
REVIEW ARTICLE

Live strong and prosper: the importance of skeletal muscle
strength for healthy ageing

Michael McLeod . Leigh Breen . D. Lee Hamilton . Andrew Philp

Received: 27 August 2015 / Accepted: 22 December 2015 / Published online: 20 January 2016

� The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Due to improved health care, diet and

infrastructure in developed countries, since 1840 life

expectancy has increased by approximately 2 years

per decade. Accordingly, by 2050, a quarter of

Europe’s population will be over 65 years, represent-

ing a 10 % rise in half a century. With this rapid rise

comes an increased prevalence of diseases of ageing

and associated healthcare expenditure. To address the

health consequences of global ageing, research in

model systems (worms, flies and mice) has indicated

that reducing the rate of organ growth, via reductions

in protein synthetic rates, has multi-organ health

benefits that collectively lead to improvements in

lifespan. In contrast, human pre-clinical, clinical and

large cohort prospective studies demonstrate that

ageing leads to anabolic (i.e. growth) impairments in

skeletal muscle, which in turn leads to reductions in

muscle mass and strength, factors directly associated

with mortality rates in the elderly. As such, increasing

muscle protein synthesis via exercise or protein-based

nutrition maintains a strong, healthy muscle mass,

which in turn leads to improved health, independence

and functionality. The aim of this review is to critique

current literature relating to the maintenance of muscle

mass across lifespan and discuss whether maintaining

or reducing protein synthesis is the most logical

approach to support musculoskeletal function and by

extension healthy human ageing.
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Introduction

The percentage of the global population above 65, 85

and 100 years is predicted to increase by 188, 551 and

1004 % respectively by 2050 (The United Nations;

World Population Prospects: http://esa.un.org/unpd/

wpp/). As a consequence, globally, there is a

notable increase in the prevalence of ‘diseases of

ageing’, such as sarcopenia, recently been defined by

the European Working Group on Sarcopenia in Older

People (EWGSOP) as a ‘syndrome characterised by

progressive and generalised loss of skeletal muscle

mass and strength with the risk of adverse outcomes

such as physical disability, poor quality of life and

death’ (Baumgartner et al. 1998; Cruz-Jentoft et al.

2010; Rosenberg 1989). This onset of sarcopenia is
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fundamentally important for health as skeletal muscle

in a healthy adult accounts for approximately 40 % of

total body mass (Janssen et al. 2000). In addition to its

primary tasks of maintaining posture, breathing and

locomotion, skeletal muscle also represents an

important nutrient store and metabolic regulator

(Wolfe 2006). During ageing, approximately 30 % of

an individual’s peak muscle mass is lost by the age of

80, and this loss is exacerbated by physical inactivity

and poor nutrition (Janssen et al. 2000; Topinkova

2008). This decline in skeletal muscle metabolism and

function should not be underestimated, as in the UK

alone, complications arising from falls in the elderly

(with an association to frailty) are estimated to cost the

National Health Service £1.7 billion annually (www.

ageuk.org.uk).

The effect of ageing on human health

Ageing is characterized by widespread reduction in

the reserve capacity of the body’s major organs

(Topinkova 2008). Of critical importance for lifespan

is the reduction in cardiac output (Lambert and Evans

2005), which together with reduced lung function

(Taylor and Johnson 2010), decreased skeletal muscle

oxidative capacity (Betik and Hepple 2008), and

changes in body composition (Kuk et al. 2009)

ultimately lead to a reduction in maximum oxygen

consumption (VO2max) (approximately 1 % decline

per year post 25 years) (Lambert and Evans 2005).

VO2max (or surrogate measures of VO2max) correlate

highly with mortality risk (Lee et al. 1999; Lee et al.

2010; Lee et al. 2011). These metabolic changes lead

to a redistribution of nutrients, causing inappropriate

fat deposition, which has been linked with systemic

age related insulin resistance (Wolfe 2006).

Musculoskeletal deterioration in old age has severe

health consequences. Skeletal muscle and the extra-

cellular matrix of skeletal tendon-bone are essential

for maintaining tissue structure and vital for muscular

contraction and force transmission. Given the close

link between muscle loss (sarcopenia) and bone loss

(osteopenia), factors that affect muscle anabolism are

also likely to effect bone mass. With advancing age,

sarcopenia and osteopenia present major clinical

problems, such as impaired locomotory function,

compromised balance, increased risk of osteoarthritis

and fall/fractures; all of which diminish quality of life

in seniors (Cruz-Jentoft et al. 2010; Janssen et al.

2002; Landi et al. 2012a, b; Panel on Prevention of

Falls in Older Persons and British Geriatrics 2011).

Even in conditions of ‘healthy’ ageing, there is a

progressive decline in skeletal muscle quality as

described by various changes in structure, mechanics

and function. Lexell (1995) observed that males aged

15–83 years displayed an age-related reduction in

muscle cross sectional area progressing after 25 years

(Fig. 1a). This was primarily caused by a loss in the

number of fibres but also a reduction in relative cross-

sectional area, particularly of type II fibres (Fig. 1b).

The loss in fibre number and preferential loss in type II

fibres may be related to changes in innervation, as with

increasing age comes a loss of innervation of muscle

fibres and a progressive loss of alpha-motorneurons

(Brown 1972; Tomlinson and Irving 1977; Einsiedel

and Luff 1992). Following the loss of alpha motorneu-

rons, muscle fibres may become reinnervated by

surrounding neurones in a cycle of denervation and

reinnervation via collateral reinnervation (Holloszy

and Larsson 1995) which likely contributes to the loss

of strength and muscle mass with age (Luff 1998).

With less motor neurones, the number of muscle fibres

per motor unit increases, resulting in larger, less

differentiated motor units (Andersen 2003). The

preferential loss in type II fibre cross-sectional area

may partly explain why age-associated losses in

muscle strength and power occur at a greater and

disproportionate rate to losses in muscle mass (Ma-

caluso and De Vito 2004) and why aged muscle tends

to show exacerbated fatigue resistance (Avin and Law

2011). As well as the above, numerous other factors

including a reduction in number of satellite cells (Kadi

et al. 2004), a potential shift towards slow myosin

isoforms (Gelfi et al. 2006) and shortening of

sarcomere length (Narici et al. 2003) have all be

suggested to contribute to a reduction in force

generating capacity of muscle tissue with ageing. It

is extremely concerning that due to a loss of muscle

strength with age, 16–18 % of women and 8–10 % of

men over aged 65 cannot lift a 10 lb weight or kneel

down (FIFoA-R 2008). This loss of muscle strength

with ageing is known as dynapenia (Clark and Manini

2008), occurring 2–5 times faster rate than losses of

muscle mass (Clark et al. 2006; Delmonico et al.

2009). The Health, Ageing and Body Composition

study found that even gaining muscle mass with

ageing does not entirely prevent ageing-related
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decreases in muscle strength (Delmonico et al. 2009).

Infiltration of fat, and neural alterations are likely

contributing factors, as well as changes in contractile

properties (Kent-Braun et al. 2000), and many other

mechanisms discussed elsewhere (Clark and Manini

2012; Mitchell et al. 2012). Dynapenia is a major risk

factor for loss of dependence and mobility issues

(Manini et al. 2007; Visser et al. 2005) as well as

mortality (Newman et al. 2006; Takata et al. 2012).

Coupled to the loss of force generating capacity,

there is a clear reduction of total muscle mass, at a rate

of *4.7 % peak mass/decade in men and *3.7 %

peak mass/decade in women (Mitchell et al. 2012).

Graphical representation of this change in muscle size

and composition with age is illustrated in Fig. 1c–e

(Breen et al. unpublished data). Image 1c shows an

MRI scan from a young lean male, in contrast to an

age-inactive (1D) and age-matched active individual

(1E), with similar levels of dietary protein intake

[*0.9 g/(kg/body mass)]. Evident is the reduction in

muscle mass with age (1C vs. 1D), the greater

abundance and infiltration of fat around the muscle

tissue (1C vs. 1D) and also the protective effect that

maintained physical activity appears to have on

skeletal muscle with ageing (1D vs. 1E). The

accumulation of intramuscular fat may also be a key

factor in the progressive mismatch between losses in

mass and strength. Adipose tissue typically

Fig. 1 Loss of skeletal muscle size and quality occurs during

healthy ageing. Skeletal muscle cross sectional area (CSA)

declines across lifespan (a) with a preferential decline observed

in type 2 fibres (b). Representative MRI images depict skeletal

muscle architecture in young (c), old-inactive (d) and old-active

(e) males. a and b are adapted from (Lexell 1995). Text

represents subject characteristics relating to the images in c–e
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accumulates with age, producing numerous pro-

inflammatory cytokines (adipokines) into the circula-

tion which may accelerate muscle catabolism and

contribute to a vicious cycle of muscle loss and fat

accumulation (Schrager et al. 2007; Wellen and

Hotamisligil 2003). Macrophage infiltration into the

muscle as a result of increased lipid accumulation/

adipokine has been termed ‘sarcopenic obesity’

(Baumgartner 2000; Stenholm et al. 2008). The

combination of lipotoxocity and inactivity/ageing

has been proposed to reduce skeletal muscle anabolic

responses to resistance exercise and nutrition (Murton

et al. 2015; Nilsson et al. 2013; Sitnick et al. 2009;

Stephens et al. 2015). Figure 1e illustrates the preser-

vation of muscle mass and reduced fat infiltration from

a 66-year-old male age matched to Fig. 1d. The only

major difference found between individuals from 1D

and 1E is the habitual physical activity levels, with 1E

*4 times more active than 1D. Therefore, physical

activity levels (coupled with good dietary practice)

can maintain muscle mass and also strength in old age.

The importance of skeletal muscle strength

for healthy ageing

Ruiz et al. (2008) and coworkers carried out the most

comprehensive study of its kind with over 8000

participants followed for approximately 18 years to

assess the influence of muscle strength and cardiores-

piratory fitness on healthy ageing (Ruiz et al. 2008).

Subjects underwent a rigorous set of strength tests and

were stratified by strength (Fig. 2a–b). Remarkably,

individuals over the age of 60 years, classified in the

lowest third for strength, were 50 % more likely to die

of all cause mortality (Fig. 2a) than individuals in the

upper third for strength (Ruiz et al. 2008). The same

trend also applied when considering deaths associated

with cancer (Fig. 2b), indicating that muscle strength,

albeit correlative, has a protective effect from the

incidence of cancer. A final key observation of this

dataset was that regardless of strength, individuals

with higher cardio-respiratory fitness had a greater life

expectancy than low cardio-respiratory fitness coun-

terparts (Fig. 2c). Collectively, this landmark study

provided the first direct evidence that physical strength

or the processes of developing strength is intrinsically

linked to healthy ageing.

Muscle strength and VO2max are likely great

predictors for life span because they integrate both

the neuromuscular and cardiovascular systems and as

such indicate the health and functional integration of

these tissues. As we have discussed, one of the key

determinants of health span is muscle strength (and

likely muscle mass), and one of the major key

determinants of muscle mass retention is the ability

to modify muscle protein synthesis in response to

anabolic stimuli. Given the clear benefits of muscle

strength and cardiovascular fitness on healthy ageing,

the obvious question is what approaches can be taken

to preserve muscle mass, strength and function across

lifespan?

Fig. 2 Skeletal muscle strength and cardiorespiratory fitness is

associated with healthy ageing. Over the age of 60 years, all

cause (a) and cancer-associated (b) mortality is twice as likely in

individuals with low compared to high skeletal muscle strength.

In addition, irrespective of strength, low cardio-respiratory

fitness is associated with * twice the incidence of all cause

mortality (c). Adapted from (Ruiz et al. 2008)
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How is muscle mass, strength and function

regulated at the molecular level?

The mechanistic target of rapamycin (mTOR) is a

highly conserved serine/threonine kinase protein

complex, identified as a central regulator of cellular

growth (Fingar and Blenis 2004). Importantly, mTOR

exists as 1 of 2 complexes and hyper-activity of the

mTOR complexes 1 and 2 (mTORC1/2) has been

implicated in tumor progression, pathological hyper-

trophy, diabetes and obesity (Lee et al. 2007; Sharp

and Richardson 2011; Zoncu et al. 2011). mTORC1

and mTORC2 are very similar protein complexes

differing in a few key subunits which alters kinase

substrate preference. mTORC1 is the kinase compo-

nent of both complexes and is a member of the

phosphatidylinositol kinase (PIK) related kinases

(Abraham 1996), although it does not possess lipid

kinase activity (Brunn et al. 1997). The activity and

substrate preference of mTOR is dependent upon

several adapter proteins GbL (Kim et al. 2003), raptor

(Hara et al. 2002), rictor (Sarbassov et al. 2004), Sin1

(Yang et al. 2006) and Protor/PRR5 (Pearce et al.

2007; Woo et al. 2007), which form two separate

mTOR complexes capable of regulating distinctive

pathways. The mTOR complex 1 contains GbL, raptor

and mTOR and is rapamycin sensitive. GbL functions

to stabilize the association between mTORC1 and

raptor and enhances the kinase activity of mTORC1

towards its targets (Guertin et al. 2006), however is not

essential for mTORC1 activity (Guertin et al. 2006).

Raptor is an adapter protein that identifies and binds

substrates that contain TOS (TOR signalling) motifs

(Schalm et al. 2003) such as 4EBP and S6K1 (Schalm

and Blenis 2002). mTORC2 on the other hand consists

of mTOR, rictor, GbL, Sin1 and Protor/PRR5 and is

rapamycin insensitive (Sarbassov et al. 2004).

mTORC1 regulates protein synthesis initiation by

controlling the formation of the eIF4F complex

(Gingras et al. 2004) and governs the pioneer round

of mRNA translation by acting on SKAR via its

putative target S6K1 (Ma et al. 2008). In addition,

mTORC1 controls ribosomal biogenesis by regulating

rDNA transcription in a manner dependant upon UBF

(Hannan et al. 2003), and nuclear RNA export by

regulating eIF4E in a manner dependant upon 4EBP1

phosphorylation (Culjkovic et al. 2005; Topisirovic

et al. 2003; Topisirovic et al. 2004). In these roles

mTORC1 is a critical regulator of protein synthesis

and cell size (Fingar et al. 2002). It is well established

that resistance exercise and provision of dietary

protein activate mTORC1 synergistically, with the

post exercise/post prandial activation of mTORC1

associated with increases in net protein synthesis in

skeletal muscle (Brook et al. 2015).

The importance of exercise in the maintenance

of muscle mass and function

There is increasing evidence that the trajectory of

sarcopenia and muscle loss is highly dependent on

physical activity levels (Kortebein et al. 2008).

Chronic sedentary behaviour and physical inactivity

are key mechanistic drivers of sarcopenia, and can

accelerate loss of muscle mass and strength leading to

impaired mobility, higher risk of falls and increased

mortality (Montero-Fernandez and Serra-Rexach

2013). Even acute bouts of inactivity such as 10 days

of bed rest in older adults can substantially reduce

lower leg strength, reduce aerobic capacity by 12 %

and lead to a 7 % reduction of physical activity after

the bed rest programme (Kortebein et al. 2008).

Pharmacological interventions aimed to slow the

progression of, or reverse sarcopenia, have been

generally unsuccessful (Borst 2004; Onder et al.

2009). Clear and effective lifestyle-based counter-

measures are therefore needed.

Repeated resistance exercise results in muscle

protein accretion (i.e. hypertrophy) through chroni-

cally elevated rates of synthesis that exceed that rate of

breakdown (Brook et al. 2015; Wilkinson et al. 2014).

However, the sarcopenic elderly demonstrate an age-

related anabolic resistance to exercise and protein

ingestion (Cuthbertson et al. 2005; Kumar et al. 2009).

Despite this anabolic resistance, the cumulative effects

of chronic training with appropriate protein intake can

promote muscle repair, muscle preservation and

muscle growth in the elderly if a sufficient stimulus

is maintained (Walker et al. 2011). In support of this,

numerous studies have shown the beneficial effects of

exercise in elderly individuals (Hakkinen et al. 1998)

and even those aged[90 years (Fiatarone et al. 1994).

Benefits include increased satellite cell content (Leen-

ders et al. 2013) increased muscle cross-sectional area

and myofiber differentiation (Kosek et al. 2006),

increased muscle fibre size particularly in type II

muscle fibers (Leenders et al. 2013) and greater

muscle size and strength (Candow et al. 2006;
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Geirsdottir et al. 2012a). These are accompanied by

metabolic adaptations such as increased metabolic rate

(Hakkinen et al. 1998) mitochondrial biogenesis and

efficiency of substrate metabolism (Holloszy and

Coyle 1984???), and exercise capacity (McCartney

et al. 1995). Long-term resistance training increases

fibre dimension (Narici et al. 1996) strength and

muscle function (Macaluso and De Vito 2004).

Importantly, resistance exercise is also safe for use

within the healthy elderly and possibly even in those

with adverse cardiovascular signs or complications

(Williams et al. 2007). In addition, resistance training

has been observed to effectively improve balance (Orr

et al. 2008) and in turn reduced fear of and occurrence

of falling (Rubenstein et al. 2000), improve cognitive

function (Cassilhas et al. 2007), decrease sit to stand

time (Leenders et al. 2013), reduce risk of repeat and

single hospitalisations (Lang et al. 2010) increase gait

speed (Studenski et al. 2011) and most importantly

improve overall quality of life (Geirsdottir et al.

2012b; Levinger et al. 2009). In addition, there is also

growing evidence that the use of regular aerobic

exercise can preserve muscle mass and function with

age (Harber et al. 2009) a point we discuss in more

detail in our recent review (Brook et al. 2015).

The importance of dietary protein

in the maintenance of muscle mass and function

Dietary protein is an essential macronutrient for the

maintenance of muscle mass and function and, by

close association, bone strength and density. The

current recommended dietary allowance (RDA) for

protein intake to meet whole-body metabolic demands

is 0.8 g/(kg/day) (0.32/kg/LBM/day if assuming LBM

accounts for 40 % of total body mass Janssen et al.

2000). However, the RDA does not distinguish

between potential differences in the amount of protein

required to maintain musculoskeletal health between

young and older individuals. Given strong evidence

that protein intakes greater than the current RDA are

associated with multiple improved musculoskeletal

health outcomes (Morley et al. 2010), it has been

postulated that protein intakes should be defined in

amounts that are ‘optimal’ to promote muscle/bone

protein accretion, or at the very least, maintenance in

old age.

Maintenance of musculoskeletal mass is dependent

on nutrient-induced stimulation of muscle protein

synthesis and the concomitant suppression of muscle

protein breakdown to promote net protein accretion,

which counters protein loss in the postabsorptive state.

Protein-based nutrition robustly stimulates MPS

through constituent essential amino acids (Chesley

et al. 1992; Tipton et al. 1999). In particular, the

branched-chain amino acid, leucine, displays potent

muscle anabolic properties, and is capable of stimu-

lating MPS and associated mTOR-mediated signaling

in the absence of, and to a greater extent than, the other

essential amino acids (Atherton et al. 2010; Wilkinson

et al. 2013). The anabolic response of muscle to amino

acid provision is relatively short lived, peaking

at *2 h after protein ingestion, returning to post-

absorptive values by *3 h after protein ingestion

(Burd et al. 2010; Mitchell et al. 2015), even

in situations where circulating amino acids remain

elevated (Bohé et al. 2001).

A number of studies demonstrate that the muscle

protein synthetic response to oral protein ingestion or

essential amino acid infusion (to bypass potential age-

related differences in splanchnic extraction) is mark-

edly lower in the old compared with the young

(Cuthbertson et al. 2005; Guillet et al. 2004; Katsanos

et al. 2005; Volpi et al. 2000). However, it is important

to note that not all studies have been able to detect the

presence of age-related muscle anabolic resistance to

protein-based nutrition (Paddon-Jones et al. 2004;

Pennings et al. 2011), perhaps due to differences in the

methods used for assessment of MPS between studies

(Burd et al. 2012). Mechanisms beyond the intramus-

cular level may also underpin the compromised

muscle anabolic response to protein nutrition in older

individuals. In this regard, it has been demonstrated

that ageing is associated with greater splanchnic

extraction of amino acids, thereby reducing the

appearance of dietary protein (Volpi et al. 1999).

Beyond this, others report that microvascular perfu-

sion following nutrient provision is impaired in older

individuals (Mitchell et al. 2013), which in theory may

limit the capacity for EAA delivery and uptake into

muscle.

A recently published study shed important light on

the debate of whether ‘anabolic resistance’ resides in

old age, Moore et al. (2015) and colleagues performed

a retrospective analysis of studies from a large cohort

of young and old individuals in which MPS was

measured following ingestion of varying amounts of

high quality protein. The authors demonstrated that the
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minimal amount of protein required to reach a

maximal MPS response was 0.25 g/kg/lean body mass

(LBM) in young individuals and 0.61 g/kg/LBM in

the old, thus highlighting the older individuals are less

sensitive to low protein intakes, and therefore have a

greater relative protein requirement than the young

(Fig. 3). These data are all the more concerning when

one considers that many older individuals do not meet

the current RDA for protein due to factors including

anorexia, appetite loss, blunted olfactory perception,

gastrointestinal issues and, in some cases, socio-

economic factors. On top of these concerning issues,

many older individuals consume dietary protein in a

skewed pattern (Tieland et al. 2012). For example,

protein intake at breakfast and lunch is often sub-

optimal to maximally stimulate MPS (\0.61 g/kg/

LBM), a response that may only be achieved when

large-dose protein is consumed with dinner (Tieland

et al. 2012). Collectively, these data have led to

suggestions that protein intake should perhaps be

distributed evenly across each meal.

The presence of muscle anabolic resistance in old

age has led to calls for the protein RDA to be increased

in this population in order to maximally stimulate

MPS and, perhaps, alleviate the progression of

sarcopenia. Considering the data presented by Moore

et al. (2015), a 70 year old individual weighing 80 kg

(assuming LBM accounts for 30 % of total body mass

(i.e. 24 kg) and three square meals per day (Short and

Nair 2000)) would need to consume *147 g of

protein per day or *1.8 g/kg, more than twice the

current RDA. In support of this hypothetical scenario,

Kim et al. (2015) recently demonstrated that consum-

ing 1.5 g/(kg/body mass) of protein [almost double the

current RDA—0.8 g/(kg/body mass)] resulted in

markedly greater stimulation of MPS over 24 h

compared with 0.8 g/(kg/body mass) of protein. In

this study, no added muscle anabolic benefit was

reported when protein was ingested evenly as com-

pared with skewed distribution (Kim et al. 2015).

Beyond acute studies of MPS, long-term investiga-

tions also lend weight to the suggestion that the current

RDA for protein is inadequate to meet the metabolic

needs of older individuals. For example, Campbell

et al. (2001) demonstrated that older individuals

consuming the recommended protein RDA for

14 weeks experienced a significant loss in mid-thigh

muscle area. In addition, data from the Health ABC

study highlighted that older individuals in the highest

quintile for protein intake (*19 % of total energy

intake) lost *40 % less lean mass than did those in

the lowest quintile for protein intake (*11 % of total

energy intake) (Anderson et al. 2011).

It is clear that many older individuals do not

consume sufficient protein to maintain whole-body

and tissue-specific metabolic health, a situation that

is worsened during periods of ill health and disabil-

ity (Covinsky et al. 1999). Malnourishment during

acute and chronic disease slows the rate of recovery,

increases the risk of complications and re-admittance

to hospital (Covinsky et al. 1999). Musculoskeletal

unloading during illness and hospitalization occurs

with greater frequency in older individuals and has

dire consequences for musculoskeletal health. For

example, it has been demonstrated that 7 days of bed

rest induces muscle atrophy and anabolic resistance

in older individuals (Drummond et al. 2012).

Furthermore, we observed a similar loss in muscle

Fig. 3 Ageing is associated with a blunted anabolic response to

protein ingestion in humans. Comparative analysis indicates that

the protein dose required to maximally stimulate myofibrillar

fractional protein synthesis rates in young individuals (a) is

40 % lower than in old individuals (b). Data adapted from

(Moore et al. 2015)
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mass and anabolic sensitivity in older individuals

following 14 days of reduced ambulation (Breen

et al. 2013). In addition to skeletal muscle defects,

disuse events are also accompanied by severe

osteopenia. Thus, deterioration in muscle anabolic

responsiveness and bone properties during consecu-

tive disuse events in old age may accumulate and

drive the progression of sarcopenia and osteopenia.

A general consensus gathering momentum is that

high protein intakes (greater than the current RDA)

are required during illness and hospitalization to

maintain musculoskeletal health and quicken the rate

of recovery (Cawood et al. 2012). This point is

reinforced by evidence that muscle wasting is

evident during disuse even with protein intakes of

1.0–1.2 g/(kg/body mass) (Trappe et al. 2007). From

a clinical perspective, one study also reported that

the sickest older hospital patients are the most

protein malnourished (Pichard et al. 2004). Beyond

skeletal muscle health, in osteoporosis there is

evidence that higher bone mineral density is evident

when protein intake exceeds the current RDA

(Devine et al. 2005; Meng et al. 2009). Further, in

hip fracture patients, supplemental or higher protein

intakes (greater than the current RDA) are associated

with increased bone density and a reduction in

recovery time (Schurch et al. 1998). The notion that

higher dietary protein intakes (particularly those

high in sulphur-containing amino acids) may lead to

blood acidification, calcium resorption from bones

and osteoporosis (the so called ‘acid-ash hypothesis)

has been roundly disregarded in several meta-

analyses (Fenton et al. 2008; Fenton et al. 2010;

Fenton et al. 2009a; Fenton et al. 2009b). Specifi-

cally, it is clear that the available evidence does not

support a causal association between dietary acid

load and osteoporotic bone disease. To summarize,

there is a clear need for dietary protein intake above

the current RDA in older individuals to maintain

musculoskeletal health and quality of life, with

experts recommending between 1.0 and 1.2 g/

(kg body mass) for healthy older individuals (Bauer

et al. 2013). Moreover, this need is likely to be

increased further during periods where muscu-

loskeletal mass is compromised, such as illness and

hospitalization, with experts recommending between

1.2 and 2.0 g/(kg/body mass) in such situations

(dependent on the severity of illness and extent of

malnutrition) (Bauer et al. 2013).

Should research focus be on improving lifespan

or healthspan?

Based on the data discussed above, it seems clear that

skeletal muscle mass and strength is vital for healthy

ageing, and that exercise and dietary protein are key

mediators of mTORC1-accociated increases in skele-

tal muscle protein synthesis. However, there is a large

body of evidence in model organisms suggesting that

strategies that blunt protein synthesis (mTORC1

inhibition, calorie restriction) increase lifespan and

as such show promise as longevity promoting thera-

pies (Kapahi et al. 2010).

For example, the mTORC1 inhibitor Rapamycin

increases lifespan in a variety of models including

yeast (Kaeberlein et al. 2005), c. elegans (Jia et al.

2004) and Drosophila Melanogaster (Kapahi et al.

2004). In mice, Rapamycin increases lifespan at 90 %

mortality by 14 % for males and 9 % for females

respectively, with survival increasing regardless of

late-life (600 days of age) or mid-life (270 days of

age) administration (Harrison et al. 2009). Consistent

with the notion that reducing protein synthesis can

increase lifespan, individually knocking out eIF4G

and S6K1 (Selman et al. 2009) improves longevity in

model organisms whilst individuals with mutations

leading to low insulin like growth factor1 (IGF1) and

insulin levels, key drivers of mTORC1 activity and

protein synthesis during development, have reduced

rates of cancer and diabetes (Guevara-Aguirre et al.

2011; Shevah and Laron 2007). Additionally, the

offspring of centenarians (who have a delayed risk of

developing certain diseases and an increased longevity

against age matched controls) have low circulating

IGF1 bioactivity (Vitale et al. 2012).

Some of the nuances in these various models/

studies have recently been expertly reviewed else-

where (Sharples et al. 2015), and what is clearly

apparent is that few studies have taken into account

muscle strength, size and functional capacity when

considering improvements in lifespan. As such, the

physiological context (i.e. healthspan vs lifespan) of

living longer in these models is often overlooked. Two

key studies from Blake Rasmussen’s lab; Dickinson

et al. (2011) and Drummond et al. (2009) have

experimentally tested the direct effect of rapamycin in

human skeletal muscle (Fig. 4). First, Drummond

et al. (2009), demonstrated that pretreatment of human

subjects with rapamycin completely blocked the
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ability of resistance exercise to increase muscle

protein synthesis (Fig. 4a) confirming previous reports

in rat skeletal muscle (Kubica et al. 2005). Second,

Dickinson et al. (2011), demonstrates that rapamycin

could completely block the muscle protein synthetic

response to essential amino acids (Fig. 4b). Whilst no

studies have examined the long-term effects of

rapamycin treatment on skeletal muscle in humans,

mice on chronic rapamycin supplementation display

reduced myofibrillar protein synthesis (Drake et al.

2013) and loose the ability to accrue muscle mass

following synergist ablation (Bodine et al. 2001). So

effectively, rapamycin is inducing anabolic resistance

in young, healthy individuals. Therefore rapamycin

treatment in old individuals, already displaying

anabolic resistance and frailty appears to be a ques-

tionable therapeutic approach to improve healthspan.

With regard to calorie restriction, it also seems clear

that the severity of calorie restriction employed and

the macronutrient content administered has a dramatic

effect on the preservation or loss of muscle mass

(Cerqueira and Kowaltowski 2010). For example,

there is some evidence that supplementing protein

during periods of negative energy balance can pre-

serve muscle mass in healthy human volunteers,

compared to energy restriction alone (Josse et al.

2011; Mettler et al. 2010; Phillips 2014). Therefore, it

would appear that future research into the macronu-

trient content of calorie restricted diets, in combina-

tion with greater understanding of skeletal muscle

function is an important future direction for calorie

restriction research.

A final point of consideration is that longevity

studies in rodents are conducted in thermo-neutral,

pathogen free environments, in conditions where food

and water are abundant. Rodents are not required to

forage for food and compete with littermates for

survival (both processes that require functional skele-

tal muscle). In fact a recent report suggests that mice

housed in such conditions have poor health and

functional capacity (Martin et al. 2010). In such

situations, loss of muscle mass and physiological

function is not a detrimental factor. Collectively, this

therefore raises the important question as to what we

are striving for in this area of biogerontology? Are we

looking to increase lifespan at a compromise of health-

span, or would we rather live a healthy active life that

encompasses maintenance of muscle mass, strength

and function?

Live strong and prosper

If we return to the data from Ruiz et al. (2008), this

would suggest that maintaining physical strength is a

key strategy that leads to healthy ageing. Couple this

with the numerous pre-clinical and clinical human

studies we have discussed, and it seems clear that an

active lifestyle supported by appropriate dietary

protein is the key to maintaining strong, healthy

skeletal muscle. In this context, the importance of

muscle size and strength for longevity and health in

humans puts a new spin on the Darwinian statement

‘‘Survival of the Fittest’’ as it is clear that the strongest,

fittest individuals are more likely to live longer and

healthier lives (Artero et al. 2011; Artero et al.;

Haskell et al. 2007; Ruiz et al. 2009; Ruiz et al. 2008).

Given the highlighted importance of muscle function

for healthspan, it is hoped that all future age-related

Fig. 4 Inhibition of mTORC1 activity using the compound

Rapamycin causes anabolic resistance in young, healthy males.

Increases in mixed-muscle synthesis rates are blocked following

resistance exercise (a) and essential amino acid (EAA) ingestion

(b) in young healthy males. a Adapted from (Drummond et al.

2009); b Adapted from (Dickinson et al. 2011)
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research will consider skeletal muscle during exper-

imental interventions and strive to use readouts of

function as the principal outputs as opposed to isolated

gene or protein analysis. Finally, and perhaps most

importantly, when it comes to fully understanding the

complexities of human ageing, it is clear that the only

way to really achieve clarity is through integrative

studies, from basic model systems through to compli-

mentary detailed clinical studies in humans.
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