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1 | INTRODUCTION

Major depressive disorder (MDD) is one of the leading contribu-
tors to the global burden of disease.! It has a 1-month prevalence of
2.1%,2 annual prevalence of 6.6%, and lifetime prevalence of 16.2%.°
Although an increasing number of studies have implicated patho-
physiological mechanisms in the etiology of MDD,* the causes of
MDD are yet to be fully elucidated. Recently, genetic-neuroimaging
studies have provided new insights into the neurobiological basis of
MDD.

A meta-analysis of studies of the genetic epidemiology of MDD
suggested that both genes and environment contribute to MDD sus-
ceptibility.”> However, while the heritability of MDD is up to 37%.°
candidate gene studies have failed to yield robust evidence related
to any particular gene.>’ This outcome is consistent with the sugges-
tion that candidate genes alone exert minor biological effects on the
susceptibility to MDD; rather, the joint effects of numerous genes

may generate relatively large effects.® A genome-wide association

Genetic-neuroimaging studies could identify new potential endophenotypes of major
depressive disorder (MDD). Morphological and functional alterations may be attrib-
utable to genetic factors that regulate neurogenesis and neurodegeneration. Given
that the association between gene polymorphisms and brain morphology or function
has varied across studies, this systematic review aims at evaluating and summarizing
all available genetic-neuroimaging studies. Twenty-eight gene variants were evalu-
ated in 64 studies by structural or functional magnetic resonance imaging. Significant
genetic-neuroimaging associations were found in monoaminergic genes, BDNF
genes, glutamatergic genes, HPA axis genes, and the other common genes, which

were consistent with common hypotheses of the pathogenesis of MDD.

genomics, major depressive disorder, neuroimaging, pathophysiology

revealed that MDD patients carrying HOMER1 homozygous allele
had significantly decreased prefrontal activity during executive cog-
nition and an anticipation of monetary reward task.” Another study
suggested that MDD patients with a brain-derived neurotrophic
factor (BDNF) Met-allele had significantly reduced caudal middle
frontal thickness that contributed to MDD susceptibility.” These
findings indicate that risk genotypes of MDD do not directly mod-
ulate phenotype at behavioral levels, but affect brain morphology
or function via molecular and cellular mechanisms.'® Considerable
genetic-neuroimaging literature indicates that there are significant
associations between genetic variants and structural and/or func-
tional neuroimaging alterations in MDD, implying new neuroimaging
phenotypes to MDD.113

Although no specific pathophysiological mechanism of MDD
had been reliably identified, genetic-neuroimaging studies reveal
that genetic variants are implicated in some common hypotheses
of the pathogenesis of MDD,* such as monoamine-deficiency hy-

pothesis, hypothalamic-pituitary-cortisol hypothesis, and altered
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glutamatergic neurotransmission. Monoaminergic genes and
BDNF genes have repeatedly been studied, which were associ-
ated with morphological and functional alterations of emotion-
related brain areas and made it susceptible to MDD.!'% Hence,
numerous genetic-neuroimaging studies have attempted to ex-
plore the pathophysiological mechanisms of MDD via analyzing
the associations between genetic variants and structural and/or
functional neuroimaging abnormalities. However, previous re-
view only focused on the role of 5-HT and BDNF genes in struc-
tural and functional alterations in emotion- and memory-related
brain areas and failed to provide a comprehensive overview of all
available genetic variants expected to play a pathophysiological
role in MDD.®® In addition, different neuroimaging techniques
or genetic variants may be potential confounding factors that
would result in heterogeneity of genetics-neuroimaging studies.
Therefore, our systematic review aims at summarizing all avail-
able genetic-neuroimaging studies of MDD and investigating the
association between all available genetic variants and neuroim-
aging changes. Then, we might evaluate some new endopheno-
types of MDD to provide a comprehensive overview for MDD

pathology.

2 | METHODS

2.1 | Inclusion criteria

We included original genetic-neuroimaging studies evaluating
the association between genetic polymorphisms and neuroimag-
ing in patients with MDD. MDD patients were diagnosed based
on the standard diagnostic criteria (such as DSM-IV and ICD-10).
The studies included in this review were case-control studies that
compared MDD patients carrying high-risk alleles to other MDD
patients and/or healthy controls (HC) who were noncarriers of the
investigated risk genotype. Only articles written in English were
included.

2.2 | Exclusion criteria

(i) Health studies and animal studies, case reports, reviews, meet-
ing abstracts, and editorials were excluded; (ii) studies that adopted
positron emission tomography or electroencephalogram or com-
puted tomography other than structural and/or functional magnetic
resonance imaging (MRI) were excluded; (iii) patients with mixed di-

agnoses were also excluded.

2.3 | Search strategy

The search was conducted on the PubMed database from incep-
tion up to August 1, 2017, using the search terms (major depression
OR unipolar depression) AND (MRI OR magnetic resonance imag-
ing) AND (gene OR genetic*). In addition, the reference lists of each
eligible article were then manually searched to identify additional
studies.

2.4 | Study selection

The title and abstract of each retrieved study were screened to iden-
tify whether the study met the inclusion or exclusion criteria. Next, the

full texts of eligible studies were reviewed and assessed for eligibility.

2.5 | Data extraction

For each eligible study, the following data were extracted and re-
corded: author(s) and year of publication; name of genes and genetic
polymorphisms; sample size and sex distribution; age of participants;
imaging methods and imaging field strengths; regions of interest
(ROI); and the main results of the association between genetic vari-

ants and brain structure and/or activity.

2.6 | Data synthesis

Quantitative analysis, such as meta-analysis, was not conducted due
to the high level of heterogeneity in the genetic variants included in
the genetic-neuroimaging studies. Instead, we adopted a qualitative
systematic review approach to investigate the relationship between
genetic variants and structural and/or functional neuroimaging in
MDD patients.

3 | RESULTS

3.1 | Characteristics of included studies

Our search initially retrieved 464 studies, and 11 additional refer-
ences were found by checking the reference lists of these studies.
Of these 475 studies screened for eligibility, 411 were excluded
based on title/abstract screening. After reviewing the full texts
of the retained studies, only 64 met the full inclusion criteria. The
characteristics of these 64 studies are listed in Tables 1 and 2.

Forty-one studies reported the association between genetic
variants and brain structure using voxel-based morphometry (VBM)
and/or diffusion tensor imaging (DTI), and 22 studies used blood-
oxygen-level-dependent (BOLD) fMRI methods to assess the asso-
ciation between genetic variants and functional brain imaging. In
addition, one study investigated the association between genetic
variants and both structural and functional neuroimaging. These
studies investigated 28 independent candidate genes, and 4 of
them investigated the synergistic effect of several candidate genes
(5-HTTLPR, BDNF and COMT, COMT and MTHFR, 5-HTR2A and
MAOA, 5-HTTLPR and 5-HTR1A).

3.2 | Association of genetic polymorphisms with
structural MRI

Thirty-six genetic-neuroimaging studies were focused on 18 risk
candidate genes. Two of those studies investigated the synergistic
effect of COMT and MTHFR, and 5-HTTLPR, BDNF, and COMT. Six
of the 18 candidate genes were investigated in replication studies
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(5-HTTLPR: 12 studies, BDNF: 11 studies, ApoE e4: 4 studies, COMT:
3 studies, NET: 2 studies, GSK3p: 2 studies). The other genes (TPH-
2, HTR1A, HTR2A, NCAN, DISC1, FTO, AGTR1, BICCI-1, ACE, and
MTHFR) were investigated in a single study.

3.2.1 | Genetic-neuroimaging association using

The most frequently investigated genetic variants in relation
to brain structures were BDNF and 5-HTTLPR genes. Several
genetic-neuroimaging studies found that there were significant
genotype (BDNF Val66Met)-diagnosis interactions in the hip-
pocampus,'®2® the orbitofrontal cortex,'” the anterior cingu-
late, and the middle frontal regions.n'22 However, some studies
failed to verify the relationship between BDNF Val66Met poly-
morphisms and the hippocampus.?®?® There were also some
discrepant findings on the relationship between brain structural
abnormalities and 5-HTTLPR genotypes. Numerous studies found
effects of 5-HTTLPR genotype on the hippocampus,?*?’ the cau-
date nucleus,®®®! the thalamus, and the putamen.32 However,
other studies did not find significant 5-HTTLPR genotype-

243133 the amygdala, 3!

diagnosis interactions in the hippocampus,

Hippocampal alterations were associated with genetic variants
in ApoE €4, NCAN,%” AGTR1,%® BICCI-1,%° GSK3p,*° and TESC
genes.*! The significant associations between morphological al-
terations in prefrontal regions were observed for variants in ApoE
£4,34*2NET,*® and GSK3p genes.** There was a significant genotype-
diagnosis interaction in COMT,*> ACE,*® and TPH-2 genes.*’ Other
studies failed to find reliable associations between brain structure
and DISC1,*® FTO,* 5-HT2A,%° and MTHFR®C genes.

3.2.2 | Synergistic effect of genetic polymorphisms

Two studies investigated multiple gene effects on brain structure
in MDD patients. One study examined the impact of the BDNF,
COMT, and SERT genes on both gray matter and white matter.>
Another study focused on COMT/MTHFR polymorphisms and the
putamen.> Kostic et al®® found that MDD patients with all three risk
polymorphisms showed structural alterations in fronto-occipital re-
gions. Pan et al®® observed that MDD patients who were MTHFR C
homozygotes had smaller volumes of the bilateral putamina when
they harbored increased numbers of COMT 158 Val polymorphism.
In the same study, compared to HCs, MDD patients who were
COMT Met homozygotes had smaller left putaminal volumes as the
number of MTHFR 677T copies increased.

3.3 | Genetic-neuroimaging association using

Studies using DTl methods have established associations between
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variants of SLC6A15,* BDNF,*? 5-HTTLPR,* Bcll C/G,** and TESC
genes.*! Variants in SLC6A15 and Bcll C/G genes were found to be
associated with abnormalities of the parahippocampal cingulum, and
variants in the BDNF gene were found to have a significant asso-
ciation with fiber tracts connecting hippocampus and amygdala.52
Furthermore, Alexopoulos et al*® suggested that fractional anisot-
ropy (FA) values in frontolimbic and subcortical and posterior areas
were significantly decreased in 5-HTTLPR S-allele carriers with

depression.

3.4 | Association of genetic polymorphisms with
functional MRI

Twenty-one studies used fMRI to investigate the association be-
tween genetic-neuroimaging and 15 risk candidate genes. Two of
these studies investigated the synergistic effect of 5-HTR2A and
MAOA, and 5-HTTLPR and 5-HTR1A. Three of 15 risk candidate
genes were investigated in replication studies (5-HTTLPR: 3 stud-
ies; ApoE e4: 2 studies; PCLO: 2 studies). The other genes (BDNF,
BICCI-1, ACE, DAOA, CACNA1C, LHPP, FKPB5, CRHR1, NPY, IL1 B,
TPH1, MAOA) were investigated in a single study.

3.4.1 | Genetic-neuroimaging association using
rs-fMRI

In studies using rs-fMRI, genetic polymorphisms (LHPP, BDNF, APOE
¢4, DAOA, and ACE 1I/D genes) were associated with particular pat-
terns of brain activity in MDD patients. Alterations in hippocampal
functional connectivity networks were associated with genetic vari-
ants in BDNF and APOE ¢4 genes.””® Associations between APOE
¢4 and ACE genes and functional connectivity of a default-mode
network have also been reported.’”®® An association between the
DAOA gene and activity was found in left uvula of cerebellum and
left middle temporal gyrus among people with MDD,%! and signifi-
cant LHPP genotype-diagnosis effects existed in the bilateral dor-
sal lateral frontal cortex and left medial prefrontal gyrus in another
study.%?

3.4.2 | Genetic-neuroimaging association using
task-fMRI

In functional genetic-neuroimaging studies of MDD patients using
task-fMRI, the most frequently reported regional brain activation
was for the amygdala. Amygdalar activation alterations have been
found to be associated with genetic variants in PCLO,63 CRHRl,64
NPY,% IL1B,% TPH1,%” 5-HTTLPR, and 5-HT1A genes®®® during
emotion processing. However, other studies have failed to provide
evidence implicating the PCLO or 5-HTTLPR genes.”®’* MDD pa-
tients with an MAOA H-allele showed significantly lower amygdala-
prefrontal connectivity,”? but not in those with 5-HTTLPR genetic
variants.”%73

Other studies have reported significant genotype-diagnosis
interaction effects on emotional regulation systems for FKBP5,7*
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CACNA1C,”®> CRHR1,°* and BICCI®? genes. The remaining studies

showed decreased activation of the striatum with a PCLO risk al-

lele, decreased activation of right frontal middle gyrus in a 5-HT2A
T-allele, or decreased connectivity of amygdala-prefrontal circuitry
with the MAOA H-allele.

3.4.3 | Synergistic effects of genetic polymorphisms
on functional imaging

Two studies have investigated the synergistic effects of genetic
polymorphisms on functional neuroimaging in MDD patients dur-
ing emotional processing tasks, including the 5-HT2A and MAOA
genes,’® and the 5-HTTLPR and 5-HT1A genes.*’ Significant syner-
gistic effects were observed in MDD patients with both 5-HT2A CC
and MAOA H-allele who had the highest negative activation inten-
sity in the right frontal middle gyrus during an emotional recognition

k.”® Dannlowski et al®® found that bilateral amygdalar activation

tas
during emotional processing significantly increased with the number

of risk alleles (5-HT1A G-allele, 5-HTTLPR S- and L-allele).

4 | DISCUSSION

In this systematic review, we aimed at elucidating the effects of ge-
netic variants on structural and functional neuroimaging in MDD.
Numerous genetic-neuroimaging studies strengthen our under-
standing of the functional effects of genetic polymorphisms on
brain imaging alterations in MDD. Given that genetic polymorphisms
are implicated in some common hypotheses of the pathogenesis of
MDD, we categorize these candidate genes into monoaminergic
genes, HPA axis-related genes, BDNF genes, glutamatergic genes,
and other genes (RAS system-related genes, APOE ¢4 gene, and
GSK3p gene).

4.1 | Association of monoaminergic genes with
neuroimaging

The monoamine-deficiency hypothesis suggests that monoaminer-
gic neurotransmitters (serotonin and epinephrine) are involved in the
pathophysiology of MDD and are associated with antidepressant re-
sponse.”””? Monoaminergic genes play critical roles in brain mor-
phology and activation via regulating the function of monoaminergic
neurotransmitters.

4.1.1 | Genetic-neuroimaging association in
serotonergic genes

Serotonergic genes associated with neuroimaging alterations were
those encoding serotonin biosynthesis enzymes: tryptophan hy-
droxylase-1 (TPH1) and tryptophan hydroxylase-2 (TPH2) genes;
serotonin receptors: serotonin receptor 1A (HTR1A) and serotonin
receptor 2A (HTR2A) genes; and serotonin transporter: serotonin
transporter polymorphism (5-HTTLPR/SLC6A4) gene.
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Both TPH1 and TPH2 genes encode TPH, which is the rate-

limiting enzyme in the biosynthesis of 5-HT.8%8! Depressed patients

with TPH2 G homozygosity showed abnormal functional connectiv-
ity in the anterior cingulate cortex.*” A potential explanation for this
is that the expression of TPH2 polymorphism is related to serotonin
levels in the cingulate cortex.®? Consistent with this, one study®’
found a significant association between TPH1 polymorphism and
bilateral amygdalar activity in MDD patients.

The G-variant of 5-HTR1A-1019C/G depresses 5-HT,, auto-
receptor expression and reduces serotonergic neurotransmitters
in limbic brain regions, including the hippocampus and the amyg-
dala.?® The HTR2A gene encodes the 5-HT,, receptor, which is an
inhibitory receptor that reduces the excitability of the neuron after
stimulation. HTR1A polymorphisms affect the number and shape of
dendritic spines in the hippocampus via regulating 5-HT, , receptor
activation.®* Consistent with this, homozygosity for the HTR1A G-
allele carriers has been shown to be associated with significantly
increased hippocampal volumes and bilateral amygdala activation
relative to C-allele carriers.?¢% Significant interaction effects be-
tween HTR2A polymorphisms and diagnosis were found during right
frontal middle gyrus activation.”® This finding is in line with a previ-
ous study that reported that the 5-HT,, receptor, but not 5-HT,,
receptor, had higher concentrations on the prefrontal cortex.®®

The triallelic 5-HTTLPR gene (Lg-allele, La-allele, and S-allele)
regulates the level of serotonin transporter transcription and se-
rotonin neurotransmission. The Lala genotype has been shown to
have a higher level of 5-HTT transcription expression and serotonin
reuptake than S-allele (Lg- or S-allele).®” Several studies have fo-
cused on the effects of the 5-HTTLPR S™-allele on hippocampal vol-
umes, but this association is still controversial: smaller volumes,?¢28
larger volumes,** and even unchanged volumes®*3'% have been
reported. The discrepancies between studies seem to be supported
by the suggestion that 5-HTTLPR polymorphisms may moderate the
potential effects of stress on the hippocampus and amygdala, as well
as on the other brain regions.?®#8 Stress alters neuronal plasticity,
suppresses neuronal proliferation, and changes neuronal morphol-
ogy in brain regions such as the dentate gyrus and CA3 regions of
the hippocampus.®? These findings provide some indication that
structural and functional neuroimaging alteration may be mediated

by stress.!®

4.1.2 | Genetic-neuroimaging association
in the norepinephrinergic gene

The norepinephrine transporter (NET) gene is located on the chro-
mosome 16q12.2, whose encoding protein regulates norepinephrine
reuptake by the presynaptic terminal.”® The NET/SLC6A2 genotype
(G1287A) has been associated with dorsolateral prefrontal cortex
volume*® and hippocampal volume.?® A previous study found that
a NET G/G genotype had lower norepinephrine levels.”* Hence,
abnormal brain morphology may result from abnormal level of nor-
epinephrine, which plays a critical role in neuronal differentiation,
neurogenesis, and neurodegeneration.”

4.1.3 | Genetic-neuroimaging association in
MAOA and COMT genes

The catechol-O-methyltransferase (COMT) and monoamine oxi-
dase A (MAOA) genes are involved in the metabolic activity of
monoamines in the brain. COMT polymorphisms affect its en-
zyme activity, which in turn regulates monoamine metabolism.
The MAOA gene regulates the biosynthesis of MAOA, which af-
fects the level of monoamine neurotransmitters in the brain.”®
Significant interaction effects of COMT genotype-diagnosis
were observed in the right caudate and inferior frontal gyrus in
two studies.*>?* Depressed patients with MAOA polymorphisms
showed abnormal amygdala-prefrontal connectivity and activa-
tion.”27® As mentioned above, the low level of norepinephrine
leads to abnormalities of neuronal differentiation, resulting in ab-
normal brain morphology and activation.”?

Based on these findings, structural and functional imaging al-
terations would be predisposing traits and endophenotypes for the
development of MDD.*?

4.2 | Association of BDNF genes with neuroimaging

Brain-derived neurotrophic factor is involved in synaptic plasticity
and neurogenesis in the brain, which may play a critical role in the
pathophysiology of depression.”” A single-nucleotide polymorphism
(rs6265) in the BDNF gene produces an amino acid substitution (va-
line to methionine) at codon 66 (Val66Met), which affects the intra-
cellular packaging and decreases the activity-dependent secretion
of BDNF.”> The effect of BDNF genetic variations on brain struc-
ture and function is mainly focused on the hippocampal and frontal
regions.

Several studies found that depressed subjects who are Met
carriers had significantly smaller hippocampal volumes. 68
However, this finding was not evident or even reversed in other
studies 1921242632 A previous meta-analysis found that there
is no association between hippocampal volumes and a BDNF
Val66Met polymorphism.”® Another meta-analysis reported that
there was a significant interaction between life stress and BDNF
polymorphisms in depression,”’ suggesting that life stress may
contribute to hippocampal volume alterations in depression. The
BDNF gene and the hippocampus are highly sensitive to stress,
which can induce dendritic retraction and neuronal body loss in
the hippocampus.”® In summary, the association between BDNF
Val66Met polymorphisms and hippocampal volumes in MDD pa-
tients remains inconclusive and needs to be elucidated in future
research.

Major depressive disorder patients with the Met-allele have
been found to have significantly smaller caudal middle frontal

2

thickness,?? reduced rostral middle frontal and anterior cingu-

22 smaller left middle frontal gyrus volume,??

late surface area
and higher right orbitofrontal cortex volumel” than controls.
However, Jaworska et al®? reported an inconsistent finding in that

there were no significant BDNF genotype-diagnosis interaction
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effects on frontal, cingulate, and temporal cortical thickness. As
mentioned above, stress can cause dendritic retraction and in-
duce brain atrophy. These effects were also observed in anterior
cingulate, medial and lateral prefrontal cortices, and orbitofrontal

cortex.”®%?

4.3 | Association of HPA axis-related genes with
neuroimaging

Evidence indicates that the hypothalamic-pituitary-adrenal (HPA)
axis plays an important role in the development of MDD and re-
sponses to adverse life experiences.!?%1%! Both FKBP5 and CRHR1
are involved in the regulation of the HPA-negative feedback loop.
FKBP5 genes were shown to regulate glucocorticoid receptor sen-
sitivity by reducing nuclear translocation and hormone-binding af-
finity of glucocorticoid receptors.’°?> CRHR1 genetic variants may
influence the function of the neural circuit, which was associated
with stress-related MDD.

In this systematic review, neuroimaging alteration in MDD was
found to be associated with FK506-binding protein 51 (FKBP5) and
corticotropin-releasing hormone receptor 1 (CRHR1) genes.®*”* The
dysfunction of glucocorticoid receptor and endogenous glucocorti-
coid levels impair the HPA axis feedback inhibition in depressed pa-
tients. Abnormal glucocorticoid levels can inhibit neural proliferation
and encourage dendritic atrophy, which in turn causes brain struc-
tural and functional alterations. 3 Therefore, FKBP5 and CRHR1
genes are associated with neuroimaging abnormalities in MDD by
impairment of the function of HPA axis.

4.4 | Association of glutamatergic genes with
neuroimaging

In this review, neuroimaging alterations were found to be associ-
ated with two glutamatergic genes: D-amino acid oxidase activator
(DAOA) and SLC6A15. The expression of the DAOA gene may in-
fluence the functioning of NMDA-type glutamate receptors by de-
grading the D-serine metabolism, which in turn leads to glutamate
dysfunction,m“'m5 The SLC6A15 gene encodes a sodium-dependent
branched-chain amino acid transporter, which regulates the expres-
sion of glutamate receptors and influences glutamate synthesis.?%
Studies have revealed that glutamate dysfunction, glutamate re-
ceptor abnormalities, and glutamate excitotoxicity may be possible
pathophysiological mechanisms of MDD.1%” The DAOA rs2391191-
diagnosis interaction effects may contribute to the abnormality of
regional homogeneity in depressed patients.®’ Zhang et al (2016)
found that depressed patients with a SLC6A15 A-allele had de-
creased FA values for the left parahippocampal cingulum than HCs
with the same genotypes. Another study revealed that SLC6A15
polymorphisms were associated with specific brain region alterations
in healthy subjects, suggesting a potential mechanism leading to sus-
ceptibility to MDD.'*® Based on these findings, DAOA and SLC6A15
genes may contribute to genetic risks for neuroimaging alterations
in MDD.

13
C N S Neuroscience & Therapeutics _WI L EYJ_

4.5 | Genetic-neuroimaging association in
other genes

Our systematic review found that some genes in the renin-angiotensin-
aldosterone system (RAA system) were significantly associated with
neuroimaging alterations in MDD patients. The other most frequently
studied genes (at least 3 studies) with significant genetic-neuroimaging
association were the APOE ¢4 and GSK3p genes.

4.5.1 | Association of RAS system-related genes
with neuroimaging

Recent evidence indicates that the RAA system may be involved in
the pathophysiology of MDD and be a potential target for depres-
sion treatment.°%'1° Diverse studies have found that neuroimaging
alterations in MDD were associated with angiotensin-converting
enzyme insertion/deletion (ACE 1/D) and type 1 angiotensin Il re-
ceptor (AGTR1) genes. ACE-D carriers showed significantly smaller
anterior cingulate gyrus volumes and larger middle temporal gyrus

volumes,*®

as well as decreased default-mode network activity in
remitted geriatric depression.60 A similar pattern was observed in
AGTR1 polymorphisms in that genetic variation was associated with
frontotemporal morphology.38 ACE D-allele downregulates ACE ex-
pression, which in turn modulates the level of angiotensin 11.1** The
AGTR1 gene encodes the primary angiotensin Il receptor.*'? Both
of them are involved in the regulation of angiotensin Il. Vian et al*‘
proposed that angiotensin Il and its receptors, a key part of the RAS
system, may be involved in the regulation of neuroinflammation and
the HPA axis. Hence, the effects of AGTR1 and ACE I/D genes on

neuroimaging may have been mediated by other factors.

4.5.2 | Association of the APOE ¢4 gene with
neuroimaging

While the ApoE e4-allele is known to be a genetic risk factor for
Alzheimer’s disease, its association with depression remains incon-
clusive.*® Geriatric depressed patients with an ApoE e4-allele show

3536 and functional networks,””

abnormal hippocampal morphology
as well as abnormal functional connectivity in the DMN.*’ The asso-
ciation between ApoE ¢4 and depression is predominantly observed
among older people. Although the mechanisms underlying this rela-
tionship remain unclear, geriatric depression on those with the ApoE

e4-allele may be an early manifestation of the Alzheimer’s disease.

4.5.3 | Association of the GSK3p gene with
neuroimaging

Abnormally active glycogen synthase kinase-3beta (GSK3p) may con-

tribute to the pathophysiology of MDD

and affect antidepressant re-
sponses.''® Several studies revealed that GSK3p genetic variants were
associated with morphological alteration in hippocampus and the tem-
poral lobe,** as well as medial prefrontal cortices,** and also abnormal

functional brain activity in the thalamus and parts of the occipital and
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parietal regions.**® Loss of neuronal GSK38 is involved in impairment
of hippocampal proliferation and alteration of dendritic spine morphol-
ogy, which results in high vulnerability to depression-like behavior in
rat brains.!**117 These findings suggest that GSK3p polymorphisms and
their interaction with major depression may result in altered topological
organization of brain structural and functional networks.

4.6 | Synergistic effects of genes in neuroimaging

As noted above, serotonergic genes and MAOA polymorphisms can
regulate serotonin levels in the brain, implying that neuroimaging al-
teration can possibly be partly ascribed to the synergistic effects
of numerous genetic variants. A synergistic effect on neuroimag-
ing alteration was observed in COMT and MTHFR,¢ 5-HTR2A and
MAOA,”® and 5-HTTLPR and 5-HTR1A% polymorphisms, as well as
5-HTTLPR, BDNF, and COMT polymorphisms.>>

COMT polymorphism regulates the expression of COMT en-
zyme, which influences monoamine neurotransmitter levels.**® Pan

et al®®

found that the interaction between the MTHFR genotype and
COMT genotype was associated with putamen volumes, whereas
neither genetic variant independently affected brain morphology.
A similar pattern was observed in 5-HTR1A and 5-HTTLPR genetic
variants in that depressed patients with both genotypes showed the
highest amygdalar activity during emotional processing.®’ The cu-
mulative effects of 5-HTTLPR, BDNF Val66Met, and COMT poly-
morphisms were observed in fronto-occipital cortices and corpus
callosum.”® Another study reported that depressed patients with
both a 5-HTR2A CC-allele and MAOA-H genotype had the strongest
negative activation in the right frontal middle gyrus.”® A possible
explanation for this is that 5-HTR1A, 5-HTR2A, and 5-HTTLPR ge-
netic variants are engaged in the regulation of serotonin levels in the
brain, while MAOA polymorphisms are involved in the catabolism
of serotonin. Susceptibility genes alone exert small effects on brain
morphology, but the synergistic effects of numerous genes may re-
sult in neuroimaging alteration.®

4.7 | Limitations

Some limitations of this systematic review must be considered when
interpreting these findings. The most important is the methodological
discrepancies across included studies. Some studies did not include
HC subjects, and the effects of risk genes on neuroimaging were com-
pared between MDD patients with and without risk genetic variants,
but not healthy subjects with risk genetic variants. On the other hand,
some studies conducted multiple comparisons among 2 x 2 genotype-
and-disease interaction. Another limitation is the discrepancy of de-
mographic characteristics, such as mood status, the age of depressed
patients, the duration of illness, and the use of antidepressants. For
example, hippocampal volume alterations were mediated by early-life
stress, duration of illness, and antidepressant treatment. Lastly, the
imaging methods varied across included studies. For example, some
studies used whole-brain-analysis methods to investigate morpho-
logical alterations in the brain, while others used ROI-based analysis.

5 | CONCLUSIONS

This systematic review indicates that genetic-neuroimaging stud-
ies may provide new insights into MDD. Abnormalities of vital
brain regions involved in neural circuits may contribute to the
susceptibility to MDD. Although precise mechanisms of genetic-
neuroimaging association are yet to be elucidated, genetic vari-
ations may produce endophenotypes of MDD by mediating
morphological and functional brain alterations. Furthermore, we
found that the effects of genetic variants on neuroimaging may
inform some hypotheses related to the pathophysiology of MDD,
such as the monoamine-deficiency hypothesis, the glutamater-
gic hypothesis, and the neurotrophic hypothesis. However, some
studies of candidate genes showed inconsistent findings that were
not replicated in other studies. Therefore, further research is
needed to focus on the field of genetic-neuroimaging connectom-
ics in MDD.
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