, previous studies indicate that adults with Asperger’s
Syndrome show an abnormally extended modulation of corticospinal excitability following
a train of repetitive transcranial magnetic stimulation (rTMS). As ASD is a developmental
disorder, the current study aimed to explore the effect of development on the duration of
modulation of corticospinal excitability in children and adolescents with ASD. Additionally,
as the application of rTMS to the understanding and treatment of pediatric neurological and
psychiatric disorders is an emerging field, this study further sought to provide evidence for
the safety and tolerability of rTMS in children and adolescents with ASD. Corticospinal
excitability was measured by applying single pulses of TMS to the primary motor cortex
both before and following a 40 s train of continuous theta burst stimulation. 19 high-
functioning males ages 9–18 with ASD participated in this study. Results from this study
reveal a positive linear relationship between age and duration of modulation of rTMS after-
effects. Specifically we found that the older participants had a longer lasting response.
Furthermore, though the specific protocol employed typically suppresses corticospinal
excitability in adults, more than one third of our sample had a paradoxical facilitatory
response to the stimulation. Results support the safety and tolerability of rTMS in pediatric
clinical populations. Data also support published theories implicating aberrant plasticity and
GABAergic dysfunction in this population.
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INTRODUCTION
Autism spectrum disorder (ASD) is diagnosed clinically, based
on the key symptoms including qualitative impairments in social
communication and the presence of restricted and repetitive
behaviors (APA, 2013). However, the variability of the clinical
phenotype of ASD is quite large and symptoms can manifest over
a range of ages in childhood. Thus, ASD diagnosis can be challeng-
ing and is often not made until 3–5 years of age. For this reason, a
physiologic ASD biomarker is highly desirable.

Several lines of evidence suggest that an impairment of
GABAergic transmission may be critical in the pathophysiology of
ASD (see Coghlan et al., 2012 for a review). GABA plays a key role
in regulating neuronal excitability via feedback and feed-forward
inhibition (Sutor and Luhmann, 1995; Petroff, 2002; Madsen et al.,
2008; Huang, 2009). While in the mature brain GABA acts as
an inhibitory neurotransmitter, during the embryonic and the
perinatal period, GABA is excitatory (Cherubini et al., 1991). It

is hypothesized that at least some forms of autism result from
an imbalance between excitation and inhibition in local circuits
involved in sensory, mnemonic, social, and emotional processes
(Rubenstein and Merzenich, 2003; Markram and Markram, 2010).
Ben-Ari et al. (2012), for instance, suggest that a dysfunction in the
shift of GABA from excitation to inhibition may contribute to this
imbalance.

Empirical support for the role of aberrant GABA signaling in
the pathophysiology of ASD comes from both human and animal
model research. A recent study conducted by Tyzio et al. (2014)
found that GABA had excitatory action in two animal models of
ASD [rats exposed to valproate in utero (VPA) and mice carrying
the fragile X mutation (FRX)]. Furthermore, maternal pretreat-
ment with bumetanide, forcing the shift of GABA in the offspring
from excitatory to inhibitory, resulted in the restoration of
typical electrophysiological and behavioral phenotypes in affected
animals (Tyzio et al., 2014).
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Human studies have found reduced GABA receptor expression
(Fatemi et al., 2009a,b, 2010) as well as a 50% reduction in enzymes
that synthesize GABA [glutamic acid decarboxylase (GAD) 65 and
67; Fatemi et al., 2002; Yip et al., 2007] in individuals with ASD.
Furthermore, a recent study (Gaetz et al., 2014) identified signif-
icant reduction in the GABA MRS signal in the motor cortex of
patients with ASD,and a marginally significant (p = 0.054) positive
correlation between the GABA signal and age. Among the many
roles of GABAergic circuits during development, one is lateral
inhibition across neighboring minicolumns in the cortex. Consis-
tent with an impairment in GABAergic transmission, postmortem
studies have found a reduction in the horizontal spacing between
minicolumns (Casanova et al., 2002). These abnormalities in the
GABA system may directly contribute to altered anatomical and
functional connectivity, and suggest a mechanism underlying the
neurological and behavioral phenotype of ASD (Blatt, 2011).

In addition to and perhaps as a consequence of excita-
tion/inhibition imbalance, recent studies in both human and
animal models implicate synaptic plasticity mechanisms in the
pathophysiology of ASD (see Oberman et al., in press). While most
synaptic plasticity data in ASD are derived from in vitro rodent
brain slice models, direct measures of circuit level plasticity in
humans can be obtained by transcranial magnetic stimulation
(TMS) paradigms (Ziemann, 2004; Huang et al., 2005; Thick-
broom, 2007; Huerta and Volpe, 2009). In TMS, the cortex is
stimulated focally by small intracranial electrical currents that are
generated by a powerful and fluctuating extracranial magnetic field
(Barker et al., 1985; Kobayashi and Pascual-Leone, 2003; Hallett,
2007). A number of experimental TMS measures of brain plasticity
have been introduced, and provide the only noninvasive capacity
to measure human phenomena that closely resemble long-term
potentiation (LTP) and long-term depression (LTD). TMS is safe
and well-tolerated, even in pediatric populations, if appropri-
ately guidelines and recommendations are followed (Garvey and
Gilbert, 2004; Rajapakse and Kirton, 2013).

Single-pulse TMS combined with EMG, EEG, fMRI, or other
brain imaging methods can be used to quantify cortical reactivity
before and following a given intervention (Pascual-Leone et al.,
2011) providing an index of brain plasticity in response to said
intervention. Recently, patterned bursting protocols have been
developed that mimic paradigms used to assess synaptic plas-
ticity in animal models (Huang et al., 2005, 2008). Specifically,
theta burst stimulation (TBS) involves application of three bursts
of 50-Hz rTMS repeated every 200 ms either continuously for
a total of 40 s or intermittently (every 8 s) for about 3 min.
When applied to the motor cortex, continuous TBS (cTBS) and
intermittent TBS (iTBS) result in depression and potentiation of
cortical reactivity as indexed through suppression and facilitation
of motor evoked potentials (MEPs), respectively (Huang et al.,
2005). Results from animal and human studies indicate that TBS
modulatory effects on cortical reactivity reflect synaptic plasticity
mechanisms (Cardenas-Morales et al., 2011). Specifically, and rel-
evant to the present experiment, published data suggest that cTBS
leads to enhancement of GABAergic inhibition (Stagg et al., 2009;
Benali et al., 2011).

Notably, compared to other rTMS protocols, TBS has the
advantage of lower stimulation intensities and shorter durations

than conventional protocols making this protocol more suitable
for use in clinical and pediatric populations. The safety and toler-
ability of this protocol has recently been evaluated and shown to
be safe in healthy children and in children with Tourette Syndrome
(Wu et al., 2012).

In a recent study (Oberman et al., 2012) we used the cTBS
paradigm in 20 adults with Asperger’s syndrome (high functioning
ASD), and found them to show greater and longer-lasting suppres-
sion of cortical reactivity in the motor cortex following cTBS as
compared to age-, gender-, and IQ-matched controls. The latency
to return to baseline following TBS was on average between 80 and
90 min in the ASD group compared to 25–30 min in the controls.
This finding was confirmed in a separate cohort of 15 individuals
(Oberman et al., 2012). Interestingly, and consistent with other
studies, there was no significant group difference in measures of
basic excitability as assessed by resting and active motor threshold
(Theoret et al., 2005; Oberman et al., 2012; Enticott et al., 2013)
or response to single pulse TMS (Oberman et al., 2012). Thus,
the excessive modulation of excitability in response to stimulation
(a putative measure of plasticity) is not primarily attributable to
differences in baseline excitability.

In the current study, we extended our age range to include data
from 19 children and adolescents with high-functioning ASD (HF
ASD) to explore the effect of development on the response to the
cTBS paradigm. As the application of rTMS to the understanding
and treatment of pediatric neurological and psychiatric disorders
is an emerging field (Frye et al., 2008; Croarkin et al., 2011), this
study additionally aimed to provide evidence for the safety and
tolerability of TBS in HF children and adolescents with ASD.

MATERIALS AND METHODS
PARTICIPANTS
We studied 19 males with HF ASD, age 9–18 years (See Table 1
for demographic characteristics of the sample). All participants
gave informed consent or assent, which was also obtained from
a parent or guardian to participate in the study. The study was
reviewed and approved by the institutional review board at Boston
Children’s Hospital. Participants were recruited through local
community advertisement. All participants had IQ > 80 based
on the Weschler Abbreviated Scale of Intelligence (WASI). All
met DSM-IV-TR criteria for Autism, Asperger’s Syndrome or
PDD-NOS, and met criteria for ASD on the Autism Diagnos-
tic Observation Schedule, Module 4 (ADOS). Some participants
also had comorbid symptoms including inattention, anxiety, irri-
tability, and obsessive-compulsive behaviors (See Table 1). All
participants were given a comprehensive neurological exam by
a board-certified pediatric neurologist (Alexander Rotenberg) to
confirm normal gross motor and fine motor function. Lastly, all
participants were screened following published recommendations
(Rossi et al., 2009) to ensure that they did not have any condition
that would put them at greater risk of an adverse event related to
TMS (e.g., a personal or immediate family history of epilepsy).

STIMULATION AND RECORDING
To evaluate modulation of corticospinal excitability (a putative
index of cortical plasticity mechanisms) and specifically GABAer-
gic inhibition, cTBS was applied to the primary motor cortex. The
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Table 1 | Sample characteristics.

Participant

number

Age IQ ADOS Score Comorbid

symptoms

Neuroactive medications Response

to cTBS

1 11 100 13 Anxiety Citalopram Suppression

2 9 94 7 None None Facilitation

3 12 86 10 Anxiety, Inattention Citalopram, atomoxetine Suppression

4 9 87 9 Anxiety ADHD None Suppression

5 14 115 8 Anxiety, ADHD Citalopram, atomoxetine Facilitation

6 14 99 9 None None Facilitation

7 10 106 12 None None Suppression

8 9 88 7 None None Facilitation

9 10 89 10 ADHD Buspirone Suppression

10 11 93 9 Obsessive-Compulsive

Behaviors, Anxiety

Sertraline, citalopram Facilitation

11 11 115 7 ADHD Methylphenidate Suppression

12 13 129 9 Inattention Atomoxetine Suppression

13 14 115 8 ADHD Atomoxetine Suppression

14 10 102 7 Irritability Risperidone Suppression

15 11 103 14 Inattention Guanfacine, methylphenidate Facilitation

16 13 102 7 ADHD Methylphenidate Facilitation

17 18 121 12 None None Suppression

18 18 83 13 None None Suppression

19 17 81 13 None None Suppression

AVERAGE 12.26 100.42 9.58

cTBS paradigm used in the current study was identical to that
described by Huang et al. (2005) and applied in previous stud-
ies in our laboratory (Oberman et al., 2010, 2012). The protocol
consisted of three pulses of 50 Hz stimulation repeated at 200-
ms intervals for 40 s (for a total of 600 pulses) at an intensity of
80% of active motor threshold (AMT). Corticospinal excitability
was assessed prior to and following cTBS by measuring peak-to-
peak amplitude of MEPs induced in the contralateral first dorsal
interosseus (FDI) muscle in response to single-pulse TMS. These
single pulses were applied at a rate of approximately 0.1 Hz (a
random jitter of ±1 s was introduced to avoid any train effects).
Three batches of 10 MEPs were recorded prior to cTBS and used
as a baseline. Beginning at 5 min following cTBS, batches of 10
MEPs were measured at periodic intervals (5, 10, 15, 20, 30, 40,
50, 60, 70, 80, 90, 105, and 120 min) until the MEPs returned to
baseline levels to track changes in MEP amplitude over time. The
participant was asked to remain relaxed during the entire study.
Muscle activity was monitored throughout the session with EMG
surface electrodes. TMS was only applied when the EMG signal
indicated that the participant’s FDI muscle was in a relaxed state.
Any trials where the participant voluntarily contracted the mus-
cle within 1000 ms of the TMS pulse were not included in the
analysis.

To measure TMS induced MEPs, EMG surface electrodes
were placed in a belly tendon montage over the FDI muscle

of participants’ right hands. Raw signals were amplified and
bandpass-filtered between 20 and 2000 Hz. EMG signals were
sampled at a rate of 5000 Hz. All stimulation (single-pulse TMS
and TBS) was delivered using a hand-held 70 mm figure-of-
eight coil attached to a Magstim Super Rapid stimulator (The
MagStim Company Ltd., Whitland, UK). The coil was placed tan-
gentially to the scalp with the handle pointing posteriorly. All
stimulation was applied over the hand area of the left motor cor-
tex and individually localized for each participant based on the
optimal position for eliciting MEPs in the right FDI. The stimu-
lation intensity for baseline and post-TBS single pulses was set at
120% of each individual’s resting motor threshold (RMT) while
the TBS itself was delivered at 80% of AMT. RMT and AMT
were defined following recommendation from the International
Federation of Clinical Neurophysiology. RMT was defined as the
minimum single-pulse TMS intensity required to induce an MEP
in the contralateral FDI of >50 μV peak-to-peak amplitude on
more than five out of ten consecutive trials while the target mus-
cle was at rest. AMT was defined as the minimum single-pulse
TMS intensity required to induce an MEP in the contralateral FDI
of >200 μV peak-to-peak amplitude on more than five out of
ten consecutive trials while the target muscle was held at approx-
imately 20% of the maximal contraction. To precisely target the
stimulation site (primary motor cortex) and keep the brain target
constant throughout the stimulation session, we used a frameless
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stereotactic neuronavigation system (Brainsight, Rogue Research
Inc., Montreal, QC, Canada).

DATA ANALYSIS
Data were analyzed using MatLab version 8.1 and SPSS version
22. Data analysis followed the methods described and applied in
previous studies in our laboratory (Oberman et al., 2010, 2012).
Average MEP amplitude values were calculated at baseline prior to
TBS and starting five minutes after TBS and continuing until the
average amplitude returned to within the 95% confidence inter-
val of the baseline amplitude and did not return to outside that
interval on subsequent time-point measures. MEP amplitudes
were standardized, forming a ratio of MEP amplitudes follow-
ing TBS relative to average baseline MEP amplitude for each
individual.

Cubic spline interpolation was used to create smooth curves
through the data points. Spline interpolation is a piecewise con-
tinuous function defined by third-degree polynomials in the
intervals of a limited range of known data points (in this case,
the time-points at which MEP data were collected with batches
of 10 single TMS pulses). The use of spline interpolation on
TMS data has been validated (Borghetti et al., 2008) and used
in previous studies to evaluate degree and duration of modu-
lation of MEP amplitudes following cTBS (Freitas et al., 2011).
As an index of the duration of the TBS-induced modulation
of cortico-spinal excitability, we defined, for each participant,
the time-point (“time to baseline”) at which post-cTBS MEP
amplitude returned to the average MEP amplitude at base-
line, i.e., the time-point at which the spline crossed the MEP
threshold.

A natural log transformation was applied to the data prior
to analysis as tests of normality indicated that the data was sig-
nificantly different than normal. A Pearson product-moment
correlation coefficient was calculated to assess the degree of
relationship between age and duration of response to cTBS.

SIDE EFFECT MONITORING
Immediately following the TMS session a side effects questionnaire
was completed by the experimenter. Participants were asked to
report whether they experienced any of the following side effects:
headache, neck pain, scalp pain or irritation, difficulty hearing,
thinking or concentrating, change in mood, or any other change or
side effect they experienced. The experimenter also noted whether
the participant experienced a syncopal event or seizure. The par-
ticipant also received a call the day after the TMS session and was
once again asked to report whether they experienced any of the
above side effects or to report any other side effect they experi-
enced after they left the hospital. If the participant reported any
side effect either immediately following the stimulation or the
following day, its severity and duration were documented.

RESULTS
TMS SAFETY AND TOLERABILITY
All participants tolerated TBS and single-pulse stimulation with-
out serious adverse event. One participant had a mild headache
after stimulation that was alleviated with a single acetaminophen

dose. Two participants had mild fatigue after the session that
resolved the following day. No other adverse events were reported.

AGE-DEPENDENT RESPONSE TO cTBS
A Pearson product-moment correlation coefficient was calculated
to test the hypothesis that a linear relationship existed between age
and duration of response to cTBS. As described above, response to
the cTBS protocol was defined as duration of effect as defined
by the number of minutes following cTBS before the partici-
pant returned to baseline excitability levels (“time-to-baseline”;
M = 46.3 min, SD = 29.3 min). The results of the analysis
indicated that there was a significant positive linear relationship
between age and duration of response [r(17) = 0.660, p < 0.01;
Figure 1].

In addition to the planned analyses, it was noted that unlike our
previous study that included only adult participants, a third of the
participants (7 out of 19; ages 9, 11, 13, and 14) had a paradoxical
facilitation in response to the cTBS protocol (Figure 2). Addi-
tional analyses were conducted excluding the seven participants
who facilitated and the significant positive correlation between
age and duration of response remained [r(10) = 0.62, p < 0.05]
with a Mean duration of 49.2 min (SD = 33.8 min). The sub-
group of participants who displayed the paradoxical facilitation
response was not predicted by comorbid symptoms or medication
(χ2 = 0.091, p = 0.76).

DISCUSSION
As the application of rTMS protocols to children increases, it is
critical to evaluate the safety and tolerability of this procedure
in these vulnerable populations. In the current study, all par-
ticipants tolerated the stimulation and reported only minor
discomforts that resolved quickly following the procedures. These
findings add to the literature suggesting that rTMS is safe and
well tolerated in children and in individuals with ASD (Garvey
and Gilbert, 2004; Frye et al., 2008; Croarkin et al., 2011; Wu
et al., 2012; Oberman et al., 2013; Rajapakse and Kirton, 2013).
Systematic monitoring and documentation of side effects is

FIGURE 1 | Correlation between age and the natural log transformed

“time to baseline” for each individual following cTBS. Graph shows a
significant positive relationship between duration of modulation and age.
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FIGURE 2 | Degree of maximal suppression or facilitation following

cTBS. Values falling above zero indicate paradoxical facilitation in response
to the typically suppressive cTBS protocol. Seven out of 20 participants in
this study, ages 9, 11, 13, and 14 showed this paradoxical facilitation.

critical moving forward to ensure that both participants and
investigators have an accurate sense of both the range and
frequency of side effects of rTMS in clinical and pediatric
populations.

Our findings are also the first step toward the study of the
developmental regulation of the cTBS effect and reveal a posi-
tive linear relationship between age and duration of modulation
of cTBS. Specifically we found that the older participants had a
longer lasting response. On the surface this may appear counter
intuitive if we consider that response to TBS has been used
by our group and others to indicate degree of plasticity. One
would imagine that younger children have a greater, not lesser,
capacity for plasticity (Huttenlocher, 2002). However, cTBS is
thought to model LTD-like plasticity (Huang et al., 2008) and is
related to GABAergic inhibitory tone. Thus, perhaps LTD-like
plasticity or GABAergic inhibition increases over development,
especially during adolescence (Selemon, 2013). As we did not
perform iTBS, we cannot speak to the development of LTP-like
plasticity in this sample, however, it would be important to eval-
uate this process as well. Additionally, the current study did not
include a sham control condition or any other rTMS protocol,
thus it is unclear whether the results are specific to the cTBS
paradigm.

Recently, the molecular mechanisms underlying the changes
in cortical excitability induced by cTBS have been studied using
MRS (Stagg et al., 2009). The findings reveal that the effects of
cTBS are mediated by changes in the local activity of inhibitory
interneuronal cortical pathways (as measured by changes in
cortical GABA concentration in the primary sensorimotor cor-
tex; Stagg et al., 2009). Consistent with the idea that younger
children have less inhibitory tone, studies using paired pulse
measures of intracortical inhibition have found that children dis-
play decreased levels of suppression as compared to adolescents
or adults (Walther et al., 2009). This study further claimed that
reduced GABA mediated intracortical inhibition may facilitate

excitatory (LTP-like) cortical plasticity and motor learning in
children. Thus, the current results, although obtained from
individuals with ASD, provide further evidence of increasing
capacity for LTD-like suppression of cortical excitability across
childhood.

Additionally, the finding that over one third of our sam-
ple had a paradoxical facilitatory response to cTBS supports
the notion of GABAergic dysfunction in ASD. During typical
development, GABA currents shift from excitatory to inhibitory
through a maturation of chloride transport mechanisms and an
age-dependent reduction of intracellular chloride concentration
[(Cl−i; Ben-Ari et al., 2007)]. However, a recent study finds that
two ASD animal models (rodent valproate and fragile X mod-
els) show excitatory GABA activity well beyond the age where
wild-type animals’ GABA activity has shifted to inhibition (Tyzio
et al., 2014). In these animals administration of a GABA agonist
(isoguvacine) led to an increase in spike frequency in neurons
recorded from hippocampal slices as compared to a decrease in
wild-type animals. Additionally, the in utero administration of
bumetanide, a chloride importer antagonist that reduces intracel-
lular chloride accumulation thereby promoting the shift of GABA
from excitation to inhibition, resulted in the restoration of typ-
ical electrophysiological and behavioral phenotypes in affected
offspring (Tyzio et al., 2014). These preclinical data support the
hypothesis that a dysfunction in this shift may contribute to
the pathophysiology of ASD (Ben-Ari et al., 2012). Ben-Ari and
colleagues have proposed that this dysfunction may be a result
of increased intracellular ([Cl−]i) concentrations in individu-
als with ASD. This is further supported by a study reporting
paradoxical increases in hyperactivity in six out of seven and
aggression in seven out of seven children with ASD who were
treated with diazepam (Marrosu et al., 1987). Furthermore, in
a recent clinical trial where bumetanide, was given to children
with ASD results showed improvement in ASD symptoms as
measured by the Childhood Autism Rating Scale (CARS) and
the Repetitive and Restricted Behavior Scale (RRB) as well as
a reduction in aberrant behavior as measured by the Aber-
rant Behavior Checklist (ABC; Lemonnier and Ben-Ari, 2010).
Our findings suggest that one could do an analogous study
in humans to explore whether bumetanide would normalize
the cTBS modulation in those with a paradoxical facilitation
and if this normalization corresponded to improved behavioral
symptoms.

We recently suggested that the neurological and behavioral ASD
phenotypes are associated with altered brain plasticity that can be
measured noninvasively by TMS (Oberman et al., in press). As
our data showing age-dependence of the cTBS response suggest,
the timing of plastic brain changes may be important for opti-
mal development of cortical circuitry. As ASD is a developmental
disorder it would be critical to evaluate the developmental tra-
jectory of abnormalities in a putative mechanism underlying the
phenotype.

As the current study did not include healthy control partici-
pants or females, it is not clear whether the observed develop-
mental trajectory shown by these males with ASD is similar to
what may be obtained in neurotypical individuals or females with
ASD. It is possible that variables such as head size or myelination
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could have led to the observed correlation with age. However,
as reviewed above, multiple lines of evidence point toward aber-
rant GABAergic transmission in ASD. Thus, it will be important
to evaluate these measures in a healthy developing population
and female ASD population to compare the typical developmental
trajectory to that shown in males with ASD. Additionally, follow-
up translational studies, analogous to what has been done in
animal models, directly testing the relationship between GABA
receptor expression [measured by [11C] FMZ PET (Maziere et al.,
1984)] or concentration [measured by MRS (Mescher et al., 1998)]
and measures of cortical reactivity in humans with ASD are
needed.

In the current study, we focused on primary motor cortex in the
left hemisphere. Thus, it is unclear whether other cortical regions
would show similar developmental trajectories or whether there
would be a laterality effect in these individuals. The left primary
motor cortex was chosen in this study for two reasons. First, MEPs
are the standard index used to quantify the effect of TBS proto-
cols. Other indices of cortical excitability outside the motor cortex
(e.g., based on electroencephalographic measures) have not yet
been well validated for this application. We chose the left hemi-
sphere as it is typically the dominant hemisphere for both right-
and left-handed individuals. Second, although motor abnormali-
ties are not considered core symptoms of ASD, many studies have
reported motor deficits in individuals with ASD, including alter-
ations in motor milestone development (Teitelbaum et al., 1998),
clumsiness, motor incoordination, disturbances in reach-to-grasp
movement (Miyahara et al., 1997; Ghaziuddin and Butler, 1998;
Mari et al., 2003), deficits in gross and fine motor movement
(Noterdaeme et al., 2002), and impaired postural control (Kohen-
Raz et al., 1992; Minshew et al., 2004). It has also been suggested
that these motor deficits may underlie the core deficits in ASD
(Mostofsky and Ewen, 2011).

Our results support the safety and tolerability of TBS in
the pediatric ASD populations. As we continue to enhance our
understanding of the relationship between the response to cTBS
with GABAergic inhibition and GABAergic dysfunction with
ASD pathophysiology we suggest that cTBS may be a practical
biomarker of GABAergic dysfunction in this population.
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