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Abstract
Individual response to dietary interventions can be highly variable. The phenotypic characteristics of those who will respond positively to
personalised dietary advice are largely unknown. The objective of this study was to compare the phenotypic profiles of differential responders to
personalised dietary intervention, with a focus on total circulating cholesterol. Subjects from the Food4Me multi-centre study were classified as
responders or non-responders to dietary advice on the basis of the change in cholesterol level from baseline to month 6, with lower and upper
quartiles defined as responder and non-responder groups, respectively. There were no significant differences between demographic and
anthropometric profiles of the groups. Furthermore, with the exception of alcohol, there was no significant difference in reported dietary intake, at
baseline. However, there were marked differences in baseline fatty acid profiles. The responder group had significantly higher levels of stearic acid
(18 : 0, P= 0·034) and lower levels of palmitic acid (16 : 0, P= 0·009). Total MUFA (P= 0·016) and total PUFA (P= 0·008) also differed between the
groups. In a step-wise logistic regression model, age, baseline total cholesterol, glucose, five fatty acids and alcohol intakes were selected as factors
that successfully discriminated responders from non-responders, with sensitivity of 82% and specificity of 83%. The successful delivery of
personalised dietary advice may depend on our ability to identify phenotypes that are responsive. The results demonstrate the potential use
of metabolic profiles in identifying response to an intervention and could play an important role in the development of precision nutrition.
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At a population level, generic dietary advice is provided using
a ‘one-size-fits-all’ approach on the basis of requirements for
population groups(1), which ignores inter-individual differences,

and therefore nutrient requirements. In addition, individuals’
responses to dietary interventions can be highly variable(2–4).
Demographic characteristics such as sex and age, and factors

Abbreviation: FA, fatty acid.
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such as adiposity, physical activity, metabolic profile and genetic
factors contribute to this variation(5). This phenomenon is well
recognised in the medical field with a current emphasis on pre-
cision medicine(6). Considering the reported variation in response
to dietary interventions, there is now an emerging recognition that
this should be considered in the development of personalised or
precision nutrition(7,8). Personalised nutrition or dietary advice
that has been tailored for an individual offers the possibility of
improving health and reducing risk of diet-related diseases(9).
Many studies suggest that tailored dietary advice is more effective
than generic advice, promoting greater improvements in diet-
ary behaviours and related health outcomes such as body
weight(9,10). A recent meta-analysis reported that personalised
interventions were more effective than non-personalised advice,
with participants receiving the personalised intervention reducing
body weight by 1·8kg more on average than those receiving the
non-personalised advice(9). However, these studies have not
taken individual variability into account, and in the long term the
effectiveness of the personalised dietary advice will depend on
the ability to tailor advice taking into account knowledge about an
individual’s potential response to the intervention(11).
The concept of using metabolic profiles to identify responders

to dietary interventions is relatively new(7). However, a number
of examples exist in the literature demonstrating the potential of
such an approach. O’Sullivan et al.(12) used k-means cluster ana-
lysis to identify responders and non-responders to a vitamin D
intervention. van Bochove et al.(13) applied k-means clustering to
lipoprotein profiles and identified three clusters, two of which
responded positively to fenofibrate, whereas Elnenaei et al.(14)

identified responders and non-responders to vitamin D and Ca
supplementation, on the basis of a baseline metabolomic profile.
Metabolomic and transcriptomic profiles have also been used to
discriminate between responders and non-responders to an
n-3 PUFA supplementation(15). The objective of this study was
to investigate differences in the phenotype and in particular
blood lipids of responders and non-responders to personalised
nutrition, with a specific focus on changes in circulating
cholesterol levels. Using data from the Food4Me personalised
dietary intervention study, individuals with borderline high
baseline total cholesterol (>5mmol/l) were examined for factors
that predict their response to the intervention.

Methods

Subjects were participants of the Food4Me study – a 6-month,
web-based randomised controlled trial conducted in seven
European countries. The aim of the present study was to
determine whether providing personalised dietary advice
leads to improvements in dietary intakes and health outcomes
relative to population-based public health messages. The 1607
adult subjects were randomly assigned to one of four inter-
vention treatment groups – level 0 (standard non-personalised
dietary and physical activity guidelines), level 1 (personalised
advice based on current diet and physical activity), level 2
(personalised advice based on current diet, physical activity and
phenotype) and level 3 (personalised advice based on current
diet, physical activity, phenotype and genotype)(16). The control

group received conventional, non-personalised advice, and
therefore were not considered for this analysis. The study
protocol is detailed in the study by Celis-Morales et al.(16).

All data were collected remotely following standardised
operating procedures. At baseline, participants received study
kits by post containing all necessary materials to perform
measurements at home. Printed instructions were included, and
demonstration videos were available on the Food4Me website
(http://www.food4me.org). Following measurements at base-
line and 3 months, participants received a personalised report.
The personalised feedback provided was based on a pre-
defined set of algorithms, including anthropometric, physical
activity (levels 1–3), phenotypic (levels 2 and 3) and genotypic
(level 3 only) data(16).

Demographic characteristics

The measurement of characteristics including age, country and
sex and have been described elsewhere(16). Having excluded
the control group and those with normal total cholesterol levels
at baseline (total cholesterol< 5mmol/l), there were 151 males
and 162 females, with a mean age of 46·8 years from seven
European countries – Germany (n 67), Greece (n 48), Ireland
(n 39), the Netherlands (n 54), Poland (n 30), Spain (n 43) and
the UK (n 32). Subjects were classified as responders and non-
responders on the basis of the change in blood cholesterol from
baseline to month 6. To achieve this, the subjects were first
stratified into quartiles on the basis of cholesterol response; two
of the groups, the lower and upper quartiles, were defined as
responders and non-responders, respectively. This resulted in
seventy-eight responders and seventy-nine non-responders.

Anthropometric measurements

Body weight, height and waist circumference were self-
measured and self-reported by participants via the Internet,
as described previously(16). They were provided with clear
instructions in text and video format to facilitate accurate
measurements, and a validation study demonstrated the relia-
bility of these Internet-based, self-reported anthropometric
data(17). Waist circumference was measured at the mid-point
between the lower rib and the iliac crest using the same
tape measure. Physical activity was self-reported using the
Baecke questionnaire online(18,19) on the basis of physical
activity during the last month. Physical activity level scores
were calculated at baseline and month 6, according to the
questionnaire protocol.

Dietary intake measurements

Habitual dietary intake was quantified using an online FFQ
including food items frequently consumed in each of the seven
recruitment sites. The Food4me FFQ has been compared with
a paper-based FFQ(20) and 4-d weighed food record(21) for both
food group and nutrient intakes. The Bland–Altman analysis
showed good agreement between the online and the
paper-based FFQ for both nutrient and food groups level.
Cross-classification into exact plus adjacent quartiles ranged
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from 77 to 97% at the nutrient level and 77 to 99% at the food
group level. For comparison with the weighed food record,
the mean cross-classification into exact agreement plus adja-
cent was 80 and 78% for nutrient and food groups, respectively.
Importantly, the energy intake estimated by the FFQ was in
agreement with the weighed food record, indicating that overall
the online FFQ was a suitable tool for assessing dietary intake.

Fatty acid and carotenoid profiles

Finger-prick blood samples were collected by participants using
a test kit provided by Vitas Ltd, as described previously(22). Each
participant filled two Dry Blood Spot cards (equivalent to five
drops of blood or 150 μl of blood per card) at each collection
time point. The samples were sent to Vitas (Vitas Ltd) for
measurements of total cholesterol, carotenoids and thirty-two
fatty acids (FA). The n-3 FA index was calculated as the sum of
EPA (20 : 5n-3) and DHA (22 : 6n-3). The Δ5 desaturase index
(D5D) and Δ6 desaturase index (D6D) were calculated on the
basis of key enzymes in the metabolism of PUFA. The D5D was
calculated as the ratio of arachidonic acid (20 : 4n-6):dihomo-γ-
linoleic acid (20 : 3n-6), and the D6D was calculated as the ratio
of dihomo-γ-linoleic acid (20 : 3n-6):linoleic acid (18 : 2n-6).

Ethics

This study was conducted according to the guidelines laid
down in the Declaration of Helsinki. The Research Ethical
Committees at each participating centre granted ethics approval
for the study(16).

Statistical analysis

The baseline demographic and phenotypic characteristics
of responders and non-responders were compared using
generalised linear models (GLM). Models were fitted using the
GLM (for continuous variables) and GENMOD (a procedure for
fitting GLM; for categorical variables) procedures in SAS 9.3 (SAS
Institute). To account for multiple comparisons, false discovery
rate-adjusted P values are presented for FA profile data.
To assess whether baseline demographic or phenotypic

characteristics can discriminate between responders and
non-responders, a step-wise logistic regression procedure was
applied in four stages. First, only anthropometric characteristics
were included (model 1). Next, baseline cholesterol value was
added to the model (model 2). Third, dietary intake data were
added to the analysis (model 3), and, finally, all demographic,
anthropometric, dietary intake and biochemical characteristics
were included (model 4). At each stage, the step-wise
procedure selected the characteristics that best discriminated
between the two groups. Variables were tested using a
bootstrapping approach to correct for over-optimism in model
fitting. The ability of the models to classify responders and
non-responders was assessed using area under the ROC curves.
ROC comparisons were performed using a contrast matrix
to calculate differences of the areas under the empirical
ROC curves.

Results

Characteristics of responders and non-responders

Demographic characteristics did not differ significantly between
responder and non-responder groups by country (χ6

2= 5·0,
P= 0·544, Table 1), sex (χ1

2= 0·16, P= 0·693, Table 1) or age
(P= 0·082, Table 1). There was also little difference between
responder and non-responder groups with respect to anthro-
pometric characteristics measured at baseline (Table 1).

During the intervention period, both groups significantly
reduced BMI, weight and waist circumference, with both
groups exhibiting similar effect sizes (Table 1). The responders
significantly increased their blood omega-3 index while the non-
responders did not (mean change Δ= 0·31 v. 0·14, P< 0·001).

At baseline, the responders and non-responders had similar
dietary intakes of most food groups, with the exception of
alcohol (Table 2), for which the responders had lower intakes
(170 v. 258g/d, P= 0·035). After intervention, the responders
reported reduced intake of dairy products (Δ=−59g/d, Table 2),
and both responders and non-responders reported significantly
reduced red meat intake (Δ=−31 and −28 g/d, respectively).

The percentage of participants receiving dietary advice for
specific target nutrients was broadly similar (online Supplemen-
tary Table S1). The most common nutrient targeted at baseline
was salt (73% of responders and 59% of non-responders). There
was no difference in the percentage of responders and non-
responders receiving a dietary message specifically targeted at
cholesterol (24 v. 23%, P= 0·816), although a greater number of
non-responders received a message to increase physical activity
(56% of responders v. 73% of non-responders, P= 0·027).
Although the responders had a significant reduction in choles-
terol, there was no significant change in physical activity during
the intervention period for either group.

At baseline, the responders had higher total cholesterol
levels than the non-responders (6·09 v. 5·54mmol/l, P< 0·001,
Table 1). The FA profiles differed between the responders and
the non-responders at baseline (Table 3). There was no differ-
ence between the groups for total SFA (P= 0·203), but the
responders had lower palmitic acid (16 : 0, P= 0·009). At base-
line, the responders had significantly lower total MUFA
(P= 0·016), particularly lower palmitoleic acid (16 : 1n-7,
P= 0·012) and cis-vaccenic acid (18 : 1n-7, P= 0·001). At base-
line, the responders had higher total PUFA (P= 0·008), parti-
cularly linoleic acid (18 : 2n-6, P= 0·011), eicosadienoic acid
(20 : 2n-6, P= 0·006) and DPA (22 : 5n-3, P= 0·014). At baseline,
both groups had similar carotenoids profiles (Table 4).

Discriminating between responders and non-responders

When the step-wise logistic regression model was applied using
demographic and anthropometric data, age and weight were
selected as being important factors in discriminating responders
from non-responders (model 1, Table 5). The classification
accuracy (as measured by the area under the ROC curve, Fig. 1)
was 0·61, indicating that the demographic and anthropo-
metric data do not provide sufficient discriminatory power.
As expected, classification accuracy improved when the model
was adjusted for baseline cholesterol (model 2, AUC= 0·76,
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Table 5, Fig. 1). Including dietary intake data (model 3) did not
improve the discriminatory power, with none of the food
groups being selected when tested in the step-wise model.
When the additional biochemical data were added to the model
(model 4), the key variables selected were baseline levels of
cholesterol, glucose, stearic acid, DPA and eicosenoic acid,
each with significant positive coefficients, and EPA and trans-
FA, each with significant negative coefficients. Alcohol intake
also had a significant negative coefficient in this model that

included the biochemical variables. The coefficients of the final
logistic regression discriminant model are detailed in Table 6.
Increases in the variables with positive or negative coefficients
were associated with increased or decreased probability of
being a responder, respectively. The additional biochemical
data significantly improved the classification accuracy
(model 4 AUC= 0·90, Table 5, Fig. 1), with increases in the
true-positive rate (sensitivity) resulting in only a small trade-off
with the false-positive rate (1 – sensitivity). For example, to

Table 1. Demographic and phenotypic profiles of responders and non-responders†
(Numbers and percentages; measurements at baseline and mean change (Δ) between baseline and month 6 are presented as means with their
standard errors)

Responder Non-responder Responder v. non-responder

n % n % χ2 P

Total 78 79
Sex

Male 40 51·20 43 55·13
Female 38 48·70 36 46·15 0·16 0·693

Country
Germany 19 24·40 23 29·11
Greece 10 12·80 11 13·92
Ireland 11 14·10 7 8·86
The Netherlands 16 20·50 13 16·46
Poland 4 5·10 8 10·13
Spain 11 14·10 14 17·72
UK 7 9·00 3 3·80 5·0 0·544

Baseline Δ Baseline Δ P for difference

Mean SEM Mean SEM Mean SEM Mean SEM Baseline Δ

Age (years) 45·1 1·35 48·2 1·15 0·082
Height (m) 1·72 0·01 1·74 0·01 0·262
Weight (kg) 78·1 1·66 −1·7* 0·39 82·6 1·79 −1·3* 0·37 0·065 0·429
BMI (kg/m2) 26·4 0·52 −0·6* 0·14 27·5 0·56 −0·4* 0·13 0·17 0·495
Waist circumference (m) 0·9 0·015 −0·02* 0·005 0·93 0·015 −0·02* 0·005 0·091 0·764
Physical activity level 1·54 0·012 0·03 0·01 1·53 0·012 0·027 0·01 0·687 0·908
Total cholesterol (mmol/l) 6·09 0·091 −2·01* 0·072 5·54 0·063 0·47 0·06 <0·001* <0·001*
Glucose (mmol/l) 4·13 0·08 −0·82* 0·113 3·88 0·111 −0·23* 0·111 0·934 0·259
Omega-3 index 5·68 0·127 0·31* 0·096 5·69 0·13 0·14 0·109 0·068 <0·001*

* P values are significant at the 5% level.
† P values were obtained from generalised linear models including the responder group as a factor.

Table 2. Baseline dietary intake (g/d) and change from baseline to month 6 for responders and non-responders†
(Dietary intake at baseline and mean change (Δ) between baseline and month 6 are presented as means with their standard errors)

Responders Non-responders

Baseline Δ Baseline Δ P value for difference

Mean SEM Mean SEM Mean SEM Mean SEM Baseline Δ

Fruit 445 45 6 33 387 32 37 31 0·289 0·487
Vegetables 234 22 −6 22 229 14 4 15 0·851 0·71
Whole grains 169 18 6 15 127 14 22 12 0·064 0·413
Oily fish 23 3 9 6 21 3 4 3 0·691 0·42
Red meat 95 11 −31* 10 85 7 −28* 5 0·424 0·763
Dairy products 337 30 −59* 27 286 28 −16 24 0·214 0·247
Nuts 7 2 0 1 6 1 1 1 0·694 0·638
Alcohol 170 23 −22 25 258 34 −16 35 0·035* 0·892

* Mean changes are significant at the 5% level.
† P values were obtained from generalised linear models including responder group as a factor.
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Table 3. Mean percentage of blood total fatty acid at baseline for responders and non-responders and mean change from baseline to month 6†
(Fatty acid percentage at baseline and mean change (Δ) between baseline and month 6 are presented as mean values with their standard errors)

Responders Non-responders P value for difference

Baseline Δ Baseline Δ Baseline Δ

Trans-fatty acids Mean SEM Mean SEM Mean SEM Mean SEM P FDR P FDR

0·79 0·027 0·04 0·035 0·9 0·028 −0·06 0·039 0·007* 0·040* 0·059 0·295
SFA Myristic (14 : 0) 0·78 0·042 −0·07 0·046 0·85 0·048 −0·02 0·044 0·281 0·351 0·398 0·807
SFA Pentadecyclic (15 : 0) 0·21 0·006 0 0·005 0·2 0·006 0·01* 0·006 0·166 0·239 0·046 0·295
SFA Palmitic (16 : 0) 22·89 0·157 −0·04 0·188 23·63 0·229 −0·46 0·36 0·009* 0·040* 0·308 0·807
SFA Margaric (17 : 0) 0·32 0·005 −0·01* 0·006 0·31 0·008 −0·01 0·009 0·799 0·799 0·617 0·807
SFA Stearic (18 : 0) 12·81 0·118 0·67* 0·156 12·44 0·129 0·68* 0·275 0·034 0·076 0·978 0·978
SFA Arachidic (20 : 0) 0·2 0·007 0·15* 0·032 0·19 0·007 0·17* 0·027 0·639 0·710 0·621 0·807
MUFA Palmitoleic (16 : 1n-7) 1·26 0·056 −0·08 0·041 1·49 0·072 −0·02 0·059 0·012* 0·040* 0·436 0·807
MUFA Oleic n-9 (18 : 1n-9) 19·21 0·278 −0·34 0·245 19·9 0·241 −0·84* 0·328 0·063 0·126 0·225 0·807
MUFA cis-Vaccenic (18 : 1n-7) 1·34 0·021 0·22* 0·046 1·48 0·039 0·03 0·056 0·001* 0·020* 0·01 0·200
MUFA Eicosenoic (20 : 1) 0·26 0·006 −0·01* 0·006 0·25 0·007 −0·01 0·008 0·167 0·239 0·686 0·807
n-3 PUFA α-Linolenic (18 : 3n-3) 0·33 0·013 0 0·017 0·34 0·018 0 0·018 0·528 0·621 0·943 0·978
n-3 PUFA EPA (20 : 5n-3) 0·73 0·045 0·04 0·038 0·82 0·061 0·07 0·056 0·208 0·277 0·661 0·807
n-3 PUFA DPA (22 : 5n-3) 1·41 0·039 0·03 0·027 1·28 0·035 0·01 0·036 0·014* 0·040* 0·67 0·807
n-3 PUFA DHA (22 : 6n-3) 2·96 0·1 0·31* 0·069 3·01 0·095 0·09 0·076 0·696 0·733 0·041 0·295
n-6 PUFA Linoleic (18 : 2n-6) 19·92 0·259 −0·6* 0·221 18·96 0·266 −0·61 0·311 0·011* 0·040* 0·969 0·978
n-6 PUFA GLA (18 : 3n-6) 0·2 0·01 0·01 0·012 0·23 0·014 0 0·012 0·101 0·182 0·669 0·807
n-6 PUFA Eicosadienoic (20 : 2n-6) 0·22 0·004 0 0·003 0·21 0·004 0 0·004 0·006* 0·040* 0·431 0·807
n-6 PUFA DGLA (20 : 3n-6) 1·58 0·036 −0·07* 0·029 1·46 0·037 −0·04 0·033 0·024 0·060 0·467 0·807
n-6 PUFA ARA (20 : 4n-6) 8·66 0·152 0·08 0·156 8·32 0·146 −0·15 0·184 0·109 0·182 0·351 0·807
Desaturase index D5D ARA:DGLA 5·7 0·17 0·35* 0·12 5·93 0·07 0·12 0·17 0·338 0·102
Desaturase index D6D DGLA:linoleic 0·08 0·002 0 0·002 0·08 0·001 0·002 0·002 0·442 0·393

SFA 37·2 0·22 0·7* 0·294 37·63 0·255 0·38 0·594 0·203 0·639
MUFA 22·07 0·299 −0·21 0·256 23·07 0·282 −0·83* 0·372 0·016* 0·166
PUFA 36 0·338 −0·21 0·361 34·66 0·365 −0·63 0·565 0·008* 0·533
PUFA (n-3) 5·43 0·156 0·37 0·2 5·46 0·155 0·23 0·2 0·872 0·419
PUFA (n-6) 30·58 0·315 −0·57 0·317 29·18 0·313 −0·43 0·317 0·002* 0·747
n-3:n-6 0·18 0·006 −0·017 0·004 0·19 0·006 0·009 0·004 0·181 0·221

ALA, α-linolenic; GLA, γ-linolenic acid; DGLA, dihomo-γ-linolenic; ARA, arachidonic acid; FDR, false discovery rate.
* P values are significant at the FDR 5% level.
† P values were obtained from generalised linear models including the responder group as a factor. FDR-adjusted P values control for FDR. The Δ5 desaturase was calculated as the ratio of arachidonic acid (20 : 4n-6):dihomo-γ-linoleic

acid (20 : 3n-6). The Δ6 desaturase was calculated as the ratio of dihomo-γ-linoleic acid (20 : 3n-6):linoleic acid (18 : 2n-6).
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achieve a sensitivity of 80% in model 3, the false-positive rate
was only 10%. This compares with 67% for model 1 and 44%
for model 2 (Fig. 1). Furthermore, it is also worth noting that the
intervention group was not selected as a discriminant variable,
indicating that it did not contribute to classification as a
responder or non-responder.

Discussion

Identification of sub-phenotypes that respond differently to
dietary interventions has the possibility to significantly enhance
delivery of personalised nutrition. In the present study, a
baseline phenotype characterised by age, alcohol intake, and
levels of stearic acid, DPA, EPA, eicosenoic acid and trans-FA
was identified, which could discriminate responders and
non-responders in 90% of cases. Discriminant analysis has
previously been used in dietary intervention studies to test
whether metabolic profiles may be used to identify responders
and non-responders. In a choline-depletion study, ana-
lysis of the baseline metabolomics profile predicted that
participants developed liver dysfunction when deprived of
dietary choline(23). Mutch et al.(24) classified responders and

non-responders to dietary intervention using linear discriminant
analysis on a gene expression snapshot. In this study, we used
a step-wise logistic regression model to select the individual
factors that best classified the probability of being a responder.
Incorporation of such information into dietary advice strategies
has the potential to significantly enhance the success of
interventions.

Wide inter-individual variation has been observed in the
response of total, LDL- and HDL-cholesterol to dietary
changes(25–27), with little alterations in blood cholesterol for
some participants despite significant changes in dietary FA
pattern and cholesterol intake(28). This means that, although the
population response to a diet can be estimated, the respon-
siveness a single individual will have as a result of dietary

Table 4. Mean blood carotenoid levels (μmol/l) for responders and non-responders at baseline†
(Carotenoid levels at baseline and mean change (Δ) between baseline and month 6 are presented as means with their standard errors)

Responders Non-responders

Baseline Δ Baseline Δ P value for difference

Mean SEM Mean SEM Mean SEM Mean SEM Baseline Δ

Lutein 0·23 0·013 −0·03* 0·012 0·25 0·014 −0·03* 0·01 0·328 0·74
Zeaxanthin 0·06 0·004 −0·02* 0·004 0·05 0·003 −0·01* 0·003 0·525 0·282
β-Cryptoxanthin 0·24 0·028 −0·08* 0·02 0·19 0·018 −0·01 0·017 0·098 0·022*
α-Carotene 0·14 0·014 −0·01 0·018 0·11 0·011 0·01 0·008 0·146 0·448
β-Carotene 0·45 0·035 −0·05 0·034 0·4 0·035 0·02 0·021 0·276 0·098
Lycopene 0·55 0·027 −0·07* 0·026 0·54 0·033 −0·01 0·038 0·863 0·225
Total carotenoids 1·67 0·078 −0·21* 0·072 1·54 0·08 −0·03 0·071 0·263 0·082

* P values are significant at the 5% level.
† P values were obtained from generalised linear models containing the responder group as a factor.

Table 5. Examining the ability to classify responders and non-
responders*
(Area under the ROC curves with their standard errors)

Area SE P †

Asymptotic
95% CI P ‡

M1: anthropometric data
only

0·61 0·045 0·014 0·53, 0·70

M2: M1 plus baseline
cholesterol

0·76 0·037 <0·001 0·69, 0·836 0·0007

M3: M2 plus dietary
intake data

0·76 0·037 <0·001 0·69, 0·836 0·999

M4: M3 plus biochemical
data

0·90 0·026 <0·001 0·85, 0·95 0·0003

AUC, area under the ROC curve.
* The area measures the accuracy, or discrimination ability, to classify responders

and non-responders.
† Null hypothesis: true area=0·5.
‡ P value for comparison of C-statistic v. previous model.

1-Specificity (false-positive rate)
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Figure 1. Area under the ROC curves illustrating the performance of models
M1, M2 and M4 at discriminating responders from non-responders. The
selected variables in M3 were identical to M2, and therefore have not been
included. The diagonal reference line represents random discrimination, with
points above the line indicating discrimination ability. , M1: anthropo-
metric; , M2: M1+baseline cholesterol; , M4: M2+ biochemical;

, reference line.
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change is difficult to determine(29). Lefevre et al.(30) observed
that variability in the change of serum was related to anthropo-
metric measurements including BMI, waist circumference and
body fat percentage. Furthermore, there is a large body of
evidence to support the genetic influence on response of
plasma cholesterol to dietary interventions(25,31–33). The present
study determined a profile that was responsive to dietary advice
in terms of lowering cholesterol levels. Overall, this study in
conjunction with the literature provides compelling evidence
that individual variation and response to interventions have to
be incorporated into dietary advice strategies.
The most marked differences between the responder and

non-responder phenotypes were found in their baseline FA
profiles. The responders had a lower mean percentage of
trans-FA at baseline. Trans-FA have been found to increase
LDL-cholesterol and decrease HDL-cholesterol levels(34).
Although the responders and non-responders did not differ
in their total percentage of SFA, contributions of different SFA
differed. The responders had lower palmitic acid (16 : 0) and
higher stearic acid (18 : 0) than the non-responders. A review
comparing the risk factors for stearic acid with other SFA(35)

reported that diets high in stearic acid have favourable effects
on LDL-cholesterol compared with palmitic acid. However, it
has also been reported that stearic acid itself has no cholesterol-
enhancing effect in clinically very well controlled exchange of
single FA, whereas palmitic, myristic and lauric acids have
strong cholesterol-raising effects(36).
The responder group had lower total MUFA, particularly

palmitoleic acid (16 : 1n-7) and cis-vaccenic acid (18 : 1n-7).
A meta-analysis investigating the effects of MUFA on cardio-
vascular and diabetic risk factors observed no consistent
evidence for a relationship between MUFA and total choles-
terol(36,37). The PUFA profiles differed between the responders
and the non-responders, with a more marked difference in the
n-6 PUFA. The responders had higher levels of linoleic acid
(18 : 2n-6) and eicosadienoic acid (20 : 2n-6) compared with the
non-responders at baseline. Linoleic acid, the primary n-6 PUFA,
has been shown to have a cholesterol-lowering effect(36,38), and

a recent meta-analysis reported a lower risk of CHD events and
deaths with increasing linoleic acid intake(39). Although the total
n-3 PUFA did not differ between the two groups, the responders
had a higher percentage of DPA (22 : 5n-3). Higher levels of DPA
in human blood have been shown to be correlated with lower
cholesterol(40). Overall, the data support the growing evidence
that FA patterns as opposed to single individual FA are important
in determining health. Moreover, it supports the importance of
adequate intake of PUFA.

The demographic profiles of the responders and non-
responders did not differ, and at baseline the groups also had
similar anthropometric characteristics. Dietary intake at baseline
was similar across the two groups, with only alcohol intake
differing. As this was a study of the effects of personalised
nutrition, the dietary advice given to the participants differed
between individuals. However, for all the participants, the
percentage of subjects receiving dietary advice for specific target
nutrients was generally similar. The strengths of this study
included the fact that it was a multi-country group with multiple
time points allowing analysis of change in response to the
intervention. Furthermore, the participants were well pheno-
typed. A limitation of the present study is the unique study design
involving personalised nutrition advice, which makes replication
and prospective analysis in an independent cohort difficult.

An objective of this study was to investigate whether the
different types of data were useful in classifying whether an
individual will respond to the dietary intervention. Our study
has shown that baseline phenotypic data provided more clas-
sification power than anthropometric or dietary intake data in
classifying responsiveness to personalised dietary advice. While
the work identified particular predictive characteristics, it was
not our aim to establish causative relationships between the
variables. Our study has shown that, in principle, we can
predict a priori whether an individual’s health status will
improve in response to the consumption of a given food/diet.
This strengthens the evidence base for the concept that inter-
vention and dietary advice can be personalised with more
confidence. Future work should examine the optimal method
for incorporation of such data into dietary advice and should
pave the way for precision nutrition.
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