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a b s t r a c t

In this letter, we propose a new approach to obtain the smallest box which bounds all
reachable sets of a class of nonlinear time-delay systems with bounded disturbances. A
numerical example is studied to illustrate the obtained result.
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1. Introduction

Notations: Rn(Rn
+
) is n-dimensional (nonnegative) vector space; ei = [01×(i−1) 1 01×(n−i)]

T
∈ Rn is ith-unit vector in Rn;

for three vectors x = [x1 x2 · · · xn]T ∈ Rn, y = [y1 y2 · · · yn]T ∈ Rn and q = [q1 q2 · · · qn]T ∈ Rn
+
, two n × n-matrices

A = [aij], B = [bij], the following notations will be used in our development: |x| := [|x1| |x2| · · · |xn|]T ; x ≺ y(≼ y)means
that xi < yi(≤ yi),∀i = 1, . . . , n; A ≺ B(≼ B)means that aij < bij(≤ bij),∀i, j = 1, . . . , n; A is nonnegative if 0 ≼ A; A is
essentially nonnegative (called a Metzler matrix) if aij ≥ 0,∀i, j = 1, . . . , n, i ≠ j; µ(A) stands for the spectral abscissa of
matrix A; B(0, q) = {x ∈ Rn

: |x| ≼ q} is a box in Rn.
Reachable set of dynamic systems perturbed by bounded inputs (disturbances) is the set of all the states starting from

the origin by inputs with peak value [1–3]. Reachable set bounding of perturbed dynamic systems and its applications are
important research areas in control theory and have attracted much attention during the past decades (see, [1–3] and the
references therein). Recently, there is a growing interest in the problem of reachable set bounding for perturbed systems
with time-delays [1–11] and most of the existing results are only for linear systems. In this letter, we present a new result
for a class of nonlinear time-delay systems with bounded disturbances as below:

ẋ(t) = Ax(t)+ F(t, x(t), x(t − τ1(t)), . . . , x(t − τm(t), ω(t)), t ≥ 0, (1)
x(s) = 0, s ∈ [−h, 0]

where x(t) ∈ Rn is the state vector, ω(t) ∈ R1 is the disturbance vector satisfying

|ω(t)| ≤ ω, (2)
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ω is a given positive scalar, time-varying delays τ0(t) ≡ 0 and 0 ≤ τk(t) ≤ τ k ≤ h, k = 1, . . . ,m are given continuous
functions, τ k, k = 1, . . . ,m are nonnegative scalars, F(t, . . .) ∈ Rn is a given continuous function satisfying

|F(t, x(t), . . . , ω(t))| ≤

m
k=0

Ak|x(t − τk(t))| + B|ω(t)|, (3)

A is an essentially nonnegative matrix and Ak, k = 0, . . . ,m, B are nonnegative matrices. Note that there are many classes
of systems such as time-varying systems, switched systems [12–14] which can be reformulated into the form of (1), (2), (3).

For linear perturbed time-delay systemswhosematrices are convex combinations of constantmatrices (polytopic uncer-
tainties), the most widely used approach is based on the Lyapunov–Krasovskii (or Razumikhin) functional method [1–10].
For linear time-delay systemswhosematrices arematrix functions, a novel approachwhich does not involve the Lyapunov–
Krasovskii functionalmethod has just been proposed in [11]. So far, there is no available approachwhich provides the small-
est bound of reachable sets of considered time-delay systems. In this letter, inspired by the comparison method proposed
in [15], we propose a new and simple approach to obtain the smallest boxwhich bounds all reachable sets of the above non-
linear perturbed time-delay system. Lastly, we study the numerical example considered in [11] to illustrate the proposed
approach.

2. Main result

For simplicity, we consider system (1) with one delay, i.e.m = 1. The obtained result can be extended to the case where
system (1) has multiple delays. Let us first consider the following three linear nonnegative time-delay systems:

ẏ(t) = (A + A0)y(t)+ A1y(t − τ1(t))+ B|ω(t)|, (4)
y(s) = ϕ(s), s ∈ [−h, 0],
ż(t) = (A + A0)z(t)+ A1z(t − τ1(t))+ Bω, (5)
z(s) = ψ(s), s ∈ [−h, 0],

u̇(t) = (A + A0)u(t)+ A1u(t − τ1(t)), (6)
u(s) = φ(s), s ∈ [−h, 0].

Lemma 1 ([16,17]). The above three linear time-delay systems are nonnegative.

Proof. This Lemma can be seen as a natural extension of Proposition 3.1 in [16]. �

Lemma 2 ([18]). If a positive scalar α exists such that one of the following conditions hold:
(i) µ(αIn + (A + A0)+ A1eατ1) < 0;
(ii) ∃p ≻ 0 : (αIn + (A + A0)+ A1eατ1)Tp ≼ 0;
then system (6) is α-exponentially stable, i.e. there is a positive vector function ϱ(.) such that

uφ(t) ≼ ϱ(φ)e−αt , ∀t ≥ 0. (7)

Lemma 3 ([15]). Let M ∈ Rn×n be a Metzler matrix. Then the following statements are equivalent
(i) µ(M) < 0.
(ii)M is invertible and M−1

≼ 0.

Let us denote a solution with initial condition y(s) = ϕ(s), s ∈ [−h, 0] of system (4) by y(t, ϕ) and a solution with initial
condition z(s) = ψ(s), s ∈ [−h, 0] of system (5) by z(t, ψ). The following two lemmas are useful for our development:

Lemma 4. If ϕ(s) ≼ ψ(s),∀s ∈ [−h, 0] then we have y(t, ϕ) ≼ z(t, ψ),∀t ≥ 0.

Proof. Denote e(t) = z(t)− y(t), ε(t) = ω − |ω(t)| and consider the following system

ė(t) = (A + A0)e(t)+ A1e(t − τ1(t))+ Bε(t), (8)
e(s) = ψ(s)− ϕ(s), s ∈ [−h, 0].

By Lemma 1, we have e(t, ψ − ϕ) ≽ 0,∀t ≥ 0. This implies that y(t, ϕ) ≼ z(t, ψ),∀t ≥ 0. The proof of Lemma 4 is
completed. �

Lemma 5. If µ(A+A0 +A1) < 0 then there exist a positive q ∈ Rn
+
, a positive scalar α, a positive vector function ϱ(.) such that

q − ϱ(q)e−αt
≼ z(t, 0) ≼ q, ∀t ≥ 0, (9)

where z(t, 0) is the solution with initial condition z(s) = 0, s ∈ [−h, 0] of system (5).

Proof. Denote

q := −(A + A0 + A1)
−1Bω. (10)



70 P.T. Nam et al. / Applied Mathematics Letters 43 (2015) 68–71

Since Bω ≽ 0 and −(A + A0 + A1)
−1

≽ 0 due to Lemma 3, we have q ≽ 0. Taking the state transformation v(t) = q − z(t),
then from (5) the following system is obtained

v̇(t) = (A + A0)v(t)+ A1v(t − τ1(t)), (11)
v(s) = q − ψ(s), s ∈ [−h, 0],

and q − z(t, 0) ≡ v(t, q),∀t ≥ 0, where v(t, q) is the solution with initial condition v(s) = q, s ∈ [−h, 0] of system (11).
Since µ(A + A0 + A1) < 0, there is a small enough scalar α > 0 such that µ(αIn + (A + A0) + A1eατ1) < 0. By Lemmas 1
and 2, there is a positive vector function ϱ(.) such that

0 ≼ v(t, q) ≼ ϱ(q)e−αt , ∀t ≥ 0, (12)

which implies (9). The proof of Lemma 5 is completed. �

Now we are in a position to introduce the main result in the form of the following theorem.

Theorem 1. If µ(A + A0 + A1) < 0 then the box B(0, q) = {x ∈ Rn
: |x| ≼ q} where q defined in (10) is the smallest box

which bounds reachable sets of system (1), (2), (3).
Proof. Step 1: First, we prove that

|x(t, 0)| ≼ y(t, 0), ∀t ≥ 0, (13)

where x(t, 0) is a solution with initial condition x(s) = 0, s ∈ [−h, 0] of system (1) and y(t, 0) is a solution with initial
condition y(s) = 0, s ∈ [−h, 0] of system (4). Indeed, assume on the contrary that there exists t0 > 0 such that |x(t0, 0)| ⋠

y(t0, 0). Set t1 := inf{t ≥ 0 : |x(t, 0)| ⋠ y(t, 0)}, then t1 > 0. By continuity, there is an index i0 ∈ {1, . . . , n} and a positive
scalar ϵ > 0 such that

(i) |x(t, 0)| ≼ y(t, 0), ∀t ≤ t1, (14)
(ii) |xi0(t1, 0)| = yi0(t1, 0), (15)

(iii) |xi0(t, 0)| > yi0(t, 0), ∀t ∈ (t1, t1 + ϵ). (16)

Taking the Dini upper-right derivative of |xi0(t)| at t1, combining with (14) and (15), we have

D+
|xi0(t1, 0)| = sgn(xi0(t1, 0)ẋi0(t1, 0)

≤ eTi0


Aei0 |xi0(t1, 0)| +

n
j=1,j≠i0

Aej|xj(t1, 0)|


+ eTi0

 n
j=1

A0ej|xj(t1, 0)| + A1ej|xj(t1 − τ1(t1), 0)|


≤ eTi0


Aei0 |yi0(t1, 0)| +

n
j=1,j≠i0

Aej|yj(t1, 0)|


+ eTi0

 n
j=1

A0ej|yj(t1, 0)| + A1ej|yj(t1 − τ1(t1), 0)|


= D+
|yi0(t1, 0)|. (17)

This conflicts with (16). Thus, inequality (13) holds.
Step 2: By Lemma 5, we can see that the box B(0, q)


Rn

+
where q defined in (10) is the smallest box which bounds

reachable sets of system (5). By Lemma 4 and Step 1, it follows that B(0, q) is also the smallest box which bounds reachable
sets of system (1). The proof of Theorem 1 is completed. �

Remark 1. Note that the approach [11] only gives a bound of reachable sets of system (1), (2), (3). In fact, it gives a bound
for all partial state vectors of system (1), (2), (3). In this paper, our approach (Theorem 1) gives the smallest bounds for each
partial state vectors of system (1), (2), (3), i.e. each qi, i = 1, 2, . . . , n is the smallest bound for each ith partial state vector
xi(t, 0), i = 1, 2, . . . , n. Therefore, the box B(0, q) obtained by our approach is smaller than one obtained by the approach
in [11].

Based on the above development, the procedure of finding the smallest box B(0, q)which bounds all reachable sets of a
nonlinear perturbed system with multiple time-delays, is stated in the following computational algorithm.

Algorithm 1. Step 1: Find matrices A, B, Ak, k = 0, . . . ,m, such that the considered nonlinear system is in the form of (1),
(2), (3).

Step 2: Check conditionµ(A+
m

k=0 Ak) < 0. If it holds, obtain the smallest box, B(0, q)with q = −(A+
m

k=0 Ak)
−1Bω.

The procedure is completed.

3. A numerical example

Example 1. Consider the following linear time-varying system which was studied in [11]

ẋ(t) = A(t)x(t)+ D(t)x(t − τ(t))+ B(t)ω(t), t ≥ 0 (18)
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where x(t) ∈ R3, τ(t) = 6
sin 

2
√
t
,

A(t) =


−4 − | sin t|e−t cos 2t sin2 t

e−t cos t −6 + sin 2t 2 cos 3t
t sin t
1 + t

1
√
1 + | sin t|

−5 − | cos t|

 ,

D(t) =

 sin 3t −e−2t 0
e−2t sin t 0 cos 3t

0 cos2 t −e−t sin 2t

 , B(t) =

 0.1esin t

0.2 cos 2t
0.1 sin 4t


and |ω(t)| ≤ ω = 0.5.

Solution. Let us denote

A =


−5 0 0
0 −6 0
0 0 −6


, A0 =

1 1 1
1 1 2
1 1 1


, A1 =

1 1 0
1 0 1
0 1 1


, B =

0.1e
0.2
0.1


and F(t, . . .) = (A(t)− A)x(t)+ D(t)x(t − τ(t))+ B(t)ω(t). Then system (18) is rewritten as follows

ẋ(t) = Ax(t)+ F(t, x(t), x(t − τ1(t)), ω(t))

where F(t, . . .) satisfying condition (3)with A0, A1, B defined as the above. By Theorem 1, the boxB(0, q) = {x ∈ Rn
: |x| ≼

q} where q = −(A + A0 + A1)
−1Bω = [0.3139 0.2859 0.2339]T , is the smallest bound of reachable sets of system (18).

Note that the box derived in [11] is B(0, q1)where q1 = [0.68 0.68 0.68]T � q.

4. Conclusion

This letter has presented a new and simple approach to find the smallest box which bounds all reachable sets of a class of
nonlinear time delay system with bounded disturbances. This approach can be further extended to nonlinear discrete-time
systems and/or to perturbed time-varying systems. A numerical example has been studied to illustrate the derived result.
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