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Complex I (NADH:ubiquinone oxidoreductase) is the largest multimeric enzyme complex of the mitochon-
drial respiratory chain, which is responsible for electron transport and the generation of a proton gradient
across the mitochondrial inner membrane to drive ATP production. Eukaryotic complex I consists of 14 con-
served subunits, which are homologous to the bacterial subunits, and more than 26 accessory subunits. In
mammals, complex I consists of 45 subunits, which must be assembled correctly to form the properly func-
tioning mature complex. Complex I dysfunction is the most common oxidative phosphorylation (OXPHOS)
disorder in humans and defects in the complex I assembly process are often observed. This assembly process
has been difficult to characterize because of its large size, the lack of a high resolution structure for complex I,
and its dual control by nuclear and mitochondrial DNA. However, in recent years, some of the atomic struc-
ture of the complex has been resolved and new insights into complex I assembly have been generated. Fur-
thermore, a number of proteins have been identified as assembly factors for complex I biogenesis and many
patients carrying mutations in genes associated with complex I deficiency and mitochondrial diseases have
been discovered. Here, we review the current knowledge of the eukaryotic complex [ assembly process
and new insights from the identification of novel assembly factors. This article is part of a Special Issue enti-
tled: Biogenesis/Assembly of Respiratory Enzyme Complexes.
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1. Introduction
1.1. OXPHOS and the mitochondrial respiratory chain

Mitochondrial ATP is produced by the oxidative phosphorylation
(OXPHOS) machinery [1]. OXPHOS couples 2 sets of reactions, the
phosphorylation of ADP and electron transfer through a chain of oxi-
doreductase reactions. In most eukaryotes, the process is carried out
by the respiratory chain, which consists of 5 enzyme complexes
embedded in the mitochondrial inner membrane: complex I (CI,
NADH:ubiquinone oxidoreductase), complex II (CII, Succinate:ubiqui-
none oxidoreductase), complex III (CIII, ubiquinol:cytochrome c oxido-
reductase), complex IV (CIV, cytochrome c oxidase) and complex V (CV,
ATP synthase). OXPHOS begins with the entry of electrons into the
respiratory chain through CI or CII. CI binds and oxidizes NADH and gen-
erates 2 electrons that are transferred through flavin mononucleotide
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(FMN) and 7 iron-sulfur (Fe-S) clusters to ubiquinone, the first electron
acceptor [2]. ClI is another electron entry point for the transfer of elec-
trons from succinate to ubiquinone [3]. Electrons from CI or CII are sub-
sequently transferred from reduced ubiquinone (ubiquinol) to CIII,
then to cytochrome c, the second mobile electron carrier, and finally to
complex IV. CIV is the terminal enzyme in the electron transfer
chain, reducing O, to H,0 by using the delivered electrons [4]. Coupling
electron transfer, Cl also plays a role as a pump to transfer protons out of
the matrix with a stoichiometry of 4 protons to 2 electrons [1,2,5]. The
pathway through complexes I, Ill and IV pumps a total of 5 protons
per electron that are translocated from the mitochondrial matrix to
the intermembrane space, creating a membrane potential. The trans-
membrane electrochemical potential is then used to promote the con-
formational change of CV, resulting in the generation of ATP [6].

1.2. Complex I structure and function

Eukaryotic Cl is located in the mitochondrial inner membrane and
protrudes into the matrix to form an L-shaped structure [7]. This
structure consists of a hydrophilic peripheral arm with a hydrophobic
membrane arm lying perpendicular to it. This L-shaped structure is
conserved from NDH-1 in Escherichia coli, which is a homolog of eu-
karyotic CI [8,9], to bovine heart CI [7].
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The crystal structure of the hydrophilic domain of CI in the bacteria
Thermus thermophilus was solved and the relative positions of the 8 sub-
units that compose the peripheral arm of CI were defined [10]. The pe-
ripheral arm consists of 2 functional modules, an electron input module
(N module) and an electron output module (Q module), and comprises
all redox active cofactors [10] (Fig. 1). The N module contains an NADH
oxidation site with an FMIN molecule as the primary electron acceptor,
while the Q module contains a ubiquinone reduction site. Electrons
from the oxidation of NADH are transferred via FMN and a series of
Fe-S clusters to ubiquinone. The membrane arm or the proton translo-
cation module (P module) contains the 3 subunits, ND2, ND4 and ND5
[11] (Fig. 1). They are highly hydrophobic proteins, which contain
around 15 transmembrane stretches, and are antiporter-like subunits
presumably involved in proton-pumping activity [11]. However, how
electron transfer is coupled to proton translocation, either by direct as-
sociation through protein binding sites or indirectly through conforma-
tional changes of the enzyme, remained obscure because of the lack of a
high quality 3-dimensional structure of CI [12,13]. Recently, the X-ray
structures of the membrane domain of CI from E. coli at a resolution of
3.9 A and of the entire CI from T. thermophilus at a resolution of 4.5 A
were solved [14]. These findings defined the positions of all of the sub-
units and revealed the long horizontal a-helical structure of the mem-
brane domain of CI, suggesting that the conformational changes at the
interface of the matrix and membrane domains may drive the long am-
phipathic a-helices in a piston-like motion, thereby leading to proton
translocation. In addition, the low resolution X-ray structure of mito-
chondrial CI from the aerobic yeast Yarrowia lipolytica was also reported
[15]. The arrangement of functional modules suggested the conforma-
tional coupling of redox chemistry with proton pumping. A long helical
element in the NuoL/ND5 subunit stretches across the matrix face of the
membrane domain of CI and is suggested to be critical for transducing
conformational energy to proton-pumping elements in the distal mod-
ule of the membrane arm.

Bovine (and human) mitochondrial CI consists of 45 different sub-
units with a total molecular weight of ~980 kDa [16,17]. In this re-
view we will use the human nomenclature for complex I subunits,
where nuclear encoded subunits contain the prefix “NDU” (NADH-
dehydrogenase-ubiquinone) and mtDNA-encoded subunits are
given the prefix “ND” (NADH-dehydrogenase). A number of complex
I assembly factors have been given the prefix “NDUFAF” — for NADH-
dehydrogenase (NDU), alpha subcomplex (F), assembly factor (AF),
plus a number indicating when it was first named. The reference to
the alpha subcomplex within the abbreviation does not appear to be
substantiated. To limit confusion, the assembly factor proteins are in
lower case within the text.

Seven subunits, ND1-ND6 and NDA4L, are encoded by mitochondrial
DNA (mtDNA), and are homologs of the 7 membrane subunits in NDH-1,
forming the major part of the membrane domain [1,18]. The mtDNA-
encoded subunits are thought to be involved in proton translocation
and ubiquinone binding, as their bacterial homologs have these func-
tions [1,7]. The remaining 38 subunits are encoded by nuclear DNA
(nDNA) and imported into the mitochondria [18-20].

Seven of the nDNA-encoded subunits, NDUFV1, NDUFV2, NDUFS1,
NDUFS2, NDUFS3, NDUFS7 and NDUFS8, represent the “core sub-
units” in the peripheral arm of CI, catalyzing the oxidation of NADH
and electron transfer [1,21]. The N module, responsible for the oxidation
of NADH, includes at a minimum the NDUFV1, NDUFV2 and NDUFS1
subunits. And the Q module, responsible for the electron transfer to ubi-
quinone, includes at a minimum the NDUFS2, NDUFS3, NDUFS7 and
NDUFS8 subunits [22] (Fig. 1). The remaining 31 nDNA-encoded sub-
units are referred to as “supernumerary” subunits because they have
no counterparts in NDH-1 [16]. Most of the supernumerary subunits
are not involved in CI enzymatic activity, and their actual function is
still unknown [18]. It has been proposed that the eukaryotic supernu-
merary subunits assist in CI biogenesis and support the structural stabil-
ity of C1 [7,17].

2. Complex I assembly

The assembly of subunits into CI has proved to be a very complicated
process to characterize due to the large size and numerous subunits of
the enzyme, lack of a detailed crystal structure, and its dual genomic
control. The nDNA-encoded subunits must assemble in coordination
with the hydrophobic mtDNA-encoded subunits to form the properly
functioning mature complex; however, the assembly pathway is still
not completely understood.

It has been suggested that the co-evolutionary structural relationship
between CI subunits may be reflected by the order of assembly and com-
position of assembly intermediates [23]. Based on this concept, a num-
ber of model systems have been employed to study the assembly of
eukaryotic Cl, in various organisms such as the green alga Chlamydomonas
reinhardtii [24-28], the fungus Neurospora crassa [29-36], the nematode
Caenorhabditis elegans [37], and cultured mammalian cell lines [38-42].

2.1. Assembly of complex I in C. reinhardtii

In C. reinhardtii, the assembly of mtDNA-encoded subunits has
been well characterized. The absence of ND4 or ND5 led to the accu-
mulation of a 700-kDa subcomplex, i.e. partial assembly of an incom-
plete complex. In contrast, mutations in ND1 or ND6 subunit resulted
in a failure to detect the mature 950-kDa holo-CI or the 700-kDa sub-
complex [24,25]. Based on these results, it was proposed that the ND4
and ND5 subunits are incorporated at a late stage of assembly after
the incorporation of the ND1 and ND6 subunits. Investigations of
the role of ND3 and NDA4L in assembly resulted in the generation of
the first assembly model for C. reinhardtii, in which a 200-kDa nuclear-
encoded subcomplex, containing the 76-kDa (NDUFS1) and 49-kDa
(NDUFS2) subunits, is anchored to the membrane by combining with
ND1, ND3, ND4L and ND6 forming the 700-kDa subcomplex and subse-
quently expanded by the addition of ND4 and ND5 to generate the holo-
CI [26]. In subsequent investigation of the role of ND5, the lack of ND5
prevented the assembly of the holo-Cl, but allowed the assembly in
low amount of the 700-kDa subcomplex, which is loosely bound to the
mitochondrial membrane [27]. The mass spectrometry analysis of the
700-kDa subcomplex identified eleven homologs to human CI subunits:
nine (NDUFV1, NDUFV2, NDUFS1, NDUFS2, NDUFS3, NDUFS4, NDUFS7,
NDUFS8 and NDUFA12) are associated with the matrix arm and two
(ND3 and NDUFA9) are located at the junction between the matrix

N module
(binding & oxidizing NADH)

s (electron transfer to ubiquinone)

DUFS2

P module
(proton pumping)

180 A

Fig. 1. Schematic graph of mammalian mitochondrial complex I structure. The matrix
arm and the membrane arm form an L-shaped structure, with an angle of 100°. It is
composed of three conserved functional modules: the NADH dehydrogenase module
(N module), the electron transfer module (Q module) and the proton translocation
module (P module). The positions of 14 core subunits are indicated, all of which are
highly conserved from prokaryotes to eukaryotes.
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and membrane arms of CI [27]. Together, it is proposed that the 700-kDa
fragment is formed by the addition of hydrophilic and hydrophobic sub-
units to the 200-kDa fragment and then the 700-kDa complex is firmly
anchored to the membrane by attachment of the 250-kDa hydrophobic
module containing ND4 and ND5. These subunits ND4 and ND5 proba-
bly have a crucial role in the assembly of the distal part of the membrane
arm of CI which is suggested to be critical for anchorage of the whole
complex within the mitochondrial inner membrane [27,28].

2.2. Assembly of complex I in N. crassa

Cl assembly in the aerobic fungus N. crassa has also been well studied
through the characterization of mutant strains generated by systematic
introduction of mutations in CI genes [31-36]. Mutants lacking subunits
of the matrix arm could not assemble CI and accumulated the membrane
arm of the complex [34]. Conversely, a mutant lacking a nuclear-encoded
subunit of the membrane arm accumulated the matrix arm and 2 inter-
mediates of the membrane arm [43]. From such studies, it was proposed
that Clin N. crassa is assembled via evolutionarily conserved modules. In
this model, the hydrophilic matrix arm is formed separately while the
membrane arm is constructed from ~200-kDa and ~350-kDa intermedi-
ates. The small intermediate contains the ND2 and ND5 subunits, while
the large intermediate contains ND1, 3, 4, 4L and 6 [30,32]. Although
these findings provided the first detailed model of mitochondrial CI
assembly in a eukaryote, the integration of subunits into different
modules is not consistent with recent insights into the molecular archi-
tecture of CI [14,15]. Furthermore, its application to mammalian systems
is limited since mammalian complex I contains additional subunits when
compared to its fungal counterpart.

2.3. Complex I assembly in mammals

Assembly studies in rodent and human ND-subunit mutant cell
lines have demonstrated that subassemblies of nDNA-encoded CI
subunits could be formed in the absence of mtDNA-encoded subunits
[44,45]. Cells lacking mtDNA, which lose all of the mtDNA-encoded
subunits, maintain the levels of some nDNA-encoded subunits of the
peripheral arm. They contain a subcomplex of the peripheral arm
that consists of, at least, NDUFS2, NDUFS3 and NDUFS8 [44]; there-
fore, it has been suggested that the presence of the mtDNA-encoded
subunits is not required for the formation of the peripheral arm sub-
complex [45] (Fig. 2).

However, the entry points of the mtDNA-encoded subunits in the
Cl assembly process and their roles in the stability of CI had remained
elusive. Recent research using several mouse cell lines deficient for
ND4, ND6, and combination of ND6 and ND5 proposed five entry
points of the mtDNA-encoded subunits in the CI assembly process
[46]. This study defined a first entry point for ND1 in the ~400 kDa-
subcomplex and a second entry point for ND2, ND3 and NDA4L in the
~460 kDa-subcomplex. Subsequently, ND4, ND6 and ND5 appear to
be incorporated into CI complex in order at a third, fourth and fifth
entry point, respectively.

A useful model system using Chinese hamster cells has also clarified
the function of some CI subunits in the CI assembly process [40]. For
example, NDUFA1 has been shown to be important for CI assembly
[47]. The insertion and stabilization of NDUFAT1 in the mitochondrial
inner membrane were shown to require mtDNA-encoded subunits,
in particular, ND4 and ND6 [48]. NDUFA1 is also unstable in the absence
of other membrane domain subunits like NDUFB11 [40]. Chinese
hamster fibroblasts also revealed that the stability of the peripheral
arm subunits NDUFS1, 2, 3, 7, 8 and NDUFV1 and 2 were unaffected
by the absence of NDUFAL1, although holo-CI was not assembled
[40]. These data suggest that the peripheral arm can be assembled
in the absence of the membrane arm, similar to its assembly in N. crassa
[29]. NDUFA1 was also suggested to form an assembly intermediate
consisting of mtDNA- and nDNA-encoded subunits and to serve as a

membrane anchor to which membrane subunits are attached during
Cl assembly [48]. Furthermore, recent bioinformatic analyses of the co-
evolution of CI subunits coupled with yeast two-hybrid studies revealed
the interaction of human NDUFA1 with ND1 and ND4, and the interac-
tion of human NDUFC2 with ND4 [49]. The findings reinforce the impor-
tant role of NDUFAT1 in forming an assembly intermediate composed of
mtDNA-and nDNA-encoded subunits. The direct physical interaction
between NDUFC2 and ND4 indicates that these subunits may be incor-
porated into the membrane arm together. Since ND1, ND4 and NDUFA1
are essential for the assembly of the membrane arm of complex I,
NDUFC2 may be also important for the assembly process.

Other supernumerary subunits have also been proposed to assist
in CI biogenesis and support the structural stability of CI. The analysis
of sequence conservation revealed intra-molecular disulfide bridges
and the intermembrane space localization of three CXgC-containing
subunits in human: NDUFS5, NDUFB7 and NDUFAS [50]. The presence
of an intermembrane space targeting signal, in conjunction with a
CXoC domain (which is found in all known and predicted Mia40 sub-
strates [51]), and the absence of a canonical mitochondrial targeting
signal suggest the insertion of the three subunits into the complex di-
rectly from the intermembrane space. The predicted sizes of these
CXoC domain-containing subunits would fit within 3 intermembrane
protrusions in the membrane arm in the recent bovine CI structure
determined by 3D electron microscopy [52]. It was proposed that the sta-
bilization of the membrane arm of CI by these subunits from the inter-
membrane space might be necessary for eukaryotic CI stability [50].
The import of the three subunits, NDUFS5, NDUFB7 and NDUFAS, to
the intermembrane space via the Mia40 pathway was supported by se-
quence based analysis which predicts the sub-compartment localization
of mitochondrial proteins [53]. In addition, the electron microscopic
analysis of CI decorated with monoclonal antibody against NDUFAS8 con-
firmed its predicted localization at the proximal end of the membrane
arm on the intermembrane space side [53]. It is interesting to note that
the CI assembly process would involve multiple import pathways that
direct nDNA-encoded subunits to either the matrix or intermembrane
space side.

In human cells, several assembly models have been proposed by con-
ditional assembly systems where the assembly process is disturbed [39],
by tracing assembly intermediates in wild-type cell lines using pulse-
chase techniques, by tracking the assembly of individual nuclear-
encoded subunits using an in vitro mitochondrial import and assembly
assay [41], and by monitoring the assembly pattern of the green fluores-
cent protein-tagged NDUFS3 subunit and its progression into the mature
holoenzyme [42].

Using a conditional assembly system by removing a block in mtDNA-
encoded protein translation, it was proposed that the peripheral matrix
arm (containing at least NDUFS2, 3 and 4, NDUFA9 and NDUFV2) and
the membrane arm (containing at least ND1, ND6 and NDUFB6) are as-
sembled separately [39], consistent with the modular assembly path-
way in N. crassa [29]. A subsequent study by the same group
monitored the assembly pattern of the green fluorescent protein-
tagged NDUFS3 subunit and its progression into the mature holoen-
zyme [42]. The model proposed that an early peripheral arm assembly
intermediate containing NDUFS2 and NDUFS3 is membrane anchored
by ND1 prior to expansion with additional membrane arm and periph-
eral arm subunits. Interestingly, this proposed assembly model is differ-
ent from the modular assembly pathway in N. crassa [29] (Fig. 2).

The model was supported by another study monitoring the as-
sembly of subunits in the presence of endogenous CI using radiolabel-
ing techniques [41]. In this study, a small peripheral complex is
membrane anchored to a subcomplex containing membrane arm
subunits. A smaller subcomplex containing at least ND1 is detected,
to which ND2, 3 and 6 are presumably added. This finding is different
from the recent proposed model in which ND6 appears to be incorpo-
rated at a later step than ND4 [46]. Because the recent crystal struc-
tures of the membrane arm of bacterial ClI revealed that the ND6
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Fig. 2. The assembly model of human complex I biogenesis. In the early assembly stages, the core subunits NDUFS2 and NDUFS3 form a small hydrophilic assembly complex, which
further expands by the incorporation of hydrophilic subunits such as NDUFS7, NDUFS8 and later NDUFA9. This peripheral complex, together with a small membrane complex con-
taining mtDNA-encoded subunit ND1, forms a ~400 kDa assembly intermediate. This ~400 kDa complex incorporates with a ~460 kDa membrane complex containing ND3, ND6,
ND2, ND4L and NDUFB6 to form a ~650 kDa complex. With the association of another membrane complex having ND4, ND5 and probably NDUFC2, an ~830 kDa assembly inter-
mediate is formed. Meanwhile, a hydrophilic complex, NADH: dehydrogenase module (N module) is assembled by some nDNA-encoded subunits directly or indirectly involved in
binding and oxidizing NADH. With the addition of the N module and remaining subunits (such as the intermembrane space subunits NDUFA8 and NDUFS5), mature complex I is
assembled. The core subunits are colored with red, the rest of nDNA-encoded subunits are colored with blue. The mtDNA-encoded-subunits are in green.

subunit lies in a proximal portion of the membrane arm adjacent to
ND3 and ND4L while ND5 and ND4 are located at the periphery of
the membrane arm [14], ND6 is presumably assembled at an earlier
step than ND5 and ND4. However, this entry point of ND6 in mamma-
lian CI assembly requires further investigation due to evolutionary di-
vergence. After assembly of peripheral and membrane intermediates,
the subcomplex is expanded with membrane arm subunits including
NDUFA9, NDUFA10 and NDUFB9. Subsequently, the N module con-
taining NDUFV1, 2, 3, NDUFS4 and NDUFS6 is added (Fig. 2). Interest-
ingly, nDNA-encoded subunits appeared to assemble directly into
mature pre-existing CI much faster than mtDNA-encoded subunits.
This finding leads to the proposal that newly imported nDNA-
encoded subunits may be exchanged with pre-existing incorporated
subunits [41].

2.4. Complex I deficiency with CI subunit mutations

CI deficiency is the most common respiratory chain defect in
human disorders [54-56]. It has a wide range of clinical presentations,
from lethal infantile mitochondrial disease to isolated myopathy, or
adult onset neurodegenerative disorders and it can be caused by muta-
tions in both nuclear and mtDNA [54,57-59]. To date, genetic defects
causing isolated CI deficiency have been reported for all of the 14 core
subunits, including the 7 mtDNA-encoded subunits and the 7 nDNA-
encoded subunits NDUFV1 [60], NDUFV2 [61], NDUFS1 [62,63],
NDUFS2 [64,65], NDUFS3 [66], NDUFS7 [67] and NDUFS8 [68,69]
(Table 1). In addition, pathogenic mutations in genes encoding super-
numerary subunits such as NDUFS4 [70,71], NDUFS6 [72], NDUFA1
[73], NDUFA2 [74], NDUFA10 [75], NDUFA11 [76] and NDUFA12 [77]
have also been reported (Table 1). Not much is known about the role
of these supernumerary subunits, but the presence of disease-causing
mutations in these genes indicates that at least some of them are impor-
tant for proper CI function. Indeed, mutations in NDUFS4, NDUFS6,
NDUFA2 and NDUFA10 lead to decreased levels of assembled holo-CI
with the accumulation of CI subcomplexes, which indicates a distur-
bance in the assembly and/or stability of CI [70,72,74,75].

Roles of mtDNA-encoded CI subunits in CI assembly have been
well studied in patients with mutations in these subunits. It appears

that mutations in MTND1 and MTND6 cause gross deficiency of as-
sembled CI [78,79], while ND4 and ND6 are essential for the integra-
tion of other mtDNA-encoded subunits into the complex [78,80]. Cells
derived from a patient with a mutation in MTND2 also showed the CI
assembly defect with accumulation of subcomplexes [81]. On the con-
trary, mutations in MTND3 and MTND5 gave a relatively normal as-
sembly profile [82,83]. As mentioned above, since ND5 is located at
the periphery of the membrane, it may be the last of the ND subunits
to assemble [14] (Fig. 2). However, the different effects of mtDNA
mutations on CI assembly could also be partly attributed to the pro-
portion of mutant mtDNAs and the nature of amino acid substitutions
affecting protein function.

Cl-deficient cells from patients have been utilized to determine how
specific subunits including nDNA-encoded subunits are assembled into
CI[38,84]. In these studies, various stalled assembly intermediates were
identified. Based on the findings, a model for CI assembly in which the
matrix and membrane arm subunits are found together as early-stage
intermediates was proposed. This model for human CI assembly
does not correspond to the modular, evolutionarily conserved
model proposed for CI assembly in N. crassa in which the matrix
and membrane arms are assembled via independent pathways
[29]. However, this CI assembly process is generally similar to the
models proposed by tracing assembly intermediates in wild-type
cell lines [41,42] (Fig. 2).

3. Assembly factors

The assembly of such a large number of subunits into the mature
holo-Cl involves a number of assembly factors. These assembly factors
are not part of the final structure of the holo-CI, but they are involved
in CI biogenesis and are found in some CI intermediates, indicating
their functions in CI assembly/stability. It is apparent that some as-
sembly factors are involved in the biogenesis of specific subunits
while others appear to stabilize assembly intermediates. There are
also other factors that would be involved in the biogenesis of other
proteins and their complexes. Here, we will concentrate on assembly
factors which are specific for CI biogenesis.
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3.1. C200rf7

Homozygosity mapping of a family with a lethal neonatal form of
Cl deficiency and the use of microcell-mediated chromosome transfer
led to the identification of a novel assembly factor encoded by the
C200rf7 gene [85] (Table 2). A homozygous missense mutation in
C200r1f7 segregated with the disease in the family and resulted in a
marked isolated CI deficiency in skeletal muscle, liver and skin fibro-
blasts of the proband. Knockdown of C200rf7 expression in control
cells using lentiviral-mediated RNA interference (RNAi) caused a
marked decrease in CI activity. Analyses of mtDNA-encoded protein
translation in mitochondria from the patient revealed the loss of the
CI ND1 subunit, and a ~400-kDa membrane arm intermediate con-
taining ND1 was not formed [85]. These observations suggested that
C200rf7 is involved in the assembly or stability of an early CI assembly
intermediate that contains the ND1 subunit (Table 2). Interestingly,
C200rf7 possesses a predicted S-adenosyl-methionine (SAM)-dependent
methyltransferase fold and it may methylate proteins, RNA, or DNA with-
in mitochondria [86,87]. As far as protein methylation is concerned, only
2 methylated subunits have been detected in CI subunits [88]. One of
them is NDUFS2, which harbors a methylated arginine, and the other is
NDUFB3. At least 2 highly conserved histidines are methylated in
NDUFB3 [89], and this subunit is located in the membrane arm of CI con-
taining ND1. Recently, a second family carrying a homozygous C200rf7
mutation with Leigh syndrome was reported [90]. This mutation affected
the predicted SAM-dependent methyltransferase domain of C200rf7.
Although the interaction of C200rf7 with NDUFB3 and its subsequent
methylation remain to be investigated further, it is possible that this
post-translational modification of the subunit plays a role in the assem-
bly or stability of the mature CI. Recently, linkage analysis and DNA
sequencing identified a new homozygous C200rf7 mutation in five pa-
tients from two families [91]. Differing from the two previous reported

C200rf7 defects associated with isolated CI deficiency, the patients
showed a combined OXPHOS defect with not only CI but also CIV defi-
ciency. Notably, decreased CIV was also observed by knockdown of
C200rf7 expression in control cells using lentiviral-mediated RNAi
[85]. These findings raise the possibility that C20orf7 may play a role
in the post transcriptional modification of one or several proteins of im-
portance for Cl and CIV function and/or assembly [85,91]. Although the
precise pathogenic mechanism is still unclear, a C20orf7 defect should
be considered not only in isolated CI deficiency but also in combination
with decreased CIV activity [91].

3.2. Ndufaf4 (C601f66)

Homozygosity mapping of patients with infantile mitochondrial
encephalopathy or antenatal cardiomyopathy attributed to isolated
CI deficiency led to the identification of an assembly factor encoded
by the Ndufaf4 (C6orf66) gene [92] (Table 2). A missense mutation
in a conserved residue of Ndufaf4 was associated with a reduction
in its mRNA level in fibroblasts and a significant decrease of Ndufaf4
protein in muscle. Isolated mitochondria from this patient's muscle
have only ~30% residual mature CI, with the accumulation of 2 com-
plexes that were smaller than the CI holoenzyme, which may be stalled
assembly intermediates. One of them resembled the ~830-kDa interme-
diate associated with the assembly factor B17.2L (see later). Dysfunction
of Cl was due to a direct consequence of this mutation, as demonstrated
by the functional restoration of CI activity upon transfection of the
patient's cells with wild-type Ndufaf4 cDNA.

3.3. Ndufaf3 (C30rf60)

Homozygosity mapping and gene sequencing of 5 Cl-deficient
patients from 3 different families identified mutations in the Ndufaf3

Table 1
Known complex I subunit defects which cause mitochondrial disease.
Human Bovine homologue Position in complex Clinical diagnosis Ref.
I
Mitochondrial DNA encoded ND1 ND1 P module LHON?, MELAS" [79,129]
subunits ND2 ND2 P module LS.c [81]
ND3 ND3 P module LS., LIMD? [82,111,130-132]
ND4 ND4 P module LHON, LS. [80,133,134]
ND4L ND4L P module LHON [135]
ND5 ND5 P module LS., MELAS, LHON [83,111,127,136]
ND6 ND6 P module L.S., LHON, dystonia [127,137,138]
Nuclear DNA encoded NDUFA1 MWEFE L.S., mitochondrial encephalopathy [73,139,140]
subunits NDUFA2 B8 LS. [74]
NDUFA10 42 kDa LS. [75]
NDUFA11 B14.7 Mitochondrial encephalopathy, [76]
cardiomyopathy, LIMD
NDUFA12 B17.2 LS. [77]
NDUFS1 75 kDa N module; Fe-S L.S., leukodystrophy [62,63,141,142]
protein
(N1b, N4, N5)
NDUFS2 49 kDa Q module L.S., cardiomyopathy, mitochondrial [64,65]
encephalomyopathy, LIMD
NDUFS3 30 kDa Q module LS. [66]
NDUFS4 18 kDa N module LS. [70,71,107,111]
NDUFS6 13 kDa N module LIMD [72,143]
NDUFS7 PSST Q module; Fe-S LS. [67,144]
protein (N2)
NDUFS8 TYKY Q module; Fe-S Mitochondrial encephalopathy, [68,69,111]
protein (N6a, N6b) cardiomyopathy, leukodystrophy, L.S.
NDUFV1 51 kDa N module; Fe-S LIMD, leukodystrophy, mitochondrial [60,62,107,111,127]
protein (N3), FMN encephalopathy, L.S.
NDUFV2 24 kDa N module; Fe-S Cardiomyopathy, mitochondrial [61,128]
protein (N1a) encephalopathy
2 LHON, Leber Hereditary Optic Neuropathy.
b MELAS, Mitochondrial Encephalopathy, Lactic Acidosis, Stroke-like episodes.
¢ LS., Leigh Syndrome or Leigh-like Syndrome.
d

LIMD, Lethal Infantile Mitochondrial Disease.
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Table 2
Pathogentic mutations in known complex I assembly factors.
Assembly Patient studies Assembly defect description Ref.
factor Clinical diagnosis Mutations
C200rf7 LIMD? Homozygous: ¢.719T>C (p.L229P) ND‘X [85,90,91]
LS. Homozygous: c. 477A>C (p.L159F) N
LS. Homozygous: c. 749G>T (p.G250V) “‘&
The translation or stabilization of the ND1 subunit is impaired,
which prevents the assembly of the ~400 kDa assembly
intermediate containing ND1.¢
Ndufaf3 LIMD Homozygous: ¢.229G>C (p.G77R); NDUFS2, FS3, [92,93]
(C30rf60)  LIMD Homozygous: ¢.365G>C (p.R122P)
LIMD Compound heterozygous: c.2T>C
(p-M1T); ¢.365G>C (p.R122P)
Ndufaf4 LIMD, antenatal Homozygous: ¢.194T>C (p.L65P)
(C6orf66)  cardiomyopathy
The peripheral subcomplex containing NDUFS2, FS3, FS7, and FS8
fails to be inserted into the membrane, resulting in the impaired
assembly of the ~400 kDa assembly intermediate.
Ndufaf1 Cardioencephalomyopathy Compound heterozygous: c.1140A>G e [95,96]
(CIA30) (p-K253R); ¢.1001A>C (p.T207P) G
=5
The ~460 kDa assembly intermediate containing ND2, ND3 and
NDA4L is not formed, and the ~400 kDa assembly intermediate is
accumulated initially, but quickly turned over.
ACAD9 Cardiomyopathy, hearing loss, Homozygous: c.1553G>A (p.R518H) [102-104]
short stature, exercise 5 s H
intolerance P k
Encephalopathy, Compound heterozygous: c.187G>T u(.. ,_)_<,
cardiomyopathy (p.E63X); ¢.1237G>A (p.E413H) ‘
Exercise intolerance Homozygous: c. 1594C>T (p.R532W)
Exercise intolerance Compound heterozygous: c.380G>A X .
(pR127Q); c.1405C>T (p.RAGIW). ACAD9 mutations cause decreased levels of NDUFAF1, Ecsit and
Cardiomyopathy, Compound heterozygous: c.130T>A ~ mature CL.
mitochondrial encephalopathy (p.F441); c.797G>A (p.R266Q).
Cardiomyopathy, exercise Compound heterozygous: c. 130T>A
intolerance (p.F441); c.797G>A (p.R266Q).
Cardiomyopathy, Compound heterozygous: ¢.797G>A
mitochondrial encephalopathy (p. R266Q); c.1249C>T (p.R417C)
Cardiomyopathy, Compound heterozygous: c.976G>A
mitochondrial encephalopathy (p. A326P); c.1594C>T (p. R532W)
Ndufaf2 Mitochondrial encephalopathy Homozygous: ¢.182C>T (p.R45X) [107,108,111,145]
(B17.2Lor  Mitochondrial encephalopathy Homozygous: c.1A>T (p.M1L)
NDUFA12L) LS. Homozygous: ¢.114C>G (p.Y38X)
LS. Homozygous: c.103delA (p.1355fsX17)
LS. Homozygous: ¢.221G>A (p.W74X)
NUBPL (Ind1) Mitochondrial encephalopathy Homozygous: ¢.166G>A (p.G56R) 5 ‘NDUFSZ. FS3 [109,111]
N /NDUFSZ. FS3,
) FS7,FS8
¥
C8orf38 LS. Homozygous: ¢.296A>G (p.Q99R) Unknown. [124]




M. Mimaki et al. / Biochimica et Biophysica Acta 1817 (2012) 851-862 857

Table 2 (continued)

Assembly Patient studies Assembly defect description Ref.
factor Clinical diagnosis Mutations
FOXRED1 LS. Compound heterozygous: ¢.694C>T  Unknown. [111,123]
(p. Q232X); ¢.1289A>G (p.N430S)
LS. Homozygous: ¢.1054C>T (p.R352W)
4 LIMD, Lethal Infatile Mitochondrial Disease.
b LS., Leigh Syndrome, or Leigh-like Syndrome.
¢ In the figures, the darkness represents levels of the assembly complexes.
(C30rf60) gene [93] (Table 2). These pathogenic missense mutations 3.5. Ecsit

resulted in fatal neonatal mitochondrial disorders with severe CI
deficiency. In mitochondria derived from one of the patients, CI as-
sembly was disrupted without the accumulation of either periph-
eral or membrane arm assembly intermediates. These findings
suggest that Ndufaf3 plays a role in the early stages of CI assembly.
Furthermore, Ndufaf3 was shown to tightly interact with Ndufaf4
localizing in the membrane [93]. Their membrane localization also
suggests that Ndufaf3 and Ndufaf4 may be involved in membrane
anchoring of an early intermediate complex, which contains the CI
subunits NDUFS2, 3, 7 and 8. Indeed, in BN-PAGE analyses, Ndufaf3
and Ndufaf4 accurately comigrate with a subcomplex containing
NDUFS2, NDUFS3, NDUFS7, NDUFS8 and possibly NDUFA9, suggest-
ing the interaction of these 2 proteins with this subcomplex
[42,93]. At this stage, the early intermediate complex would be as-
sembled with membrane arm intermediates which contain ND1.
Then, this Ndufaf3 and Ndufaf4 intermediate would be assembled into
the ~400 kDa-subcomplex and subsequently into the ~650 kDa- and
~830 kDa-complexes, close to finalization of the mature holo-CI [93]
(Table 2).

3.4. Ndufaf1 (CIA30)

Complex I assembly factors CIA30 and CIA84 were initially identi-
fied in N. crassa as important proteins that are specifically involved in
the assembly of the membrane arm of CI [30]. While the CIA84 human
homolog, PTCD1, is a negative regulator of mitochondrial leucine
tRNA levels [94], the human homolog of CIA30 (Ndufaf1) has been
established as a bona fide CI assembly factor. Knockdown of Ndufaf1
led to decreased levels of CI activity and assembly [95]. Ndufaf1 is
present in two complexes of ~830 and ~460 kDa [96]. Screening of
patient cells diagnosed with enzymatically deficient CI, revealed a pa-
tient with cardioencephalomyopathy, showing markedly reduced
levels of Ndufaf1. Genetic analysis revealed that the patient had mu-
tations in both alleles of the NDUFAF1 gene [96] (Table 2). Steady-
state CI levels were restored by complementing the deficiency in
the patient's fibroblasts with normal Ndufaf1, which showed the path-
ogenicity of the mutations. In this patient, ND2 and the ~460-kDa CI in-
termediate were degraded and the ~830-kDa complex and the CI
holoenzyme were not formed. This finding suggests that Ndufaf1 is an
important factor for the assembly and/or stability of the ~460-kDa inter-
mediate (Table 2). In normal cells, the ~830-kDa intermediate remains
associated with Ndufafl and has been shown by co-immunoprecipita-
tion to contain subunits ND1, ND2, ND3, ND6, NDUFB6, NDUFAG6,
NDUFA9, NDUFS3 and NDUFS7 [96]. Recently, the mRNA level and the
protein expression of Ndufaf1 were found to decrease in muscles from
mice lacking testicular nuclear receptor 4 (TR4) [97]. The TR4-knockout
mice developed mitochondrial myopathy with CI deficiency and resto-
ration of Ndufaf1 level in the myoblasts from the mice increased CI activ-
ity. A chromatin immunoprecipitation assay indicated that TR4 directly
binds to Ndufafl promoter. Since TR4 is a key transcriptional regulator
of many signaling pathways, TR4 could modulate CI activity via tran-
scriptionally regulating Ndufaf1 [97].

Evolutionary conserved signaling intermediate in Toll pathways
(Ecsit) was originally identified as a cytosolic protein involved in
the inflammatory response and embryonic development [98,99];
however, it has also been described as a mitochondrial protein that
interacts with Ndufaf1 during CI assembly [100]. Ecsit is found in the
~460- and ~830-kDa intermediates with Ndufaf1. Furthermore, knock-
down of Ecsit using RNAi reduced the levels of Ndufaf1 and led to im-
paired CI assembly. The levels of the intermediates associated with
Ndufaf1 and Ecsit were also reduced following Ecsit knockdown and a
~500-kDa subcomplex accumulated [100] (Table 2). These findings
suggest that the stability of Ndufaf1 and its associated intermediates is
dependent on Ecsit. Conversely, Ndufafl knockdown results in a
minor decrease in the amount of Ecsit in the ~500-kDa intermediate
[100], indicating that Ecsit and Ndufafl may have different functions
in Cl assembly or stability.

3.6. ACAD9

Acyl-CoA dehydrogenase 9 (ACAD9) was initially cloned and iden-
tified as a member of the acyl-CoA dehydrogenase family [101]. Con-
trary to its previously proposed involvement in fatty acid oxidation, a
new role for ACAD9 in oxidative phosphorylation was recently dis-
covered. Tandem affinity purification demonstrated that ACAD9 was
co-purified with the known CI assembly factors Ndufafl and Ecsit
[100,102]. Subsequent 2-dimensional blue-native SDS-PAGE analysis
showed that ACAD9 co-migrates with the previously described 500-
850-kDa complexes that contain Ndufafl and Ecsit [42]. Knockdown
of ACAD9 by RNAI led to decreased levels of CI along with Ndufafl
and Ecsit, while Ndufaf1l knockdown reduced ACAD9 levels [102].
Moreover, pathogenic mutations in ACAD9 that caused isolated CI de-
ficiency in two patients with exercise intolerance, hypertrophic car-
diomyopathy, lactic acidosis and failure to thrive were identified
(Table 2). Consistent with the results of ACAD9 knockdown, fully as-
sembled CI and Ecsit and Ndufafl protein levels were reduced in
ACAD?9 patient cell lines [102]. Whole-exome sequencing of a single in-
dividual with severe isolated CI deficiency identified other pathogenic
ACAD9 mutations and subsequent screening of additional patients led
to the identification of two additional unrelated cases with ACAD9 muta-
tions [103]. Following this, homozygosity mapping using a large consan-
guineous family with an isolated CI deficiency led to the identification of
a pathogenic homozygous mutation in ACAD9 [104]. Importantly, ribo-
flavin, the vitamin precursor of the flavin adenine dinucleotide (FAD)
moiety, is known to be the catalytic cofactor of ACADs and enhances
their assembly and stability [105]. Beneficial effects of riboflavin treat-
ment were reported in some patients [103,104]; therefore, the identifi-
cation of ACAD9 mutations in a patient with CI deficiency is extremely
important from a clinical point of view.

How ACAD9, a protein previously proposed to be involved in fatty
acid oxidation, functions in CI maintenance remains unresolved. In-
terestingly, no biochemical evidence of disturbed fatty acid oxidation
was detected in patients with ACAD9 gene mutations [102-104], sug-
gesting that the primary in vivo role of ACAD9 is in the assembly of CI.
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3.7. Ndufaf2 (B17.2L)

B17.2L was originally identified as a mitochondrial protein of un-
known function in a screen for transcriptional targets of c-myc
[106]. However, whole genome subtraction identified B17.2L as a can-
didate factor for CI assembly [107]. This protein is a paralog of
NDUFA12 (B17.2), a small structural subunit in the matrix arm of CI
[1].

Null mutations in B17.2L in a patient with a progressive encephalopa-
thy resulted in CI deficiency, and the associated CI assembly defect could
be completely rescued by retroviral expression of B17.2L in the patient
fibroblasts [107] (Table 2). An anti-Ndufaf2 antibody did not associate
with the holoenzyme complex, but specifically recognized an 830-kDa
subcomplex in several patients with CI assembly defects caused by path-
ogenic mutations in CI subunits NDUFV1 or NDUFS4, which form part of
the N module (Fig. 2). Analyses of mitochondria from patients with mu-
tations in NDUFS6, whose gene product is part of the N module, also
revealed an accumulation of the ~830-kDa subcomplex [72]. However,
this complex was not detected in controls, suggesting that it represents
a stalled assembly intermediate, rather than a degradation product
[41]. In another patient with a homozygous null mutation of NDUFAF2,
the accumulation of subcomplexes containing the NDUFS2 and
NDUFS3 subunits was also detected [108]. Furthermore, Ndufaf2 co-
immunoprecipitated a subset of CI structural subunits including ND1,
NDUFS2, NDUFS3, NDUFS4, NDUFV1, NDUFV2 and NDUFA13 [107].
These findings suggest that Ndufaf2 is associated with the ~830 kDa-
complex and required in the late stage of CI assembly (Table 2).

3.8. Ind1 (NUBPL)

Fe-S protein required for NADH dehydrogenase (Ind1) or Nucleo-
tide-binding protein-like protein (NUBPL), is an Fe-S protein that con-
tains an N-terminal mitochondrial-targeting sequence, a highly
conserved nucleotide-binding domain, and a putative Fe-S-binding sig-
nature (CXXC) [109,110]. CI contains 8 Fe-S clusters and Ind1 can bind
to an Fe-S cluster via its CXXC muotif [110]. Deletion of Ind1 in Y. lipolytica
results in specifically decreased CI activity, whereas the activity of other
mitochondrial Fe-S enzymes, e.g., aconitase and succinate dehydroge-
nase, is not affected [109]. Knockdown of human Ind1 in HeLa cells by
RNAI strongly decreased CI protein and enzyme activity levels and mas-
sively decreased the levels of several subunits of the peripheral arm of
(I, such as NDUFS1 and NDUFV1, which contain Fe-S clusters [1], plus
NDUFS3 and NDUFA13 [110]. Furthermore, Ind1 depletion resulted in
the appearance of a 450-kDa subcomplex representing part of the mem-
brane arm. This subcomplex appears to be a stalled membrane arm as-
sembly intermediate that accumulates due to the impaired assembly of
the peripheral arm, including the Fe-S cluster-containing subunits. This
450-kDa subcomplex does not contain NDUFS1, NDUFV1, NDUFA13, or
NDUFAJ9, but it does contain the membrane arm subunit NDUFB6 [110],
suggesting that this subcomplex likely corresponds to the ~460 kDa-sub-
complex (Fig. 2). As NDUFS7 and NDUFS8 also contain Fe-S clusters, Ind1
depletion might affect the ~400 kDa-subcomplex containing these sub-
units and may impair the assembly of the ~400 kDa-and ~460 kDa-sub-
complexes into larger complexes, resulting in the accumulation of the
460-kDa subcomplex. Radiolabeling using “Fe-labeled transferrin, the
physiological source of Fe for mammalian cells, revealed that the amount
of Fe associated with CI reflects the dependence of this enzyme on Ind1
for its assembly. Together, these data identify Ind1 as an important factor
for Cl assembly, particularly in the assembly of N module and the subcom-
plex containing NDUFS7 and NDUFS8, with a possible role in the delivery
of Fe-S clusters to CI subunits (Table 2).

Recently, high-throughput sequencing of over 100 candidate genes
in more than 100 individuals with CI deficiency led to the identification
of compound heterozygous mutations in the Ind1 gene in a single pa-
tient [111] (Table 2). The patient presented with developmental delay
accompanied by myopathy, nystagmus, ataxia, upper motor neuron

signs and findings of leukodystrophy on brain magnetic resonance im-
aging. The transduction of the patient's fibroblasts with wild-type
Ind1 restored CI activity, which confirmed the important role of Ind1
in CI biogenesis.

3.9. AIF

Apoptosis-inducing factor (AIF) was originally identified as a mi-
tochondrial pro-apoptotic protein. It is an evolutionarily conserved,
ubiquitously expressed flavoprotein with NADH oxidase activity
that is normally located in the mitochondrial intermembrane space
[112]. Upon apoptogenic stimuli, AIF is released from mitochondria
into the cytosol and migrates to the nucleus where it mediates the
nuclear features of apoptosis, e.g., chromatin condensation and large
scale DNA degradation, in a caspase-independent manner [112-114].

Besides its apoptotic role, AIF has been shown to have a physiolog-
ical role in sustaining CI-driven oxidative phosphorylation, indepen-
dently of its pro-apoptotic properties [115-118]. AlF-depleted cells
have reduced levels of CI subunits, decreased CI activity and impaired
Cl-driven mitochondrial respiration [116-118]. In mice with a partial
AIF deficiency, Harlequin (Hq) mice, the levels of AIF are reduced by
~80% due to a fortuitous retroviral insertion in the first intron of the
AIF gene encoding AIF, which is on the X chromosome. Brain mito-
chondria derived from Hq mice display reduced levels of CI and CI
subunits along with defects in Cl-driven mitochondrial respiration
[118-120]. These animals exhibit a phenotype associated with mito-
chondrial respiratory chain diseases, including cerebellar ataxia and
retinal degeneration [121], and have been established as a genetic
model of human CI deficiency [118]. However, because AIF has not
been found to be associated with any structural subunits of CI and
the generation of incompletely assembled subcomplexes has not
been detected in AlF-deficient mitochondria, the role of AlF in CI bio-
genesis remains elusive.

Recently, a pathological mutation in the human X-linked AIFM1
gene encoding AIF was identified in 2 infant male patients with pro-
gressive mitochondrial encephalomyopathy [122]. These patients
were born from monozygotic twin sisters and unrelated fathers, sug-
gesting an X-linked trait, and single nucleotide polymorphism-based
haplotype analysis of the X chromosome led to the identification of
the mutation. Surprisingly, fibroblasts from the patients showed a re-
duction of respiratory chain complex Il and complex IV activity, but
not of CI activity. The mechanism underlying the discrepancy in the
effect of AIF deficiency on CI activity between Hq mice and human pa-
tients is not clear. Approximately 75% of mutant cells from the pa-
tients showed mitochondrial fragmentation under galactose
treatment compared with 23% of control cells, suggesting that cells
containing the mutation are more sensitive to apoptotic stimuli
than control cells. The AIFM1 mutation might destabilize the inner
mitochondrial membrane causing subsequent damage to the struc-
ture and activity of the respiratory chain, which is not a specific effect
on CI assembly/stability. The findings in the patients’ cells will require
the reinterpretation of the role of AIF in CI biogenesis.

3.10. MidA

Mitochondrial dysfunction protein A (MidA) was originally identified
and characterized in Dictyostelium [123], and reduced levels of ATP and
various phenotypes, including slow growth and abnormal development,
were observed in Dictyostelium lacking MidA. Dictyostelium and human
MidA are highly homologous proteins, and yeast 2-hybrid screening and
pull-down assays recently revealed that both proteins interact with the
CI subunit NDUFS2 [88]. Consistent with this finding, Dictyostelium
midA null cells showed decreased CI activity, while knockdown of
human MidA in HEK293T cells resulted in reduced levels of assembled
CI in BN-PAGE studies. Interestingly, structural bioinformatic analyses
suggested that MidA has a methyltransferase domain, as does another
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Cl assembly factor, C200rf7 [88]. As previously mentioned, NDUFS2 can
be methylated at an arginine residue. These facts raise the possibility
that MidA methylates this subunit as a necessary step in the Cl assembly
process.

3.11. Complex I phylogenetic profile genes

Of note is the recent approach to elucidate CI function based on a
comprehensive compendium of the mitochondrial proteome by phylo-
genetic profiling of 43 species containing or lacking CI [124]. Complex I
phylogenetic profile (COPP) genes, which have coevolved with CI, were
identified and 19 strong candidate proteins that might be involved in CI
biogenesis were found. Among these proteins, knockdown of C8orf38,
FOXRED1, LYRM5 and LACTB using lentiviral-mediated RNAIi reduced
the levels of CI activity [124]. Furthermore, 3 candidate genes, C8orf38
[124], C200rf7 [85] and Ndufaf3 (C3o1f60) [93], have been confirmed
to be involved in CI biogenesis, as gene mutations have been found in
patients with CI deficiency, which verified that the COPP genes are
promising candidate CI assembly factors. In addition, pathogenic muta-
tions in another COPP gene, FAD-dependent oxidoreductase domain-
containing protein 1 (FOXRED1), were recently identified in patients
with isolated CI deficiency; however, its exact function remains elusive
[111,125].

4. Current model of human complex I assembly

The accumulation of research findings for human CI biogenesis al-
lows us to propose a newly updated model for its assembly (Fig. 2,
Table 2). The most recent consensus model proposes that an early as-
sembly intermediate is anchored to the membrane prior to its exten-
sion with additional membrane and peripheral subunits [126].

In the early assembly stage, the core subunits NDUFS2 and NDUFS3
form a small hydrophilic assembly complex, which further expands by
the incorporation of hydrophilic subunits, e.g., NDUFS7, NDUFSS8, and
later, possibly NDUFAO. This peripheral complex is anchored to the mem-
brane by the assembly factors Ndufaf3 and Ndufaf4 [93]. The complex
combines with a small membrane complex containing the mtDNA-
encoded ND1 subunit, for which C200rf7 is involved in assembly or stabil-
ity [85], to form a ~400-kDa assembly intermediate [41]. This ~400-kDa
complex incorporates with a ~460-kDa membrane complex containing
ND3, ND6, ND2, ND4L and NDUFB6 to form a ~650-kDa complex under
the presence of the assembly factors of Ndufafl, Ecsit and ACAD9
[85,102]. With the association of another membrane complex containing
ND4, ND5 and possibly NDUFC2, an ~830 kDa assembly intermediate is
formed [49]. The assembly factor Ndufaf2 is associated with this
~830 kDa-complex and would be required in the late stage of Cl assembly
[107]. Meanwhile, a hydrophilic complex, the NADH: dehydrogenase
module, is built with some nDNA-encoded subunits that are directly or in-
directly involved in binding and oxidizing NADH. With the addition of the
NADH: dehydrogenase module and the remaining subunits, the mature
holo-Cl is assembled. In this complicated and elaborate assembly process,
more assembly factors with unknown functions including Ind1, MidA,
FOXRED1 and undiscovered proteins are involved [88,111].

5. Closing remarks

Recent remarkable advances in structural biology have given us
new insights into the architecture and function of CI, and in the
near future, they may elucidate the exact composition of CI interme-
diates and clarify the specific significance of the assembly factors in
these complexes for Cl assembly/stability.

Furthermore, analyses of patients with deficits in CI subunits or as-
sembly factors have provided a better understanding of the CI assem-
bly process. At present, the genotype-phenotype correlation in
patients with CI deficiency is not clear (Tables 1 and 2) [127], so we
need to establish an exhaustive diagnostic system to screen routinely

for mutations in all of the CI subunits, and both known and candidate
factors that play a role in CI assembly/stability [128]. Recent powerful
technologies such as next generation sequencing or tiling arrays com-
bined with functional validation such as assembly analysis are facili-
tating the identification of patients with mutations causing CI
deficiency. Continuing concerted efforts to expand knowledge of CI
assembly and to identify all factors involved in this assembly process
are also needed. These achievements are clearly important for the fu-
ture diagnosis and treatment of these patients.
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