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Abstract In the first part, the following mechanisms involved
in different forms of cell death are considered, with a view to
identifying potential therapeutic targets: tumour necrosis fac-
tor receptors (TNFRs) and their engagement by tumour necro-
sis factor-alpha (TNF-α); poly [ADP-ribose] polymerase
(PARP)-1 cleavage; the apoptosis signalling kinase (ASK)-c-
Jun N-terminal kinase (JNK) axis; lysosomal permeability;
activation of programmed necrotic cell death; oxidative stress,
caspase-3 inhibition and parthanatos; activation of
inflammasomes by reactive oxygen species and the develop-
ment of pyroptosis; oxidative stress, calcium dyshomeostasis
and iron in the development of lysosomal-mediated necrosis
and lysosomal membrane permeability; and oxidative stress,

lipid peroxidation, iron dyshomeostasis and ferroptosis. In the
second part, there is a consideration of the role of lethal and
sub-lethal activation of these pathways in the pathogenesis and
pathophysiology of neurodegenerative and neuroprogressive
disorders, with particular reference to the TNF-α-TNFR signal-
ling axis; dysregulation of ASK-1-JNK signalling; prolonged
or chronic PARP-1 activation; the role of pyroptosis and chron-
ic inflammasome activation; and the roles of lysosomal
permeabilisation, necroptosis and ferroptosis. Finally, it is sug-
gested that, in addition to targeting oxidative stress and inflam-
matory processes generally, neuropsychiatric disorders may re-
spond to therapeutic targeting of TNF-α, PARP-1, the Nod-like
receptor NLRP3 inflammasome and the necrosomal molecular
switch receptor-interacting protein kinase-3, since their wide-
spread activation can drive and/or exacerbate peripheral inflam-
mation and neuroinflammation even in the absence of cell
death. To this end, the use is proposed of a combination of
the tetracycline derivative minocycline and N-acetylcysteine
as adjunctive treatment for a range of neuropsychiatric
disorders.
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Introduction

Apoptosis and necrosis are two forms of cell death.
Apoptosis relies on an intracellular proteolytic cascade
which is essentially mediated by two types of caspases
(named after the fact that they are proteases with cysteine
at the active site and with aspartate targets), namely initiator
caspases (such as caspase-8 and caspase-9) and executioner
caspases (caspase-3, caspase-6 and caspase-7). Two impor-
tant mammalian pathways which can activate an initiator
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caspase are the extrinsic pathway and the intrinsic (or mi-
tochondrial) pathway [1]. Extrinsic apoptosis is activated
by the binding to death receptors of members of the tumour
necrosis factor (TNF) superfamily of cytokines, such as
TNF-α, fibroblast-associated cell surface (Fas) ligand
(FasL) and TNF-related apoptosis-inducing ligand
(TRAIL). In turn, this induces the formation of the death-
induced signalling complex (DISC), which in turn activates
caspase-8 (an initiator caspase). Activated caspase-8 acti-
vates caspase-3 (an executioner caspase), which executes
apoptosis. The activation of the extrinsic apoptotic pathway
can lead to the activation of the intrinsic apoptotic pathway,
which is dependent on the activity of mitochondria [2],
whereby activated caspase-8 cleaves the pro-apoptotic
Bcl2 homology (BH) domain BH-3-only protein Bid that
induces outer mitochondrial membrane permeabilisation
through the interactions of truncated Bid (tBid) with the
pro-apoptotic effector Bcl2 family proteins Bax/Bak,
resulting in the mitochondrial release of apoptogenic
cytochrome c, and other apoptosis inducing factors, such
as the second mitochondria-derived activator of caspases/
direct inhibitor of apoptosis (IAP)-binding protein
(SMAC/DIABLO) [3] into the cytoplasm. Translocation
of cytochrome c into the cytosol in turn initiates the assem-
bly of the heptameric apoptosome, containing Apaf-1 and
procaspase-9, resulting in the cleavage of the latter and
subsequent downstream activation of caspase-3 and apo-
ptotic death [4]. Notably, the intrinsic pathway of apoptosis
can be activated following oxidative damage to mitochon-
drial proteins, DNA damage and peroxidative damage to
cardiolipin and other mitochondrial membrane lipids driv-
en by excessive levels of reactive oxygen species (ROS)
and reactive nitrogen species (RNS). It is also important
to note that TNF-α engagement with TNF receptors
(TNFRs) can be anti-apoptotic in certain circumstances
and that several mechanisms driving caspase-independent
apoptosis also exist, which will be discussed below [5].

Given the acknowledged role of elevated TNF-α, ROS
and RNS in the pathogenesis and pathophysiology of neu-
rodegenerative disorders, it is unsurprising that copious
evidence exists describing activated or disorganised apo-
ptotic pathways and increased caspase activity in these
conditions [6–8]. There is also evidence of activated apo-
ptotic programmed cell death pathways in the frontal cor-
tex of patients with major depressive disorder (MDD),
and in the anterior cingulate cortex (ACC) and hippocam-
pus of patients with bipolar disorder (BD) and schizophre-
nia, which are increasingly described as neuroprogressive
conditions [9–11]. This form of cell death is held to be
responsible for the reduced neural and glial density seen
in the dorsolateral prefrontal cortex of MDD patients [12]
and in the ACC and hippocampus of patients with BD and
schizophrenia [13, 14].

Several research teams have demonstrated the existence of
ferroptosis, parthanatos, pyroptosis, necroptosis and lysosom-
al membrane permeability (LMP) as drivers of necrotic cell
death in at least some cells and tissues in Parkinson’s disease
(PD), Alzheimer’s disease (AD) and other neurodegenerative
diseases [15–19]. There is also some evidence implicating
lysosomal rupture in the formation of amyloid plaques, espe-
cially in AD [20]. This is unsurprising given that high levels of
TNF-α, oxidative and nitrosative stress characteristic of
neuroprogressive and neurodegenerative conditions
(reviewed in references [6, 7, 21]) are known to activate poly
[ADP-ribose] polymerase (PARP)-1 and the Nod-like receptor
NLRP3 inflammasome, provoke LMP, precipitate necroptosis
and exacerbate the development of ferroptosis [22–24].

There are numerous studies demonstrating that widespread
sub-lethal activation of the TNF-α, PARP-1 and NLRP3 sig-
nalling pathways, the presence of lysosomal dysfunction, iron
accumulation, lipid peroxidation and downregulation of pos-
itive inhibitors of ferroptosis singly and collectively play a
causative role in the pathophysiology and pathogenesis of
many if not all neurodegenerative diseases [19, 25, 26].
Activation of PARP-1 signalling, the NLRP3 inflammasome,
TNF-mediated inflammatory pathways, lysosomal dysfunc-
tion, lipid peroxidation and downregulation of positive inhib-
itors of ferroptosis have also been repeatedly demonstrated in
neuroprogressive disorders [10, 27–32]. There is also evi-
dence of iron dyshomeostasis in MDD and BD [33, 34], and
researchers have previously observed cellular iron accumula-
tion in at least some patients [35, 36]. The situation in schizo-
phrenia, however, is less clear. This is predominantly because
of the confounding effects neuroleptics have on the mecha-
nisms of iron homeostasis [37]. Iron accumulation in neurones
and microglia of patients with neuroprogressive conditions
would not be unexpected however given that elevated levels
of oxidative stress and neuroinflammation characteristic of
these conditions would be expected to provoke iron
dyshomeostasis. Such dysregulation could lead to iron accu-
mulation in microglia and neurones in at least some regions of
the brain [38–40].

Widespread activation of TNF-α, PARP-1, NLRP3 and
the necrosomal molecular switch receptor-interacting pro-
tein kinase-3 (RIPK3) in patients with neurodegenerative
and neuroprogressive diseases may be of importance from
the perspective of pathogenesis and pathophysiology as in-
creased activity of these molecular players can drive and/or
exacerbate peripheral inflammation and neuroinflammation
even in the absence of cell death [25, 41–43]. This may be
especially important in neuroprogressive disorders given
chronic neuroinflammation—characterised by activated
microglia—is an acknowledged source of impaired adult
neurogenesis and abnormalities in neurotransmitter sys-
tems, which are a recognised source of pathology [29, 44,
45]. Targeting the amelioration of these signalling
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pathways would seem to be a desirable therapeutic objec-
tive in addition to attempting to reduce oxidative stress and
inflammation. Accordingly, this review has three objec-
tives: First, to explain the mechanisms involved in the var-
ious forms of cell death with a view of identifying thera-
peutic targets; second, to outline the potential role that sub-
lethal and lethal activation of these pathways could play in
the pathogenesis and pathophysiology of neurodegenera-
tive and neuroprogressive illnesses; finally, to propose a
combination of minocycline and N-acetylcysteine (NAC)
as an adjunctive treatment for neuroprogressive conditions
focusing on their role in inhibiting molecular players in-
volved in a multitude of cell death pathways.

Apoptosis and necrosis are viewed as opposite ex-
tremes on a spectrum of cell death and can occur simulta-
neously in the same tissue [46, 47]. Necrosis can also take
place as a “backup” form of cell death upon failure of
caspase-dependent apoptotic mechanisms [48, 49]. This
is of importance as levels of TNF-α and ROS play a sig-
nificant role in determining whether programmed cell
death proceeds via apoptosis, whereby excessive levels
tend to promote cell death via necrosis while inhibiting
apoptosis [46, 47]. A major mechanism driving this pref-
erence for necrotic cell death in an environment of
prolonged and/or excessive inflammation and oxidative
stress is the inhibition of caspase activity and the subse-
quent collapse of cellular adenosine triphosphate (ATP)
generation [50]. This inhibition occurs because the activity
of caspases is dependent on the presence of thiol groups in
their catalytic sites which are an indispensable element in
their capacity to act as proteases and the fact that these
groups are exquisitely sensitive to oxidative or nitrosative
inactivation in an environment characterised by very high
levels of ROS and NO (reviewed by reference [1]).
Mechanistically, this phenomenon is underpinned by the
inhibition of processes such as proteasome-mediated deg-
radation and gene translation, which consume large
amounts of ATP by caspase activation following the insti-
gation of apoptotic machinery [50, 51]. With the inhibition
of caspase activity, these processes continue unchecked
leading to the collapse of cellular ATP levels which
prompts the switch from cell death by apoptosis to cell
death by necrosis [50]. One well-documented example of
this phenomenon is the inhibition of caspase-8 activity in
complex II formed during TNF-α-mediated apoptosis
which switches the mode of cell death to TNF-α-
mediated necroptosis, while another is the inhibition of
caspase-3 which leads to hyperactivation of PARP-1 in-
ducing the development of parthanatos (also known as
PARP-1-dependent cell death) [49]. We will now move
on to consider these processes in some more detail before
discussing other forms of cellular necrosis such as
pyroptosis, lysosome-mediated necrosis and ferroptosis.

Mechanisms Underpinning TNF-α-
and ROS-Mediated Apoptosis

Engagement of TNFRs by TNF-α

Following stimulation with TNF-α, the TNF receptor
TNFR1 translocates into lipid rafts and recruits TNFR-
associated protein 2 (TRAF2), the adapter protein
TNFR1-associated death domain protein (TRADD), cellu-
lar inhibitor of apoptosis protein (cIAP), the E3 ligase
linear ubiquitin chain assembly complex (LUBAC) and,
finally, receptor-interacting protein kinase-1 (RIPK1) to
the plasma membrane, resulting in the formation of a
transient signalling platform generally described as com-
plex I [52]. Once in situ, RIPK1 is multiply ubiquitinated
and phosphorylated by the E3 ligase LUBAC and cIAP
within lipid rafts, leading to rapid activation of nuclear
factor-κB (NF-κB) [53, 54] and several downstream
anti-apoptotic proteins, such as cellular FLICE (Fas-asso-
ciated death domain-like IL-1β-converting enzyme)-like
inhibitory protein (cFLIP) [52]. Importantly, the
ubiquitination status of RIPK1 is an essential element in
maintaining NF-κB activation and the stable anchorage of
the kinase at the plasma membrane [52, 55]. As such,
RIPK1 deubiquitination is mediated by a range of multi-
ple deubiquitinating enzymes (DUBs) such as A20 and
cylindromatosis (CYLD), which are upregulated by
NF-κB at excessive intracellular concentrations of
TNF-α [56, 57]. This inhibits NF-κB signalling, leading
to the dissociation of the kinase into the cytoplasm to act
as the initial recruiting molecule for the formation of a
cytosolic DISC generally described as complex II. This
cytosolic signalling platform is comprised of RIPK1, cas-
pase-8, FADD and cFLIP recruited from the cytosol [52,
58]. Here, levels of caspase-8 are deterministic of down-
stream events. Adequate levels of caspase-8 activate
caspase-3 and further downregulate NF-κB signalling by
proteolytic cleavage of RIPK1 [59].

Role of PARP-1 Cleavage

Caspase-8 and FADD in tandem inhibit necroptosis by
inhibiting the activity of RIPK1 and RIPK3 and CYLD
and promote the advent of apoptosis via the cleavage of
PARP-1 [58, 60]. Cleavage of PARP-1 by caspase-3 is held
to be a universal hallmark of apoptotic cell death [61, 62].
Interestingly, virtually every caspase displays the capacity
to inhibit PARP-1, albeit in vitro [63]. Cleavage of PARP-1
by caspase-3 leads to the formation of two catalytic sub-
units of 89 and 24 kDa with the former exiting into the
cytosol and the latter being retained in the nucleus [64,
65] where its binding to DNA inhibits the activity of
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PARP-1 abrogating DNA repair but conserving levels of
ATP, thereby favouring the development of apoptosis [66].

Role of the ASK-JNK Axis

TNF-α-mediated apoptosis is also dependent on ROS pro-
duction following TNFR engagement [67] and subsequent
activation of apoptosis signalling kinase-1 (ASK-1).
Briefly, elevated levels of ROS provoke the disengage-
ment of thioredoxin which is attached to ASK-1 in phys-
iological conditions and acts to inhibit its activity [68].
Once activated, this kinase phosphorylates the down-
stream mitogen-activated protein kinase (MAPK) c-Jun
N-terminal kinase-1 (JNK1), which is the effector mole-
cule of an apoptotic cascade [69–71]. The sustained apo-
ptotic activity of JNK1 is dependent on TRAF2 and
RIPK1 activity and the formation of a TRAF2/RIPK1/
JNK1 signalling complex at the plasma membrane [72].
Mechanistically, RIPK1 and TRAF2 are recruited to lipid
rafts in an environment of chronic oxidative stress where
they associate with JNK1 recruited from the cytoplasm
[72–74]. Once endocytosed, this signalling complex en-
ables the detrimental effects of JNK on mitochondrial
membranes to take place and increases the activity of
PARP-1, leading to nicotinamide adenine dinucleotide
(NAD+) depletion in the cytosol [74, 75].

Role of Increased Lysosomal Permeability

TNF-α-mediated apoptotic signalling triggers lysosomal
permeabilisation and the subsequent release of lysosomal
proteinases known as cathepsins into the cytoplasm; this
involvement of cysteine-dependent cathepsins in the cyto-
plasm secondary to the development of lysosomal
permeabilisation plays a significant role in the develop-
ment of apoptosis [76–78]. Some debate remains as to
the major mechanisms underpinning the pro-apoptotic role
of cathepsins, but the weight of evidence suggests that their
role in caspase-dependent apoptosis may be limited to cas-
pase activation while cathepsins B, L and D would appear
to be pivotal players in instigating or exacerbating caspase-
independent cell death in the brain [79]. Some cathepsins,
such as cathepsin D, have the capacity to induce mitochon-
drial membrane permeabilisation and mitochondrial per-
meability transition via proteolytic activation of the Bcl-2
family members Bid, Bax and Bak. This results in Bax/Bak
activation, the formation of pores in the outer mitochondri-
al membrane and the escape of cytochrome c, apoptosis-
inducing factor (AIF) and SMAC/DIABLO from the inter-
membrane space into the cytoplasm triggering apoptotic
death [80–82].

Mechanisms Underpinning Non-apoptotic
Programmed Cell Death

Increased Levels of ROS and TNF-α and the Activation
of Programmed Necrotic Cell Death

In an environment where caspase-8 activity (in complex II,
formed following TNF ligation of TNFR; as described above)
is inhibited by cIAP, increased oxidative stress or post-
translational modifications [1], complex II is unable to initiate
intrinsic apoptosis or inhibit the activity of RIPK1 and RIPK3
[83] . In such circumstances , RIPK1 and RIPK3
autophosphorylate and transphosphorylate with one another
to form a complex described as the necrosome. In addition
to containing RIPK1 and RIPK3, this cytosolic structure also
includes cIAP and the mixed lineage kinase domain-like pro-
tein (MLKL) [84, 85]. The conditional DUBs CYLD and A20
deubiquitinate RIPK1 [52, 86, 87]. RIPK1 subsequently phos-
phorylates RIPK3, which in turn phosphorylates MLKL lead-
ing to its oligomerisation [87, 88]. This change in MLKL
conformation triggers recruitment to the plasma membrane.
Once in situ, it obtains anchorage by binding negatively
charged phosphatidylinositol phosphate (PIP), before
translocating into lipid rafts. Here, it induces the type of ne-
crosis known as necroptosis, by triggering Na+ and Ca2+ in-
flux into the cell [87].

Considerable evidence now exists suggesting that ROS
have a direct role in driving necroptosis and apoptosis via
routes which are independent of caspase activation [89]. For
example, several research teams have reported that excessive
levels of TNF can induce a large increase in mitochondrial
ROS production which enhances necrosome formation (see,
for example, reference [90]). Indeed, recent evidence suggests
that physiologically elevated levels of mitochondrial ROS
production are an essential element in RIPK3 recruitment into
the necrosome [91]. The indispensable role ROS play in en-
abling or driving TNF-α-induced apoptosis or necroptosis is
further emphasised by data demonstrating that these forms of
cell death are inhibited by the administration of free radical
scavengers even in an environment where extracellular and
intracellular TNF-α levels are excessive [92, 93] (review by
reference [91]).

Increased Oxidative Stress, Caspase-3 Inhibition
and Development of Parthanatos

Increased levels of oxidative stress and the subsequent inhibi-
tion of caspase-3 lead to persistent PARP-1 hyperactivation.
This promotes excessive consumption of NAD+ and the ex-
haustion of cellular ATP, leading to necrotic cell death
[94–96]. Mechanistically, this form of caspase-independent
programmed necrosis involves the sequential activation of
PARP-1, calpains, Bid- and Bax-induced mitochondrial
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membrane depolarisation, mitochondrial permeability transi-
tion pore opening and efflux of AIF into the cytoplasm and
ultimately the nucleus [97, 98]. Once in the nucleus, AIF
associates with the phosphorylated histone H2AX to form a
DNA-degrading complex that induces chromatinolysis and
cell death by parthanatos [99]. Importantly, while direct de-
pletion of NAD+ by PARP-1 is responsible for a catastrophic
decline in ATP generation and efflux of AIF is mediated by
calpain, the initial signalling of PARP-1 to mitochondria is
mediated by the downstream activation of JNK1 [100] (re-
view by reference [101]).

Activation of Inflammasomes by ROS
and the Development of Pyroptosis

ROS can activate the complex cytosolic multiprotein signal-
ling platforms known as inflammasomes [23, 102]. Typically,
these structures are composed of sensor and adaptor proteins
and the zymogen procaspase-1, with the latter processed into
active caspase-1 following inflammasome complex assembly
[103]. Caspase-1 in turn cleaves the zymogen forms of inter-
leukins IL-1β and IL-18 leading to their activation and the
development or exacerbation of inflammation and in many
cases pyroptotic cell death [103, 104]. Inflammasome activa-
tion can also lead to pyroptotic cell death via caspase-1- and
caspase-11-mediated cleavage of the cytoplasmic protein
gasdermin D (Gsdmd) and other cell death mediators whose
actions are not currently understood [105, 106]. Pyroptosis
induces rapid plasma membrane rupture and excessive release
of pro-inflammatory cytokines (PICs) and chemokines which
may aggravate inflammation-mediated neuronal death [107,
108]. These molecular players are also mediators of activated
leucocyte recruitment from the periphery which exacerbate
inflammatory responses causing severe central nervous sys-
tem (CNS) tissue damage in neuropathological conditions. As
these factors have been shown to mediate the recruitment of
other immune cells from the peripheral circulation, an abun-
dance of leukocytes is attracted to the inflammation sites, and
subsequent inflammatory responses can cause severe tissue
damage in the CNS under neuropathological conditions [109].

In the case of activation of the inflammasomes NLRP3 and
absent in melamoma-2 (AIM-2) however, the execution of
this form of lytic and inflammatory cell death is not inevitable,
as mechanisms exist that can inhibit the signalling of and
accelerate the clearance of these complexes [110]. Notably,
chronic low level activation of NLRP3 plays a major causative
role in the pathogenesis and pathophysiology of a range of
autoimmune, metabolic, neurological and neuroprogressive
illnesses (review by references [111, 112]). The assembly
and performance of inflammasomes is regulated by an almost
bewildering array of enzymes, including, but not limited to
inhibitory kappa-B kinase-1 (IKK1), IKK2, LUBAK and
JAK1 (see reference [110]). Importantly, given the levels of

nitrosative and oxidative stress seen in patients with
neuroprogressive disorders, inflammasome activity can also
be regulated by levels of nitric oxide-induced protein S-
nitrosylation [113]. This is also true of caspase-1 activity,
which may be inactivated in such a cellular environment
[114] and which may also partly explain how NLRP3 activa-
tion in these circumstances may have a range of sub-lethal
consequences in at least some regions and tissues in the brain.
While oxidative stress clearly plays a role in inflammasome
activation, high levels of ROS and NOS and/or the develop-
ment of calcium dyshomeostasis can also induce LMP in
some circumstances, leading to another “explosive” form of
cell death described as lysosomal-mediated necrosis (LMN),
described in the following section.

Oxidative Stress, Calcium Dyshomeostasis and Iron
in the Development of LMN and LMP

LMN is another form of cell death largely mediated by the
lethal proteolytic effects of cysteine cathepsins entering the
cytosol following complete lysosomal membrane rupture
[115–117]. This form of cell death is characterised by the
proteolysis of several crucial inflammatory protein zymogens,
such as caspase-1 and IL-1, and severe damage to the cell
plasma membrane via indeterminate mechanisms [117].
Lysosomal rupture may also occur as an upstream event in
at least some forms of apoptosis [118, 119]. The weight of
evidence would suggest that the degree and perhaps the speed
of lysosomal rupture may be decisive with moderate lysosom-
al rupture inducing apoptosis, while pronounced lysosomal
leakage results in necrosis devoid of caspase activation
[120]. The mechanisms underpinning this dichotomy are not
fully understood, but accumulating evidence suggests that the
massive influx of low molecular mass iron into the cytosol
secondary to complete lysosomal rupture results in the inacti-
vation of functional cysteine thiol groups in the catalytic site
of procaspase-9, thereby preventing its activation [121, 122].

Several members of the cathepsin family are involved in
mediating LMN depending on the nature of cytotoxic stimuli
involved. For example, cathepsins S and B enable alum (alu-
minium hydroxide)-mediated necrosis and the development of
adaptive immunity following immunisation [123–125], while
cathepsin D mediates LMN following lysosomal permeability
driven by high levels of intralysosomal iron [126]. Given the
redox-active nature of intralysosomal iron ions, and their ability
to engage in the Fenton reaction with hydrogen peroxide, it is
unsurprising that rapid release of intralysosomal iron into the
cytosol following lysosomal rupture is a significant driver of cell
death, either alone or in synergy with other oxidative drivers of
DNA damage and LMP [127–129]. Increased iron accumula-
tion within cellular lysosomes and in other cellular compart-
ments is held to be a major contributing factor in ferroptosis.
In this context, it is noteworthy that high levels of ROS, RNS
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and TNF-α are key drivers of iron dyshomeostasis, which con-
sequentially leads to intracellular iron accumulation [39, 130,
131]. There are many factors involved in the development of
ferroptosis outside of iron dyshomeostasis however, and this
form of cell death appears to be unique in that genetic suscepti-
bility seems to have a major influence. We will consider this
element, as well as the other factors driving ferroptotic cell death
in the next section.

Oxidative Stress, Lipid Peroxidation, Iron
Dyshomeostasis and Ferroptosis

Ferroptosis is characterised by the accumulation of iron and
lipid hydroperoxides and their metabolites in the cytosol and
is effected by fatal peroxidation of polyunsaturated fatty acids
(PUFAs) in the plasma membrane [132–135]. There is con-
siderable evidence implicating disturbed iron homeostasis in
ferroptosis; for example, impaired iron regulatory protein 2
(IRP2) activity coupled with unusually high levels of the
transferrin receptor, transferrin and mitochondrial ferritin has
been linked with this process [88, 132, 136]. Some other ele-
ments which appear to be peculiar to the process of ferroptosis
include the need for active lysosomes [137] as well as the
involvement of mitochondrial glutaminase-2 and subsequent
glutaminolysis [26, 132, 138]. In addition, several mitochon-
drial genes are associated with the development of this form of
cell death, and there is evidence suggesting peroxidation of
cardiolipin [26, 139]. Despite this, mitochondrial ROS, calci-
um dyshomeostasis and the interaction of truncated Bid, Bax
and Bad do not appear to be triggers of ferroptosis [24, 140].

Recent evidence also indicates that the increased activity of
certain types of lipoxygenase (LOX), most notably 15-LOX,
and subsequent oxidation of arachidonic acid and
phosphatidylethanol are indispensable elements in the induc-
tion of ferroptotic cell death [134, 141, 142]. Ferroptosis is
negatively regulated by nuclear factor (erythroid-derived 2)-
like 2 (Nrf2 or NFE2L2 or NF-E2-related factor 2), glutathi-
one, glutathione peroxidase-4 and the glutamate/cystine
antiporter system and positively regulated by NADPH oxy-
genase and p53 [26]. Lipoxygenase-mediated peroxidation of
PUFAs, with the resultant production of oxidised phosphati-
dylethanolamine and the two fatty acyls, arachidonoyl and
adrenoyl, coupled with the mediation by the acyl-CoA syn-
thetase long-chain family member ACSL4 of the production
of 5-hydroxyeicosatetraenoic acid, would appear to be the
ultimate executioners of ferroptosis [134, 142, 143]. It would
also appear that the lipid composition of the lipid membrane is
an important factor, with an increased concentration of long-
chain omega-6 PUFAs conveying particular risk [144]. This is
important given evidence now suggests that the level of
ACSL4 might well dictate the sensitivity towards the devel-
opment of ferroptosis by influencing the lipid composition of
the cell membrane [144]. Individual differences in the activity

of ACSL4 might in part explain the strong genetic component
in the sensitivity to ferroptosis, and manipulation of this en-
zyme may ultimately offer an appropriate therapeutic inter-
vention [141, 144].

The role of iron in this process remains a matter of debate
[145]; however, iron dyshomeostasis would appear to be in-
volved, and there is evidence that ferroptosis includes
ferritinophagy and subsequent release of redox-active iron
into the cytosol via the nuclear receptor co-activator 4
(NCOA4)-regulated autophagy pathway [26, 143]. There is
also some evidence that iron-mediated activation of phosphor-
ylase kinase G2 (PHKG2) directly mediates lipoxygenase-
mediated peroxidation of PUFAs leading to the accumulation
of lethal hydroperoxides, but this datum is yet to be replicated
[134]. Finally, a recent study conducted by Muller and col-
leagues produced data suggesting that ferroptosis and
necroptosis are two alternative cell death pathways and inhi-
bition of one provokes induction of the other [146]. Themech-
anisms underpinning this phenomenon are yet to be delineated
however.

Having examined the mechanisms involved in cell death
mediated by TNF-α, ROS and RNS, we now turn our atten-
tion to the second objective of the paper, namely an examina-
tion of the potential roles of these cell death pathways both at
lethal and sub-lethal levels of activation in the pathogenesis
and/or physiology of neuroprogressive and neurodegenerative
conditions.

Putative Involvement of Cell Death Machinery
in the Pathogenesis and Pathophysiology
of Neurodegenerative and Neuroprogressive
Illnesses

The TNF-α-TNFR Signalling Axis

High levels of TNF-α are found in the brains and cerebrospi-
nal fluid (CSF) of patients with PD and AD and are implicated
in the pathogenesis and pathophysiology of both illnesses
[147–150]. Consistent with this, increases in TNFR1 activity
and decreases in TNFR2 activity have also been frequently
reported in both diseases [150–152]. There would appear to be
a difference in the distribution of this abnormal brain TNFR
activity in these two conditions however, with this phenome-
non being widespread in AD patients but confined to the
substantia nigra in patients diagnosed with PD [152]. The
importance of increased TNF-α and TNFR1 activity in the
pathogenesis of AD is highlighted by data suggesting that
levels of TNFR1 activity are predictive of the transition be-
tween mild cognitive impairment and AD [153]. It is also
interesting to note that TNFR1 activity is predictive of the
development of neurocognitive disturbance in PD, but there
would appear to be no published research investigating
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TNFR1 activity and the severity of motor symptoms [154].
There would also appear to be a dearth of data investigating
TNFR activity in other chronic neurodegenerative diseases,
although levels of TNFR1 and TNFR2 activity are abnormal
in the animal model of multiple sclerosis (MS), described as
experimental autoimmune encephalomyelitis [152].

Elevated TNF-α levels and TNFR1 activity are also seen in
the brain and periphery in MDD, and the connection between
TNF signalling and illness progression and severity is well
documented [155, 156]. Interestingly, while TNF-α levels are
elevated in all phases of BD, TNFR activity would appear to
differ from that observed in MDD with elevations in the levels
of TNFR1 and TNFR2 activity being a replicated finding even
in patients during the euthymic phase of the illness [157].
Unsurprisingly, TNFR1 activity is also elevated in patients
who have received a diagnosis of schizophrenia [158], and
there are data demonstrating that increased levels of TNF-α
are associated with acute exacerbations of this illness [159].

Dysregulation of ASK-1-JNK Signalling

Dysregulated JNK signalling is implicated in the pathophysi-
ology of PD [160] and AD [161], by facilitating dopaminergic
neuronal death and modulating the activity of p53 upregulated
modulator of apoptosis (PUMA), respectively [162]. As well
as regulating neuronal apoptosis, JNKs also regulate brain
morphogenesis and the architecture of dendrites during neural
development and govern crucial neurone-specific activities
such as the formation of long-term memory and synaptic plas-
ticity (review by reference [163]). Data implicating JNK1 in
the regulation of dendrite arborisation in the cerebellum [164]
and hippocampus [165] are of particular interest as over-
growth of dendrites during development is associated with
the pathogenesis of schizophrenia and autism spectrum disor-
ders [166]. Moreover, there is direct evidence of JNK1 signal-
ling abnormalities in both conditions [167, 168]. For example,
genetic risk for schizophrenia is associated with the JNK path-
way [168], and the activity of JNK1 in the cerebral cortex is
heavily reliant on a kinase with genetic locus 16p11.2, a well-
documented genetic susceptibility locus for schizophrenia and
indeed autism [167, 169]. Furthermore, the interleukin-1 re-
ceptor accessory protein like-1 gene, implicated in autism,
transduces signals via JNK activation [170]. It is also worthy
of note that loss of function of some JNK family members
owing to chromosomal translocations is associated with the
development of intellectual disability [166, 171].

ASK-1 is activated by oxidative stress, nitrosative stress,
endoplasmic reticulum (ER) stress, PICs, lipopolysaccharide
(LPS) and Ca2+ influx [172] and plays a pivotal role in cell
differentiation and the development of chronic inflammation
as well as having a well-documented role in driving apoptosis
[173]. This kinase acts as a major vehicle for the direct trans-
duction of ROS signalling to downstream targets, and its level

of activity influences both the rate of progression and the
severity of several neurodegenerative diseases [174, 175].
For example, an amyloid beta-mediated increase in ASK-1-
JNK1 activity appears to be an important element driving
neuronal death in AD [176], while ASK-1-JNK1-mediated
dopaminergic neuronal death appears to be involved in the
pathogenesis of PD [177]. More generally, ASK-1 activation
plays a significant role in driving the pathophysiology of nu-
merous diseases involving grossly dysfunctional cellular re-
sponses to the advent of ER stress and oxidative stress [178].

Prolonged or Chronic PARP-1 Activation

Unsurprisingly, several research teams have adduced evidence
of caspase-3-mediated cleavage of PARP-1 in a number of
neurological conditions such as MS and AD, and the process
is also implicated in the development of N-methyl-D-aspartate
(NMDA) receptor-mediated excitotoxicity (review by refer-
ence [179]). PARP-1 mediates the transfer of poly-adenosine
diphosphate (poly-ADP) from NAD+ to DNA thereby pro-
voking chromatin remodelling and changes in DNA methyl-
ation and histone acetylation and thus acting as an epigenetic
regulator of gene transcription. Furthermore, PARP-1 alsome-
diates the transient attachment of poly-ADP to target proteins
thereby acting as a post-translational regulator of protein func-
tion [180, 181]. From the perspective of this paper, it is of
particular interest that PARP-1 activity regulates the activation
levels and differentiation patterns of T and B lymphocytes, via
the regulation of transcription factors such as nuclear factor of
activated T cells (NFAT) and the activity of inflammatory
pathways in response to acute or chronic cellular stressors
[182]. In particular, increased PARP-1 activity sustains the
production and activity of PICs such as TNF-α and IL-1β,
chemokines such as macrophage inflammatory protein (MIP)-
2 (also known as chemokine (C-X-C motif) ligand 2
(CXCL2)), and selectins in the periphery and in glial cells of
the brain [183].

Apart from its well-documented role in DNA damage re-
pair, PARP-1 modulates many processes in glial cells contrib-
uting to the development of neuroinflammation [184, 185].
For example, PARP-1 is an indispensable binding partner in
the NF-κB-mediated activation of microglia and in enabling
the transcription of inflammatory molecules such as IL-1β,
TNF-α and NO [184, 186]. PARP-1 also regulates the activa-
tion of astrocytes and their production of inflammatory cyto-
kines and chemokines [185]. Furthermore, the activation of
PARP-1 in astrocytes leads to profound bioenergetic depletion
in these glia and subsequent inhibition of glutamate reuptake,
thereby contributing to the development of NMDA receptor
excitotoxicity, which is a feature of neuroprogressive diseases
[187]. PARP-1 also exerts a number of physiological roles in
the CNS and its levels are regulated by neural activity [188,
189]. The weight of evidence suggests that this transcription
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factor plays an important role in the consolidation and
reconsolidation of long-term memory and is particularly in-
volved in the extinction of contextual fear memory [190].

Role of Pyroptosis and Chronic Inflammasome Activation

Pyroptosis has been observed in microglia, astrocytes and
neurones [191, 192]. Moreover, several authors have reported
the involvement of abnormal levels of NLRP3 signalling in a
wide range of neurological disorders [193–195]. For example,
increased activity of NLRP3 and caspase-1 in the brains of
AD patients has been repeatedly reported [194, 196].
Similarly, other research teams have reported increases in
the expression and activity of NLRP3, IL-1β, IL-18 and
caspase-1 in plaques of MS patients and the tissues of amyo-
trophic lateral sclerosis (ALS) (or motor neurone disease) pa-
tients [195, 197–199].

Increased levels and activity of caspase-1, IL-1β and IL-18
have also been recorded in several disorders characterised by
the existence of chronic neuroinflammation [200–202].
Importantly, from the perspective of generating pathology,
both IL-1β and IL-18 bind to their respective cognate recep-
tors on neurones, microglia and astrocytes, thereby triggering
a highly complex pattern of inflammatory signalling pathways
culminating in increased transcription of pro-inflammatory
genes [19]. The activation of these pathways and increased
transcription of these genes are also associated with the devel-
opment of cognitive decline and the development of long-term
neuroprogressive illnesses [203]. Additionally, there is evi-
dence suggesting that NLRP3 activation in microglia is a driv-
er of neuroinflammation in MDD [28, 204] and a source of
chronic immune activation and mitochondrial complex I dys-
function seen in the brains of patients with BD and schizo-
phrenia [205, 206]. Finally, it should be emphasised that
NLRP3 activation is increasingly recognised as being a caus-
ative factor in the inflammation, mitochondrial dysfunction
and chronic oxidative stress seen in autoimmune and
autoinflammatory diseases (review by reference [207]).

Role of Lysosomal Permeabilisation

LMN is another form of cell death largely mediated by the lethal
proteolytic effects of cysteine cathepsins entering the cytosol
following the development of lysosomal permeabilisation
[115–117]. LMN is characterised by proteolysis of several cru-
cial (pro-)inflammatory zymogens such as caspase-1 and IL-1
and severe damage to the cell plasma membrane via unclear
mechanisms [117]. Several members of the cathepsin family
are involved in mediating LMP depending on the nature of the
cytotoxic stimuli involved. For example, cathepsins S and B
enable alum-mediated necrosis and the development of adaptive
immunity following immunisation [123–125]. In the absence of
such external stimuli, however, lysosomal permeabilisation is

mediated by high levels of oxidative stress, increased activity
of calpains and unusually high lysosomal iron content [126, 208,
209]. Recent evidence also indicates that LMP in vivo is depen-
dent on the activity of the protein signal transducers and activa-
tors of transcription-3 (Stat3) [210]. The importance of
intralysosomal iron load in this form of cell death is emphasised
by data revealing that cathepsin D mediates cell death following
LMP driven by high levels of intralysosomal iron [126]. This is
consistent with the weight of evidence indicating that that rapid
release of intralysosomal iron into the cytosol following such
lysosomal rupture is a major driver of cell death either alone or
in synergy with other oxidative drivers of DNA damage and
lipid membrane permeabilisation [128, 211, 212].

LMP is a potentially lethal event because the ectopic pres-
ence of lysosomal proteases in the cytosol causes the digestion
of vital proteins and the activation of additional hydrolases
including caspases. The latter process is usually mediated in-
directly, through a cascade in which LMP causes the proteo-
lytic activation of Bid (which is cleaved by the two lysosomal
cathepsins B and D). Bid activation then induces mitochon-
drial outer membrane permeabilisation, resulting in cyto-
chrome c release and apoptosome-dependent caspase activa-
tion. However, massive LMP often results in cell death with-
out caspase activation; this cell death may adopt a
subapoptotic or necrotic appearance [209].

Perhaps the strongest evidence of the involvement of frank
lysosomal rupture in the pathogenesis of a neurodegenerative
disease has been provided by the finding that lysosomal dys-
function is associatedwith AD and that lysosomal dysfunction
is also associated with both the formation of β-amyloid pep-
tide (Aβ) and the hyperphosphorylation of tau protein; two of
the most important neuropathological features of AD are am-
yloid plaques and neurofibrillary tangles, which are caused by
dysfunction and accumulation of Aβ and abnormally phos-
phorylated tau, respectively (review by reference [213]).
There is also some evidence to support the view that lysosom-
al rupture induced by α-synuclein is a cause of dopaminergic
neuronal death in PD [214]. More generally, LMP is increas-
ingly regarded as a major driver of ROS-mediated cell death
[209, 215], and calpain-mediated LMP is considered to be a
major element in the development of pathological lysosomal
dysfunction and neuronal necrosis characteristic of most, if
not all, neurodegenerative diseases [208, 216, 217] (review
by reference [218]). However, there would appear to be no
published data investigating the potential existence of LMP as
a source of pathology in neuroprogressive disorders despite
the presence of chronic oxidative stress, increased calpain ac-
tivity and lysosomal dysfunction [219, 220].

Role of Necroptosis

There is widespread evidence of necroptosis in a broad array
of neurological, neuroprogressive, autoimmune and other
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inflammatory diseases, as this process is the source of extra-
cellular damage-associated molecular patterns (DAMPs) such
as high-mobility group box 1 (HMGB1), S100B and mito-
chondrial DNA seen in all these conditions [51, 221, 222].
The production of DAMPs is of prime importance as these
molecules activate pathogen recognition receptors on antigen-
presenting cells, leading to the chronic activation of immune
and inflammatory pathways. DAMP production therefore is a
major driver of the chronic inflammation, immune activation
and oxidative stress seen in illnesses ranging from AD, to
systemic lupus erythematosus (SLE) to MDD [223, 224].
While DAMPs play a role in the pathogenesis and pathophys-
iology of an extensive array of medical conditions (review by
references [225, 226]), the role extracellular mitochondrial
DNA plays in initiating and maintaining what has been de-
scribed as the “neuroinflammation-neurodegeneration alli-
ance”—which drives the progression of neurodegenerative
diseases—is particularly pertinent for the matters considered
in this paper [227, 228]. DAMPs such as mitochondrial DNA,
S100B and the 70-kDa heat shock proteins (HSP70s) are also
a major cause of chronic immune activation in BD [229],
schizophrenia [230] and MDD [45, 223]. Defective caspase-
8 activation and increased levels RIPK1, RIPK3 and MLKL
have been demonstrated in the cortical lesions of MS patients
post-mortem [231] and would appear to be the major driver of
exocytotic neuronal death, particularly as far as hippocampal
neurones are concerned [232].

The Role of Ferroptosis

Rapidly accumulating data suggest that ferroptosis is an im-
portant mediator of cell death in PD and AD [233–235].
Furthermore, there is mounting evidence that the processes
underpinning this form of cell death, such as decreased gluta-
thione and glutathione peroxidase-4 (GPx-4) levels, are in-
volved in the pathogenesis and pathophysiology of BD [236,
237], schizophrenia [237–239] and MDD [237, 240] (review
by reference [241]). Readers interested in the classification of
lipid endoperoxides and hydroperoxides and the mechanisms
underpinning their production and toxic effects such as induc-
ing lipid membrane permeabilisation, producing toxic alde-
hydes and acting as precursor molecules for inflammatory
prostaglandins are invited to consult excellent reviews on the
subject by references [242, 243].

Minocycline and NAC as Therapeutic Inhibitors
of Cell Death Machinery

Minocycline

The capacity for minocycline to provide neuroprotection and
ameliorate neuroinflammation in vivo has been established by

several research teams utilising various animal models of neu-
rodegenerative conditions, such as AD [244], PD [245], ALS
[246], Huntington’s disease [247] and MS [248, 249] (review
by reference [250]). Putative mechanisms underpinning these
effects include the inhibition of microglial activation and pro-
liferation [251, 252]. Unsurprisingly, there are also consider-
able data demonstrating that minocycline also suppresses
microglial production of IL-1β, IL-6, TNF, NADPH oxidase
and inducible nitric oxide synthase (iNOS), as well as
inhibiting T cell egress into the brain [246, 253–255]. The
mechanisms whereby minocycline therapy reduces microglial
activity and neuroinflammation remain to be fully elucidated,
but it would appear that inhibition of p38/MAPK and
metalloproteinase-9 plays a pivotal role [251, 252, 256].

Minocycline inhibits apoptotic and necrotic cell death
in vivo via a range of different mechanisms including the
direct inhibition of caspase-1 and caspase-3 in the cytosol
[247, 257]. Many of the anti-apoptotic effects of this tetracy-
cline derivative occur at the level of the mitochondria. One
important example is the prevention by minocycline of Ca2+

uptake into mitochondria, thereby preventing the develop-
ment of permeability transition and the collapse of the trans-
membrane potential difference. This resultantly prevents the
release of pro-apoptotic molecules such as cytochrome c,
SMAC/DIABLO and AIF into the cytosol [258–260].
Minocycline also modulates levels of Bcl2 [261, 262], nor-
malises the Bax/Bcl2 ratio [263] and also inhibits the activity
of Bid, thereby preventing the downstream activation of
caspases 3, 8 and 9 [8, 264–266]. It should be noted, however,
that these cytoprotective effects of minocycline may be re-
placed by toxic effects when cells are exposed to low doses
of minocycline (around 50 to 100 μM), which occur at the
expense of impaired mitochondrial function and decreased
ATP production at these lower concentrations, owing to
minocycline-induced reductions in levels of cytochrome c
and NAD+ and in activity of enzymes of the electron transport
chain [267, 268].

There is also in vivo evidence suggesting that minocycline
may have the capacity to mitigate pyroptosis via direct inhi-
bition of PARP-1 activity [266, 269] as well as the ability to
chelate Ca2+, which may suppress the activation of several, if
not all, members of the calpain family [270–272].
Additionally, Shahzad and colleagues recently reported that
minocycline stabilises endogenous Nrf2 by reducing its levels
of ubiquitination leading to the inhibition of an NLRP3-
inflammasome-induced rodent model of diabetic nephropa-
thy. This is of interest given the acknowledged role of Nrf2
inhibition in the development of ferroptosis [24, 273]. In this
context, it is also worth noting that the capacity for
minocycline to inhibit the development of lipid peroxidation
in vivo has also been established in several studies [274, 275].
Several research teams have also adduced evidence demon-
strating that minocycline attenuates iron overload following
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experimental induction of intracerebral haemorrhage in ro-
dents [138, 276, 277]. This reduction in cellular iron levels
was accompanied by lowered levels of haem oxygenase-1,
transferrin and non-haem iron in the brain, and ferritin in the
systemic circulation. Importantly, the reduction in iron load
also led to a significant reduction in objective measures of
CNS damage and a significant increase in the integrity of the
blood-brain barrier [138, 276, 277].

Rodent studies indicate that 50 mg/kg of minocycline has
the capacity to reduce the anhedonia and sickness behaviour
secondary to LPS-induced microglial activation and subse-
quent neuroinflammation via the reduction in levels of inflam-
matory mediators and in indolamine-2,3-dioxygenase (IDO)
[253, 278]. This is of particular interest given the results of a
recent human trial investigating the therapeutic potential of
200 mg daily minocycline for 3 months as an adjunctive treat-
ment for MDD, which reported significant improvements in a
range of clinical parameters although not in the primary end-
point [279]. These results are very similar to, although some-
what better than, those obtained by the use of NAC as an
adjunctive treatment for MDD in an earlier study [280]. This
may be particularly pertinent given evidence that co-
administration of NAC and minocycline had synergistic ef-
fects on the attenuation of neuroinflammation in a rodent
model of traumatic brain injury, superior to the either prepa-
ration alone [281]. This area appears to be worthy of further
investigation and may offer a way forward where the proper-
ties unique to each molecule may provide the basis for combi-
nation therapy for MDD and possibly other neuroprogressive
disorders. Accordingly, we will now discuss the possible con-
tribution of NAC in reducing levels of ROS and TNF-α and in
inhibiting various molecular players and pathways underpin-
ning the machinery of cell death.

NAC

Numerous researchers investigating the use of NAC supple-
mentation in animal and human studies have published find-
ings affirming the anti-inflammatory, antioxidant and
cytoprotective properties of NAC in vivo [282–284]. These
findings include increased glutathione, reduced levels of ROS
as evidenced by decreased levels of hydrogen peroxide and
hydroxyl radicals, reduced levels of lipid peroxidation evi-
denced by reduced levels of malondialdehyde and 4-hy-
droxy-2-trans-nonenal, together with restored calcium ho-
meostasis and decreased calcium ion entry into mitochondria
[285–288]. Such supplementation also leads to improved mi-
tochondrial performance as evidenced by increased ATP pro-
duction, increased mitochondrial membrane potential differ-
ence and increased outer mitochondrial membrane stability
[286–288]. Further evidence of the in vivo efficacy of NAC
was provided by Kose and Naziroglu [289], who reported that
NAC supplementation in polycystic ovary syndrome patients

was associated with reduced levels of lipid peroxidation,
ROS, mitochondrial membrane depolarisation, caspase-9
and caspase-3, and increased levels of glutathione and GPx
[289]. Other research teams have reported that in vivo NAC
supplementation increases levels of cFLIP and cIAP and re-
duces levels of Bax while increasing levels of Bcl2 and de-
creasing translocation of cytochrome c and AIF into the cyto-
plasm, hence inhibiting many processes driving intrinsic apo-
ptosis [286].

It would also appear that many of the biochemical conse-
quences and symptomatic improvements produced by NAC
supplementation occur via increases in the activity of the ox-
idative stress-inducible cystine/glutamate exchange system
(system Xc

−) rather than merely serving as a precursor mole-
cule providing the cysteine needed to enable increased syn-
thesis of glutathione [290–292]. The mechanisms underpin-
ning the NAC-induced increases in the activity of system Xc

−

would appear to be relatively complex and involve the stimu-
lation of as yet undelineated cellular signalling pathways
[292–294]. Predictably, the profound anti-inflammatory and
antioxidant capacity of NAC has made the molecule the sub-
ject of intense research in the fields of neurology and neuro-
psychiatry; reviews of trials in neurology and psychiatry are
given by references [295, 296].

Conclusions

Various forms of cell death are involved in the pathogenesis
and pathology of a wide range of neuropsychiatric disorders.
Related signalling pathways, in addition to oxidative stress
and generalised inflammatory processes, appear to offer good
therapeutic targets. In particular, a combination of
minocycline and NAC may offer a relatively safe and tolera-
ble form of adjunctive treatment for such disorders, which
currently can be difficult to treat.
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