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This paper introduces a hybrid feature extraction method applied to mass spectrometry (MS) data
for cancer classification. Haar wavelets are employed to transform MS data into orthogonal wavelet
coefficients. The most prominent discriminant wavelets are then selected by genetic algorithm (GA)
to form feature sets. The combination of wavelets and GA yields highly distinct feature sets that
serve as inputs to classification algorithms. Experimental results show the robustness and signifi-
cant dominance of the wavelet-GA against competitive methods. The proposed method therefore
can be applied to cancer classification models that are useful as real clinical decision support
systems for medical practitioners.
� 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Mass spectrometry (MS) is a powerful analytical chemistry
technique that was initially introduced to determine the con-
stituent elements of small molecules. Mass spectrometers consist
of three main parts: an ion source, a mass analyser, and an ion
detection system [1]. Components of a sample mixture are con-
verted to ions, which are then bombarded with an electron beam
having sufficient energy. In Fig. 1, the high voltage beams are to
accelerate the ions in the target sample so that they all have the
same kinetic energy. The positively charged ions are deflected in
a vacuum through a magnetic field depending on their masses. Ions
are deflected more if they are lighter. The amount of ions passing
through the machine is detected electrically and is sorted on the
basis of mass-to-charge (m/z) ratio. The machine is calibrated to
record the ion current against the m/z ratio. The output of the
recorder is a spectrum presented in a diagram where the vertical
axis represents the relative abundance or relative intensity and
the horizontal axis represents the m/z ratio (see Fig. 1).

MS-based proteomics has been routinely applied worldwide to
deal with a large range of biological problems [2]. More
specifically, it is able to discover patterns of differentially
expressed proteins in clinical samples such as blood serum.
Biomarkers identified through analysis of complex protein mix-
tures can be utilized for diagnosis, prognosis, or monitoring of
many diseases, in particular cancers, e.g. see [3–11].

MS data are commonly assembled with the number of m/z val-
ues much larger than the number of samples. Standard techniques
therefore find inappropriate or computationally infeasible in ana-
lysing such data. Not all of the tens of thousands of m/z values
are discriminative and needed for classification. Most m/z values
do not affect the classification performance. Taking such m/z
values into account enlarges the dimension of the problem, leads
to computational burden, and presents unnecessary noise in the
classification process. It is essential to have a feature extraction
procedure that is able to reduce dimension of the data and form
a feature set, which suffices for good classification.

Common feature extraction approaches are filter and wrapper
methods. Filter methods rank all features in terms of their good-
ness using the relation of each single feature with the class label
based on a univariate scoring metric. The top ranked features are
chosen before classification techniques are carried out. In contrast,
wrapper methods require the feature selection technique to com-
bine with a classifier to evaluate classification performance of each
feature subset. The optimal subset of features is identified based on
the ranking of performance derived from implementing the classi-
fier on all found subsets. The filter procedure is unable to measure
the relationship among features whilst the wrapper approach
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Fig. 1. Mass spectrometry process.

Fig. 2. An illustration of Haar wavelet.
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requires a great computational expense. Therefore, the combina-
tion of filter and wrapper approaches has a potential to accumulate
advantages of each individual method [12].

In this paper, to enhance the robustness and stability of mass
spectrometry data classification, we introduce a feature extraction
method by combining wavelet transformation (WT) and genetic
algorithm (GA), called wavelet-GA. The idea behind this approach
is to first transform mass spectrometry data into orthogonal wave-
let coefficients using the Haar wavelets. Then GA is applied to
select the most prominent discriminant wavelet coefficients to
form feature sets. The GA search based on the evolutionary learn-
ing process is considered as a wrapper feature selection method.
We integrate the two-sample t-test filter method into the GA pop-
ulation initialization process to benefit the advantages of this filter
method during the GA implementation. Accordingly, the proposed
approach is regarded as a hybrid method that incorporates a filter
method into a wrapper procedure based on wavelet features.

Next section describes in detail the proposed wavelet-GA
method. Experiments and discussions are presented in Section 3,
followed by concluding remarks and future research directions in
Section 4.

2. Proposed wavelet-genetic algorithm feature extraction

2.1. Wavelet transformation (WT)

WT represents a signal in a time-frequency fashion [13]. WT
eliminates the requirement of signal stationarity that usually
applies to conventional methods. Once the wavelets (the mother
wavelet) uðxÞ is fixed, translations and dilations of the mother
wavelet can be formed fuððx� bÞ=aÞ; ða; bÞ 2 Rþ � Rg. It is useful

to set specific values for a and b as a ¼ 2�j and b ¼ 2�jk where j
and k are integer numbers.

Du et al. [14] introduced the R package MassSpecWavelet for
processing mass spectrometry spectrum by using wavelet-based
algorithms. One of the simplest wavelets is the Haar wavelet
uðxÞ, which has been used in various areas. It is a step function that
takes values at 1 and �1 on ½0; 12Þ and ½12 ;1Þ respectively. Fig. 2
graphically illustrates the Haar wavelet.
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In general, Haar functions can uniformly approximate any con-
tinuous function. Dilations and translations of the function u,

which is ujkðxÞ ¼ const �uð2 jx� kÞ, define an orthogonal basis in

L2ðRÞ. This means that any element in L2ðRÞ may be represented
as a linear combination of these basis functions. The scaling func-
tion in Haar wavelet is simply unity on the interval [0,1) as
/ðxÞ ¼ 1ð0 6 x < 1Þ.

2.2. Genetic algorithm (GA) for selection of wavelets

GA is generally the most robust evolutionary algorithm. GA has
the capability to deal with problems that may be non-
differentiable, non-linear, or have many local minima or con-
straints. If these characteristics are strongly present, GA offers
effective solutions, e.g. see [15,16] where GA was successfully
employed in computational biology.

GA is an optimization technique operated on a population of L
artificial individuals. Individuals are characterized by chromo-
somes (or genomes) Sk; k ¼ f1; . . . ; Lg. The chromosome kth is a
string of symbols, which are called genes, Sk ¼ ðSk1; . . . ; SkMÞ, where
M is the string length.

In the application of GA for selection of wavelet coefficients, a
gene represents a coefficient. The number of genes in a
data classification using wavelets and genetic algorithm. FEBS Lett. (2015),
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chromosome (individual) is equal to the wanted number of
features in the feature set. Therefore, not all available wavelet
coefficients are used in each GA evaluation step because the
chromosome length is equal to the wanted number of features,
which is often small (for example five features in this study). This
is an advantage that diminishes the overfitting issue without reg-
ularisation on the large wavelet dictionary, which was addressed
by a sparse Bayesian approach in Vannucci et al. [17].

The GA population comprises individuals where each individual
represents a solution. The initial population is initialized by
randomly sampling the set of prominent wavelets that are selected
by the two-sample t-test filter method. This test is a parametric
hypothesis test that is applied to compare whether the average
difference between two independent data samples is really
significant. The test statistic is expressed by:

t ¼ l1 � l2ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2
1

n1
þ r2

2
n2

q ð1Þ

where l1 and l2 are sample means, r1 and r2 are sample standard
deviations, and n1 and n2 are sample sizes of the two separate
datasets.

In the application of t-test for selecting prominent wavelets, the
test is performed on each wavelet coefficient by separating the
data samples based on the class variable. The absolute value of t
is used to evaluate the significance of wavelets. The higher the
absolute value, the more important is the wavelet coefficient.

The integration of this filter method in the GA population ini-
tialization step enables GA to have a more insightful knowledge
about the solution space of the optimization problem. The
proposed approach for feature extraction therefore is considered
as a hybrid approach combining the filter and wrapper methods,
which are applied to wavelet features.

Through chromosomes’ evolution, GA searches for the best
solution(s) in the sense of the given fitness function. The fitness
function is designed as the linear combination of the error rate
and the average of posterior probability of the classifier:

fit ¼ ERþ 1� PP ð2Þ
where ER is the classification error rate and PP is the average of the
posterior probabilities that the jth training class was the source of
the ith sample observation, i.e., PrðclassjjobsiÞ. Linear discriminant
analysis (LDA) [18] is employed as the classifier to evaluate each
individual of the population.

Each individual in the population represents a set of features.
LDA is used to classify all samples and classification error rate is
defined as the number of incorrectly classified samples divided
by the total number of samples. Prior defaults to a numeric vector
of equal probabilities, i.e., a uniform distribution: the prior proba-
bility of class k is 1 over the total number of classes. The posterior
probability that a point x belongs to class k is the product of the
prior probability and the multivariate normal density. The density
function of the multivariate normal with mean lk and covariance
Rk at a point x is

PðxjkÞ ¼ 1

ð2pjRkjÞ1=2
exp �1

2
ðx� lkÞTR�1

k ðx� lkÞ
� �

ð3Þ

where jRkj is the determinant of Rk, and R�1
k is the inverse matrix.

Let PðkÞ represent the prior probability of class k. Then the posterior
probability that an observation x is of class k is

bPðkjxÞ ¼ PðxjkÞPðkÞ
PðxÞ ð4Þ

where PðxÞ is a normalization constant, namely, the sum over k of
PðxjkÞPðkÞ.
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By combining classification error and the average posterior
probabilities, the fitness function evaluates not only the accuracy
of class indication but also the membership level of the observa-
tion within the indicated class. This combination measures more
detailed the performance of the classification results so that the
evaluation of feature sets is more rigorous and robust.

Individuals are evaluated via calculation of the fitness function.
To evolve through successive generations, GA performs three basic
genetic operators: selection, crossover and mutation. The popula-
tion of GA is initialized with 100 individuals and evolved through
50 generations. Other parameters are assigned to the default set-
tings of GA implemented in Matlab [19].

Specifically, the selection operator allows individuals in the cur-
rent generation with the best fitness values to automatically sur-
vive to the next generation. In this study, the stochastic uniform
selection function is used to select parents for the next generation.
Each parent occupies a section of the line with the length propor-
tionate to its fitness value. The algorithm moves along the line and
selects a parent from the section it lands on. Number of best indi-
viduals that survive to next generation without any change is equal
to 5.

Crossover creates children by combining the genes of a pair of
two parents. We used the scattered crossover function where a
child is formed based on a random binary vector. Genes where
the vector is a 0 from the first parent and genes where the vector
is a 1 from the second parent are combined for the child. The cross-
over fraction is 0.8.

Mutation functions make small random changes in the genes of
individuals in the populations, which provide more genetic diver-
sity and enable the GA to search in a broader space of solutions.
The Gaussian mutation function is used in the GA implementation.
A random number generated by a Gaussian distribution with mean
0 is added to each entry of the parent vector. The standard devia-
tion of this distribution is specified by the parameters Scale and
Shrink, which are both equal to 1 in this study.

The best chromosome obtained through a series of evolving
generations represents the optimal set of wavelets. With a popula-
tion of individuals, GA can simultaneously explore different parts
of the feature space and it is thus able to find an global solution
for the optimal feature set.

3. Experiments and results

3.1. Performance evaluation

To evaluate performance of the proposed feature extraction
method, we apply a range of classifiers such as LDA [18], NB [20],
k-nearest neighbours (kNN) [20], support vector machine (SVM)
[21], multilayer perceptron (MLP) [22], fuzzy ARTMAP [23], adap-
tive neuro-fuzzy inference systems (ANFIS) [24], and ensemble
learning AdaBoost [25].

The purpose of the classifiers is to verify feature sets and there-
fore each classifier was trained with the same initial training
parameters for different feature sets obtained from different fea-
ture selection methods. The built-in Matlab implementation of
LDA, NB, kNN, SVM, MLP and ANFIS and AdaBoost are used in
this study. Specifically, the number of nearest neighbours in kNN
is equal to 5 and the SVM kernel function is the Gaussian radial
basis function with the scaling factor of 1. MLP is constructed with
two hidden layers and five nodes are in each layer. We initialize
ANFIS models with five fuzzy rules of the Sugeno type and they
are trained through 50 epochs. AdaBoost uses a collection of
individual learners that are 100 decision trees.

Fuzzy ARTMAP is a variant of the basic learning networks.
Carpenter [26] defined the default ARTMAP algorithm and its
ata classification using wavelets and genetic algorithm. FEBS Lett. (2015),
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parameter values to describe a ready-to-use general-purpose
neural network system for supervised learning and recognition.
The default ARTMAP network simplifies the design and ensures
robust performance of fuzzy ARTMAP in many application
domains. Fuzzy ARTMAP is actually a subset of default ARTMAP
(fuzzy ARTMAP � default ARTMAP) [26]. Therefore, default
parameter values presented in [26] are used in this study.

Numerous feature extraction approaches including two-sample
t-test [27], entropy test (known as Kullback–Liebler distance or
divergence) [27], Bhattacharyya distance (BD) [28], Wilcoxon test
[29], receiver operating characteristic (ROC) curve [27], principal
component analysis (PCA) [30], sequential search [31] are applied
as competing methods against wavelet-GA. Whilst PCA and
sequential search are employed based on the built-in Matlab
implementation, details of the other feature extraction methods
are presented in the following. These methods rank features via
scoring metrics, which are statistic tests based on two sets of
data samples in the binary classification problem. The sample
means are denoted as l1 and l2, whereas r1 and r2 are the sample
standard deviations.

� Entropy test

Relative entropy, also known as divergence, is a test assuming
classes are normally distributed. The entropy score for each feature
is computed using the following expression [27]:

e ¼ 1
2

r2
1

r2
2

þ r2
2

r2
1

� 2
� �

þ 1
r2

1

þ 1
r2

2

� �
l1 � l2

� �2� �
ð5Þ

After the computation is accomplished for every feature, features
with the greatest entropy scores are selected to serve as inputs to
the classification techniques.

� Bhattacharyya distance

The Bhattacharyya distance can be calculated from the standard
deviation and mean of each class as follows:

BD ¼ 1
4
ln

1
4

r2
1

r2
2

þ r2
2

r2
1

þ 2
� �� �

þ 1
4

l1 � l2

� �2
r2

1 þ r2
2

" #
ð6Þ

� Receiver operating characteristic (ROC) curve

Denote the distribution functions of X in the two populations as
F1ðxÞ and F2ðxÞ. The tail functions are specified respectively
TiðxÞ ¼ 1� FiðxÞ; i ¼ 1;2. The ROC is given as follows:

ROCðtÞ ¼ T1 T�1
2 tð Þ

	 

; t 2 ð0;1Þ ð7Þ

and the area under the curve (AUC) is computed by:

AUC ¼
Z 1

0
ROCðtÞdt ð8Þ

The larger the AUC, the less is the overlap of the classes. Fea-
tures with the greatest AUC therefore are chosen to form a feature
set.

� Wilcoxon method

The Wilcoxon rank sum test is equivalent to the Mann–Whitney
U-test, which is a test for equality of population locations
(medians). The null hypothesis is that two populations enclose
identical distribution functions whereas the alternative hypothesis
refers to the case two distributions differ regarding the medians.
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The normality assumption regarding the differences between the
two samples is not required. That is why this test is used instead
of the two-sample t-test in many applications when the normality
assumption is concerned.

The main steps of the Wilcoxon test [29] are summarized
below:

(1) Assemble all observations of the two populations and rank
them in the ascending order.

(2) The Wilcoxon statistic is the sum of all of the ranks associ-
ated with the observations from the smaller group.

(3) The hypothesis decision is made based on the P-value, which
is found from the Wilcoxon rank sum distribution table.

In the applications of theWilcoxon test for feature selection, the
absolute values of the standardized Wilcoxon statistics are utilized
to rank features.

Performance of classification techniques are measured by
accuracy, area under the ROC curve (AUC), F1 score statistics
(F-measure), and mutual information (MI).

F-measure considers both the ‘‘Precision” (denoted as Pr) and
‘‘Recall” (Re) of the procedure to compute the score expressed as
follows:

F-measure ¼ 2� Pr � Re
Pr þ Re

ð9Þ

The MI between estimated and true label is calculated by:

IðbC ;CÞ ¼ R1
ĉ¼0R

1
c¼0pðĉ; cÞ log

pðĉ; cÞ
pðĉÞpðcÞ ð10Þ

where pðĉ; cÞ is the joint probability distribution function of

estimated and true class labels bC and C, and pðĉÞ and pðcÞ are the

marginal probability distribution functions of bC and C respectively.
The five-fold cross validation is employed for experiments. The

strategy divides all samples at random into 5 distinct subsets and 4
subsets are used for training classifiers whilst the last subset is for
testing.

For unbiased comparisons among feature extraction methods,
each classifier is repeated 30 times on a feature subset using
five-fold cross validation and the average performance is reported.
To draw convincing conclusions in performance evaluation, we
implement the Kruskal–Wallis test [32] for comparing two sets
of accuracy results. The Kruskal–Wallis test is a nonparametric ver-
sion of the classical one-way ANOVA. As the results over 30 trials
may not be normally distributed, they may violate the normal
assumption of the ANOVA. Therefore the use of Kruskal–Wallis test
is appropriate. The test returns the P-value for the null hypothesis
that all samples in two sets of results are drawn from the same
population.

Note that the test is performed to compare between the two
sets of 30 accuracy outcomes generated by each classifier
performed on two feature sets. One feature set is obtained by the
proposed wavelet-GA approach and another is attained by one of
competitive feature extraction methods.

3.2. Datasets

Three benchmark datasets including ovarian cancer, prostate
cancer, and premalignant pancreatic cancer are used for experi-
ments. The data are from the FDA-NCI Clinical Proteomics Program
Databank.

The ovarian dataset was generated using the WCX2 protein
chip. An upgraded PBSII SELDI-TOF mass spectrometer was used
to produce the spectra. The dataset is composed of samples of pro-
teomic patterns in serum that distinguish ovarian cancer from
data classification using wavelets and genetic algorithm. FEBS Lett. (2015),
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Fig. 5. Mass spectrographs (average across class) of the pancreatic dataset.
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non-cancer. There are 15154 m/z values and 253 samples where
control (normal) samples contribute 35.97% with 91 examples
and the rest 64.03% with 162 instances are cancer.

The prostate dataset was produced by the H4 protein chip and a
Ciphergen PBS1 SELDI-TOF mass spectrometer. The dataset con-
sists of 15154 m/z values with 322 samples of which 253 samples
(78.57%) are normal and the remaining 21.43% are cancer with 69
examples.

Alternatively, the pancreatic cancer dataset comprises 6771m/z
valueswith 181 samples by using a randomly commingled study set
of murine sera. Among them, normal samples account for 55.8%
with 101 instances whilst the rest 80 samples (44.2%) are cancer.

The mass spectrographs (average across class) of these datasets
displayed in Figs. 3–5 show the increasingly difficult classification
from the ovarian dataset to prostate and pancreatic datasets.

Haar wavelets are applied to transform MS data in each dataset
into wavelet coefficients. In this study, we choose feature sets with
five wavelets that are selected by GA for demonstrations. For com-
parisons, the same number of features is also extracted by other
competing feature extraction methods.

A different number of features can be used for demonstrations.
Technically, adding more features to a certain extent will lead to
improved classification accuracy. After that extent, adding more
features would reduce the classification results because of the
overfitting issue. In this paper, we are not focusing on finding out
how many features will lead to maximum classification accuracy
but it could be of a further work.

Figs. 6–8 demonstrate the Example 3D projections of feature
sets obtained by the proposed wavelet-GAmethod. The projections
are obtained by plotting the first three most significant features
out of five features obtained from the wavelet-GA algorithm. ‘‘Class
1” indicates cancer samples whilst healthy samples are repre-
sented by ‘‘Class 2”.
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Fig. 6. Wavelet-GA features 3D projection in the ovarian dataset.

Fig. 7. Wavelet-GA features 3D projection in the prostate dataset.
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As observed in the mass spectrographs, feature sets exhibited in
Figs. 6–8 also present the increasing difficulty in differentiating
normal and cancer individuals from the ovarian to prostate and
pancreatic datasets.

3.3. Results and discussions

Results in terms of average accuracy across 30 running times
are reported in Tables 1–3 for the ovarian, prostate and pancreatic
datasets respectively. It is seen that wavelet-GA method (denoted
as W-GA) significantly dominates all competitive feature extrac-
tion methods in every classifier in all 3 datasets.
ata classification using wavelets and genetic algorithm. FEBS Lett. (2015),
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For example, in the ovarian dataset, wavelet-GA feature set
leads to the greatest accuracy at 100% by LDA, NB, kNN and MLP
whilst none of the other feature extraction methods can give the
average accuracy at 100%. For other classifiers such as SVM, fuzzy
ARTMAP, ANFIS and AdaBoost, wavelet-GA also yields the maxi-
mum accuracy compared to other methods.

In the prostate dataset, wavelet-GA also outperforms other
algorithms by obtaining the average accuracy approximately at
Table 1
Results of the ovarian dataset.

Classifiers T-Test Entropy BD Wilco

LDA 98.08(0.0000) 97.77(0.0000) 97.30(0.0000) 98.55
NB 97.81(0.0000) 96.00(0.0000) 97.10(0.0000) 97.36
kNN 98.29(0.0000) 96.24(0.0000) 96.84(0.0000) 98.22
SVM 97.56(0.0000) 96.45(0.0000) 96.76(0.0000) 97.83
MLP 96.96(0.0000) 96.65(0.0000) 96.97(0.0000) 97.89
Fuzzy ARTMAP 96.57(0.0000) 96.04(0.0000) 95.65(0.0000) 94.74
ANFIS 97.83(0.0000) 96.18(0.0000) 95.79(0.0000) 97.76
AdaBoost 96.85(0.0000) 96.18(0.0000) 95.66(0.0000) 97.11

Table 2
Results of the prostate dataset.

Classifiers T-Test Entropy BD Wilc

LDA 83.50(0.0000) 52.48(0.0000) 88.98(0.0371) 83.45
NB 86.42(0.0000) 49.09(0.0000) 85.52(0.0000) 85.77
kNN 84.72(0.0000) 75.57(0.0000) 87.58(0.0001) 84.67
SVM 81.62(0.0000) 52.16(0.0000) 88.94(0.0235) 81.46
MLP 86.02(0.0000) 77.49(0.0000) 88.68(0.0003) 87.71
Fuzzy ARTMAP 79.57(0.0000) 59.68(0.0000) 85.28(0.0000) 80.50
ANFIS 85.95(0.0000) 78.90(0.0000) 87.85(0.0000) 87.18
AdaBoost 85.83(0.0000) 74.74(0.0000) 87.51(0.0195) 86.39

Table 3
Results of the pancreatic dataset.

Classifiers T-Test Entropy BD Wilc

LDA 57.03(0.0000) 55.95(0.0000) 53.25(0.0000) 54.39
NB 59.32(0.0000) 53.19(0.0000) 58.58(0.0000) 60.10
kNN 47.61(0.0000) 53.48(0.0000) 52.07(0.0000) 57.06
SVM 50.45(0.0000) 51.22(0.0000) 50.36(0.0000) 58.38
MLP 53.16(0.0000) 51.67(0.0000) 53.95(0.0000) 55.85
Fuzzy ARTMAP 51.60(0.0000) 50.35(0.0000) 52.29(0.0000) 59.27
ANFIS 51.41(0.0000) 52.49(0.0000) 52.60(0.0000) 51.56
AdaBoost 52.94(0.0000) 50.55(0.0001) 52.54(0.0000) 57.29
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90%. Entropy is the worst method as it leads the lowest accuracy
among investigated feature extraction methods.

Likewise, wavelet-GA is remarkably superior to other methods
in the pancreatic dataset. The largest gap is between the
wavelet-GA and PCA with 17.46% difference on average across clas-
sifiers. The second best is the sequential search method as it is infe-
rior to wavelet-GA at 10.03% on average.

P-values of the Kruskal–Wallis test are reported in brackets
adjacent to the average accuracy in Tables 1–3. For example, the
value at 0.0000 in brackets in the cell of row LDA and column T-
Test in Table 1 is the P-value of the Kruskal–Wallis test comparing
two sets of accuracy results: one set is generated by the LDA clas-
sifier on the t-test features and another set is obtained by LDA on
the wavelet-GA features.

We find that the P-values of these pairwise tests are all smaller
than 0.05 (the 5% significance level). Therefore, the Kruskal–Wallis
tests reject the null hypothesis that results of two feature extrac-
tion methods (wavelet-GA and each of the competitive methods)
come from the same distribution at the 5% significance level. This
shows the statistically significant dominance and robustness of
wavelet-GA against other methods.

Figs. 9–11 graphically detail the performance comparisons
among feature extraction methods by the MLP classifier in the
ovarian, prostate and pancreatic datasets respectively. Each box
in these box plots shows the median and distribution of the set
of 30 accuracy outcomes. In line with average results presented
in Tables 1–3, the box plots demonstrate the considerable
xon ROC PCA Sequential W-GA

(0.0000) 97.95(0.0000) 98.75(0.0000) 99.74(0.0402) 100.00
(0.0000) 97.11(0.0000) 98.35(0.0000) 99.08(0.0001) 100.00
(0.0000) 97.43(0.0000) 98.10(0.0000) 99.08(0.0003) 100.00
(0.0000) 97.37(0.0000) 92.29(0.0000) 99.28(0.0014) 99.93
(0.0000) 96.26(0.0000) 97.82(0.0000) 99.21(0.0006) 100.00
(0.0000) 94.99(0.0000) 96.89(0.0000) 95.30(0.0000) 99.93
(0.0000) 96.06(0.0000) 97.31(0.0000) 99.02(0.0006) 99.93
(0.0000) 95.78(0.0000) 98.88(0.0207) 98.55(0.0041) 99.67

oxon ROC PCA Sequential W-GA

(0.0000) 83.97(0.0000) 82.54(0.0000) 88.35(0.0028) 91.12
(0.0000) 86.57(0.0000) 83.84(0.0000) 88.61(0.0002) 91.43
(0.0000) 85.44(0.0000) 88.43(0.0006) 89.26(0.0345) 91.48
(0.0000) 81.69(0.0000) 84.09(0.0000) 84.95(0.0000) 91.23
(0.0000) 86.55(0.0000) 86.89(0.0001) 88.77(0.0016) 91.98
(0.0000) 80.22(0.0000) 84.79(0.0000) 79.50(0.0000) 90.40
(0.0002) 86.54(0.0001) 88.68(0.0125) 88.39(0.0052) 91.61
(0.0010) 85.63(0.0002) 87.03(0.0101) 87.75(0.0393) 89.73

oxon ROC PCA Sequential W-GA

(0.0000) 51.17(0.0000) 52.63(0.0000) 60.91(0.0000) 74.78
(0.0000) 57.44(0.0000) 54.74(0.0000) 59.04(0.0000) 69.01
(0.0001) 54.89(0.0000) 47.44(0.0000) 56.49(0.0000) 66.51
(0.0000) 58.34(0.0000) 47.92(0.0000) 60.86(0.0053) 66.99
(0.0003) 56.29(0.0004) 51.24(0.0000) 56.92(0.0001) 65.11
(0.0001) 58.61(0.0000) 46.68(0.0000) 51.13(0.0000) 67.89
(0.0000) 58.96(0.0003) 53.30(0.0000) 58.41(0.0003) 66.74
(0.0000) 57.85(0.0000) 52.87(0.0000) 62.50(0.0007) 69.46
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Fig. 9. Box plot of results of MLP in the ovarian dataset.
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Fig. 10. Box plot of results of MLP in the prostate dataset.
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Fig. 11. Box plot of results of MLP in the pancreatic dataset.
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Fig. 12. F-measure, AUC and MI performance of kNN in the ovarian dataset.

T−Test Entropy BD Wilcoxon ROC PCA Seq Wavelet−GA
20
40
60
80

F−
m

ea
su

re
 (%

)

T−Test Entropy BD Wilcoxon ROC PCA Seq Wavelet−GA

60

80
AU

C
 (%

)

T−Test Entropy BD Wilcoxon ROC PCA Seq Wavelet−GA
0

50

M
I (

%
)

Fig. 13. F-measure, AUC and MI performance of kNN in the prostate dataset.
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Fig. 14. F-measure, AUC and MI performance of kNN in the pancreatic dataset.

Table 4
Processing time (in seconds) of feature extraction methods.

Methods Ovarian Prostate Pancreatic

T-Test 2.530 2.750 0.999
Entropy 2.548 2.761 1.001
BD 2.525 2.749 0.998
Wilcoxon 6.790 6.362 3.092
ROC 2.678 2.920 1.046
PCA 0.114 0.126 0.043
Sequential 438.199 453.923 173.311
Wavelet-GA 15.125 16.539 13.007

T. Nguyen et al. / FEBS Letters xxx (2015) xxx–xxx 7
superiority of wavelet-GA against other methods. The relatively
small interquartile ranges of the wavlet-GA boxes furthermore
indicate the stability of wavelet-GA compared to competitive
approaches. This is particularly evident in Fig. 9 of the ovarian
dataset as the wavelet-GA box is a single line. This is because
wavelet-GA leads to the maximum accuracy at 100% in all 30
running times under the cross-validation strategy.

Results obtained by F-measure, AUC and MI also show the sim-
ilar outcomes with those achieved by using the accuracy metric. It
means that wavelet-GA outperforms other methods through all
investigated performance metrics. As for demonstrations, the
graphical comparisons among feature extraction methods in terms
of F-measure, AUC and MI are displayed in Figs. 12–14 respectively
for the ovarian, prostate and pancreatic datasets. Note that kNN is
used for experiments in these figures.

Clearly, wavelet-GA is ranked top among examined methods.
Entropy produces the lowest performance in both ovarian and
prostate datasets. Sequential method consistently leads to the
second best after wavelet-GA in all three datasets.

Table 4 reports the processing time consumed by feature
extraction methods. The experiments in this study are carried out
on a computer that has the Intel(R) Core(TM) i7-2600K CPU @
3.40 GHz and 3.70 GHz with RAM at 16.0 GB running on the
64-bit Windows 7 Operating System. PCA is the fastest approach
as it requires less than a second to process each dataset. It is worth
noting that the decomposition algorithm that returns only the top 5
Please cite this article in press as: Nguyen, T., et al. Mass spectrometry cancer data classification using wavelets and genetic algorithm. FEBS Lett. (2015),
http://dx.doi.org/10.1016/j.febslet.2015.11.019
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eigenvectors has been applied for PCA. Filter procedures such as
t-test, entropy, BD, Wilcoxon, and ROC are also fast methods, which
are comparable to PCA. Operating as a wrapper method, sequential
search takes the largest amount of time amongst investigatedmeth-
ods. It needs more than 7 min for the ovarian and prostate datasets
and nearly 3 min for the pancreatic dataset. Compared to the
sequential search, wavelet-GA takes much less time amount. It
needs approximately 15 s to complete each of the three datasets.
Wavelet-GA spends larger time amount compared to t-test, entropy,
BD, Wilcoxon, ROC and PCA but those expenses are worthy as
wavelet-GA significantly improves the MS data classification per-
formance. As a hybrid method combining both filter and wrapper
methods, wavelet-GA obviously demonstrates the double advan-
tages, i.e. greater classification accuracy and lower computational
costs, against the comparable wrapper sequential search method.

4. Conclusions

A hybrid approach to feature extraction for MS cancer data
classification is proposed in this paper. Using wavelet features,
GA is implemented as a combination between filter and wrapper
methods where the two-sample t-test is incorporated during the
GA initialization process. Wavelet-GA has advantages that
drastically enhance the classification accuracy of various classifiers
with inexpensive computational costs.

Through different performance metrics, i.e. accuracy,
F-measure, AUC and MI, wavelet-GA demonstrates a significant
dominance against competitive feature extraction methods includ-
ing t-test, entropy, BD, Wilcoxon, ROC, PCA and sequential search.
Results of the statistical Kruskal–Wallis test show the robustness
and stability of the feature set obtained by wavelet-GA when
compared to those of competitive methods. The cross-validation
strategy implemented on three benchmark MS datasets makes
the conclusions driven out of this study valid and general.
Wavelet-GA thus can be applied to real classification models as
decision support systems for cancer diagnosis and prognosis,
which greatly benefit clinicians and medical practitioners.

Cancer is one of leading causes of death worldwide. Therefore
the accurate cancer diagnosis is critically demanded in medical
practice. This research has shown a great improvement regarding
cancer classification accuracy using mass spectrometry data, which
is useful for early detection, rapid intervention and treatment of
cancers in an effective and efficientmanner. The proposed approach
thus would contribute to improving the public health by increasing
human longevity, reducing mortality rate in the communities and
ensuring people live healthier and more independent lives.

Future research would investigate more efficient classifiers
rather than prevalent methods examined in this study. Numerous
classifiers have been proposed in the literature, they are worth an
extensive investigation as they may generate better results. The
proposed wavelet-GA feature extraction for MS data has been
successfully testified with various classifiers, it therefore has a
potential to synergize with any other methods to yield great cancer
classification performance.
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