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Lithium and nephrotoxicity: Unravelling the complex
pathophysiological threads of the lightest metal
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SUMMARY AT A GLANCE

This paper elucidated the current evidence
pertaining to the pathophysiology of
lithium induced nephrotoxicity and
nephrogenic diabetes insipidus. The
molecular mechanisms behind are the
development of alterations in glycogen
synthase kinase 3 signalling, G2 cell cycle
progression arrest, alterations in inositol
and prostaglandin signalling pathways, and
dysregulated trafficking and transcription
of aquaporin 2 water channels.

ABSTRACT:

While lithium remains the most efficacious treatment for bipolar disorder,
it can cause significant nephrotoxicity. The molecular mechanisms behind
both this process and the development of nephrogenic diabetes insipidus
still remain to be fully elucidated but appear to involve alterations in glyco-
gen synthase kinase 3 signalling, G2 cell cycle progression arrest, alterations
in inositol and prostaglandin signalling pathways, and dysregulated traf-
ficking and transcription of aquaporin 2 water channels. The end result of
this is a tubulointerstitial nephropathy with microcyst formation and rela-
tive glomerular sparing, both visible on pathology specimens and increas-
ingly noted on non-invasive imaging. This paper will elucidate the current
evidence pertaining to the pathophysiology of lithium induced
nephrotoxicity.

Lithium remains the most efficacious therapy for a signifi-

cant proportion of patients with type 1 bipolar disorder.1,2

Despite the therapeutic advantages, the use of lithium has

been decreasing at least in part because of the perceived

risks surrounding its use, including the potential for nephro-

toxicity with long term use.3 The ability of lithium to cause

chronic kidney disease (CKD) or end stage kidney disease

(ESKD) is a vexing issue, with contradictory findings

reported in the literature. Lithium appears to have the abil-

ity to cause at least stage 3 CKD, with a number of studies

noting a higher incidence of CKD in those exposed to lith-

ium.4,5 However, not all papers have replicated this finding,

with a recent population based cohort study suggesting that

after adjustments for cofounders including sex, age, and

baseline eGFR there was no significant difference in the rate

of eGFR decline between those on lithium and a comparator

group.6 The question of lithium’s propensity to cause ESKD

is also difficult to answer. The incidence of ESKD attributed

to lithium appears to be very low, with ANZDATA from

2000 suggesting that 0.2% to 0.7% of all new ESKD cases

for that year were due to lithium as well as a significant lag

time of up to 27 years for development.7,8 The incidence of

ESKD may also be decreasing with the use of modern lower

serum levels, which may in part account for some of the dis-

crepancies in studies which have used ESKD as an outcome

measure.9 Understanding the pathophysiology behind the
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development of CKD in the form of a progressive tubuloin-
terstitial fibrosis as seen on renal biopsy has been challeng-
ing. This paper aims to review and update the
pathophysiology of lithium induced nephropathy.

METHODS

A search strategy for this review was developed to identify
appropriate studies, sourced from the electronic databases
EMBASE, PubMed (NLM) and MEDLINE. All relevant arti-
cles published between 1977 and January 2018 were
included for analysis. Duplicate studies were removed. The
reference lists of articles were examined for additional stud-
ies which met the inclusion criteria. Search terms included
lithium with the AND operator to combine with nephrotoxi-
city or nephropathy or chronic kidney disease or nephro-
genic diabetes insipidus or renal and pathophysiology.

LITHIUM INDUCED NEPHROPATHY: BIOPSY
FINDINGS

The initial biopsy reports pertaining to the potential for lith-
ium induced nephropathy were published in the 1970s. The
seminal paper looked at 14 patients managed on chronic
lithium and noted focal interstitial fibrosis, tubular atrophy
and dilatation of the distal portions of the nephron, with
structural lesions being most pronounced in the collecting
ducts and distal tubules,10 as well as a multitude of mostly
cortical based cysts on gross pathology specimens. Since
these initial reports, there have been other studies on histo-
pathological specimens which have looked to clarify the
pathology of lithium induced nephropathy. Lithium induced
chronic tubulointerstitial nephritis is characterized by tubu-
lar atrophy and interstitial fibrosis, with these findings being
out of proportion to the extent of vascular or glomerular
involvement.11 There is also the striking presence of cortical
and medullary microcysts and tubular dilatation, with tubu-
lar cystic disease noted in up to 40% of biopsy specimens.
These cystic changes are felt to be relatively specific for lith-
ium induced nephropathy. Whilst other studies have noted
similar nonspecific tubulointerstitial changes in patients with
affective disorders who have never been treated with lith-
ium, the presence of distal tubular cystic changes appears to
separate the two.12 Complicating issues, other agents used
in mood disorders such as antipsychotics may also be associ-
ated with renal dysfunction, although the data is far more
tentative.13 There are no specific findings on immunofluo-
rescence staining, whilst electron microscopy may show var-
iable foot process effacement within the glomeruli.14

Lithium may also have the potential to be directly toxic to
podocytes. Both minimal change disease (MCD), which
resolves with withdrawal of lithium therapy,15 and focal
segmental glomerulosclerosis (FSGS) have been described in
those taking lithium. Interestingly, there is a high incidence
(37.5%) of greater than 50% foot process effacement on

biopsy specimens, suggesting the potential for a primary
FSGS process.12

LITHIUM INDUCED NEPHROPATHY/
NEPHROGENIC DIABETUS INSIPIDUS:
PATHOPHYSIOLOGY

Lithium is freely filtered across the glomeruli and more than
80% is then reabsorbed within the proximal tubules16 by
the same channel by which the majority of luminal sodium
uptake is mediated, the sodium/hydrogen exchanger
(NHE3).17 However, it is at the distal tubules and collecting
ducts where lithium appears to exert the majority of its det-
rimental effects. Within the collecting ducts, lithium is taken
up by principal cells through the epithelial sodium channel
(ENaC) situated on the apical membrane, which have a
much greater affinity for lithium when compared to that of
sodium.18,19 Lithium then accumulates within principal cells
due to the much lower affinity for the basolateral sodium
efflux pump (the sodium/potassium adenosine triphosphate
(ATPase) for lithium when compared to sodium.20 This
increased concentration then likely leads to interference
with a multitude of downstream signalling pathways which
may account for the toxicity seen with chronic lithium
exposure.

In terms of nephrogenic diabetes insipidus, such increased
concentrations of lithium, possibly through interactions of
the inositol and protein kinase C pathways21 lead to a
reduction in cyclic adenosine monophosphate (cAMP) by
inhibiting its formation, which subsequently leads to
impaired phosphorylation of protein kinase A (PKA). The
reduction in phosphorylated PKA causes less phosphoryla-
tion of aquaporin 2 (AQP2), the major water channel within
the collecting ducts for the reabsorption of water to allow
for concentration of urine, by inhibiting its trafficking to the
apical membrane.22,23 AQP2 may also be phosphorylated
via mitogen activated protein kinase (MAPK) and perhaps
via p38 mediated changes in phosphorylation and ubiquiti-
nation in order to drive its removal from the apical mem-
brane.24 There additionally appears to be a reduction in the
transcription of the gene for AQP2, further inhibiting the
uptake of free water by the collecting ducts.25 There are
other methods by which lithium is postulated to cause poly-
uria. In addition to downregulation of AQP2, there is
decreased expression of the urea transporters (UT) UT-A1,
UT-A322,26 and UT-B27,28 through inhibition of anti-diuretic
hormone (ADH) induced phosphorylation of these urea
transporters, a process mediated by cAMP.25 Inhibition of
glycogen synthase kinase 3 (GSK3), felt to be a central com-
ponent in the development of lithium induced nephropathy,
may also play a role in the development of NDI.

The osmosensitive transcription factor nuclear factor of
activated T cells 5 (NFAT5) is a downstream target of GSK3
and regulates the expression of both UT-A1 and potentially
AQP2.29 There also appears to be dysregulation of
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components of the cyclooxygenase (COX) and prostaglandin
pathways. Prostaglandin E2 (PGE2) production is enhanced
in lithium induced NDI due an increase in COX2 activity
within medullary interstitial cells.25,30 Under normal cir-
cumstances, PGE2 has an inhibitory effect on ADH through
its action on the prostaglandin EP3 receptor which leads to
decreased cAMP levels31 and subsequent PGE2 mediated
lysosomal degradation of AQP2.25 The increase in local
PGE2 and COX2 production has been attributed to the inhi-
bition of GSK3.32 In contract to this effect of GSK3 on COX2
expression, lithium does not appear to change COX1 expres-
sion (possibly upregulating it according to some studies33,34)
suggesting that COX2 is the primary source of increased
PGE2 production.35 Lithium also appears to reduce levels of
medullary organic osmolytes including inositol, taurine,
betaine and sorbitol, which may reduce the medullary
osmotic gradient and be yet another mechanism by which
lithium impairs the kidneys concentrating ability.36

In contrast, less is known about how lithium induces
chronic tubulointerstitial fibrosis. The development of inter-
stitial fibrosis is also thought to revolve around increased
concentrations of lithium within the principal cell. Such
increased levels of lithium have been postulated to lead to
the inhibition of GSK3, a protein kinase involved in cell dif-
ferentiation, cell cycle progression and normal epithelial
function and survival.17,37 The inhibition of GSK3 has long
been thought a key pathway for the action of lithium in
bipolar disorder within the central nervous system.38,39

Within the kidney, GSK3 inhibition appears to be restricted
to cells within the distal nephron, consistent with the idea
that lithium must be present in a sufficient concentration as
can occur with its accumulation within principal cells, in
order to induce GSK3 suppression.40 Under normal condi-
tions GSK3 is constitutively active within cells and its lith-
ium induced phosphorylation leads to its suppression and
subsequent perturbation of multiple downstream signalling
pathways29 involved in cell cycle progression. GSK3 inhibi-
tion leads to the eventual increased nuclear expression of c-
Myc, cyclin D1 and hypoxia-inducible factor 1a (HIF-1a),
proteins involved in the regulation of cell cycle progres-
sion.41 Other cell cycle regulatory processes that may be
affected include the overexpression of β-catenin, a compo-
nent of the Wnt/β-catenin signalling pathway.26 Interest-
ingly, amiloride, used in the treatment of NDI, was recently
shown to limit the further progression of fibrosis in a rodent
model, a process thought to be mediated by a reduction in
ENaC lithium uptake and subsequent effects on GSK3.18

Lithium is known to induce the proliferation of principal
cells, consistent with its effects on proteins involved in cell
cycle progression, but interestingly this proliferation of prin-
cipal cells eventually leads to a change in the cellular organi-
zation of the collecting ducts with a decrease in the ratio of
principal to intercalated cells though a decreased number of
principal cells.7,32,42 The prevailing theory is that lithium,
possibly through effects of a cell division cycle 25 (cdc25)-

checkpoint kinase 1 (Chk1) mediated pathway, leads to a
G2 arrest of principal cells, explaining why their initial pro-
liferation is subsequently followed by a decreased number of
principal cells.20,43

Microcysts, characteristic of lithium induced nephropathy,
have also been shown to be GSK3 positive.33 It is not
known if this G2 arrest of principal cells directly leads
toward microcyst formation, but it is certainly suggestive
given the presence of not only phosphorylated GSK3, but
that microcysts in human biopsy specimens have been
shown to be AQP2 positive, suggesting that the collecting
ducts can be the origin of these microcysts.40 GSK3, in con-
junction with the von Hippel–Lindau tumour suppression
protein, has also been shown to regulate the microtubules
which are involved in the maintenance of cilium within the
collecting tubules.7 In other cystic renal diseases cilia dys-
function has been suggested to be involved in cystogenesis
although this mechanism of cyst formation has not been
definitely proven in lithium induced nephropathy. Microcyst
formation appears to precede the subsequent rise in serum
creatinine, and microcysts appear to occur in the majority of
patients with lithium induced nephropathy.44 Lithium
induced GSK3 inhibition may also be important in the
increase in profibrotic factors. GSK3 has previously been
shown to phosphorylate β-catenin, a transcription factor
involved in epithelial to mesenchymal transition, which has
been proposed to be important in fibrogenesis.18 Fibrosis
within the kidney is characterized by the development of
myofibroblasts from fibroblasts, the deposition of collagens I,
III, and fibronectin, inflammatory cell infiltration and podo-
cyte depletion.45

Transforming growth factor beta 1 (TGF-β1), which has
previously been implicated in the development of pro-
fibrotic processes, has been shown to be increased in chronic
lithium use.46 The prolonged G2 cycle arrest may be one of
the driving mechanisms behind the upregulation of TGF-β1,
as G2 arrested cells can activate c-Jun NH2 terminal signal-
ling to stimulate the production of profibrotic cytokines such
as TGF-β1.20 Other groups have proposed that lithium may
damage both the endoplasmic reticulum and mitochondria
of cells, causing an increase in oxidative stress and subse-
quent tubulointerstitial nephropathy47,48 and implicating
ischaemia in the development of this process,49 although
interestingly this theory is not supported by other models
that suggest mitochondrial dysfunction may be involved in
the pathogenesis of bipolar disorder itself and that therapy
with lithium may improve mitochondrial energy production
through stabilization of its respiratory chain.50 The end
result of the fibrotic processes described is a chronic intersti-
tial fibrosis with proximal tubular atrophy, with cystic dis-
ease caused by dilated distal tubules and collecting ducts
with likely secondary glomerulosclerosis.17,51 In keeping
with this hypothesis, proteinuria, often a central pathogenic
process in primary glomerular diseases, is a late event in
lithium induced nephropathy and only occurs once
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extensive tubulointerstitial damage and subsequent glomer-
ular disease begins to develop Figure 1.52

OTHER RENAL EFFECTS OF LITHIUM

Whilst lithium may cause progressive CKD through a tubu-
lointerstitial nephropathy, it may also have a potential,
albeit lesser, ability to cause direct toxicity to podocytes. This
was initially suggested by the finding of FSGS in biopsy
specimens with >50% foot process effacement, which is
uncommon in secondary FSGS purely mediated by hyperfil-
tration injury,12 and is further implicated by the rare devel-
opment of lithium induced MCD. The aetiologic process of
lithium related to MCD is suggested by the reversal (in the
majority of cases) of the nephrotic syndrome with the cessa-
tion of lithium.15 The development of the nephrotic

syndrome is typically observed within the first few years of
lithium therapy, but may be seen as late as 20 years of treat-
ment.53 The pathophysiology behind this process is incom-
pletely understood, but may involve the potential of lithium
as a cationic ion to disrupt the anionic glycosaminoglycans
present within podocyte foot processes,15 or by the upregu-
lation of T-cell specific cytokines such as interleukin 1 (IL-1)
through lithium’s ability to interfere with the phosphoinosi-
tol pathway, needed for appropriate T-cell responses.15,53

Recently, there have been some studies which suggest
that lithium may increase the risk for renal cancers. One
paper suggested that the rates of both malignant tumours
such as renal cell carcinoma, and benign tumours such as
oncocytoma were significantly higher in lithium treated
patients when matched against others with similar age, esti-
mated glomerular filtration rate (eGFR) and sex.54 Another

Fig. 1 The effects of lithium on the kidney. Lithium exerts its deleterious effects on the kidney in a multitude of ways. Through interactions with MAPK, inosi-
tol protein kinase C, COX2 and by a direct suppressive effect on the expression of the AQP2 gene lithium decreases the ability of AQP2 to be trafficked and
inserted into the apical membrane resulting in a decreased concentrating ability and diabetes insipidus, a process also contributed to by GSK3 and cAMP
mediated reduction in the urea transporters UT-A1/3. Whilst these effects appear to be responsible for the ability of lithium to induce diabetes insipidus, it is
the inhibition of GSK3 that appears to be the linchpin for the development of chronic lithium nephropathy. Inhibition of GSK3 leads initially an increase in inter-
calated cells through upregulation of cell cycle related proteins such as C-MyC, cdc-25 and ChK1, but then ultimately to a subsequent G2 cycle arrest with a
reduction in the number of intercalated cells. GSK3 inhibition may induce the formation of microcysts, and ultimately lead to fibrosis and chronic tubulointersti-
tial changes through the upregulation of TGF-1β.
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group noted that there was an increased rate of tumours
related to cells of the collecting duct in a small sample of
lithium treated patients.55 One potential mechanism for this
link was suggested to be lithium’s ability to interfere with
GSK3.56 The validity of the proposed findings have been
questioned, with a nationwide study with more robust
power and methodology finding no association between the
use of lithium and the rate of renal or other cancers, with
the somewhat surprising finding that lithium may even
decrease the risk of development of upper respiratory tract
cancers.1,56,57

The short-term use of lithium may have potential renopro-
tective effects. In experimental models of acute kidney injury

(AKI) induced by various mechanisms, including cisplatin,
ischaemia–reperfusion and endotoxin, the use of a single
dose of lithium after the administration of the initial nephro-
toxic insult improved renal function, accelerated the rate at
which this occurred, and attenuated tubular damage.58–60

This protective effect of lithium has been attributed to its abil-
ity to promote tubular cell proliferation and repair, leading to
a more rapid repopulation of tubular cells and thus attenu-
ated response to injury.17 The proposed mechanism again
centres around the inhibition of GSK3 by lithium and its sub-
sequent upregulation of proliferative downstream processes,
including HIF-1a, c-Myc and cyclin D1 Table 1.41

CONCLUSIONS

Whilst lithium remains the most efficacious therapy for
bipolar disorder, there are some significant toxicities that
may be associated with its long-term use. The pathophysiol-
ogy of this process, which appears to centralize around its
accumulation within principal cells and subsequent pertur-
bation of multiple cell cycle signalling processes, remains
incompletely understood. Nonetheless, such molecular pro-
cesses are beginning to come to light with the potential to
help guide clinical practice in the future.
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