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Abstract The issue of lag selection inADF unit root testing is important, even asymp-
totically, for if the number of lags is not allowed to increase at a certain rate the test
might not be correctly sized. However, size control is not the only concern. Indeed,
simulations have repeatedly shown how increasing lag lengths tend to be associated
with reductions in power, thus adding to the well-known low power problem when
the alternative is local to the unit root. But while the simulation evidence is plentiful,
there is as of yet almost no asymptotic results that can be used to ascertain whether
lag length has any effect on the local asymptotic power of the ADF test. The purpose
of the present paper is to fill this gap in the literature.
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1 Introduction

The augmented Dickey–Fuller (ADF) unit root test is the most popular of its kind,
with countless applications. An issue that arises with the application of this test is the
selection of the order of the lag augmentation, p. There are two considerations. On the
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one hand, for the test be correctly sized in the presence of general ARMA errors it is
important that p is allowed to increase with the size of the sample, T (see, for example,
Said and Dickey 1984). The rate of increase is also important, for only if the rate is
fast enough can one rely on conventional data-driven lag selection procedures, such
as information criteria (see Ng and Perron 1995; Chang and Park 2002). On the other
hand, Monte Carlo evidence indicates that larger values of p are generally associated
with reduced power (see Lopez 1997; Ng and Perron 1995; Ng and Perron 2001).
Interestingly, while low power is one of the most well-known problems of the ADF
test, as far as we are aware no one has as of yet derived any asymptotic power results
for the case when p is allowed to increase with T . In fact, most studies, such as those
of Said and Dickey (1984), Chang and Park (2002), and Xiao and Phillips (1998), only
report the asymptotic distribution under the unit root null hypothesis, although there is
typically some conjecture about the behaviour under the alternative that the largest AR
root is local-to-unity (see Chang and Park 2002; Xiao and Phillips 1998).1 The only
exceptions known to us are Ng and Perron (2001), whose results are designed specif-
ically to the case when the errors follow a first-order MA process with a root that is
local to−1, and Paparoditis and Politis (2017), where the alternative is taken to be that
the process is stationary. Both studies confirm that p is important, even asymptotically,
and that it can in fact dominate the asymptotic behaviour of the ADF test.

In the present paper, we take the discussion of the last paragraph as our starting
point. The purpose is to evaluate the local asymptotic distribution of theADF test when
the errors follow a general linear process driven by martingale difference innovations,
which may exhibit conditional heteroskedasticity. The study may therefore be thought
of as a local power extension of the study of Chang and Park (2002), who derived the
asymptotic null distribution of the ADF test under the same assumption on the errors.

Notation: L is the lag operator,→p,→w and=d signify convergence in probability,
weak convergence, and equality in distribution, respectively, and ‖A‖ = √

tr(A′A) is
the Frobenius norm of any matrix A.

2 Model

The data generating process (DGP) of yt is the same as in Chang and Park (2002), and
is given by

yt = αyt−1 + ut , (1)

ut = π(L)εt , (2)

where y0 = 0, and εt and π(L) = ∑∞
k=0 πk Lk satisfy Assumptions 1 and 2, respec-

tively.

Assumption 1 (εt ,Ft ) is a martingale difference sequence with some filtration (Ft ),
E(ε2t ) = σ 2, T−1 ∑T

t=1 ε2t →p σ 2 and E(|εt |4) < ∞.

1 Stock (1991) considers a finite order AR model, the order of which is assumed to be known, and derives
the local asymptotic distribution of the ADF test. However, this result holds only for the specific model
considered with the restrictive assumption of a known autoregressive order.
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Assumption 2 π(z) �= 0 for all |z| ≤ 1, and
∑∞

k=0 |k|s |πk | < ∞ for some s ≥ 1.

Remark 1 Assumptions 1 and 2 are the same as in Chang and Park (2002), and are
not very restrictive. The assumption that y0 = 0 is more restrictive than necessary,
and can be relaxed, provided that y0 = Op(1). The fact that there are no deterministic
constant and trend terms is restrictive, but as we discuss later in Remark 3 the analysis
can be easily extended to accommodate such terms. Note also that the initialization
becomes irrelevant if the DGP contains (at least) a constant.

All the results of Chang and Park (2002) are derived under the unit root restriction
that α = 1. The main contribution of the present paper is to investigate the effect of a
violation of this restriction. The particular assumption that we are going to be working
under is given by Assumption 3.

Assumption 3 α = 1 + cT−1, where c ≤ 0.

As in Chang and Park (2002), π(L) has the Beveridge–Nelson (BN) decomposition
π(L) = π(1) − (1 − L)π̄(L), where π̄(L) = ∑∞

k=0 π̄k Lk and π̄k = ∑∞
i=k+1 πi (see

Phillips and Solo 1992, Lemma 2.3). We can therefore write

ut = π(1)εt − �ūt , (3)

where ūt = ∑∞
k=0 π̄kεt−k . Assumption 3 implies

yt =
t∑

k=1

αt−kuk = π(1)wt − rt , (4)

where wt = ∑t
k=1 αt−kεk and rt = ∑t

k=1 αt−k�ūk .
Under Assumptions 1 and 2, π(L) can be inverted, giving

θ(L)ut = εt , (5)

where θ(L) = π(L)−1 = 1−∑∞
k=1 θk Lk (see Chang and Park 2002). The purpose of

this paper is to investigate the effect when this infinite-order AR process is truncated
at lag p. Let us therefore define δp(L) = ∑p

k=1 θk Lk−1, δ p(L) = ∑∞
k=p+1 θk Lk−1

and δ(L) = δp(L) + δ p(L), such that θ(L) = 1 − δ(L)L . In this notation,

ut = δp(L)ut−1 + εp,t , (6)

where
εp,t = εt + δ p(L)ut−1. (7)

By using this and the fact that ut = yt − αyt−1 = �yt − (α − 1)yt−1, we obtain the
following equation for yt :

yt = αyt−1 + δp(L)�yt−1 − δp(L)(α − 1)yt−2 + εp,t . (8)
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At this point, it would seem natural given the approach of Chang and Park (2002)
to take αyt−1 + δp(L)�yt−1 as the approximating regression function, and εp,t −
δp(L)(α − 1)yt−2 as the approximation error. But while this is indeed a possibility,
there is a much more elegant approach. To fix ideas, let us write the regression model
to be estimated by ordinary least squares (OLS) as

yt = βyt−1 + βp(L)�yt−1 + ep,t , (9)

where β and βp(L) are reduced form coefficients, and ep,t is a reduced form error
term. We now write these reduced form quantities in terms of the components of the
DGP. We begin by noting that

− δp(L)(α − 1)yt−2 = δp(L)(α − 1)�yt−1 − δp(L)(α − 1)yt−1. (10)

Consider the last term on the right. Similarly to the BN decomposition for infinite
polynomials, we may decompose δp(L) = δp(1) − (1 − L)δ̄p(L), where δ̄p(L) =
∑p−1

k=1 δ̄p,k Lk−1 and δ̄p,k = ∑p
n=k+1 θn . This implies

[α − δp(L)(α − 1)]yt−1 = [α − δp(1)(α − 1)]yt−1 − [δp(L) − δp(1)](α − 1)yt−1

= [α − δp(1)(α − 1)]yt−1 + (α − 1)δ̄p(L)�yt−1. (11)

Hence, by collecting the terms,

yt = αyt−1 + δp(L)�yt−1 − δp(L)(α − 1)yt−2 + εp,t

= [α − δp(L)(α − 1)]yt−1 + αδp(L)�yt−1 + εp,t

= [α − δp(1)(α − 1)]yt−1 + [αδp(L) + (α − 1)δ̄p(L)]�yt−1 + εp,t , (12)

which is (9) with

β = α − δp(1)(α − 1), (13)

βp(L) = αδp(L) + (α − 1)δ̄p(L), (14)

ep,t = εp,t . (15)

This is important, for (at least) two reasons. One reason is that it shows how unless
α = 1 (c = 0), such that β = α, α is not identified. This means that in the regression
to be estimated the drift away from a unit root is not determined by c alone, but is in
fact affected also by δp(1), as is clear from

β = 1 + [1 − δp(1)]cT−1. (16)

This has implications for studies such as Moon andPhillips (2000) and Phillips et al.
(2001), where the purpose is to estimate c. Another reason for why the above result is
important is that it shows how the regression error in (9) is exactly the same as under the
unit root null. This is very convenient in that once the model has been reparameterized
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as in (9), most of the main results regarding the accuracy of the approximation can
be taken more or less directly form Chang and Park (2002). However, this requires
p → ∞. It is therefore convenient to treat p as a function T .

Assumption 4 pT−1/2 → 0 as p, T → ∞.
Assumption 4 restricts the rate at which p is allowed to increase with T , but is weak

enough to enable lag selection by standard information criteria, such as AIC and BIC.

3 The ADF test statistic and its local asymptotic distribution

Let

AT =
T∑

t=1

yt−1εp,t −
(

T∑

t=1

yt−1x
′
p,t

)(
T∑

t=1

xp,t x
′
p,t

)−1 (
T∑

t=1

xp,tεp,t

)

(17)

BT =
T∑

t=1

y2t−1 −
(

T∑

t=1

yt−1x
′
p,t

) (
T∑

t=1

xp,t x
′
p,t

)−1 (
T∑

t=1

xp,t yt−1

)

(18)

CT =
T∑

t=1

ε2p,t −
(

T∑

t=1

εp,t x
′
p,t

) (
T∑

t=1

xp,t x
′
p,t

)−1 (
T∑

t=1

xp,tεp,t

)

, (19)

where xp,t = (�yt−1, ...,�yt−p)
′. It is important to remember that the OLS estimator

of the coefficient of yt−1 in (9) is not really estimating α, but rather β. Let us therefore
consider OLS estimator β̂ of β and its standard error, which are such that

β̂ = β + AT B
−1
T , (20)

s(β̂)2 = σ̂ 2B−1
T , (21)

where σ̂ 2 = T−1(CT −A2
T B

−1
T ). The test statistic of interest is the usual ADF statistic,

which is given by

ADF = β̂ − 1

s(β̂)
. (22)

Lemmas 1 and 2, which are analogous to Lemmas 3.1 and 3.2 of Chang and Park
(2002), are key in deriving the local asymptotic distribution of ADF .

Lemma 1 Under Assumptions 1–3,

(a) T−1
T∑

t=1

yt−1εp,t = π(1)T−1
T∑

t=1

wt−1εt + op(1);

(b) T−2
T∑

t=1

y2t−1 = π(1)2T−2
T∑

t=1

w2
t−1 + op(1);
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(c) T−1
T∑

t=1

ε2p,t = T−1
T∑

t=1

ε2t + op(p
−1),

where wt = ∑t
n=1 αt−nεn.

Lemma 2 Under the conditions of Lemma 1,

(a)

∥
∥
∥
∥
∥
∥

(

T−1
T∑

t=1

xp,t x
′
p,t

)−1
∥
∥
∥
∥
∥
∥

= Op(1);

(b)

∥
∥
∥
∥
∥
T−1

T∑

t=1

xp,t yt−1

∥
∥
∥
∥
∥

= Op(
√
p);

(c)

∥
∥
∥
∥
∥
T−1

T∑

t=1

xp,tεp,t

∥
∥
∥
∥
∥

= op(p
−1/2).

The proofs of Lemmas 1 and 2 are almost identical to the proofs of Lemmas 3.1
and 3.2 in Chang and Park (2002), and are therefore omitted. The only difference is
the presence of α inwt , which does not affect the derivations.2 Lemmas 1 and 2 imply
that

T−1AT = π(1)T−1
T∑

t=1

wt−1εt+op(1) (23)

T−2BT = π(1)2T−2
T∑

t=1

w2
t−1 + Op(pT

−1) (24)

T−1CT = T−1
T∑

t=1

ε2p,t + op(p
−1), (25)

where the remainder terms are all op(1) under Assumption 4. In view of Lemma 1
(c), this implies

σ̂ 2 = T−1(CT − A2
T B

−1
T ) = T−1CT−T−1(T−1AT )2(T−2BT )−1 = T−1CT+op(1)

= T−1
T∑

t=1

ε2t + op(1) →p σ 2 (26)

2 Some of the orders reported in Lemmas 1 and 2 are not sharp. For example, as pointed out by Chang and
Park (2002), under Assumption 2 the remainder in Lemma 1 (c) can be reduced to op(p−s ).
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(see Chang and Park 2002, Proof of Lemma 3.3). Let us now consider ADF . Note
how β − 1 = c[1 − δp(1)]T−1. Together with Lemmas 1 and 2, this implies

ADF = β̂ − β

s(β̂)
+ β − 1

s(β̂)

= σ̂−1
[
T−1AT (T−2BT )−1/2 + c[1 − δp(1)]

√
T−2BT

]

= σ−1

⎡

⎣
T−1 ∑T

t=1 wt−1εt
√
T−2

∑T
t=1 w2

t−1

+ c[1−δp(1)]π(1)

(

T−2
T∑

t=1

w2
t−1

)1/2⎤

⎦ +op(1).

(27)

The asymptotic distribution of the right-hand side is easily evaluated using the
results provided in Hansen (1995) for the finite-order AR case, and is summarized in
Theorem 1.

Theorem 1 Under Assumptions 1–4,

ADF →w

∫ 1
r=0 Jc(r)dW (r)
√∫ 1

r=0 Jc(r)
2dr

+ c lim
p→∞[1 − δp(1)]π(1) ·

(∫ 1

r=0
Jc(r)

2dr

)1/2

,

where Jc(r) = ∫ r
v=0 exp[c(r − v)]dW (v) with W (r) being a standard Brownian

motion on r ∈ [0, 1].
Phillips (1987) considers the (non-augmented) Dickey–Fuller test statistic in the

case of serially uncorrelated errors. The difference between the local asymptotic dis-
tribution reported in Theorem 1 and the one given in Phillips (1987) is the presence
of [1− δp(1)]π(1). It is therefore interesting to consider briefly the behaviour of this
term. Note how θ(1) = 1− δ(1), which implies [1− δp(1)] → θ(1) as p → ∞. But
θ(1) = π(1)−1, and so

lim
p→∞[1 − δp(1)]π(1) = 1. (28)

The effect of the truncation on the asymptotic distribution of the ADF test statistic
is therefore negligible. This finding is in stark contrast to the results reported by Ng
and Perron (2001) and Paparoditis and Politis (2017), where the effect of p is non-
negligible. In practice, of course, p is fixed, which means that [1 − δp(1)]π(1) �= 1.
The asymptotic null distribution of ADF under c = 0 is given by

ADF →w

∫ 1
r=0 W (r)dW (r)
√∫ 1

r=0 W (r)2dr
, (29)

which is independent of [1 − δp(1)]π(1). One of the effects of the truncation is
therefore to affect the drift of the distribution under the alternative hypothesis that
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c < 0. Hence, while negligible, in finite samples we expect p to have an effect on
power. This prediction is in agreement with the bulk of the existing Monte Carlo
evidence (see, for example, Ng and Perron 1995). In fact, the local power predictions
derived here seem very accurate, even when compared to the stationary predictions of
Paparoditis and Politis (2017) when the data are generated as stationary. Let us explain
what we mean by this. Paparoditis and Politis (2017) show that the power of the ADF
test against stationary alternatives should be decreasing in p, even asymptotically.
This is their theoretical prediction. They then simulate power under α ∈ {0.985, 0.97},
π(L) = 1+ π1L , π1 ∈ {−0.5, 0.5}, T ∈ {50, 100, 200, 400, 800, 1600} and p = T a

with a going from 0.05 to 0.49 in steps of 0.04. Except for the non-local specification
of α, this is consistent with the DGP considered here. Note in particular how p satisfies
our Assumption 4. According to the results reported in their Table 6 for the case when
α = 0.97 and π1 = −0.5 (in which the effect of p is most pronounced), while when
T = 50 power decreases almost monotonically from 0.17 when a = 0.05 to 0.09
when a = 0.49, when T = 1600 power is flat at 1. Clearly, this finding does not fit
well with the prediction that power should always decrease with increases in p. It is,
however, consistent with our prediction that the effect of p should tend to decrease
with increasing T .

Remark 2 As alreadymentioned, Chang and Park (2002) only consider the asymptotic
distribution under the unit root null. They also claim (without proof) in their Remark
3.2 that the asymptotic distribution under Assumption 3 with c �= 0 should be the
same, but with W (r) replaced by Jc(r). In order to asset the validity of this claim,
note how d Jc(r) = cJc(r)dr + W (r), implying

∫ 1
r=0 Jc(r)d Jc(r)√∫ 1

r=0 Jc(r)
2dr

=
∫ 1
r=0 Jc(r)dW (r)
√∫ 1

r=0 Jc(r)
2dr

+ c

(∫ 1

r=0
Jc(r)

2dr

)1/2

, (30)

which is identically the local asymptotic distribution reported by Phillips (1987). The
fact that this distribution is also the limit of the local asymptotic distribution inTheorem
1 as p → ∞ proves that the claim of Chang and Park (2002) is in fact correct.

Remark 3 As discussed in Remark 3.1 of Chang and Park (2002), DGPs with deter-
ministic constant and trend terms can be easily accommodated. Such an extension
is interesting not only in its own right, but also because it shows how the results
reported here extends to other unit root tests. Let us therefore use zt to denote the
observed data. A common way to accommodate deterministic constant and trend
terms is through the following components model: zt = μ + τ t + yt , where yt
is as in (1). In this DGP, testing for a unit root in zt is equivalent to testing for a
unit root in yt . The problem is how to purge the effect of the deterministic terms.
Chang and Park (2002) discuss the case when this is done through an auxiliary OLS
regression of zt onto a constant or a constant and trend. In this case, the results
reported in this paper are the same, except that Jc(r) has to be replaced by its suitably
demeaned or detrended version, Jdc (r) say. Specifically, while in the constant-only

case case, Jdc (r) = Jc(r) − ∫ 1
v=0 Jc(v)dv, in the case with both a constant and trend,
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Jdc (r) = Jc(r) + (6r − 4)
∫ 1
v=0 Jc(v)dv − (12r − 6)

∫ 1
v=0 v Jc(v)dv. An alternative

to OLS is to perform generalized least squares (GLS) under the local alternative,
as first suggested by Elliott et al. (1996). As Westerlund (2014) shows, except for
[1 − δp(1)]π(1), the asymptotic distribution of the resulting ADF–GLS test in the
constant-only case is identical to the one given in Theorem 1. The results reported
here regarding the effect of p therefore apply also this other test. Another possibility
is to follow, for example, Shin and So (2001) and to perform the OLS demeaning
recursively. The asymptotic distribution in this case is again the same as in Theorem
1 but now with Jc(r) replaced by Jdc (r) = Jc(r)− r−1

∫ r
v=0 Jc(v)dv. The asymptotic

distributions of these other tests in the trend case do not have the same form as in The-
orem 1, but the effect of p is still expected to be negligible. Moreover, these results
extend quite naturally to the bulk of the existing panel data unit root tests, which are
typically nothing but panel extensions of known time series tests (see, for example,
Westerlund 2016, for a discussion of the issue of parametric lag correction in the panel
data context).
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