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Nine out of ten infrastructure projects exceed their initial cost estimates. Accuracy of 

construction cost estimates remains a contentious area of debate within both academia 

and industry. Explanations for this have ranged from scope changes, risk and 

uncertainty, optimism bias, technical and managerial difficulties, suspicions of 

corruption, lying and insufficient required information for accurate estimation. The 

capacity for tolerance and imprecise knowledge representation of fuzzy set theory is 

combined with the learning and generalising capabilities of neural networks to 

develop neuro-fuzzy hybrid cost models in this paper to predict likely final cost of 

water infrastructure projects. The will help to increase reliability, flexibility and 

accuracy of initial cost estimates. Neural networks is first used to develop relative 
numerical weightings of cost predictors extracted from primary data collected on 98 

completed projects. These were then standardised into fuzzy sets to establish a 

consistent framework for combining the effect of each variable on the overall final 

cost. A three-point fuzzy lower, upper and mean estimate of likely final cost is 

generated to provide a tolerance range for final cost rather than the traditional single 

point estimate. The performance of the final models ranged from 3.3% 

underestimation to 1.6 % overestimation. The best models however averaged an error 

of 0.6% underestimation and 0.8% overestimation of final cost of the project. The 

results are now being extended to a larger database of about 4500 projects in 

collaboration with an industry partner. 

Keywords: artificial neural network, cost estimation, cost modelling, cost overrun, 

fuzzy set theory. 

INTRODUCTION 

Infrastructure projects have an 86% likelihood of exceeding the initial cost estimates 

and 9 out of 10 of them exceed their budgets (Flyvbjerg et al.   2002). A key example 
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is the case of the stadiums built for the 2010 FIFA World Cup games in South Africa. 

With overruns ranging between 5 to 94% of original cost, none of the 10 stadiums 

were completed within budget (Baloyi and Bekker 2011). There is overwhelming 

evidence in literature, and practice, which support the conclusion that cost overrun is 

endemic within the construction industry, irrespective of size, type, sector or 

geographical location of the project (see Jackson 2002; Flyvbjerg et al.  2004; Odeck 

2004; Baloyi and Bekker 2011). Cost remains arguably one of the most important key 

performance indicators on most projects (Chan and Chan 2004; Yeung et al.  2008) so 

that statistics, such as the ones above, leaves most clients grossly dissatisfied, giving 

the industry a poor reputation regarding budget reliability (Agyakwa-Baah 2009).  

Despite its importance, cost estimation is undeniably not simple, nor straightforward, 

largely due to the dearth of information required for detailed estimation. It is even 

made worse by the cloud of uncertainty that shrouds cost drivers in the early stages of 

the project (Hegazy 2002) and the changes that occur in scope and design of the 

project once construction actually begins (Love et al.  2011; Gil and Lundrigan 2012). 

It is an inexact science and estimators have to make decisions within an environment 

of uncertainty. Moreover, even though it is accepted that factors such as tendering 

method, type of client, location of project, procurement method, size of project etc. 

have an effect on final cost of a project, it is difficult to establish their measured 

financial impact (Ahiaga-Dagbui and Smith 2012). This complex web of cost 

influencing variables would make it seem that the decision-to-build, for most projects, 

is based on a somewhat unrealistic cost estimate that will inevitably be exceeded.  

Against this backdrop, debates have not waned on causes and measures of cost 

overruns. A recent discussion on the Construction Network of Building Researchers 

(CNBR) left a number of unresolved questions. How accurate can estimates be? Is 

there an acceptable way to compare final cost of project to cost estimates? What is the 

most acceptable measure of cost performance on a construction project? Is it even 

possible to achieve certainty of cost estimates, when the very estimates are made in an 

environment of uncertainty? (see the Nov 2012 CNBR archive online).While the 

answers to these can be varied; even sometimes strongly opposing; it is difficult to 

disagree that clients and project financiers still require some form of reasonably 

accurate estimate of their likely financial commitment for a project before the project 

begins. 

In this paper, the authors attempt to model the final cost of water infrastructure 

projects using gathered cost data and other project details such as location, 

procurement method, size of project, type of client, etc of 98 water infrastructure 

projects. This paper, a sequel to a previous that uses only neural networks for 

modelling final cost (see Ahiaga-Dagbui and Smith 2012) employs Neuro-Fuzzy (NF) 

hybrid models - a combination of neural networks and fuzzy set theory, drawing on 

synergies from the two techniques in an attempt to develop more accurate, reliable and 

consistent final cost models. The next section of the paper provides an overview of the 

two modelling techniques used in the paper- neural networks and fuzzy set theory, and 

then proceeds to develop a neuro-fuzzy cost estimation hybrid model before 

concluding with results achieved and potential extensions of this research. 

NEURAL NETWORKS 

Work on artificial neural networks stemmed from the curiosity to understand how the 

brain processes information. Haykin (1994) described the brain as a highly complex 
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and parallel information processing system, capable of performing very complex 

computations many times faster than many types of computer processors. Artificial 

neural network (ANN) is thus just a simplistic abstraction of the biological neural 

networks of the brain, endowed with the capability to learn from experience (or 

examples) and then generalise for new cases using the acquired knowledge even 

within sparse or incomplete data (Anderson 1995). They are able to adapt to changing 

environments (or datasets) and are often referred to as universal approximators 

because of their ability to closely map input to output spaces in different types of 

problem domains (Fausett 1994). They essentially seek underlying relationships 

between variables and are particularly suited for complex, hard-to-learn problems, 

where no formal underlying theories or classical mathematical and traditional 

procedures exist (Adeli 2001). Neural networks are very sophisticated modelling 

techniques capable of modelling extremely complex functions. In particular, neural 

networks are non-linear (Denton and Hung 1996). For many years linear modelling 

(Regression), has been the commonly used technique in most modelling domains 

since they have well-known optimization strategies. Where the linear approximation 

was not valid, which was frequently the case (Boussabaine and Kirkham 2008), the 

models suffered accordingly.  

Arguably, the strongest argument against the use of ANN is its supposed ‘black-

boxness’(Olden and Jackson 2002)- it is difficult to extract knowledge from the neural 

network model or fully understand how it reaches its conclusions. In regression, for 

example, an equation with explainable physical properties is produced. This is not the 

case in ANN modelling - no equation results out of the model and the network 

weights and connections make little sense. How the inputs interact to produce the 

output is at best, only known to the model. In a previous model using the same data, 

only neural network is used to model final cost projects (Ahiaga-Dagbui and Smith 

2012). In an attempt to illuminate the black-box of ANNs, the authors combine the 

learning and generalisation abilities of neural networks with the capacity for tolerance 

and imprecise knowledge representation of fuzzy set theory to develop a hybrid neuro-

fuzzy cost model for cost prediction. 

FUZZY SET THEORY 

Fuzzy set theory is an aspect of contemporary mathematics which focuses on the 

ambiguities in describing events or classes. It is an attempt to formalise human 

abilities of conversation, reasoning, and decision-making in an environment of 

imprecision, uncertainty as well as conflicting and/or incomplete information (Zadeh 

2008). It incorporates ‘matter of degree’ rather than crisp boundaries into decision 

variables (Tokede and Wamuziri 2012). Fuzzy set theory allows an approximate 

interpolation between observed inputs and output situations (Ross 2009) and provides 

a means for modelling human vagueness in judgment. It  basically requires encoding 

certain decision parameters as fuzzy sets (Zadeh 2008).  

The defining characteristic of a fuzzy set is embodied in its membership function 

(MF). According to Kim et al. (2006), an MF provides an effective way to translate 

subjective terms into mathematical measures. A variable in fuzzy logic could have a 

set of values, characterised in linguistic terms, such as short, medium or long duration 

of project, or poor, moderate and good ground conditions. MFs can be generated in a 

number of ways either using intuition or some other algorithmic or logical operations 

(see Ross (2009) on how to use genetic algorithm, neural networks, rank ordering or 

inductive reasoning in developing MFs).  
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Ross (2009) stipulates that fuzzy relations are analogous to classical mathematical 

functions and basically represent mappings for sets. Fuzzy relations share the mapping 

potentials exhibited by neural networks and hence provide a compatible interphase in 

problem solving. Relations exhibit mathematical properties such as reflexivity, 

transitivity and symmetry which ultimately helps in interpreting attributes in fuzzy 

systems (Zadeh 1994). Chen and Huang (2007) used fuzzy relations in estimating the 

possibility-of-meeting the completion time of a construction project.  

Fuzzy relations could be also employed in establishing the strength and possible 

association between different pairs. This can be achieved through the composition 

operator - a mathematical operation that seeks to establish the relationship between 

similar elements in different universe of discourse (Zimmermann 2001). Two 

common variants of the composition operator are the max-product and max-min. 

According to Zimmermann (2001), the most frequently used composition operator is 

the max-min; though both procedures produce comparable results in many instances. 

The max-min composition operation basically implements the strength of one chain as 

equal to the strength of its weakest link; the maximum of this then represents the 

overall chain strength in the fuzzy system (Ross 2009). Applications in civil 

engineering and construction research have been reported in Ayyub (1997). For cost 

and risk evaluation, fuzzy sets helps in quantification of variables, whose nature could 

be considered as complex and fit for description within a range of options (Tokede 

and Wamuziri 2012). An overview of fuzzy logic applications in construction 

management is provided by Chan et al. (2009) 

NEURO-FUZZY 

Neural networks solves problems by identifying the underlying patterns between the 

variables in the data it receives (Ross 2009) and then makes predictions based on the 

knowledge acquired (Adya and Collopy 1998). They are powerful, easy to use 

(StatSoft Inc. 2011) and can deal with large number of variables and non-linear 

relationships (Denton and Hung 1996). Yet, they are limited by their ‘black-box’ 

nature (Patterson 1996; Olden and Jackson 2002). They also perform best when using 

numerical or continuous data (StatSoft Inc. 2011). The majority of the data used in 

this research happen to be categorical in nature - location, type of client, procurement 

method, etc. Fuzzy sets represent composition of graded categories using mathematics 

based on logical reasoning (Belohlavek et al.  2009). It attempts to formalise decision 

making in an environment of uncertainty and incomplete information (Zadeh 2008), 

the kind that aptly describes cost estimation of construction projects.  

Tokede and Wamuziri (2012) suggest that fuzzy set theory may not function at its 

optimal best as a stand-alone mathematical framework. Its practicality and utility is 

enhanced by combining its logic with pre-existent mathematical formulations. NF 

hybrid models thus have the potential to effectively represent modes of reasoning and 

decision making that are approximate rather than exact (Zadeh 1994), the case of 

construction cost estimation. Yu and Lin (2006) present an NF model for mining 

information from incomplete construction databases whilst Bilgehan (2010) uses NF 

models predict concrete compressive strength. Boussabaine (2001) similarly presents 

NF models for modelling the likely duration of construction projects 

MODEL DEVELOPMENT 

The NF models reported in this paper have been developed in three main stages - the 

first using statistical methods to pre-process the collected data, the second using 
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neural networks to develop relative final cost weightings of predictors and lastly using 

fuzzy sets to predict final cost. These stages are detailed below. 

Stage One: Data and Data Pre-processing 

Details on 98 water infrastructure projects completed in Scotland between 2007 and 

2011were collected. The nature of the projects ranged from construction of water 

mains, water treatment plants, Combined Sewer Overflows (CSOs), installation of 

manholes or water pumps and upgrades and repairs to sewers. All the projects were 

target cost contracts with values between £9,000-£14 million and durations from 1-22 

months.  

The collected data is processed so as to structure and present the data to the model in 

the most suitable way. For this research, extreme values and outliers were either re-

coded or deleted from the sample set and missing values replaced with the mean or 

mode. Input errors were corrected and all cost values were normalised to 2010 with 

the base year 1995 using the infrastructure resources cost indices by the Building Cost 

Information Services (BCIS 2012). Screening of variables to the smallest number is 

desirable because simpler models are easier to deploy - a model with 15 variables 

means information has to be known about all these variables before the model can be 

used for prediction. Redundant predictors - variables that do not add new information 

to the model because they basically contain the same information at another level with 

other variables were detected using spearman ranking, bi-variate histograms or cross-

tabulation. Further variable screening using scree test, mean plots and optimal binning 

in Statistica 10 software, suggested the optimal number of variables for predicting 

final cost to be between 5-7 predictors. 

Stage Two: Neural Network Modelling  

The neural network stage of the model developed was to determine a consistent 

numerical weighting for all the predictors depending on their relative contribution to 

determining the final cost of the project. Ten initial predictors
2
 were used as inputs in 

a 3-layered feed-forward back-propagation neural network architecture with Final 

Target Cost as output of the model. The 98 project cases were split in a 75:15:10% 

ratio for training, testing and validation respectively. The best model was developed 

through an iterative procedure of continually tweaking the neural network parameters 

i.e. hidden nodes and activation functions, to produce improved model performance. 

Model performance was measured using the correlation coefficient between predicted 

and output values as well as the Sum of Squares (SOS) of errors below: 

              
    Eqn. 1 

Where Oi is the prediction (network outputs) 

Ti is the target (actual value) of the ith data case. 

The ten best networks were retained and further tested using the validation set to 

produce Figure 2. The validation set was not used in the training of the model so can 

be considered as an independent verification of the model’s ability to generalise on 

new data. This gave a quick indication of the average error level of each of the 

models. 

                                                
2 Initial list of predictors for the neural network model: Type of Soil, Site Access, Type of Location, 

Contractor's Need for the Project, Frequency of Project, Type of Deadline, Awarded Target cost 

(transformed as logTC), Type of project, Tendering Strategy, Duration (transformed as logD) 



Ahiaga-Dagbui, Tokede, Smith and Wamuziri 

186 

 

Figure 2: Performance of the ten best models 

A sensitivity analysis was then carried out using the three best validated models in 

order to determine the contribution of each predictor to the model’s performance. This 

was partly based on a test for parsimony using Ockham’s Razor principle - one should 

not increase, beyond what is necessary, the number of entities required to explain 

anything and that all things being equal, preference should be given to the simplest 

hypothesis (Chase et al.  1996). This principle of simplicity is used to prune down the 

number of variables required in the model to predict the final cost, thus reducing 

inconsistencies, ambiguities and potential redundancies in the model. An initial 

ranking of all the predictors was generated based on their contribution to the model’s 

performance. Then starting from the least important, one predictor was removed from 

the model at a time whilst measuring the performance of the model without that 

predictor. This was done until the model showed no further improvement or began to 

decay. The best set of predictors of final target cost after this stage are tendering 

strategy, site access, location, type of project, contractor’s need for the project, type of 

soil, as well as estimated initial cost and duration (the common log of these were used 

in the model) 

Table 1: Sensitivity analysis to determine relative ranking of predictors 
Model logTC Tendering 

Strategy 

Site 

Access 

Type of 

Location 

Project 

Type 

Contractor's 

Need 

Soil 

Type 

logD 

15. MLP 18-5-1 4.80 2.22 8.44 2.04 1.50 3.80 1.22 1.09 

19. MLP 18-3-1 7.71 9.08 8.91 11.82 7.93 4.77 7.07 0.68 

20. MLP 18-3-1 8.21 9.18 2.64 3.24 1.89 2.55 2.56 1.21 

Average Weighting 6.90 6.83 6.66 5.70 3.77 3.71 3.61 0.99 

 

Stage Three: Fuzzy Sets Modelling 

Fuzzy set theory is applied at this stage of the modelling exercise to evaluate the 

subjective measures for each of the cost predictors in order to predict final cost. Using 

                    
  

  
=1   Eqn. 2. 2, the average weighted 

ranking for each of the variables from Table was normalized to unity in order to 

generate a standardised index for the subsequent fuzzy set computations (see Table 4) 

                     
  

  
     Eqn. 2 

Where wi is the average relative weighting of the ith predictor 

∑W is the sum of relative weighting of all predictors 
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Table 4: Normalized weighted values of the cost predictors from the neural network analysis 
Factors Tendering 

strategy 

Site 

Access 

Type of 

Location 

Project 

Type 

Contractor 

Need 

Soil   

Type 

Log 

Duration 

Normalized 

ranking 
0.22 0.21 0.18 0.12 0.12 0.11 0.04 

With mean target cost to predictor plots, all predictors were fuzzified using the range 

set below: 

       ,  Influence is Rather High 

              Influence is High 

              Influence is Medium 

        ,      Influence is Low 

The next stage of the fuzzy modelling involved developing membership functions. In 

developing these, the tolerance index is particularly relevant in evaluating and 

constraining the range of possibilities subject to a complex set of influencing 

variables, quantitatively and/or qualitatively defined. The tolerance index is vital in 

order to model the uncertainty in the cost values within a realistic continuum as 

opposed to a single figure-of-merit. For this study, the tolerances, β, were adapted to 

follow those indicated by Ayyub (1997) and reported in the table below. 

Table 5: Values of tolerance. Source: adapted from  Ayyub (1997) 

β 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

Poor/Low 1.0 0.9 0.7 0.4 0 0 0 0 0 0 0 

Median 0 0 0.4 0.7 0.9 1.0 0.9 0.7 0.4 0 0 

High 0 0 0 0 0 0 0 0.4 0.7 0.9 0 

Rather High 0 0 0 0 0 0.4 0.7 0.9 1.0 0.9 0.7 

Each of the project variables in the validation set was converted into fuzzy set 

variables using Table 5. According to Ross (2009), the fuzzy relation,    of two sets,    

and     can be defined by the set-theoretic and membership function-theoretic, 

mathematically expressed as:  

                Eqn. 3 

                                       Eqn. 4 

In Eqn. 3 above, R is a fuzzy relation on the Cartesian space X x Y. S is a fuzzy 

relation on Y x Z, and T is fuzzy relation on X x Z. In this cost estimation problem, R 

represents the set of cost predictors and S refers to the set of standard values of 

tolerance for linguistic descriptors of project attributes. The max-min composition 

operator is employed to deduce the strength and degree of relationship between 

specific relational pairs, which in this case, depicts the overall project cost as a fuzzy 

relationship of the normalised cost predictor weightings in Table 4, and based on the 

associated fuzzified project attributes deducible from Table 5.  

The tolerance of each of the cost values in the validation set was computed, using 

Eqn.4 and defuzzified to obtain a 3-point estimate representing the fuzzy mean, fuzzy 

upper and fuzzy lower values as shown in Table 6. These three values provided a range 

of likely final cost rather than the customary single value estimate. Table 6 shows the 

performance of the NF hybrid models in predicting the final cost of 10 different 

projects used in the validation set. This is summarised in  
 

Table 7 along with the average model performance of the neural network model only.   



Ahiaga-Dagbui, Tokede, Smith and Wamuziri 

188 

 

The Fuzzy Upper best predicts the final cost and have the smallest percentage errors, 

ranging from 0.6% average underestimation to 0.8% overestimation of the likely final 

cost of the project. This represents an appreciable improvement in the results achieved 

using the neural network models only, also shown in  
 

Table 7. The best three models at the neural network stage averaged a 1.2% under-

estimation and 4.6% over-estimation of the actual final cost of the projects in the 

validation dataset. These results show significant promise in using neuro-fuzzy hybrid 

models to learn the underlying relationships between variables such as tendering 

strategy, site access, project location, type of soil or type of project and final cost of 

construction project.  

Table 6: Neuro-fuzzy model validation results 

 

Validation 

Cases 

 

Actual Final 

Cost (log) 

Model Prediction (log) 

Fuzzy 

Lower (FL) 

% error 

(FL) 

Fuzzy 

Mean 

(FM) 

% error 

(FM) 

Fuzzy 

Upper 

(FU) 

% error 

(FU) 

1 5.78 5.65 2.4% 5.68 1.8% 5.75 0.5% 

2 6.90 6.75 2.2% 6.77 1.9% 6.86 0.7% 

3 5.41 5.35 1.1% 5.39 0.5% 5.46 -0.9% 

4 5.22 5.09 2.6% 5.12 1.9% 5.20 0.5% 

5 6.51 6.38 2.0% 6.41 1.6% 6.48 0.4% 

6 5.95 5.85 1.7% 5.87 1.4% 5.95 -0.1% 

7 6.91 6.78 1.9% 6.80 1.6% 6.89 0.4% 

8 4.67 4.58 1.8% 4.62 1.1% 4.69 -0.5% 

9 5.00 4.97 0.6% 4.99 0.1% 5.07 -1.6% 

10 4.49 4.34 3.3% 4.36 2.9% 4.45 0.9% 

 

 

Table 7: Summary of results from neuro-fuzzy model validation 

  Summary of results 

 

Neuro-fuzzy 

Lower (FL) 

Neuro-fuzzy 

Mean (FM) 

Neuro-fuzzy 

Upper (FU) 

Neural Network 

Only 

Average % Under-estimation 2% 1.50% 0.60% 1.2% 

Average % Over-estimation N/A N/A 0.80% 4.6% 

As already stated, even though it is agreeable that these factors affect the final cost on 

a project, it is difficult to assign cost measures to them as their relationship to cost are 

not thoroughly understood. The neuro-fuzzy hybrid models are possibly a step in the 

right direction in producing more accurate and realistic cost estimates at the initial 

stages of a construction project in an attempt to alleviate the problem of cost overruns 

CONCLUSION 

The research reported in this paper combines the learning and generalisation 

capabilities of artificial neural networks with fuzzy logic’s ability to formalise human 

reasoning and decision making within an environment of uncertainty and incomplete 

information to develop neuro-fuzzy hybrid cost models for predicting the final cost of 

small water infrastructure projects. In particular, the research attempts to use some 

non-traditional cost predictors such as site access, location, tendering strategy, project 

and soil type to estimate likely final cost. The authors present a three-point range of 

possible likely final cost outcomes instead of the classical single point estimate. This 
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might allow estimators and clients to more accurately estimate likely contingency 

needs for their projects. In their extended form, these models can readily be converted 

into stand-alone desktop applications that can allow quick simulation of what-if 

scenarios and also allow the easy generation of different cost estimates should project 

parameters change. As a sequel to a previous paper that used only neural networks, the 

results here show an improvement in the predictive performance and thus the results 

are now being extended to a database of 4500 projects with an industry partner. 
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