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ubiquitous transcriptional coactivators Yap (gene symbol Yap1) and Taz (gene
symbol Wwtr1) regulate gene expression mainly by coactivating the Tead
transcription factors. Being at the center of the Hippo signaling network, Yap
and Taz are regulated by the Hippo kinase cassette and additionally by a
plethora of exercise-associated signals and signaling modules. These include
mechanotransduction, the AKT-mTORC1 network, the SMAD transcription
factors, hypoxia, glucose homeostasis, AMPK, adrenaline/epinephrine and
angiotensin II through G protein-coupled receptors, and IL-6. Consequently,
exercise should alter Hippo signaling in several organs to mediate at least some
aspects of the organ-specific adaptations to exercise. Indeed, Tead1 overex-
pression in muscle fibers has been shown to promote a fast-to-slow fiber type
switch, whereas Yap in muscle fibers and cardiomyocytes promotes skeletal
muscle hypertrophy and cardiomyocyte adaptations, respectively. Finally, ge-
nome-wide association studies in humans have linked the Hippo pathway
members LATS2, TEAD1, YAP1, VGLL2, VGLL3, and VGLL4 to body height,
which is a key factor in sports.
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KEY DISCOVERIES ESPECIALLY DURING the last decade have led to
the characterization of the mammalian Hippo signal transduc-
tion pathway or network (51, 141, 159). The Hippo signal
transduction network is relevant for exercise physiologists
because many exercise-associated signals and signaling mole-
cules affect Hippo signaling. Additionally, Hippo effectors
regulate several exercise-related genes and adaptations. Start-
ing with Booth in the mid-1990s (19), exercise physiologists
have sporadically studied Hippo pathway members in an ex-
ercise context. However, to date only a few studies on Hippo
in an exercise context have been published. In this review, we
will first introduce the Hippo pathway to exercise physiolo-
gists. We will then discuss evidence showing that exercise-
associated signals and signaling modules cross-talk to the key
Hippo effectors YAP and TAZ. Next, we will review studies
that implicate Hippo signaling in the regulation of exercise
adaptations. Finally, we will discuss the emerging genetic link
between Hippo and body height, a key variable linked to
performance in several sports.

Hippo Signal Transduction Pathway and Network

The discovery of the Hippo pathway is based on two
strands of research. First, since the early 20th century,
researchers have used the fruit fly (Drosophila melano-
gaster) to identify genes whose knockout results in cancer-
like overgrowth (40). Since 1995, this line of research has
led to the discovery of the several growth-inhibiting genes
(68, 156) that together form the core Hippo pathway (56). In
the fly, the mutation of one kinase resulted in an overgrown
head that reminded the researchers of the skin of a Hippo-
potamus. Consequently, this kinase was named hippo by
Georg Halder group of researchers (134). Subsequently
“Hippo” was adopted as the name for the pathway in both
the fly and mammals. The Hippo pathway is highly evolu-
tionarily conserved (60). In mammals (see Fig. 1 for a
schematic of the mammalian Hippo pathway), two homo-
logues of the fly hippo gene exist; namely, the upstream
kinases Mst1 (Stk4) and Mst2 (Stk3). With the help of
scaffolding proteins, Mst1 and Mst2 activate the down-
stream kinases Lats1 and Lats2. Recently, Map4k4/6/7 iso-
forms were identified as alternative kinases capable of
phosphorylating Lats1 and Lats2 (82, 97, 165). Phosphory-
lated Lats1 and Lats2 then inhibit the transcriptional cofac-
tors Yap and Taz by phosphorylating multiple serine resi-
dues (86, 162).
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The second strand of research started with the identification
of CATTCC DNA motifs, termed muscle CAT (MCAT) (90)
or GTIIC (24) motifs. Such CATTCC DNA motifs and their
reverse-strand GGAATG complement form a DNA-binding
site for the Tead (TEA domain) transcription factors (named
transcription enhancer factors, or Tefs in earlier papers) (6, 24).
Teads repress their target genes, especially when bound by
their corepressor, Vgll4 (66, 76). Teads become activated only
when they are bound by the transcriptional cofactor Yap
(Yes1-associated protein; gene symbol Yap1), which was dis-
covered by Sudol et al. (122, 123, 138). In contrast to the fly,
mammals possess a Yap paralogue termed Taz [transcriptional
coactivator with PDZ-binding motif (70)].

The two origins of Hippo research were merged when the
Pan group of researchers (63) demonstrated that the Hippo
kinase cascade inhibited Yorkie, the fly homologue of Yap and
Taz. Hippo research then developed exponentially especially
after studies by the Pan group (29) and Camargo from the
Jaenisch group (18) both found that expression of a constitu-
tively active YAP1 S127A in mouse livers resulted in a fourfold
increase in liver size. These landmark findings confirmed that
Yap also functions as a highly potent organ size regulator in
mammals.

However, the Hippo kinase cascade (i.e., the Mst1/2-
Lats1/2) is only one of many signaling modules that regulate
the activity of Yap and Taz. For this reason, it seems most
appropriate to refer to the wider signaling system as the Hippo
signal transduction network. Importantly, numerous exercise-
related signals also cross-talk to Yap and Taz, as illustrated in
Figure 1 and discussed in the next section.

Cross-Talk Between Exercise-Related Signaling Molecules
and Hippo Mechanotransduction

Mechanical loading, in the form of resistance exercise or
synergist ablation, stimulates skeletal muscle growth (42).
However, the molecular mechanosensor that triggers growth
processes in response to mechanical loading has long re-
mained elusive. Additionally, the stiffness of the cellular
environment or niche is an additional mechanical signal that
influences, for example, the differentiation of mesenchymal
stem cells into muscle and other cell types (34, 35). More-
over, mechanical cues also influence the fate of resident
stem cells in skeletal muscle, named satellite cells (41). To
identify signaling molecules that regulate gene expression in
response to the mechanical signal triggered by substrate
stiffness, the Piccolo group of researchers (31) cultured
mammary epithelial cells on soft and stiff substrates. They
found that Hippo-related genes showed the most important
changes between the two conditions in terms of expression
levels. Subsequent experiments confirmed that stiffer sub-
strates led to increased Yap/Taz activity in a cytoskeleton-
dependent manner (31). Later, it was shown that increased
cell-cell contact reduces the mechanical loading of cells,
which explained the previously observed (163) deactivation
of Yap and Taz in response to cell-cell contact at high cell
density (8). Although this is intriguing and relevant for
processes such as myoblast differentiation, it is unclear
whether mechanical changes of the extracellular matrix
during exercise regulate transcriptional responses through
Yap and Taz in muscle fibers or satellite cells.
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Fig. 1. Schematic representation of the Hippo signal
transduction network and its links to exercise-associ-
ated signals and signalling modules. A: MST1, MST2,
LATS1, and LATS2 form the core kinase cassette of
the Hippo pathway. SAV1 and MOB1 act as scaffold-
ing proteins. The MAP4K 4, 6, and 7 kinase isoforms
can independently regulate LATS1/2 (82, 97, 165).
Active LATS1 and LATS2 inhibits YAP and TAZ
through the phosphorylation of multiple HXRXXS
motifs (where “S” within HXRXXS indicates the
phosphorylated serine) (162). Phosphorylation of
YAP on serine127 generates a binding site for 14-3-3
proteins, which sequester YAP and TAZ in the cyto-
plasm. Phosphorylation of serine381 results in the
ubiquitination and degradation of YAP (162). Similar
regulatory events also affect TAZ. B: the classical
model stipulates that active unphosphorylated YAP
and TAZ are nuclear and coactivate the TEAD tran-
scription factors, whereas VGLL4 acts as a repressor.
YAP/TAZ-TEAD complexes bind the CATTCC/
GGAATG (MCAT or GTIIC) motifs found especially
in enhancers that loop to the promoters of genes even
though they are located several base pairs away from
the promoter itself [see (39) and the text for more
information]. C: resistance (strength) exercise and
muscle growth-associated signals that are linked to
YAP/TAZ (see text for more information). D: endur-
ance exercise-associated signals that are linked to
YAP/TAZ (see text for more information).
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In skeletal muscle, the Höhfeld group (135) has identified a
specific Hippo and autophagy-regulating mechanosensor com-
plex located at the Z disc. In this complex, the protein Bag3
senses mechanical unfolding of the actin-crosslinking protein
filamin. Importantly, Bag3 contains a WW domain, a rare
protein domain frequently found in Hippo members [WW
indicates two tryptophan residues; reviewed in (124)]. The
location of Bag3 in the Z disc is an ideal position for a
mechanosensor. Indeed, unlike proteins that lie in parallel to
the force-generating sarcomeres, such as integrins, Z-disc pro-
teins directly experience contractile force. One Hippo-indepen-
dent function of Bag3 is to mediate tension-induced autophagy,
which might contribute to the increased protein breakdown
observed during resistance exercise (127). Additionally, Bag3
regulates Yap and Taz activity by binding to Yap and Taz
binding partners, such as the Hippo kinase Lats1, Amotl1, and
Amotl2 [reviewed in (102)]. Given that increased Yap activity
can promote muscle hypertrophy (46, 148), Bag3-Hippo
mechanosensing might be one of several mechanisms regulat-
ing muscle growth in response to mechanical signals. The
importance of Bag3 for skeletal muscle is further demonstrated
by the finding that a loss of function of Bag3 causes severe
myopathy symptoms in mice and humans (62, 117). Moreover,
the phosphorylation of human BAG3 on Thr285 and Ser289
decreases in response to endurance exercise (61). Also, BAG3
expression decreases after acute, high-intensity resistance ex-
ercise, but increases together with force-bearing cytoskeleton
proteins (136). Therefore, the Hippo-dependent and -indepen-
dent functions of Bag3 are of potentially great interest to
exercise physiologists. Currently, it is unclear whether Bag3 is
the major mediator of mechanical loading-induced hypertrophy
or whether it mainly senses the changes in the stiffness of a
cell’s niche; for example, satellite cells, and accordingly reg-
ulates their behavior (34).

Cross-Talk with Akt-Tsc-mTOR Signaling

The mechanistic target of rapamycin (mTOR) pathway was
first linked to overload-induced muscle growth by Baar and
Esser (11). They demonstrated that the phosphorylation of the
mTOR-related kinase p70 S6k correlated with increased mus-
cle mass in a rat electrical muscle stimulation model. Since
then, many studies have confirmed the key role of mTOR
signaling for resistance exercise-induced muscle hypertrophy.
This includes a study in humans showing that the mTORC1
inhibitor rapamycin prevented the increased muscle protein
synthesis triggered by resistance exercise (28).

Given that both the Hippo and mTOR networks regulate
organ size, it is intuitive to assume that cross-talk exists
between the mTOR and Hippo signaling pathways. This is
indeed the case. Akt was initially shown to phosphorylate Yap
on Ser127 (13), but this finding was not confirmed by subse-
quent studies. In another study, the Hippo kinase Mst1 (gene
symbol Stk4) was shown to bind and inhibit Akt1 (also known
as Pkb) (22). Conversely, Akt phosphorylates Mst1 on Thr387
(65) and Thr120 (161), suggesting that Akt1 and Mst1 regulate
each others activity. Additionally, the Hippo effector Yap
de-represses mTOR by inhibiting the expression of the phos-
phatase Pten via the Pten-targeting miRNA miR-29 (133).
Cross-talk also exists between Tsc1 and Tsc2 and the Hippo
effector Yap because Tsc1/2-deficient cells have higher Yap

levels due to less Yap degradation via the autophagosome
system (83). YAP/TAZ also increase the expression of genes
that encode the leucine transporter LAT1 (52), which is sig-
nificant because leucine is a potent stimulator of mTORC1
signaling (10). Collectively, these findings demonstrate that
Hippo and mTOR-mediated growth signals are closely coupled
by multiple mechanisms. However, a caveat of this research
from an exercise physiology standpoint is that most of the
above studies have been conducted in models that are not
related to exercise. Therefore, molecular exercise physiologists
now need to test whether these mechanisms also function in an
exercise context.

Cross-Talk with Myostatin-Smad Signaling

TGF� and BMPs are two classes of small extracellular
molecules that bind to activin receptors. Bound activin recep-
tors then either phosphorylate the receptor-regulated Smad2/3
or Smad1/5/8 proteins, respectively. These two classes of
receptor-regulated Smads compete for the common mediator
Smad4 to form either transcriptionally active Smad2/3-4 com-
plexes that promote muscle loss or Smad1/3/5-4 complexes
that have recently been proposed to promote muscle growth
(114). In skeletal muscle, the knockout of myostatin (gene
symbol Gdf8, a TGF�-related ligand) or its “natural” loss-of-
function mutation resulted in a doubling of muscle size in mice
and cattle, respectively (48, 69, 95, 96). The link between
myostatin and muscle mass was confirmed in humans by
showing that a toddler with a high muscle mass was homozy-
gous for a knockout mutation in the first intron of the human
myostatin-encoding GDF8 gene (116). Furthermore, dogs with
a heterozygous loss of Gdf8 show increased racing perfor-
mance (105), linking myostatin not only with muscle mass but
also with actual athletic performance. If the loss of myostatin
is combined with the overexpression of a follistatin transgene,
then muscle mass quadruples, suggesting that myostatin is not
the only muscle mass regulator in the TGF�-Smad system
(79).

Several studies have shown that Yap and Taz coregulate not
only Teads, but also several other transcription factors, includ-
ing Smads (143). In line with this, overexpression of Yap in
mouse tibialis anterior muscle reduces the activity of a Smad-
binding element (SBE) reporter by �85% (46). In contrast,
overexpression of Yap in myoblasts, which are activated sat-
ellite cells, potently increases expression of the Smad regulator
Bmp4 (67). This is intriguing because both Yap (67) and Bmp4
(109) stimulate satellite cell proliferation while inhibiting dif-
ferentiation into myotubes. Several mechanisms have been
proposed that can explain how Yap or Taz can interact with
Smads. These include the binding of Yap to the inhibitory
Smad7 (7, 49), the promotion of Smad1 transcriptional action
by Yap binding (3), and an effect of Yap and Taz on Smad2/3
localization (137). For molecular exercise physiologists, the
challenge is to determine whether Hippo-Smad cross-talk reg-
ulates exercise phenomena and especially where it is involved
in skeletal muscle mass regulation.

Cross-Talk with AMPK and Glucose Signaling

In the sections above, we discussed the mechanisms con-
necting the Hippo network to resistance exercise and organ
growth signals and signaling modules. Below, we will discuss
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the cross-talk between Hippo signaling and endurance exer-
cise.

During the transition from rest to exercise, ATP turnover can
rise potentially more than 200-fold (98). To maintain homeo-
stasis during such a large step change in ATP hydrolysis,
systems have evolved to sense energy levels and initiate the
signaling processes that regulate both short- and long-term
adaptations of energy metabolism. In this system, glucose,
glycogen, AMP, and ADP are sensed principally by the het-
erotrimeric AMPK complex (53, 55). Indeed, exercise in-
creases the concentrations of AMP and ADP in contracting
skeletal and cardiac muscle, and exercise depletes glycogen,
especially in muscle (45). Therefore, it comes as no surprise
that AMPK is a key mediator of the adaptation to endurance
exercise, particularly in skeletal muscle (54). Several recent
studies have demonstrated that AMPK is a regulator of YAP,
linking a key exercise kinase to Hippo signaling.

Both glucose starvation (36, 100, 145) and AMPK activators
(26, 100, 145) inhibit Yap in different cell types. This suggests
that Yap-dependent growth is inhibited when cellular energy
levels are low. Further research led to identification of the
molecular mechanisms mediating this effect. These include the
phosphorylation of the Yap regulator Amotl1 on Ser293 by
AMPK (26) and the direct phosphorylation of YAP on Ser61/
94, which is key for the interaction between Yap and Teads
(100, 145). In another study, the Dupont group (36) showed
that the glycolytic enzyme phosphofructokinase (PFK1) di-
rectly binds to and regulates YAP and TAZ. Finally, two
studies (101, 108) have identified the AMPK-kinase LKB1
(gene symbol STK11) as an AMPK-independent YAP regula-
tor. Collectively, these studies demonstrate that glucose star-
vation and energy stress inhibit YAP via both AMPK-depen-
dent and -independent mechanisms in multiple cell types.

The fact that energy stress and the key exercise kinase
AMPK regulate Yap suggest that Yap should be affected by
exercise and diet. This now needs to be demonstrated in an
exercise model. Also, because Hippo signaling responds to
glucose and regulates the expression of glucose transporters
(145), it should be studied whether Hippo signaling mediates
the augmented adaptations in response to endurance training
under low carbohydrate supply (12), or mediates some of the
antidiabetic effects of exercise.

Cross-Talk with Hypoxia Signaling

The rise in atmospheric oxygen more than 2 billion years
ago was followed by the evolution of oxidative phosphoryla-
tion by mitochondria, which use oxygen as their main electron
acceptor. The emergence of oxygen-related metabolism drove
the evolution of oxygen-sensing systems, as oxygen became
critical for survival. Oxygen-sensing systems allow cells and
organisms to adapt to low oxygen levels (i.e., hypoxia), espe-
cially through the transcription factor hypoxia-inducible factor
(Hif1). Hypoxic conditions lead to an increase in expression
levels of the Hif1� isoform by blocking its degradation. The
hypoxia-induced increase in Hif1� then induces multiple ad-
aptations through gene expression (126). During exercise,
hypoxia-induced signaling is also at work. For example, HIF1�
levels increase in response to normoxic endurance exercise (5).
Moreover, altitude training is often used to stimulate the
molecular adaptations to hypoxia, including the erythropoeitin

(EPO)-mediated hematopoiesis that increases the athlete’s ox-
ygen transport capacity (118).

Hypoxia and Hippo signaling also interact. For example,
hypoxia activates the E3 ligase Siah2, which leads to the
degradation of Lats2. This results in a decreased level of Yap
phosphorylation, thereby increasing the activity of Yap in the
nucleus (88). Additionally, Yap directly interacts with and
stabilizes Hif1� (88). Hif1� also promotes expression of Taz,
and Taz transactivates Hif1�, highlighting a mechanism by
which Taz and Hif1� are acting as reciprocal coactivators
(153). It is unknown whether hypoxia-Hippo mechanisms
function during normoxic endurance exercise (5) and mediate
adaptations to high-altitude or low-intensity occlusion training.
Direct evidence in an exercise or altitude model is required.

Sensing of Catecholamines and Other G Protein-Coupled
Receptor Ligands by Hippo

Catecholamines such as adrenaline (i.e., epinephrine in
the United States) and noradrenaline (norepinephrine in the
US), mediate the “fight-or-flight” responses. Catecholamine
concentrations generally increase with the intensity and
duration of exercise and drive the systemic responses to
exercise via the �- and �-adrenergic receptors. These recep-
tors, in turn, signal through G protein-coupled receptors
(GPCRs) to trigger exercise adaptations such as increasing
the heart rate and muscle contractility. Moreover, �2 ago-
nists such as clenbuterol promote skeletal muscle hypertro-
phy, suggesting an involvement of this system in the control
of skeletal muscle growth (89). In the renin-angiotensin
system (RAS), the angiotensin receptors are also coupled to
protein G. The RAS was related to exercise when the ACE
I/D polymorphism was associated with exercise-related
traits such as strength and endurance (111). Also, angiogen-
sin II contributes to an adaptation to overload-induced
skeletal muscle hypertrophy (47) and stretch-induced car-
diac hypertrophy (112). In accordance with this, the ACE
I/D polymorphism was associated with left ventricular mass
changes occurring in response to endurance training (103).

Multiple studies have linked GPCRs to Hippo signaling.
Adrenaline/epinephrine represses YAP/TAZ through G�S-cou-
pled GPCRs and protein kinase A (PKA) (74, 158). In contrast,
angiotensin II and other ligands signal through the G�12/13 and
G�q/11 GPCRs to activate YAP/TAZ (150, 160). Given that
Yap has been shown to mediate skeletal muscle hypertrophy
(46, 148) and can promote cardiac hypertrophy [reviewed in
(141)], it will be key to test whether GPCR-Hippo signaling is
involved in mediating such adaptations.

Interleukin-6 and Hippo

Interleukin-6 is a myokine (i.e., a circulating signaling
molecule) that is produced by contracting muscle but whose
functions are incompletely understood (106, 110). Recently,
IL-6 has been shown to activate Yap through the gp130
coreceptor in the intestine (125). However, it remains unclear
whether this mechanism explains some of the effects of exer-
cise-generated IL-6.

Hippo and Exercise-Related Phenomena

In the text above we have shown that many resistance and
endurance exercise-associated signals can cross-talk to the
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Hippo signal transduction network (see Fig. 1). However,
much of this evidence was obtained in the context of cancer or
nonexercise contexts. In the following section, we will review
a small number of studies that provide evidence of a role for
Hippo signaling in the adaptation to exercise. In relation to this,
some key findings are summarized in Table 1. Additionally, we
review emerging evidence that body height is associated with
single nucleotide polymorphisms (SNPs) in the vicinity of
Hippo genes.

Hippo and Adaptive Changes in Skeletal Muscle Fiber
Phenotypes

Gollnick and Saltin (44) were the first to demonstrate a
higher percentage of slow type-1 muscle fibers and a higher
oxidative activity in the muscles of endurance athletes
compared with controls and other athletes. They also ob-
served a nonsignificant increase from 32% to 36% in the
frequency of slow type-1 fibers in response to endurance
training (43). Subsequent research has shown that chronic
exercise training programs mainly induce type 2X-to-2A
interconversions (151).

In the early 2000s, the Tsika group of researchers (71, 131,
140) investigated the role of MCAT elements and Tead1
transcription factors in the regulation of muscle fiber type-
specific gene expression. The functional relevance of their
work was demonstrated in vivo using a creatine kinase muscle
(CKM) promoter to overexpress Tead1 in mouse skeletal

muscle fibers, which caused an increased in slow-muscle-
specific gene expression in vivo [Table 1, (132)]. Functionally,
CKM-driven Tead1 overexpression reduced the shortening
velocity (Vmax) and increased the contraction and relaxation
times of extensor digitalis longus muscles (132). This suggests
that Hippo signaling affects muscle fiber type-specific gene
expression and fiber type percentages.

Hippo and Skeletal Muscle Hypertrophy

Muscle hypertrophy is a key response to resistance exercise.
After resistance exercise, protein synthesis and protein break-
down both increase. In the fed state, protein synthesis is higher
than breakdown, resulting in protein accretion and hypertrophy
(128). However, the effect of resistance exercise on muscle
hypertrophy and strength differs greatly among the human
population (64). A key mediator of muscle protein synthesis is
mTOR signaling, as shown for example, by the inhibitory
effect of rapamycin on the increase in muscle protein synthesis
after resistance exercise in human muscles (30). The key effect
of resistance exercise on muscles is mechanical loading, which
was discussed in the first part of this review along with the
extensive links between mechanosensing and Hippo signaling
[reviewed in (50, 87)], including the Z-disc-located Bag3
mechanosensor in skeletal muscle (135, 136).

Several studies support a link between Hippo signaling and
resistance exercise and muscle fiber size. In the first study on
Hippo signaling in relation to exercise, the Booth group of

Table 1. Key experiments in which the perturbation of Hippo members affects skeletal and cardiac muscle in a way that is
relevant to exercise physiology

Key Protein, Experiment Effects of Intervention vs. Control Reference

MST1: STK4 (protein MST1) knockout vs. wild-type mice,
denervation-induced atrophy in vivo

Attenuation of atrophy: skeletal muscle atrophy after denervation
2; expression of atrophy mediators 2.

(149)

YAP: injection of rAAV vector to express the main YAP1 isoform vs.
control into mouse tibialis anterior in vivo

Hypertrophy: skeletal muscle mass per body weight 1; fiber
cross-sectional area 1; protein synthesis 1 (no evidence for
mTOR involvement).

(148)

YAP: electroporation of YAP1 vs. control constructs into mouse
tibialis anterior in vivo

Hypertrophy: fiber cross-sectional area 1 (mTORC1
independent); MyoD reporter 1; c-Myc reporter 1, MurRF1
reporter 2; Smad reporter 2.

(46)

YAP: overexpression of YAP1 S127A, wild-type YAP or empty vector
in satellite cells or cultured muscle fibers in vivo

Satellite cell proliferation 1; differentiation 2. (67)

TAZ: injection of TAZ activator IBS008738 (specificity unclear) vs.
vehicle into mouse tibialis anterior after cardiotoxin-induced injury
or dexamethasone-induced atrophy in vivo

Regeneration, atrophy prevention: IBS008738 injections
accelerated skeletal muscle regeneration after injury and
reduced atrophy after dexamethasone-induced atrophy.

(157)

TEAD1: muscle creatine kinase promoter-driven expression of
TEAD1 in mouse muscle fibers and heart in vivo

Fast-to-slow muscle phenotype shift but cardiomyopathy:
extensor digitorum longus shortening velocity 2; peak power
2 by approximately 40%; fast-to-slow shift in myosin heavy
chains; cardiomyopathy and heart failure.

(130,132)

YAP: transduction of neonatal rat cardiomyocytes with Yap1 or
control adenovirus in vitro

Cardiomyocyte hypertrophy: Cardiomyocyte size 1 (Akt-
independent) and survival 1 (Akt-dependent).

(25)

YAP: inducible, Tnnt2-promoter-driven expression of YAP1 S127A in
fetal and postnatal cardiomyocytes in vivo

Cardiac proliferation: cardiomyocyte proliferation 1; relative
heart weight 1; regulation of cell cycle-related genes.

(139)

Salvador: inducible, Myh6-driven knock-out of Wwtr1 (Salvador),
Lats 1 and Lats2 in adult cardiomyocytes in mice in vivo; apex
resection or myocardial infarction

Cardiac proliferation, regeneration: cardiomyocyte proliferation
1, regeneration of injured hearts.

(58)

YAP: � myosin heavy chain-driven expression of Yap1 S112A in the
mouse heart in vivo (homolog of human S127A mutation);
myocardial infarction

Cardiac proliferation, regeneration: Cardiomyocyte proliferation
1; relative heart weight 1. After myocardial infarction:
cardiac function 1, cardiomyocyte proliferation 1, fibrosis
2.

(154)

YAP: inducible expression of � myosin heavy chain-driven
expression of Yap1 S127A in the adult mouse heart in vivo;
myocardial infarction

Cardiac proliferation, regeneration: Cardiomyocyte proliferation
1; relative heart weight unchanged. After myocardial
infarction: cardiac function 1, cardiomyocyte proliferation 1,
scar size 2.

(85)

rAAV, recombinant adeno-associated virus; Nkx2.5 and Tnnt2 are promoters used to drive the specific expression of genes in cardiomyocytes.
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researchers (19) used chronic stretch overload to induce hy-
pertrophy of the anterior latissimus dorsi muscle and found an
increased expression of the skeletal �-actin gene. They showed
that stretch overload activated a CATTCC (MCAT) motif-
containing luciferase reporter, suggesting that Tead transcrip-
tion factor activity was present during mechanical overload of
skeletal muscle (19). In a human study, eight men performed
100 unilateral maximal drop jumps followed by submaximal
jumping until exhaustion (75). The researchers found that the
mRNA of Hippo marker genes such as cysteine-rich angio-
genic protein 61 (CYR61) and connective tissue growth factor
(CTGF) (77, 164), increased 14- and 2.5-fold 30 min after
exercise, respectively. Additionally, CYR61 protein levels
were approximately twofold higher at both 30 min and 48 h
after the exercise compared with resting control levels. This
suggests that some forms of mechanical loading can induce
expression of Hippo marker genes. However, it is unclear
whether increases in CYR61 and CTGF expression are a direct
consequence of altered Hippo signaling.

Two recent studies have linked Yap activity directly to
muscle fiber hypertrophy. Watt and colleagues (148) used an
adeno-associated viral vector (rAAV6)-mediated shRNA
knockdown strategy to reduce Yap levels in mouse limb
muscles. They found a decreased muscle fiber size and reduced
protein synthesis. Additionally, they used the same rAAV6
system to overexpress the predominant YAP isoform in muscle
and found increases in muscle mass, cross-sectional area, and
protein synthesis [Table 1, (148)]. Intriguingly, despite the
extensive evidence of cross-talk between Hippo and mTOR
signaling discussed in the first part of this review, their YAP
interventions did not seem to affect mTOR activity. In another
study, the Hornberger group of researchers (46) reported that
YAP expression increases up to approximately 4.5-fold in the
hypertrophying plantaris muscle days synergist ablation, a
model commonly used to induce skeletal muscle hypertrophy.
They then used electroporation to overexpress YAP in the
tibialis anterior muscles and analyzed the muscles 7 days later.
The fibers that overexpressed YAP were larger than control
fibers, demonstrating that elevated YAP activity could cause
hypertrophy (Table 1). Additionally, they found that YAP
induced MyoD and Myc reporters, while inhibiting a Smad-
binding element (CAGA)-containing reporter (46). Reductions
in myostatin produce a similar effect on a Smad-binding
element (CAGA) reporter (166), and a myostatin knockout
similarly induces muscle hypertrophy (95). In summary, Hippo
members can affect fiber type proportions, and increased levels
of Yap can induce skeletal muscle hypertrophy. Additionally,
Hippo marker genes increase after resistance exercise in human
skeletal muscle.

Hippo and Satellite Cells

Satellite cells were discovered by Mauro (92) using electron
microscopy and are now well recognized as the resident stem
cells of skeletal muscle (115). The key tool that allowed Mauro
to characterize their function in vivo was the Pax7-DTA
knockout mouse line, which is used specifically to deplete the
satellite cell pool in mouse muscles. Studies with the mice
showed that satellite cells are essential for the regeneration of
skeletal muscle after injury (2, 81, 107), suggesting that in a
sports context, satellite cells are needed to regenerate the

muscles damaged by eccentric exercises, such as marathon
running (59). In contrast, satellite cell-depleted muscles show
a normal hypertrophic response to overload in the short term
(93). However, satellite cell-depleted muscle cannot maintain
its initial hypertrophy after more than 8 wk (38), suggesting
that satellite cells are essential for muscle regeneration after
injury and are required to maintain the size of hypertrophied
muscles in the long term.

Hippo members are key mediators of proliferation and
differentiation in satellite cells and myoblasts (mononuclear
muscle cells). Yap is active in proliferating C2C12 myoblasts,
and high Yap activity promotes their proliferation but inhibits
myogenic differentiation (147). In satellite cells, Yap protein
levels are low in the quiescent state, but they increase when
satellite cells become activated and develop into MyoD-ex-
pressing myoblasts. Again, high Yap activity resulting from
expression of the constitutively active YAP1 S127A mutant
promotes proliferation but inhibits differentiation (67). Con-
versely, knocking down Yap in satellite cell-derived myoblasts
reduces proliferation by �40% (67). Overexpression of YAP1
S127A in satellite cell-derived myoblasts also increases the
expression of proliferation-associated genes and known satel-
lite cell regulators such as BMP4 (109) and CD34 (4), while
reducing the expression of differentiation markers and the
myogenic differentiation regulator Mrf4 (67). Collectively,
these results indicate that Yap promotes myoblast and satellite
cell proliferation but inhibits differentiation into myotubes and
muscle fibers. This suggests that Yap might be an important
regulator of muscle development (myogenesis) and satellite
cell-derived myoblast proliferation after injury and in response
to hypertrophy. The requirement of Yap and other Hippo
members such as Taz during the response to exercise by
satellite cells remains to be formally demonstrated.

Hippo and the Athlete’s Heart

Maximal oxygen uptake (V̇O2 max) is the key determinant of
an individual’s endurance capacity (27) and is also associated
with longevity (15). Early physiological studies in humans
demonstrated that one of the key predictors of an individual’s
V̇O2 max is the blood flow generated by the heart, termed
cardiac output (99), which determines the efficiency of oxygen
transport to the exercising musculature. The V̇O2 max and car-
diac output parameters respond to exercise training and de-
training, as demonstrated by Saltin and colleagues (113). They
showed that 20 days of bed rest reduces resting heart volume
by �10% and exercise cardiac output by 15%, resulting in a
significantly reduced V̇O2 max (113). Conversely, 55 days of
endurance exercise training following the bed rest increased
cardiac output above prebed rest levels. This partially explains
the restoration of V̇O2 max (142).

The increase in cardiac output can be attributed to the
development of an athlete’s heart in response to endurance
training. Indeed, electrocardiographic studies show that ath-
letes have enlarged hearts (9), which was later confirmed by
comparative echocardiography on endurance athletes (91).
Generally, the main cellular mechanism underlying the ath-
lete’s heart is cardiomyocyte hypertrophy. For example, en-
durance running training for 8 wk increases cardiomyocyte size
by 17–32% in mice (73). Until several years ago, researchers
thought that adult cardiomyocytes were unable to proliferate
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and regenerate the heart. However, this view is now changing
(33). By determining the levels of 14C DNA integration from
nuclear bomb tests, Bergmann et al. (14) estimated that be-
tween 0.45 and 1% of human cardiomyocytes renew per
annum. Furthermore, they showed that by the age of 50, 40%
of cardiomyocytes had emerged after birth (14). Moreover,
swim endurance training for 2 wk results in increased expres-
sion of proliferation markers in mouse cardiomyocytes (16),
suggesting that exercise promotes cardiomyocyte proliferation,
at least in mice. There is emerging evidence supporting the
existence of a cardiac stem cell population that may engage in
some limited regeneration (32) in addition to a low renewal
rate of preexisting cardiomyocytes (119). Two recent studies
found that both cardiac stem cells and cardiomyocytes prolif-
erate in response to endurance exercise in rodents (80, 146).
Collectively, these data demonstrate that endurance exercise
increases left ventricular volume, thickness, and pumping per-
formance and suggest that these effects occur mainly through
cardiomyocyte hypertrophy with a limited contribution of
cardiac stem cells and cardiomyocyte proliferation. Conse-
quently, this results in the development of the athlete’s heart,
which in turn increases the individual’s V̇O2 max and aerobic
exercise capacity.

The heart can respond to increased loads in two different
ways, depending on the nature of the load (94): 1) physiolog-
ical hypertrophy (i.e., athlete’s heart) can occur as a response
to endurance exercise or pregnancy (volumetric hypertrophy)
or resistance exercise (nonvolumetric hypertrophy); or 2) path-
ological hypertrophy can occur after cardiac injury or in
individuals with high blood pressure or defective valves.

Physiological hypertrophy, which is associated with exercise
or pregnancy, differs from pathological hypertrophy by the
nature of the stimuli, the structural response, the absence of
fibrosis, and the molecular drivers leading to the adaptation
(94). Generally, physiological hypertrophy does not progress
into cardiac dysfunction. In contrast, pathological hypertro-
phy often decompensates, reducing cardiac function and
resulting in end-stage heart failure (72). Both types of
hypertrophy differ at the molecular level in their response
the divergent stimuli (1).

Currently, whether and how Hippo signaling contributes to
the different forms of cardiac hypertrophy remains incom-
pletely understood. Several studies show that Yap loss- or
gain-of-function in the embryonic heart is frequently lethal
[reviewed in (84, 141, 155)]. This suggests that normal Yap
function is essential for normal cardiac development. Presum-
ably, Yap is active only in certain cell populations during
specific periods, which could explain why permanent Yap
gain- or loss-of-function has such a detrimental effect. There is
some evidence that Hippo signaling is perturbed during path-
ological cardiac hypertrophy. Yap is expressed at higher levels
and dephosphorylated (activated) in samples obtained from
pathologically hypertrophied human hearts (144). Further-
more, Yap is activated in hearts stressed by pathological
pressure overload (144) and in the area bordering a myocardial
infarction in mice (25).

Are Hippo members contributing to the formation of the
athlete’s heart in response to exercise? Although this question
has not been addressed directly, published data suggest possi-
ble roles for Hippo members in mediating the athlete’s heart
(see Table 1). First, Yap1 overexpression in cultured neonatal

rat cardiomyocytes promotes hypertrophy and survival com-
pared with control cardiomyocytes (25). In contrast, two other
teams reported no cardiomyocyte hypertrophy upon Yap acti-
vation in postnatal mouse hearts in vivo (139, 154). The
reasons behind these contrasting results are unknown, and so it
is unclear whether Hippo signaling contributes to cardiomyo-
cyte hypertrophy in response to exercise (73).

Another response of the heart to endurance exercise in
rodents is the limited proliferation of cardiomyocytes and
cardiac stem cells (16, 80, 146). Although it has not been tested
whether Hippo members promote cardiomyocyte or cardiac
stem cell proliferation in response to endurance exercise,
evidence supporting that notion that Hippo members regulate
the proliferation of adult cardiomyocytes and can enhance
regeneration after cardiac injury has been reported (Table 1).
Knocking out the Hippo members Sav1 or Lats1/2 in adult
mouse cardiomyocytes increases proliferation, promotes re-
generation after myocardial infarction, and reduces scar tissue
formation (58). Similarly, Yap1 S112A overexpression in car-
diomyocytes improves cardiac regeneration after myocardial
infarction, both in neonatal and adult mice, with evidence for
increased cardiomyocyte proliferation compared with controls
(154). Finally, in a mouse model of myocardial infarction,
forcing human YAP expression in the heart using adeno-
associated virus delivery results in increased cardiomyocyte
proliferation and improved cardiac function and survival (85).

In summary, the normal function of Yap and Hippo signal-
ing is essential for normal cardiac development. Currently, it is
unknown whether Hippo members and Yap in cardiomyocytes
and cardiac stem cells respond to exercise and contribute to the
development of an athlete’s heart. Available studies suggest
that Yap can promote cardiomyocyte hypertrophy in some
contexts, while in other contexts, Yap appears to promote
cardiomyocyte proliferation and enhance cardiac regeneration
after injury.

Hippo and Body Height

Body height is a key factor in sports, which is most striking
in NBA basketball players. Body height is approximately
70–90% inherited (121) and depends on hundreds, if not
thousands, of common DNA sequence variations with a small
effect size each (152). In rare cases, body height can be
affected by single, rare mutations with a large effect size.
Examples for the latter are dwarfism caused by FGFR3 muta-
tions (37), and acromegaly resulting from AIP gene mutations
(20).

Given that a core function of Hippo signaling is to control
cell numbers, one would expect links between Hippo gene
DNA sequence variations and body height. Interestingly, ge-
nome-wide association studies (GWAS) involving analysis of
data from up to 250,000 individuals (152) show that single
nucleotide polymorphisms (SNPs) in several Hippo genes are
associated with body height (23, 78, 152). Indeed, SNPs
associated with genes encoding for LATS2, TEAD1, YAP1,
VGLL2, VGLL3, and VGLL4 are associated with body height
(23, 57, 78, 152). In the largest meta-analysis study using data
obtained from 253,288 individuals of recent European ancestry
(152), body height-associated SNPs in LATS2 (rs1199734),
TEAD1 (rs6485978, rs2099745), VGLL2 (rs1405212), and
VGLL4 (rs13078528) were identified. In 2010, Lango Allen et
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al. (78) identified an association between SNPs in TEAD1
(rs7926971) and VGLL2 (rs961764) with body height in
133,653 individuals of recent European ancestry. Also, SNPs
in YAP1 (rs11225148) and VGLL3 (rs7628864) were individ-
ually associated with a shorter stature during pubertal growth
in a longitudinal meta-analysis involving 18,737 European
individuals (23). Interestingly, the SNP in VGLL3 was signif-
icantly associated with the trait only in women. So far, no
sex-related differences have been reported for the Hippo path-
way functions, but this association could suggest that such
differences might actually exist in some contexts. Finally, an
SNP in VGLL4 (rs6772112) was associated with height in
36,227 subjects with East Asian ancestry (57). Another inter-
esting association of the study by Cousminer et al. (23) is the
identification of a female-specific SNP in LIN28B associated
with late pubertal growth. The LIN28/LET-7 pathway, which
has recently emerged as a potent regulator of organismal
development and cellular metabolism (120), has been function-
ally linked with the Hippo pathway (21, 104). In summary,
common DNA sequence variants in several Hippo genes in-
fluence body height, but the effect of each variant on height is
small, presumably because de novo DNA sequence variants
with a large effect size either become fixed or lost relatively
quickly (17).

Summary and Future Research

In this review we have listed mainly indirect evidence
suggesting that Hippo signaling may mediate some of the
physiological adaptations to exercise and that SNPs, especially
in the Hippo transcriptional regulators, are associated with
body height as a measure of whole body cell numbers. The task
for molecular exercise physiologists is now to directly show
that these mechanisms mediate adaptation to exercise in exer-
cise models and that Hippo gene variants are associated with
sport and exercise-related traits. We end with three questions:

Because resistance and endurance exercise trigger different
adaptations in skeletal muscle, how can it be explained that the
activity of Hippo members is both affected by both resistance
and endurance exercise-associated signals?

Given that Hippo signaling affects amino acid (52) and
glucose transporter expression (145), can this be used to
develop strategies to alter the responsiveness to nutrients? For
example, can we target through Hippo modulation the leucine
transporter LAT1 (52) to make muscles and other organs more
sensitive to protein intake? Could such a strategy be beneficial
for strength athletes or in cases of muscle weakness and
wasting, for example, in elderly individuals or patients with
cancer and sarcopenia?

Given that the Hippo pathway is involved in regulating the
fate of many stem cells (129), can this be exploited to develop
interventions aimed at improving the repair of muscle, tendons,
and cartilage after sports injury or in degenerative muscle
diseases?
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