
Received October 11, 2017, accepted November 21, 2017. Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.2777827

System Design Perspective for Human-Level
Agents Using Deep Reinforcement
Learning: A Survey
NGOC DUY NGUYEN , THANH NGUYEN , AND SAEID NAHAVANDI, (Senior Member, IEEE)
Institute for Intelligent Systems Research and Innovation, Deakin University, Waurn Ponds Campus, Geelong, VIC 3216, Australia

Corresponding author: Ngoc Duy Nguyen (duy.nguyen@deakin.edu.au)

ABSTRACT Reinforcement learning (RL) has distinguished itself as a prominent learning method to
augment the efficacy of autonomous systems. Recent advances in deep learning studies have complemented
existing RLmethods and led to a crucial breakthrough in the effort of applyingRL to automation and robotics.
Artificial agents based on deep RL can take selective and intelligent actions comparable with those of a
human to maximize the feedback reward from the interactive environment. In this paper, we survey recent
developments in the literature regarding deep RL methods for building human-level agents. As a result,
prominent studies that involve modeling every aspect of a human-level agent will be examined. We also
provide an overview of constructing a framework for prospective autonomous systems. Moreover, various
toolkits and frameworks are suggested to facilitate the development of deep RL methods. Finally, we open
a discussion that potentially raises a range of future research directions in deep RL.

INDEX TERMS Deep learning, human-level agents, reinforcement learning, robotics, survey, system design.

I. INTRODUCTION
By mimicking human behaviors, researchers have adopted
a learning method that has a high impact on foundations of
artificial intelligence study. This approach, called reinforce-
ment learning (RL), focuses on examining actions that gain a
maximal value of long-term reward from the environment [1].
Additionally, RL utilizes a trial-and-error learning process to
achieve its goals. This unique feature has been confirmed to
be an advanced approach to building a human-level agent [2].
For instance, in 1992, Mahadevan and Connell built a robot
based on RL named OBELIX that learned how to push
boxes [3]. In 1996, the Sarcos humanoid DB was constructed
by Schaal to learn the pole-balancing task [4]. Lin et al. [5]
proposed an RL method to control dynamic walking of a
robot without prior knowledge of the environment. Recently,
Müelling et al. [6] employed RL to train a robot to play table
tennis and Riedmiller et al. [7] applied a batch RL to prepare
crucial skills for a soccer-playing robot.

Fig. 1 illustrates a traditional RL problem, a pole-balancing
task. The goal of this task is to exert a reasonable amount
of force to the cart along the track so that it balances the
pole from falling. Each state of the system involves dynamics
information such as the position, velocity of the cart as well
as angle and angular velocity of the pole. For every micro

FIGURE 1. A pole-balancing task based on RL.

time-step t, there are two possible actions impacting the cart:
moving to the right and moving to the left. At the same time,
we may give−1 as a reward if the pole falls and 0 in the other
cases.

Previous applications of RL can be categorized into three
independent research fields until the reconciliation to modern
RL in the late 1980s [1]. The first research area was rooted
in the psychology and neuroscience of animal learning by
conducting a series of trial-and-error experiences [8], [9].
The second study focused on the optimal control problem.

VOLUME 5, 2017
2169-3536
 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1

https://orcid.org/0000-0002-4052-5819
https://orcid.org/0000-0001-9709-1663

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

Richard Bellman proposed a method to solve this issue by
introducing the Bellman equation and the discrete model
of optimal control problem, named the Markovian Decision
Processes (MDPs) [10]. At that time, dynamic program-
ming identified itself as the only way to solve the curse
of dimensionality, where computations increase dramatically
with the number of variables. Last but not least, the third
study concerns temporal-difference learning, which origi-
nated the well-known Q-learning method. This method has
a great impact on establishing a standard approach towards
RL. In summary, all of these concepts together contributed
to building the fundamental elements of contemporary RL.
Although RL has become a common method for building an
autonomous agent, the shortcomings of traditional learning
approaches restrain it from dealing with complex problems.
Recent integrations of deep learning methods with RL have
improved the performance of existing RL methods consider-
ably.
Deep learning is a subset of machine learning that effec-

tively employs neural networks to learn on multiple levels,
each corresponding with different levels of abstraction [11].
The recent success of various applications shows that deep
learning outperforms traditional approaches in terms of accu-
racy and efficiency. This feat involves the first-time usage
of deep learning and Convolutional Neural Network (CNN)
in the ImageNet competition that ultimately beat the record
of traditional approaches in computer vision [12], [13].
Lately, deep learning has been applied widely to various
research fields including image recognition, video classifi-
cation, audiograms, language processing, video games, and
robotics [14]–[18].

FIGURE 2. Milestones of deep reinforcement learning.

Fig. 2 summarizes the milestones of deep RL. Before the
advent of deep learning, Monte Carlo and Q-learning were
two fundamental methods used in RL [19]. However, these
methods restrict RL to solving complex problems due to the
inherent constraints of computer memory space. By address-
ing an approximate approach, deep learning solves these

intractable problems effectively. In fact, Mnih et al. incor-
porated deep learning with RL to create a human-level agent
that is virtually unbeatable in a series of 49 video Atari games
[20], [21]. To extend the success of deep RL, Google’s Deep-
Mind subsidiary created AlphaGo, a program that beat one
of the best professional Go players of all time, South Korea’s
Lee Sadol, in 2016 [22]. At the time of this paper, AlphaGo
even leads 2-0 against the highest-ranking Go player, Ke Jie
from China. Additionally, Google, Uber, and Tesla are has-
tening the research on deep RL to design the next generation
of intelligent self-driving cars.

In summary, this research focuses on examining deep RL
approaches that have a significant impact on building dis-
tinct aspects of human-level agents. Our work brings up the
following key contributions. First, we provide an overview
of state-of-the-art deep RL achievements in recent years.
Under the system design perspective, we present not only the
general of RL methodology but also a concise explanation of
modern deep RL and its applications. Second, we separate
contemporary deep RL studies into different categories that
affect various aspects of modeling a human-level agent. The
latest toolkits and framework libraries that can be used to
develop deep RL approaches are introduced. Third, we design
a high-level system architecture to describe the usage of
recent breakthroughs in constructing a human-level agent.
Finally, we open a discussion related to deep RL and then
inherently raise different directions of future studies.

II. PRELIMINARY
Interactive learning attracts considerable attention because of
its analogy to human learning behaviors. As a result, interac-
tive RL establishes a comprehensive learning framework for
the advance of human-level agents and autonomous systems.
Before examining key breakthroughs of contemporary RL,
we review fundamental concepts of RL as well as the related
learning schemes. Specifically, subsection II-A summarizes
the concept of RL and its target problem domain, i.e., MDP.
Subsection II-B describes the Bellman equation, which is the
core of all derivations in RL. Finally, subsection II-C and
subsection II-D outline two fundamental learning methods
in RL.

A. REINFORCEMENT LEARNING AND MARKOV
DECISION PROCESS
RL is a tabula rasa learning, interacting with the stochastic
environment to earn the best long-term reward, i.e., RL seeks
an optimal policy π∗ that is a mapping function 0π∗ from
each possible state s of the agent to its selective action a so as
to maximize accrued long-term reward r . Intuitively, 0π is a
set of probabilities from every transition s to s′ by following
a under the policy π as below:

0π = {Pr(s
a
7−→ s′ | π) : ∀a ∈ 3π (s)}, (1)

where 3π (s) is the action space of s under the policy π .
The agent often interacts with the environment in a dis-

crete time-step manner. For example, in each time-step t

2 VOLUME 5, 2017

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

FIGURE 3. The relationship between the agent and the environment
in RL.

(t = 0, 1, 2, . . .), the agent observes a state st of
the environment and selects an action at from its action
space 3(st). The agent then obtains the reward rt+1 from
the environment. Finally, the current state of the envi-
ronment turns to st+1. As a result, RL produces the
sequence of states, actions, and rewards, respectively:
s0, a0, r1, s1, a1, r2, . . . , st , at , rt+1, st+1, If the number
of time steps is finite, like a play of a game, we call the RL
problem an episodic task. Fig. 3 summarizes the relationships
between these measures. Mathematically, the goal of RL is
to maximize the discounted return <t at each time-step t , as
described in [1]:

<t =

∞∑
i=0

γ irt+i+1, (2)

where γ denotes the discounted rate and 0 ≤ γ ≤ 1.
A state signal has aMarkov property if every next state st+1

and next reward rt+1 depends only on the current state st and
its accompanying action at , regardless of the history. An RL
problem is anMDP if its state signal has theMarkov property.
For example, the pole-balancing task introduced in section I is
an MDP because the state of the task, including position and
velocity of the cart as well as the angle and angular velocity
of the pole, is sufficient to foretell the future operations of
the system. In summary, MDP is the crucial problem domain
in RL.

B. THE BELLMAN EQUATION
To describe the RL problem in amathematical way, we review
the concept of value function. Value function is a function of
state that is used to evaluate a state or a specific action from
a state. From (2), we have the state-value function under the
policy π as follows:

Vπ (s) = E •

{
∞∑
i=0

γ irt+i+1

∣∣∣∣∣st = s, π

}
, (3)

where E• terms an expected function. Similar to (3), the
action-value function expresses the expected return from a

state s by following an action a under the policy π as below:

Qπ (s, a) = E •

{
∞∑
i=0

γ irt+i+1

∣∣∣∣∣st = s, at = a, π

}
. (4)

Based on (1), (3), and (4), we can infer the relationship
between the current state s with its next state s′ as described
in the following equations:

Vπ (s) =
∑
a,s′

Pr(s
a
7−→ s′ | π)

(
R
a
ss′ + γVπ (s

′)
)
, (5)

Qπ (s, a) =
∑
s′

Pr(s
a
7−→ s′ | a, π)

(
R
a
ss′ + γVπ (s

′)
)
, (6)

where R
a
ss′ indicates the expected reward from s to s′ by fol-

lowing a. Equations (5) and (6) denote Bellman equations for
Vπ andQπ , respectively. Therefore, the RL problem becomes
finding an optimal policy π∗ such that:Vπ∗ (s) = max

π
Vπ (s)

Qπ∗ (s, a) = max
π

Qπ (s, a),

for every state s and action a. Therefore, the Bellman equa-
tions for V and Q under the optimal policy π∗ are rewritten
as below [1]:

V ∗(s) = max
a

∑
s′

Pr(s
a
7−→ s′)

(
R
a
ss′ + γV

∗(s′)
)
,

Q∗(s, a) =
∑
s′

Pr(s
a
7−→ s′)

(
R
a
ss′ + γ max

a′
Q∗(s′, a′)

)
(7)

In summary, Bellman equation is the core component of
derivative learning methods in RL. In the two subsequent
subsections, we review two fundamental learning methods in
RL: Monte Carlo and Q-learning.

C. MONTE CARLO METHOD
Monte Carlo (MC) method is learning by rolling out expe-
riences (samples) of the task and averaging the returns from
these samples to approximate the value functions. Asymptoti-
cally, these average values converge to the value function and
therefore can determine the optimal policy for the task. For
instance, to approximate the value of a state s under the pol-
icy π , Vπ (s), we roll out a series of episodes passing through
s: e1, e2, e3, This action yields a series of corresponding
return values from s: r1, r2, r3, By averaging all the return
values, we can approximate the state-value function Vπ (s).
The benefit of using MC learning is that it does not require
a complete knowledge of the environment’s dynamics and
therefore can be used in both on-line and off-line learning
efficiently. On-line learning is learning by interacting directly
with the environment whereas off-line learning is learning
in the simulated environment. Similarly, we can use the MC
method to estimate the action-value function Qπ (s, a).
To find the optimal policy π∗, it is necessary to process

through a policy iteration that involves two interleaved pro-
cesses: policy evaluation (PE) and policy improvement (PI).

VOLUME 5, 2017 3

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

PE is the process of estimating the value function, while PI is
the process of seeking the optimal policy. For instance, given
a policy π0, we use the MC method to estimate Qπ0 . We then
find a policy π1, which yields Qπ1 so that Qπ1 is better than
Qπ0 (Qπ1 ≥ Qπ0). This process is iterative until we find the
optimal solution π∗ and Q∗:(

π0 � Qπ0
)
→
(
π1 � Qπ1

)
→ . . .→

(
π∗ � Q∗

)
.

One of the naive approaches to achieving the PI is the usage
of exploration. To yield a better policy π ′ from π , we select
an arbitrary state s in π and ‘‘explore’’ an action a′ from s
so that a′ 6∈ 3π (s), we then estimate Q(s, a′) and compare it
to Q(s, a). If Q(s, a′) ≥ Q(s, a), we form the new policy π ′

by adding a′ into π . Conceptually, the process of integrating
the exploration in the learning policy is called on-policy con-
trol. One of the common on-policy approaches used in PI is
ε-greedy. The probability of selecting an action a from a state
s in ε-greedy is calculated using the following formula:

Pr(a|s) =


1− ε +

ε

|3(s)|
, if a = argmax

a′
Q(s, a′)

ε

|3(s)|
, otherwise

(8)

where |3(s)| denotes number of possible actions from s and
0 < ε ≤ 1.

As opposed to on-policy control, off-policy control sep-
arates the exploration from the learning policy by using a
different policy, called behavior policy. Behavior policy π ′

is used to generate samples and explore the action space
while the learning policy π is free to select a greedy action
in a deterministic manner. However, to ensure the conver-
gence of the algorithm, π ′ is selected so that every action
taken in π must occur at least once in π ′. Off-policy MC
method inspired the well-known artificial computer program,
AlphaGo, which shall be discussed in section III. Fig. 4
summarizes the differences between on-policy control and
off-policy control in the MC method.

D. Q-LEARNING
Before discussing the concept of Q-learning, we briefly sum-
marize the broader set of learning, temporal-difference (TD)
learning. Like MC method, TD learning does not require a
complete knowledge of the environment but rather derives its
information from experiences. However, while MC needs to
wait to finish the episode before updating, TDwaits only until
the next time-step t+1 to update the estimated value function
of current time t . The following equation illustrates an update
rule for the simplest case of TD (originated from (5)):

V (st)� αV (st)+ β[rt+1 + γV (st+1)], (9)

where α and β are parameters such that 0 ≤ α, β ≤ 1, β 6= 0,
and α + β = 1; � denotes the update rule for V (st). The
update rule (9) is used to approximate the value functionV (s).
Similar to theMCmethod, two control approaches are used

to obtain the optimal policy: on-policy TD control known
as Sarsa and off-policy TD control known as Q-learning.

FIGURE 4. An example of using on-policy versus off-policy control in
MC learning.

In Sarsa, instead of estimating the state-value function as
in (9), we estimate the action-value function by using the
following rule:

Q(st , at)� αQ(st , at)+ β[rt+1 + γQ(st+1, at+1)]. (10)

Sarsa uses (10) to estimate the Q-value function (PE) and uses
ε-greedy to improve the policy (PI).

As opposed to Sarsa, Q-learning uses the optimal Bellman
equation (7) to approximate Q∗ directly. This approach dra-
matically shortens the convergence time of the algorithm to
find the optimal solution. In summary, Q-learning leverages
the following update rule to approximate Q∗:

Q(st , at)� αQ(st , at)+ β[rt+1 + γ max
a
Q(st+1, a)]. (11)

Fig. 5 illustrates the differences between Sarsa and
Q-learning in the TD learning method.

The last subset method of the TD approaches reviewed in
this section is the actor-critic (AC)method [23]. AC separates
the policy π from the value function by constructing two
independent memory structures. One structure (actor) selects
actions from π and feeds them into another structure (critic)
for evaluation. The critic uses the following error measure-
ment formula to decide the frequency of using an action at :

1t = δ[rt+1 + γV (st+1)]− δ′V (st)

1t > 0 −→ [Pr(st
at
7−→ st+1)⊕ |1t |],

1t < 0 −→ [Pr(st
at
7−→ st+1)	 |1t |]

where δ and δ′ are adjustment parameters; a ⊕ b denotes
adding to a a quantity that is proportional to b; and a 	 b

4 VOLUME 5, 2017

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

FIGURE 5. An example of using Sarsa versus Q-learning in TD learning.

denotes subtracting from a a quantity that is proportional to b.
The benefit of using AC structure is the ability to deal with
continuous problem domains that allow to learn a task in an
asynchronous manner. In summary, the concept of RL and its
core element, Bellman equation, have been reviewed as well
as two fundamental learning approaches in RL. In the next
section, a survey of recent breakthroughs will be carried out,
which describe how to combine deep learning with traditional
RLmethods such asMC or Q-learning to create an agent with
human-level skills.

III. LITERATURE REVIEW
Although RL has a significant impact on building a general
framework for autonomous systems, traditional RL methods
still have shortcomings that need to be mitigated [20], [24].

First, RL methods only work efficiently on discrete and
finite MDPs where the number of states is limited, i.e., it is
infeasible to implement RL in practical systems that deal with
a mix of complicated tasks and chaotic environments. These
practical problems are usually non-Markov, continuous, and
have an unbounded action space. Second, RL requires a
comprehensive knowledge of the observed environment in
order to analyze the reward signal function. This collected
information directly concerns the learning process of the RL
regarding agility and efficiency. Finally, RL is known to be
unstable when using a nonlinear approximator to estimate the
value functions. One of the main reasons for this instability
is the correlation between the updates of the value function
using the Bellman equation. As a result, a minor update of
the value function may enormously impact the output policy
and thus make the RL problem divergent.

A. DEEP REINFORCEMENT LEARNING
In 2015, Mnih et al. [20] from Google’s Deepmind advanced
modern RL by introducing the concept of Deep Q-Network
(DQN). DQN connects the dots between deep neural net-
works with RL by subduing the intractable problems in tra-
ditional RL methods. Particularly, DQN leverages CNNs to
analyze input images and use these CNNs to approximate
Q-value function. In other words, the goal of DQN is to
minimize the loss function of a CNN as below:

L(θ) = E •




target︷ ︸︸ ︷
r + γ max

a′
Q(s′, a′|θ ′)−Q(s, a|θ)︸ ︷︷ ︸

output


2 (12)

where θ and θ ′ represent the parameters of the current esti-
mation Q-network and the target network, respectively. The
target network is used to estimate the Q-value in the next
state to reduce the correlations between Q-value updates and
thus make the Q-network output’s distribution stationary.
To make the Q-learning further stable, the authors introduce
the concept of experience replay, i.e., all experiences in the
form e = (s, a, r, s′) are stored in the memory and sampled
uniformly in a random manner. The loss function (12) has
a similar form to the Q-learning update rule (10) and thus
can be used to estimate directly Q∗ as well as the optimal
policy π∗. As a result, DQN creates a human-level agent
that outperforms the best RL method so far in the test series
of 49 classic Atari games [21], [25]. Fig. 6 summarizes the
system architecture used in DQN.

FIGURE 6. The system architecture used in DQN.

The second feat of deep RL is noteworthy by the historic
triumph of AlphaGo versus the best professional Go player,
China’s Ke Jie, in May 2017. Prior to AlphaGo’s victory,
DeepBlue developed by IBMwas the only computer program
to defeat Garry Kasparov in the World Chess Champion in
1997. The underlying algorithm behindDeepBlue is based on
a traditional search tree and a robust evaluation function [26].
However, Go is more complex than Chess because Go’s
search tree space is multiple times that of Chess. Therefore,

VOLUME 5, 2017 5

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

traversing all possible cases of Go’s search tree to find the
best play is infeasible. Themechanism underlying AlphaGo’s
success was initially a trade secret.

In 2016, Google Deepmind decided to reveal the secret
recipe behind AlphaGo [22]. AlphaGo employs the Monte
Carlo Tree Search algorithm (MCTS) [27]–[29] and deep
learning with a CNN to estimate the best move. MCTS simu-
lates an immense number of episodes to estimate the optimal
value of each node in the game search tree. The training
process of AlphaGo involves two separate policy networks
pπ , pδ and a value network vθ . At first, the MC method
generates the fast policy pπ . Then, the second network pδ is
trained under the supervision of professional human players.
Afterward, pδ plays itself to improve the performance and is
used to train vθ . Finally, the entire algorithm is based on a
combination of MCTSs, with the value function of the leaf
node sl being as follows [22]:

V (sl) = λvθ (sl)+ (1− λ)zπ (sl),

where λ denotes weight parameter and zπ (sl) is the simulation
output using pπ from sl .

The idea of play-self originates from the success of
TD-Gammon created by IBM in 1992 [30], [31]. TD-Gammon
at that time was the only program that was skilled enough
to play backgammon. However, by applying deep learning
with RL, AlphaGo achieves superhuman level in the AI game
challenge.

B. MULTITASK DEEP REINFORCEMENT LEARNING
One of the common defects of a neural network is that it
is able to learn at most one task at a time. This problem,
known as catastrophic forgetting, especially concerns con-
tinual learning of neural networks and RL [32], [33]. Par-
ticularly, this phenomenon occurs in the continuing learning
process when task B is trained after task A. The knowledge
of task A is instantly erased to acquire new information from
task B.

A direct solution for this problem is to select a smart
configuration of the neural network with a regularization
strategy [34]–[36] or increase ‘‘progressively’’ the capacity
of the network so as to learn multiple tasks at once [37], [38].
However, these methods limit the number of tasks the net-
work can learn at the same time.

Another solution is using a process of policy distillation
or knowledge transfer [39]–[41]. This strategy learns each
problem domain individually and afterward transfers all the
knowledge to a single multitask network. However, this solu-
tion encounters a side effect known as negative transfer.
Negative transfer is the phenomenon when the network per-
forms well in each problem domain but fails to operate in
the multitask scenario. In 2017, Yin and Pan [41] designed a
multitask policy architecture, Hierarchical Prioritized Expe-
rience Replay (HPER), which utilizes high-level features of
a task to subdue the effect of negative transfer. To reduce the
enormous data when attaining knowledge from each problem

domain, HPER selects only important information from the
experience replay memory.

To further learn more tasks with minimal computations and
without changing the network configuration, Google’s Deep-
mind [42] again proposed the algorithm, Elastic Weight Con-
solidation (EWC), which emulates the concept of synaptic
consolidation in neuroscience [43]. EWCutilizes the property
of a neural network that: given a task A, there is always a set
of configurations of the network,µ, which can yield the same
output performance [44]. Therefore, there exists a solution
of task B, µ∗B, which is close to the solution of task A, µ∗A.
When learning task B, the goal is to restrict the important
parameters of task A inside the low error region of task A,
centered by µ∗A. This fact turns out to minimize the following
loss function [42]:

4(µ) = 4B(µ)+
∑
i

ρ

2
Fi(µi − µ∗A,i)

2,

where ρ expresses the importance between task A and task B,
4B(µ) is the loss function for task B only, i denotes each
parameter, and Fi is a Fisher information matrix that selec-
tively finds important parameters in task A. By using DQN,
EWC succeeds in training an agent to learn multiple Atari
games in the RL context. Fig. 7 summarizes the basic idea of
EWC.

FIGURE 7. Training a network to learn multitask using EWC idea.

C. MULTIAGENT DEEP REINFORCEMENT LEARNING
Deep RL has a clear value in an extensive array of multiagent
systems (MASs) such as a soccer team of robots, multiplayer
online games, cooperative robots in the production chain, and
autonomous military systems like unmanned aerial vehicles,
surveillance, and spacecraft [7], [45], [46].

In MASs, each agent not only learns to operate indepen-
dently but also cooperates with others to achieve the best joint
reward. The direct strategy is to apply independent Q-learning
in each agent and consider other agents as a part of the envi-
ronment [47]. However, this approach limits the number of
agents because it is computationally expensive to train every
agent in the system. In 2016, Kraemer and Banerjee [48]

6 VOLUME 5, 2017

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

proposed a centralized approach, where a group of agents can
be guided at the same time by using a centralized algorithm
via an open communication channel. After the training, the
agents are allowed to communicate over a limited bandwidth
channel (to preserve energy), and thus can operate freely
in a decentralized manner. Afterward, Foerster et al. [49]
extended the centralized approach by developing two novel
control schemes for anMAS. Instead of using an independent
Q-learning, each agent needs to learn two RL problems at
the same time: a goal-directed problem and a communication
problem. In the goal-directed task, agents are required to
select an action that may yield a high potential of long-
term reward in the partially observed environment. At the
same time, they must decide upon a suitable communication
action to cooperate with each other in the MAS. However,
this approach, known as Reinforced Inter-Agent Learning
(RIAL), only shares parameters among agents to utilize cen-
tralized training. An improved version of RIAL, Differen-
tiable Inter-Agent Learning (DIAL), enables the feedback
from a communication channel by sending nonverbal cues to
indicate the level of interest. In this way, DIAL ultimately
trains the MAS in a centralized way. However, RIAL and
DIAL only work in a discrete communication channel.

As opposed to RIAL and DIAL,
Sukhbaatar and Fergus [50] introduced a novel model named
Communication Neural Net (CommNet) that was used to
support agents to cooperate via a continuous communication
channel. The authors modeled each agent as a deep feed-
forward neural network, which can access a shared com-
munication channel C . In operation, each agent receives a
summed transmission data (continuous vector) from other
agents via C . In this way, CommNet becomes a general
framework that can combine with an RL method to train a
set of agents to communicate in a backpropagation manner.
The model is shown to be versatile and can be used with
any number and any kind of agents in the partially observed
environment.

Another notable work regarding multiagent RL was pre-
sented in [51]. In that paper, He et al. approached multiagent
problems from a different perspective. Instead of constructing
a direct communication model like CommNet, the authors
modeled an opponent agent used to compete in the joint
reward. In this way, the effectiveness of the training agent can
be increased without knowledge of the problem domain.

D. ASYNCHRONOUS DEEP REINFORCEMENT LEARNING
Another issue of DQN is the lengthy training period. For
instance, training an Atari game may require 14–15 days
using a single GPU with DQN. In 2015, Nair et al. [52]
introduced theGeneral Reinforcement Learning Architecture
(Gorila) framework that enables DQN to operate in a dis-
tributed manner. Specifically, Gorila uses the AC architecture
(Fig. 8) as mentioned in subsection II-D to facilitate the
training process asynchronously. In Gorila, there are two
main components: learning processes and central parameter
servers. In each learning process, an actor operates in its own

FIGURE 8. The AC architecture for asynchronous training process to
reduce DQN training time.

copy model of the environment, and a critic uses the experi-
ence replay memory to compute the loss function L(θ) (12).
The central parameter server uses distributed gradients Li(θ)
from each learning process i to update its model replica.
Finally, the learning process receives updated parameters
from the central server in a fixed time interval. The simulation
showed that a 6-day training with 100 parallel actors in Gorila
surpasses 12–14 days of training with a single GPU in 41 out
of 49 games in the Atari domain. Although Gorila provides
a significant improvement in the training process, it requires
significant resource allocation.

Recently, Schaul et al. [53] introduced a simple strategy
to improve the learning process. The authors suggested a
prioritized scheme to promote critical transitions from the
experience replay memory, i.e., meaningful experiences are
sampled more frequently than trivial ones. Additionally,
Wang et al. [54] used the prioritized experience replay to
propose a duel network that calculates state and state-action
function in parallel. This scheme has proven to provide better
policy evaluation compared to DQN in the Atari domain.

In 2016,Mnih et al. [55] proposed a lightweight framework
for asynchronous deep RL methods, named Asynchronous
Advantage Actor-Critic (A3C). A3C surpasses the priori-
tized experience replay method and the dual network scheme
regarding reduction of training time. As opposed to Gorila,
A3C scheme allows concurrent learning in a singlemulti-core
CPU and hence preserves allocated resources. Specifically,
A3C enables agents to work in various environments at the
same time by parallelizing multiple actors-learners in the AC
architecture. Finally, A3C expresses a tendency to select an
action via an advantage function that is the error measurement
between the model’s prediction quality of the action taken
with its actual value. A3C also creates the decorrelation
between experiences and eventually makes the learning out-
come stable and convergent. The simulation showed that A3C
can train an agent to learn Atari Breakout in less than 12 hours
compared to 3–4 days of using DQN alone.

E. OTHER LIMITATIONS OF DQN AND RECENT SOLUTIONS
1) NON-MARKOV MODEL
DQN can solve MDP problems under the assumption that
the next state s′ = st+1 replies solely on the current state
st and its corresponding action at regardless of the history.

VOLUME 5, 2017 7

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

This assumption restricts the generality of DQN. Therefore,
it is intractable to solve a complex game when the next
state not only depends on the current state but also upon a
history of states, seen in games such as Pong or Double Dunk.
These games are undoubtedly Partially Observable MDPs
(POMDPs). In 2015, Hausknecht and Stone [56] introduced
the Deep Recurrent Q-Network (DRQN) by adding a recur-
rent layer to DQN. Although DRQN is running on one frame
at each time step, it can estimate the information requirements
underlying the system states through time. Therefore, DRQN
extends DQN by estimating the number of history frames
needed for POMDP games. More recently, Sorokin et al. [57]
extended DRQN by integrating ‘‘attention’’ mechanisms into
DRQN in order to highlight important parts in the learning
process. This approach is called Deep Attention Recurrent
Q-Network (DARQN). DARQN was shown to promote high
performance on the game Seaquest when compared against
results of DQN and DRQN.

2) CONTINUOUS RL PROBLEM
DQN cannot be applied to a problem with continuous action
space because it relies chiefly on the Q-learning mechanism.
In 2015, Lillicrap et al. [58] employed the AC architecture to
present an off-policy algorithm that can operate in a contin-
uous action space. This approach, called Deep Deterministic
Policy Gradient (DDPG), uses a parameterized actor function
tomap states to actions deterministically, while keepingDQN
learning on the critic side. The mechanism is applied success-
fully to a range of continuous RL problems such as the pole-
balancing task, legged locomotion, skillful manipulation, and
car driving.

3) OVERFITTING
Overfitting has been shown to occur in DQN. In 2015,
Hasselt et al. [59] suggested a double DQN scheme, which
surpassed the performance of DQN in the Atari domain. Dou-
ble DQN separates the selection from evaluation, i.e., it learns
two value functions at the same time and hence results in
two sets of parameters (θ1 and θ2), where θ1 specifies greedy
policy and θ2 determines the value function. In summary, the
target function can be formulated as [59]:

Tt = rt+1 + γQ(st+1, argmax
a

Q(st+1, a | θ1) | θ2).

More recently, Mnih et al. [55] introduced the A3C mecha-
nism (subsection III-D) that even outperforms double DQN
in terms of training time and stability.

4) INTRINSIC MOTIVATION
Another challenge in RL is working with a complicated
environment where feedback is sparse. This problem leads to
poor exploration and causes vulnerable behaviors of agents.
To handle such environments, the RL problem is divided
into hierarchical (tree) subtasks so that the parent subtask
has higher abstraction than the child subtask. This study was
originated from the concept of Hierarchical Reinforcement

Learning [60]–[63]. In hierarchical RL, the agent needs
to learn different levels of temporal abstraction to explore
the environment efficiently. At the same time, the study
on intrinsic motivation [64] focuses on finding a natural
and good intrinsic reward function that encourages self-
motivation when facing with the selection of generic actions.
In 2016, Kulkarni et al. [65] combined hierarchical deep RL
with intrinsic motivation to aid agents in learning within the
complex environment. This approach canwork efficiently in a
sparse and delayed feedback environment like the Atari game
Montezuma’s Revenge.

F. REINFORCEMENT LEARNING EVALUATION
FRAMEWORKS
In this subsection, the four latest framework libraries that can
be used to develop deep RL algorithms are reviewed. Particu-
larly, analysis of the libraries is carried out in different aspects
so as to provide a proper selection of the RL framework when
working with a specific problem domain. Table 1 summarizes
advantages and disadvantages of these libraries.

TABLE 1. Overview of RL frameworks.

1) OpenAI GYM
OpenAI Gym [66] is the most robust toolkit to moni-
tor and compare RL algorithms. It provides a friendly
Python interface and is compatible with third-party numer-
ical libraries such as TensorFlow, Theano, Keras, and
Scikit-learn [67]–[70]. Succinctly, OpenAI Gym can com-
pare performance of RL agents in different environmental
simulations. Recently, the release of Roboschool (integrated

8 VOLUME 5, 2017

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

in OpenAI Gym) [71] provides a new environment for robot
simulation in an MAS context.

2) THE BROWN-UMBC REINFORCEMENT LEARNING
AND PLANNING (BURLAP)
Burlap [72] is a Java library used to develop an RL algo-
rithm for single and multiagent systems. As opposed to Ope-
nAI Gym, Burlap establishes a general framework so that
users can define a problem domain themselves. It provides a
wide array of built-in RL algorithms, premade domains, and
visualization tools.

3) RL-GLUE
RL-Glue [73] facilitates a common interface that connects
different pieces of RL programs together even if they are
in different programming languages. In this way, agents can
be reused as well as environments that have been written by
other developers in the RL research community.

4) THE ARCADE LEARNING ENVIRONMENT (ALE)
ALE [21] provides an environment framework for 61 out of
2600 classic Atari games. ALE can be used to compare the
performance of RL agents in the Atari domain. It supports
Python interface and has a set of visualization tools.

G. SYSTEM ARCHITECTURE FOR A HUMAN-LEVEL AGENT
Before the conclusion of this review, we propose a high-
level System Architecture for a Human-level Agent (SAHA)
by combining recent breakthroughs in different aspects as
illustrated in Fig. 9. The goal is to build an agent that can
1) communicate with other agents in MASs, 2) learn and
work in multitask scenarios, and 3) only requires a short
period of training. In SAHA, we use the CommNet model
in our communication module to provide generality when
dealing with various types of problem domains. To deal with
different kinds of agents, we add a common interface, as well
as an encoder, and a decoder to interpret transmission data

FIGURE 9. The proposed high-level system architecture for a human-level
agent (SAHA).

TABLE 2. Summary of key reviewed papers.

among agents via a shared communication channel. The core
operation of the system is in the controller, which includes a
multilayer neural network (DQN, DRQN, etc.). The specific
architecture of the network is dependent upon the problem
domain. Inputs of the neural network involve continuous
vector data (summed transmission data from other agents)
from the communication module and a task-specific data
from the task specification module. We add EWC and A3C
architecture to enable multitask learning and asynchronous
learning respectively, to reduce training time. Finally, the
online/offline control can be used to change the learning
mode of the agent. In summary, the proposed system design
describes the usage of recent breakthroughs to collectively
establish a practical human-level agent that can adapt with
various kinds of problem domains.

IV. DISCUSSIONS AND CONCLUSIONS
In this paper, we have examined recent representative deep
RL breakthroughs that actively contribute to every aspect
of modeling a human-level agent. Table 2 summaries key
deep RL studies and their corresponding applications. The
combination of RL and deep learning indeed yields excellent
results and marks the evolution of modern RL in the advances
of prospective autonomous systems. Deep RL capability
has attracted great interests among the research community.
Although deep RL and its variants provide a certain level of
success within the field of artificial intelligence, it still has
limitations that we need to discuss and alleviate.

To some extent, deep RL takes part in solving the dilemma
of dimensionality by using deep learning to approximate
an RL problem with high-dimensional input. However, the
complete proof of this dilemma is still an open question.

VOLUME 5, 2017 9

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

Therefore, to understand the limitations of deep RL, as well
as to find proof of this problem, we analyze the complexity
of the enigma ‘‘the curse of dimensionality.’’

In the real world, a human receives an enormous amount
of input data via the five-sense system: seeing, hearing,
smelling, tasting, and touching. These five-dimensional data
then transfer information to the brain in order to analyze
and control the body to react with the environment. The
action is selected based on our self-motivation (intrinsic
motivation), the knowledge learned from other experienced
sources (knowledge transfer), self-experience (RL), and crit-
ical thinking. Humans then combine all the information to
manage an assigned work (single or multiple tasks) effi-
ciently. Humans also communicate with each other to finish
a task cooperatively (MAS). Therefore, what is the clue here?
Three important factors that make up a human-level agent that
should be discussed: multitask learning, multiagent system,
and critical thinking.

Firstly, recent research on multitask learning using RL is
quite sparse. One characteristic of the neural network is the
ability to learn at most one task at a time. This limitation
restricts the RL method from learning multiple tasks at the
same time. Moreover, the input information from each prob-
lem domain when combined together yields an enormous
amount of data that are unsuitable for current RL methods.
Therefore, it is essential to conduct an extensive research into
this problem.

Secondly, the agent needs to communicate and cooper-
ate with other agents to finish a common task. The current
approach examines multiagent systems as a single RL prob-
lem by considering partner agents as part of the environment
or constructing a separate communication channel among
agents. These approaches, however, inherently inflate the data
space balloon and makes the multiagent problem intractable.

Finally, the third characteristic of a prospective agent dis-
cussed here is critical thinking. Very few studies have con-
sidered this ability for an AI agent. This problem is difficult
because a large amount of data is required to synthesize in
order for the agent to ‘‘think’’ like a human. This ability is
critical because it distinguishes the intelligence of a human.
Can we create an agent that can think and be creative?
Recent advances in hierarchical RL, intrinsic motivation,
meta-learning [74] (ability to adjust itself to adapt with the
environment) and inverse RL [75] (a process of inferring
reward function via demonstrations) are the first steps in the
progress of building a creative agent.

All of these three factors along with deep RLwill represent
a complete solution to the curse of dimensionality. These
important factors paint the last layer to complete the RL
picture.

REFERENCES
[1] R. S. Sutton and A. G. Barto, Reinforcement Learning—An Introduction.

Cambridge, MA, USA: MIT Press, 2012.
[2] J. Kober, J. A. Bagnell, and J. Peters, ‘‘Reinforcement learning in

robotics: A survey,’’ Int. J. Robot. Res., vol. 32, no. 11, pp. 1238–1274,
2013.

[3] S. Mahadevan and J. Connell, ‘‘Automatic programming of behavior-
based robots using reinforcement learning,’’ Artif. Intell., vol. 55, nos. 2–3,
pp. 311–365, Jun. 1992.

[4] S. Schaal, ‘‘Learning from demonstration,’’ in Proc. Adv. Neural Inf.
Process. Syst., 1997, pp. 1040–1046.

[5] J.-L. Lin, K.-S. Hwang, W.-C. Jiang, and Y.-J. Chen, ‘‘Gait balance and
acceleration of a biped robot based on Q-learning,’’ IEEE Access, vol. 4,
pp. 2439–2449, 2016.

[6] K. Mülling, J. Kober, O. Kroemer, and J. Peters, ‘‘Learning to select and
generalize striking movements in robot table tennis,’’ Int. J. Robot. Res.,
vol. 32, no. 3, pp. 263–279, 2013.

[7] M. Riedmiller, T. Gabel, R. Hafner, and S. Lange, ‘‘Reinforcement learning
for robot soccer,’’ Auton. Robots, vol. 27, no. 1, pp. 55–73, 2009.

[8] E. L. Thorndike, ‘‘Animal intelligence: An experimental study of
the associate processes in animals,’’ Amer. Psychol., vol. 53, no. 10,
pp. 1125–1127, 1998.

[9] W. Schultz, P. Dayan, and P. R.Montague, ‘‘A neural substrate of prediction
and reward,’’ Science, vol. 275, no. 5306, pp. 1593–1599, 1997.

[10] R. Bellman, Dynamic Programming. Princeton, NJ, USA:
Princeton Univ. Press, 2010.

[11] L. Deng and D. Yu, ‘‘Deep learning: Methods and applications,’’
Found. Trends Signal Process., vol. 7, nos. 3–4, pp. 197–387,
Jun. 2014.

[12] L. Fei-Fei, J. Deng, and K. Li, ‘‘ImageNet: Constructing a large-scale
image database,’’ J. Vis., vol. 9, no. 8, p. 1037, 2009.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘ImageNet classification
with deep convolutional neural networks,’’ in Proc. Adv. Neural Inf. Pro-
cess. Syst., Dec. 2012, pp. 1097–1105.

[14] K. Simonyan and A. Zisserman. (Sep. 2014). ‘‘Very deep convolu-
tional networks for large-scale image recognition.’’ [Online]. Available:
https://arxiv.org/abs/1409.1556

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar, and
L. Fei-Fei, ‘‘Large-scale video classification with convolutional neural
networks,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014,
pp. 1725–1732.

[16] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, ‘‘Applying con-
volutional neural networks concepts to hybrid NN-HMM model for
speech recognition,’’ in Proc. IEEE Conf. Acoust. Speech Signal Process.,
Mar. 2012, pp. 4277–4280.

[17] M.-T. Luong,M. Kayser, and C. D.Manning, ‘‘Deep neural language mod-
els for machine translation,’’ in Proc. Conf. Comput. Nat. Lang. Learn.,
Jul. 2015, pp. 305–309.

[18] H. A. Pierson and M. S. Gashler, ‘‘Deep learning in robotics: A review of
recent research,’’ Adv. Robot., vol. 31, no. 16, pp. 821–835, 2017.

[19] C. J. C. H. Watkins and P. Dayan, ‘‘Q-learning,’’ Mach. Learn., vol. 8,
nos. 3–4, pp. 279–292, 1992.

[20] V. Mnih et al., ‘‘Human-level control through deep reinforcement learn-
ing,’’ Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[21] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, ‘‘The arcade
learning environment: An evaluation platform for general agents,’’ J. Artif.
Intell. Res., vol. 47, pp. 253–279, May 2013.

[22] D. Silver et al., ‘‘Mastering the game of Go with deep neural networks and
tree search,’’ Nature, vol. 529, no. 7578, pp. 484–489, Jan. 2016.

[23] V. R. Konda and J. N. Tsitsiklis, ‘‘Actor-critic algorithms,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2000, pp. 1008–1014.

[24] J. N. Tsitsiklis and B. Van Roy, ‘‘An analysis of temporal-difference
learning with function approximation,’’ in Proc. Adv. Neural Inf. Process.
Syst., 1997, pp. 1075–1081.

[25] M. G. Bellemare, J. Veness, and M. Bowling, ‘‘Investigating contingency
awareness using Atari 2600 games,’’ in Proc. AAAI Conf. Artif. Intell.,
Jul. 2012, pp. 864–871.

[26] M. Campbell, A. J. Hoane, Jr., and F.-H. Hsu, ‘‘Deep blue,’’ Artif. Intell.,
vol. 134, nos. 1–2, pp. 57–83, Jan. 2002.

[27] R. Coulom, ‘‘Efficient selectivity and backup operators in Monte-Carlo
tree search,’’ in Proc. Int. Conf. Comput. Games, 2006, pp. 72–83.

[28] C. B. Browne et al., ‘‘A survey of Monte Carlo tree search methods,’’ IEEE
Trans. Comput. Intell. AI Games, vol. 4, no. 1, pp. 1–43, Mar. 2012.

[29] L. Kocsis and C. Szepesvári, ‘‘Bandit based Monte-Carlo planning,’’ in
Proc. Eur. Conf. Mach. Learn., vol. 6. 2006, pp. 282–293.

[30] G. Tesauro and G. R. Galperin, ‘‘On-line policy improvement using
Monte-Carlo search,’’ in Proc. Adv. Neural Inf. Process. Syst., 1997,
pp. 1068–1074.

[31] G. Tesauro, ‘‘Temporal difference learning and TD-Gammon,’’ Commun.
ACM, vol. 38, no. 3, pp. 58–68, Mar. 1995.

10 VOLUME 5, 2017

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

[32] R. M. French, ‘‘Catastrophic forgetting in connectionist networks,’’ Trends
Cognit. Sci., vol. 3, no. 4, pp. 128–135, 1999.

[33] D. Kumaran, D. Hassabis, and J. L. McClelland, ‘‘What learning sys-
tems do intelligent agents need? Complementary learning systems theory
updated,’’ Trends Cognit. Sci., vol. 20, no. 7, pp. 512–534, 2016.

[34] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[35] F. Girosi, M. Jones, and T. Poggio, ‘‘Regularization theory and neural
networks architectures,’’ Neural Comput., vol. 7, no. 2, pp. 219–269,
Mar. 1995.

[36] I. J. Goodfellow, M. Mirza, D. Xiao, A. Courville, and
Y. Bengio. (Dec. 2013). ‘‘An empirical investigation of catastrophic
forgetting in gradient-based neural networks.’’ [Online]. Available:
https://arxiv.org/abs/1312.6211

[37] S. Thrun and L. Pratt, Learning to Learn. Boston,MA,USA:Kluwer, 1998.
[38] A. A. Rusu et al. (2016.). ‘‘Progressive neural networks.’’ [Online]. Avail-

able: https://arxiv.org/abs/1606.04671
[39] A. A. Rusu et al. (Nov. 2015). ‘‘Policy distillation.’’ [Online]. Available:

https://arxiv.org/abs/1511.06295
[40] E. Parisotto, J. L. Ba, and R. Salakhutdinov. (2015). ‘‘Actor-mimic:

Deep multitask and transfer reinforcement learning.’’ [Online]. Available:
https://arxiv.org/abs/1511.06342

[41] H. Yin and S. J. Pan, ‘‘Knowledge transfer for deep reinforcement learning
with hierarchical experience replay,’’ in Proc. AAAI Conf. Artif. Intell.,
Jan. 2017, pp. 1640–1646.

[42] J. Kirkpatrick et al., ‘‘Overcoming catastrophic forgetting in neural net-
works,’’ inProc. Nat. Acad. Sci. USA, vol. 114, no. 3, pp. 3521–3526, 2017.

[43] C. Clopath, ‘‘Synaptic consolidation: An approach to long-term learning,’’
Cognit. Neurodyn., vol. 6, no. 3, pp. 251–257, Jun. 2012.

[44] H. J. Sussmann, ‘‘Uniqueness of the weights for minimal feedforward nets
with a given input-output map,’’ J. Neural Netw., vol. 5, no. 4, pp. 589–593,
Jul./Aug. 1992.

[45] R. Olfati-Saber, ‘‘Flocking for multi-agent dynamic systems: Algorithms
and theory,’’ IEEE Trans. Autom. Control, vol. 51, no. 3, pp. 401–420,
Mar. 2006.

[46] M. L. Littman, ‘‘Markov games as a framework for multi-agent reinforce-
ment learning,’’ in Proc. Int. Conf. Mach. Learn., 1994, pp. 157–163.

[47] A. Tampuu et al., ‘‘Multiagent cooperation and competition with deep rein-
forcement learning,’’ PLoS ONE, vol. 12, no. 4, p. e0172395, Apr. 2017.

[48] L. Kraemer and B. Banerjee, ‘‘Multi-agent reinforcement learning as
a rehearsal for decentralized planning,’’ Neurocomputing, vol. 190,
pp. 82–94, May 2016.

[49] J. Foerster, Y. A. M. Assael, N. de Freitas, and S. Whiteson, ‘‘Learning to
communicate with deep multi-agent reinforcement learning,’’ in Proc. Adv.
Neural Inf. Process. Syst., 2016, pp. 2137–2145.

[50] S. Sukhbaatar, A. Szlam, and R. Fergus, ‘‘Learning multiagent commu-
nication with backpropagation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 2244–2252.

[51] H. He, J. Boyd-Graber, K. Kwok, and H. Daumé, III, ‘‘Opponent modeling
in deep reinforcement learning,’’ in Proc. Int. Conf. Mach. Learn., 2016,
pp. 1804–1813.

[52] A. Nair et al. (2015). ‘‘Massively parallel methods for deep reinforcement
learning.’’ [Online]. Available: https://arxiv.org/abs/1507.04296

[53] T. Schaul, J. Quan, I. Antonoglou, and D. Silver. (2015). ‘‘Prioritized
experience replay.’’ [Online]. Available: https://arxiv.org/abs/1511.05952

[54] Z. Wang et al. (2015). ‘‘Dueling network architectures for deep reinforce-
ment learning.’’ [Online]. Available: https://arxiv.org/abs/1511.06581

[55] V. Mnih et al., ‘‘Asynchronous methods for deep reinforcement learning,’’
in Proc. Int. Conf. Mach. Learn., 2016, pp. 1928–1937.

[56] M. Hausknecht and P. Stone, ‘‘Deep recurrent Q-learning
for partially observable MDPs,’’ in Proc. AAAI Symp. Seq.
Decis. Mak. Intell. Agents, Nov. 2015. [Online]. Available:
https://www.cs.utexas.edu/~pstone/Papers/bib2html/b2hd-SDMIA15-
Hausknecht.html

[57] I. Sorokin, A. Seleznev, M. Pavlov, A. Fedorov, and A. Ignateva.
(2015). ‘‘Deep attention recurrent Q-network.’’ [Online]. Available:
https://arxiv.org/abs/1512.01693

[58] T. P. Lillicrap et al. (2015). ‘‘Continuous control with deep reinforcement
learning.’’ [Online]. Available: https://arxiv.org/abs/1509.02971

[59] H. van Hasselt, A. Guez, and D. Silver, ‘‘Deep reinforcement learn-
ing with double Q-learning,’’ in Proc. AAAI Conf. Artif. Intell., 2016,
pp. 2094–2100.

[60] A. G. Barto and S.Mahadevan, ‘‘Recent advances in hierarchical reinforce-
ment learning,’’ Discrete Event Dyn. Syst., vol. 13, no. 4, pp. 341–379,
Oct. 2003.

[61] R. S. Sutton, D. Precup, and S. Singh, ‘‘Between MDPs and semi-MDPs:
A framework for temporal abstraction in reinforcement learning,’’ Artif.
Intell., vol. 112, nos. 1–2, pp. 181–211, Aug. 1999.

[62] C. Guestrin, D. Koller, R. Parr, and S. Venkataraman, ‘‘Efficient solution
algorithms for factored MDPs,’’ J. Artif. Intell. Res., vol. 19, pp. 399–468,
Jul./Dec. 2003. [Online]. Available: http://www.jair.org/contents.html

[63] T. G. Dietterich, ‘‘Hierarchical reinforcement learning with the MAXQ
value function decomposition,’’ J. Artif. Intell. Res., vol. 13, pp. 227–303,
Nov. 2000.

[64] N. Chentanez, A. G. Barto, and S. P. Singh, ‘‘Intrinsically motivated
reinforcement learning,’’ in Proc. Adv. Neural Inf. Process. Syst., 2005,
pp. 1281–1288.

[65] T. D. Kulkarni, K. R. Narasimhan, A. Saeedi, and J. B. Tenenbaum,
‘‘Hierarchical deep reinforcement learning: Integrating temporal abstrac-
tion and intrinsic motivation,’’ in Proc. Adv. Neural Inf. Process. Syst.,
2016, pp. 3675–3683.

[66] G. Brockman et al. (2016). ‘‘OpenAI gym.’’ [Online]. Available:
https://arxiv.org/abs/1606.01540

[67] M. Abadi et al. (2016). ‘‘TensorFlow: Large-scale machine
learning on heterogeneous distributed systems.’’ [Online]. Available:
https://arxiv.org/abs/1603.04467

[68] J. Bergstra et al., ‘‘Theano: Deep learning on GPUs with Python,’’ in Proc.
BigLearn Workshop NIPS, 2011.

[69] F. Chollet. (2015). Keras. [Online]. Available: http://keras.io
[70] F. Pedregosa et al., ‘‘Scikit-learn: Machine learning in Python,’’ J. Mach.

Learn. Res., vol. 12, pp. 2825–2830, Oct. 2011.
[71] O. Klimov and J. Schulman. (2017). Roboschool. [Online]. Available:

https://blog.openai.com/roboschool/
[72] J. MacGlashan. (2016). Brown-UMBC Reinforcement Learning and Plan-

ning (BURLAP). [Online]. Available: http://burlap.cs.brown.edu/
[73] B. Tanner and A. White, ‘‘RL-glue: Language-independent software

for reinforcement-learning experiments,’’ J. Mach. Learn. Res., vol. 10,
pp. 2133–2136, Sep. 2009.

[74] A. Makmal, A. A. Melnikov, V. Dunjko, and H. J. Briegel, ‘‘Meta-learning
within projective simulation,’’ IEEE Access, vol. 4, pp. 2110–2122, 2016.

[75] P. Abbeel and A. Y. Ng, ‘‘Inverse reinforcement learning,’’ inEncyclopedia
of Machine Learning. New York, NY, USA: Springer, 2011, pp. 554–558.

NGOC DUY NGUYEN received the M.S. degree
in computer engineering from Sungkyunkwan
University, Seoul, South Korea, in 2011. He is cur-
rently pursuing the Ph.D. degree with the Institute
for Intelligent Systems Research and Innovation,
Deakin University, Australia.

From 2011 to 2016, he was a Project Manager
and a Researcher with Iritech, Inc., Seoul, where
he was involved in the research and development
of world-leading biometrics and recognition sys-

tems. His research interest involves machine learning, optimization prob-
lems, and system design.

Dr. Nguyen received the Best Thesis Award funded by the Department of
Information and Communication Engineering, Sungkyunkwan University.

VOLUME 5, 2017 11

N. D. Nguyen et al.: System Design Perspective for Human-Level Agents Using Deep RL: Survey

THANH NGUYEN received the Ph.D. degree in
mathematics and statistics from Monash Univer-
sity, Australia, in 2013. He is currently a Research
Fellow with the Institute for Intelligent Systems
Research and Innovation, Deakin University, Aus-
tralia.

He was a Visiting Scholar with the Computer
Science Department, Stanford University, CA,
USA in 2015. He has published various peer-
reviewed papers in the field of computational and

artificial intelligence. His current research interests include applied statistics
and machine learning. He was a recipient of an Alfred Deakin Post-Doctoral
Research Fellowship in 2016.

SAEID NAHAVANDI (M’91–SM’07) received
the Ph.D. degree from Durham University, U.K.,
in 1991. He is an Alfred Deakin Professor, the
Pro Vice-Chancellor (Defence Technologies), the
Chair of Engineering, and the Director of the Insti-
tute for Intelligent Systems Research and Innova-
tion, Deakin University.

His research interests include the modeling of
complex systems, robotics, and haptics. He has
published over 600 papers in various international

journals and conferences. He is a fellow of the Engineers Australia and
Institution of Engineering and Technology.

He is the Co-Editor-in-Chief for the IEEE SYSTEMS JOURNAL, an Associate
Editor for the IEEE/ASME TRANSACTIONS ON MECHATRONICS and the IEEE
TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS: SYSTEMS, and an Editorial
Board Member of the IEEE ACCESS.

12 VOLUME 5, 2017

	INTRODUCTION
	PRELIMINARY
	REINFORCEMENT LEARNING AND MARKOV DECISION PROCESS
	THE BELLMAN EQUATION
	MONTE CARLO METHOD
	Q-LEARNING

	LITERATURE REVIEW
	DEEP REINFORCEMENT LEARNING
	MULTITASK DEEP REINFORCEMENT LEARNING
	MULTIAGENT DEEP REINFORCEMENT LEARNING
	ASYNCHRONOUS DEEP REINFORCEMENT LEARNING
	OTHER LIMITATIONS OF DQN AND RECENT SOLUTIONS
	NON-MARKOV MODEL
	CONTINUOUS RL PROBLEM
	OVERFITTING
	INTRINSIC MOTIVATION

	REINFORCEMENT LEARNING EVALUATION FRAMEWORKS
	OpenAI GYM
	THE BROWN-UMBC REINFORCEMENT LEARNING AND PLANNING (BURLAP)
	RL-GLUE
	THE ARCADE LEARNING ENVIRONMENT (ALE)

	SYSTEM ARCHITECTURE FOR A HUMAN-LEVEL AGENT

	DISCUSSIONS AND CONCLUSIONS
	REFERENCES
	Biographies
	NGOC DUY NGUYEN
	THANH NGUYEN
	SAEID NAHAVANDI

