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a  b  s  t  r  a  c  t

Mounting  evidence  indicates  that  schizophrenia  is associated  with  adverse  intrauterine  experiences.  An
adverse  or  suboptimal  fetal  environment  can  cause  irreversible  changes  in  brain  that  can  subsequently
exert  long-lasting  effects  through  resetting  a diverse  array  of  biological  systems  including  endocrine,
immune  and  nervous.  It is  evident  from  animal  and  imaging  studies  that  subtle  variations  in  the  intrauter-
ine  environment  have  been  proposed  to  cause  recognizable  differences  in brain  structure  and  cognitive
functions  in  the  offspring.  A wide  variety  of  environmental  factors  may  play  a  role  in precipitating
the  emergent  developmental  dysregulation  and  the  consequent  evolution  of  psychiatric  traits  in early
adulthood  by  inducing  inflammatory,  oxidative  and nitrosative  stress  (IO&NS)  pathways,  mitochondrial
dysfunction,  apoptosis,  and  epigenetic  dysregulation.  However,  the  precise  mechanisms  behind  such
relationships  and  the  specificity  of  the risk  factors  for schizophrenia  remain  exploratory.  Considering
the  paucity  of  knowledge  on fetal programming  of  schizophrenia,  it is  timely  to  consolidate  the  recent
tress
nfection
iet

nflammation
xidative stress

advances  in the field  and  put  forward  an  integrated  overview  of  the  mechanisms  associated  with  fetal
origin  of  schizophrenia.

© 2014  Published  by  Elsevier  Ltd.
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. Introduction

Epidemiological studies of birth and death records led to
Barker’s hypothesis” almost 30 years ago, suggesting the influence
f perturbed gestational milieu on the development of diseases
ater in life (Barker and Osmond, 1986). This generated a great deal
f interest in the fetal origins of adult disorders. Although Barker’s
ypothesis was mainly based on the potential impact of gesta-
ional malnutrition to result in permanently altered organs function
nd structure, a growing body of evidence suggests that a range of
aternal complications of pregnancy such as gestational diabetes
ellitus, intrauterine growth restriction (IUGR), preeclampsia and
aternal stress are associated with adult disorders (Barker and

lark, 1997; Cottrell and Seckl, 2009; Calkins and Devaskar, 2011).
Perturbation of developmental adaptive processes that are

nown to be involved in permanent changes in physiology, struc-
ure and metabolism or early life programming can adversely
ffect brain development, impacting both brain structure and
unction (Schlotz and Phillips, 2009). Findings from human and
nimal studies indicate that several environmental factors and
hysiological mechanisms involving endocrine as well as immune
ystem during gestation play crucial role in early-life program-
ing of later-life brain and behavior by long-term remodeling of

he brain (Schlotz and Phillips, 2009; Bilbo and Schwarz, 2009;
uyeung et al., 2013). Evidence toward this notion was derived

rom neuropathological changes including enlarged cerebral ven-
ricles, changes in gray and white matter indicative of impaired
eural development during gestation in serious mental illnesses
uch as schizophrenia (Harrison, 1999; Pantelis et al., 2005; De Peri
t al., 2012). Importantly, structural brain changes during devel-
pment of schizophrenia are seemingly determined by genetic
omponents, altered expression of schizophrenia risk genes and
pigenetic dysregulation (Lawrie et al., 2008; Miller et al., 2012;
tachowiak et al., 2013).

The developmental origin of schizophrenia might potentially
e a result of prenatal exposure to a diversity of factors such as

nfection, stress, persistent organic pollutants, smoking and other
ubstance use, maladaptive diet and developmental epigenetic
hanges (Brown et al., 2009; Kirkbride et al., 2012; Jacka et al.,
013). A two-hit model is one of the leading theories of schizophre-
ia pathogenesis. The two hit model predominantly implicating
he neurodevelopmental theory is mainly based on the assumption
hat aberrant development during two critical time points (early
rain development and adolescence) additively produces risk for
chizophrenia-like symptoms. The ‘first hit’ potentially occurs in
tero. Although genetic components were primarily considered as
he ‘first hit’, recent understanding suggests that along with genetic,
nvironmental factors might also exert a similar function. Animal
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

s well as human studies demonstrated that genetic susceptibility
n combination with a developmental insults can prime an indi-
idual for a later event that ultimately increase risk for the onset
f schizophrenia and this could possibly be mediated by known
 . .  . . .  . .  . . .  .  . . . . . . . . .  . . .  .  . . . . . . .  .  . . . . . .  .  . .  . . . .  .  .  . . .  .  . . . .  .  . .  .  . . . . . .  .  . . .  . .  .  .  .  00

salient signaling pathways (Bayer et al., 1999; Maynard et al., 2001).
The ‘first hit’ may  disrupt developing neuronal architecture, specific
neural networks, establish an abnormal inflammatory response
and account for premorbid signs and symptoms in individuals
who later develop schizophrenia (Keshavan, 1999; Feigenson et al.,
2014). Contextually, prenatal infection has become one of the best
evidenced environmental risk factors of the “two-hit” hypothesis of
schizophrenia as it increases the offspring’s sensitivity to environ-
mental challenges postnatally and renders them more vulnerable to
the pathological effects of a second postnatal stimulus (Bayer et al.,
1999; Maynard et al., 2001). This “second hit” due to stress, immune
re-exposure or even peri-pubertal sex hormonal changes might
potentially unmask and exacerbate the hitherto latent inflamma-
tory processes with resultant onset of clinical symptoms (Meyer
et al., 2011; Knickmeyer et al., 2010). Experimental support for
the impact of a second hit is evident from animal studies, where
prenatal immune activation elicited by gestational infection and
subsequent exposure to stress, cannabinoid use, etc. during ado-
lescence can unmask the latent neuropathological consequences of
prenatal infection and lead to increased risk for the development
of schizophrenia (Dalton et al., 2012; Giovanoli et al., 2013). During
adolescence, events like excessive elimination of synapses and loss
of plasticity might influence in the development of the disorder
(Fig. 1). Despite this understanding, precisely how the abnormal
developmental trajectory of the brain is established during ges-
tation and also how this is causally related to the manifestation
of symptoms that appear early in adult life remains a challenging
issue. Here we  examine recent advances and discuss many emer-
gent factors and mechanisms that might elucidate the mechanistic
link between early life programming and adult manifestation of
psychiatric conditions.

2. Neurodevelopmental origin of schizophrenia: a review of
evidence

Disparate lines of evidence support the view that schizophrenia
is a neurodevelopmental disorder. The primary reason is that the
onset of schizophrenia has a cumulative age incidence distribution,
or developmental function, that is nonlinear with a peak change in
slope or acceleration that usually takes to occur during young adult-
hood. Given the plausibility of the existence of brain abnormalities
in schizophrenia at the onset of the illness, it further seems reason-
able to conceive schizophrenia as a neurodevelopmental disorder
(Piper et al., 2012). Recent understanding suggests determining role
of gene and environmental interactions in the neurodevelopmental
trajectories of schizophrenia. The genetic and environmental fac-
tors cause structural and functional change not only during pre-
and peri-natal periods but also in childhood and early adolescence
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

(Ismail et al., 2000; Walker, 1994). Further support has been pro-
vided by epidemiological studies showing premorbid intellectual
deficits dating back to early development, and neuropathologi-
cal studies showing altered cerebral cytoarchitecture indicative of
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Fig. 1. Depiction of ‘two

 developmental rather than acquired encephalopathy. The main
eurodevelopmental hypotheses for schizophrenia set forth in the

ast 15 years are relatively restricted and share three assumptions
Woods, 1998). Firstly, the primary pathogenic defect is an early
erangement of the orderly development of the central nervous
ystem that occurs in the pre- or peri-natal period. Secondly, the
eriod of active operation of the causative agent is of short dura-
ion, meaning that it is essentially static and lastly the behavioral
onsequences of this static process remain relatively latent until
ong after the primary pathogenic process has run its course.

In addition, it is now becoming evident that prenatal adver-
ity induced neurodevelopmental disruption can have physical
anifestations. Minor physical abnormalities, neurological soft

igns and altered dermatoglyphics pattern represent important
arkers of disordered neurodevelopment in schizophrenia (Sivkov

t al., 2009; Gabalda and Compton, 2010; Aksoy-Poyraz et al.,
011). Some of the minor physical abnormalities such as conflu-
nt eyebrows, hypertelorism, ear protrusion, low-set ears, palatal
bnormalities, tongue furrows and so on represent a set of
isk markers for schizophrenia (Xu et al., 2011). Neurological
oft signs correlate with various neuro-cognitive and neuro-
natomical abnormalities in schizophrenia (Varambally et al.,
012). Neurological soft signs are understood as a manifesta-
ion of the “cerebello-thalamo-prefrontal” brain network model
f schizophrenia (Zhao et al., 2013). Higher levels of neurologi-
al soft signs have been reported in healthy children who later
evelop schizophrenia and in first episode as well as antipsychotic-
aïve schizophrenia patients (Leask et al., 2002; Dazzan and
urray, 2002; Varambally et al., 2006). Recent examinations of cor-

ex morphology, a marker of brain development in first-episode
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

chizophrenia patients with neurological soft signs revealed a
ower global sulcal index (g-SI) in both hemispheres, a lower
egional sulcal indexes (r-SI) in left dorsolateral prefrontal and
ight lateral occipital cortices (Gay et al., 2013). Taken together,
odel of schizophrenia.

these findings strongly suggest evidence of distinct neurodevelop-
mental pathways in schizophrenia patients with neurological soft
signs. Although various findings including twin studies have high-
lighted the importance of genetic determination of neurological
soft signs, minor physical abnormalities and dermatoglyphic pat-
terns in schizophrenia (Niethammer et al., 2000; Fatjó-Vilas et al.,
2008); the precise genetic determinant of these parameters are yet
to be identified.

3. Different risk factors and mechanisms underlying
developmental origin of schizophrenia

3.1. Exogenous risk factors

3.1.1. Prenatal teratogens
A range of teratogens and neurotoxic agents such as indus-

trial chemicals (persistent organic pollutants and heavy metals),
high levels of ionizing radiation, tobacco smoke, cocaine, alcohol
and certain drugs affect early brain development (Grandjean
and Landrigan, 2006). Multiple studies have demonstrated that
chemical exposures during early development constitute a new
potential class of risk factors for schizophrenia. Prenatal exposure
to Pb2+ has been found to increase the risk of schizophrenia in
the offspring (Opler et al., 2008). One plausible underlying neuro-
biological mechanism is the alteration of subunit composition of
N-methyl-d-aspartate receptor (NMDAR) complexes with subse-
quent effects on calcium-sensitive signaling pathways involved in
CREB phosphorylation (Toscano et al., 2002). Prenatal exposure to
analgesics in the second trimester of pregnancy conferred a more
than four-fold greater risk of schizophrenia (Sørensen et al., 2004).
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

Aspirin taken during pregnancy interferes with the prostaglandin
pathway, and exposure may  influence the risk of schizophre-
nia in offspring (Gunawardana et al., 2011). Animal models of
schizophrenia have demonstrated that rats exposed to cigarette
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moke in the prenatal period exhibited a significant increase of
he lipid peroxidation, protein oxidation and DNA damage in adult
ffspring (Fraga et al., 2011). These effects can lead to several
eurochemical changes overlapping with the pathophysiology of
chizophrenia. Maternal smoking through pregnancy increases
he risk of later schizophrenia among offspring, conferring an
ncreased severity of negative symptoms (Stathopoulou et al.,
013). Interestingly, some of the chemicals and drugs contribute to
chizophrenia risk not only as a result of prenatal exposure but also
n adolescent exposure. Cadmium and lead for example appear
o be associated with both mood and psychotic disorders (Karim
t al., 2006; Berk et al., 2014; Orisakwe, 2014). Pre-adolescence
xposure to cannabis is shown to be associated with a twofold
ncrease in the risk of schizophrenia (Van Os et al., 2002).

.1.2. Prenatal nutrition
Compelling evidence suggests that prenatal malnutrition leads

o long-term brain impairment and increased risk of schizophrenia
Butler et al., 1994; Brown and Susser, 2008; Victora et al., 2008).
tudies conducted after in utero exposure to hunger/famine dur-
ng Dutch Hunger Winter of 1944–1945 and 1959–1961 Chinese
amine have indicated a direct association between prenatal star-
ation and increased risk of schizophrenia (Hoek et al., 1998; St Clair
t al., 2005). Prenatal exposure to famine affected brain morphology
uch as decreased intracranial volume, which is seen in schizophre-
ia (Hulshoff Pol et al., 2000). More recently, there is increasing
vidence that poor quality diet rather than malnutrition per se is a
isk factor. The western diet is calorie, fat and sugar rich and nutri-
nt poor, and obesity is currently one of the major public health
ssues. There is now good prospective evidence in the depression
iterature that poor quality diet is a risk factor for depression (Quirk
t al., 2013), and recent data that maternal prenatal diet impacts the
isk of internalizing and externalizing diet in offspring (Jacka et al.,
013). The amount of information on the link between schizophre-
ia and diet is poorer, but such data is emerging (Dipasquale et al.,
013). There is emerging evidence of a link between gluten sensitiv-

ty and increased levels of antigliadin antibodies and schizophrenia
Jackson et al., 2014). What is known is that diet influences the path-
ays to neuroprogression in schizophrenia including inflammation

nd oxidative stress (Berk et al., 2013).
Maternal vitamin deficiency during early pregnancy has been

ssociated with the risk of schizophrenia in the offspring. One of the
idely studied vitamins in the context of neurodevelopmental dis-

rders is vitamin D. Vitamin D is arguably the nutritionally related
actor that is most deficient in western populations, and some
ata that this is particularly an issue in psychiatric cohort (Berk
t al., 2008). There is now clear evidence that vitamin D is involved
n brain development and being a potent pro-differentiation
gent, vitamin D can influence brain functioning via many dif-
erent pathways (Eyles et al., 2013). Transient prenatal vitamin

 deficiency results in abnormal brain development, persistent
hanges in adult brain structure, neurotransmission, synaptic plas-
icity, neurochemistry, and behavior and several other biological
athways including oxidative phosphorylation, redox balance,
ytoskeleton maintenance, calcium homeostasis, chaperoning and
ost-translational modifications (Eyles et al., 2007, 2009, 2013).

Several studies have demonstrated the immuno-modulatory
roperties of vitamin D and its implications in a number of autoim-
une/inflammatory disorders (Fernandes de Abreu et al., 2009).

mportantly, fetal vitamin D plays a crucial role in controlling
lacental inflammation (Liu et al., 2011a). Vitamin D influ-
nces Th1:Th2 balance by inhibiting Th1 pathway and promoting
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

he Th2 pathway through down-regulation of pro-inflammatory
ytokines and up-regulation of anti-inflammatory cytokines. Pro-
nflammatory cytokine-induced alterations in cognition/behavior
ould therefore be linked to low levels of vitamin D. This is
 PRESS
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supported by recent findings that vitamin D mitigates age-related
cognitive decline through the modulation of pro-inflammatory
cytokine production in rats (Briones and Darwish, 2012). In addi-
tion, developmental vitamin D3 deficiency induces persistent
alterations in immune phenotype and function in adult offspring.
Furthermore, when stimulated, lymphocytes from developmental
vitamin D-deficient rats exhibited a pro-inflammatory phenotype
(Harvey et al., 2010). Human population studies have also indi-
cated a significant association between developmental vitamin D
deficiency and risk of schizophrenia (McGrath et al., 2010).

3.1.3. Prenatal infection
Some of the strongest support toward the developmental etiol-

ogy of schizophrenia has come from its association with prenatal
infection (Boksa, 2010; Khandaker et al., 2013). Accumulating
epidemiological data indicates that 38–46% of cases of schizophre-
nia may  have an association with prenatal infection (Brown and
Derkits, 2010). Maternal infection by Toxoplasma gondii,  influenza,
rubella, herpes simplex virus, and cytomegalovirus has consis-
tently been associated with the risk of schizophrenia in adult.
Although some of these infectious agents, e.g. rubella, T. gondii,
cytomegalovirus, etc. can cross the placenta and directly affect
the developing fetus, the detrimental effects of infection is known
to elicited by activation of maternal immune system (Hsiao and
Patterson, 2011). Converging evidence suggests that immuno-
inflammatory responses together with downstream oxidative and
nitrosative stress pathway are crucial in mediating prenatal infec-
tion induced neurodevelopmental abnormality (Anderson et al., 

2013a). The detrimental effects of redox dysregulation, exces-
sive generation of reactive oxygen species (ROS)/reactive nitrogen
species (RNS), etc. on developing brain after prenatal infection
are quite well known (Do et al., 2009; Lante et al., 2007). Fur-
ther, intrauterine infection/inflammation evokes the expression of
inducible nitric oxide synthase (iNOS) and nitric oxide (NO) in the
brain and leads to oligodendrocyte injury in the developing brain
(Shen et al., 2007).

Prenatal immune activation leads to changes in the levels of
multiple neurotransmitter systems (Winter et al., 2009). In this
context, dopamine abnormalities are one of the most enduring
etiological hypotheses of schizophrenia. Emerging findings from
animal studies reveal that prenatal exposure to infection and/or
inflammation has long-lasting effects on dopaminergic structures
and functions (Aguilar-Valles et al., 2010; Eyles et al., 2012; Ozawa
et al., 2006; Vuillermot et al., 2010; Zuckerman et al., 2003). In mice,
a viral-like acute phase response during early/mid gestation causes
a complex pattern of age-dependent structural abnormalities in
the mesoaccumbal and nigrostriatal dopamine system (Vuillermot
et al., 2010). Notably, cytokines are known to modulate dopaminer-
gic neurotransmission and dopamine can also modulate immune
response by influencing the cytokine network (Song et al., 1999;
Ch Beck et al., 2004). Inflammation and oxidative/nitrosative stress
strongly influence each other, and increased levels of serum oxida-
tive stress markers and inflammatory cytokines have been reported
in schizophrenia patients (Pedrini et al., 2012). Based on these
understanding, it is likely that prenatal infection induced activa-
tion of IO&NS pathway will have an important downstream role in
dopaminergic neurotoxicity in schizophrenia. A recent study has
demonstrated increased protein oxidation in the dopamine-rich
areas of the prefrontal cortex in schizophrenia patients, suggest-
ing the importance of interactions between oxidative stress and
dopamine in the pathophysiology of schizophrenia (Kim et al.,
2014). Psychosis is hypothesized to be a hyperdopaminergic state,
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

and models of increased dopamine transmission are linked to
increases in reactive oxygen species (Xie et al., 2014). Dopamine
antagonists can block this increased oxidative stress and apoptotic
potential (Odaka et al., 2014). Additionally, dopamine metabolism
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tself, by generating its metabolites like dopamine-semiquinone
nd dopamine-quinone leads to the generation of ROS within CNS
Grima et al., 2003). Importantly, in neurodegenerative disorders
uinone formation has been shown to be linked with inflamma-
ion and oxidative stress. Furthermore, oxidative stress is shown to
nhibit the uptake of dopamine through post-translational modifi-
ation of the dopamine transporter (Kim and Andreazza, 2012).

There is crosstalk between other transmitters germane to
chizophrenia such as GABA and serotonin and inflammation
Wang et al., 2012). Prenatal immune activation in mouse with
oly I:C is shown to cause maturation-dependent alterations in
refrontal GABAergic gene expression, implying long-term effect
f prenatal immune insults on the GABAergic system (Richetto
t al., 2014). Agents enhancing GABA-ergic transmission such
s gabapentin down-regulate inflammatory and oxidative stress
arkers (Dias et al., 2014; Guseva et al., 2014; Zimmermann et al.,

014). Similarly, serotinergic agents cause down-regulation of
nflammatory markers in some studies (Taraz et al., 2013; Leonard,
014). Further relevant to schizophrenia pathogenesis, prenatal

mmune activation has shown to modulate hippocampal NMDAR
unction by interacting with stress and the stress hormone cortico-
terone at adolescence (Burt et al., 2013). Taken together, maternal
nfection induced IO&NS responses can adversely affect pre and/or
eri-natal outcomes and even lead to neurodegeneration or ter-
togenesis (Wells et al., 2009; Yuan et al., 2010), indicating that
nflammation-induced effects may  be associated with a direct dam-
ge by oxidative/nitrosative stress.

.1.4. Prenatal stress
Prenatal stress-induced changes are found to confer high risk for

iverse outcomes in offspring including schizophrenia (Malaspina
t al., 2008). For example, gestational exposure to prenatal stress
r stress hormones contributes to deficits in hippocampal struc-
ure and function, as well as the neurotransmitter and immune
ystems (Lemaire et al., 2000; Bellinger et al., 2008; Marques et al.,
013). The enhanced production of corticosterone or maternal
xposure to exogenous glucocorticoids due to chronic exposures to
tress has direct influence on fetal brain development and plasticity
s well as programming of hypothalamic-pituitary-adrenocortical
HPA) axis (Koenig et al., 2005; Kapoor et al., 2006). Prenatal stress
ncreases serotonin 2A and decreases mGlu2 expression in frontal
ortex, suggesting schizophrenia-like alterations of serotonin 2A
nd metabotropic glutamate 2 receptors (Holloway et al., 2013).
renatal stress also affects development of the hippocampal alpha 7
icotinic acetyl choline receptor (nAChRs) in adult offspring (Schulz
t al., 2013). It is interesting to note that repeated variable prenatal
tress during critical period of fetal brain development reprograms
he response of the HPA axis to acute stress and alters pre- and
ostsynaptic gene expression that might impact synaptic function

n the offspring (Kinnunen et al., 2003). Studies have demonstrated
hat both down-regulation of glutamate decarboxylse 67 (GAD67)
nd maternal exposure to severe stress can increase the risk of
chizophrenia in offspring. This is further supported by a study
here heterozygous deletion in GAD67 enhances maternal and

etal stress vulnerability (Uchida et al., 2011).

.1.5. Paternal age
Epidemiological studies have provided robust evidence of asso-

iation between advanced paternal age and the enhanced risk of
chizophrenia (McGrath et al., 2014; Brown et al., 2002; Miller et al.,
011). One of the contributing mechanisms that has consistently
een implicated in paternal age associated risk of schizophrenia is
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

e novo mutations, which are found to be more abundant in sperm
f older men  (Risch et al., 1987; Malaspina et al., 2002). In a compre-
ensive study on 78 families, an increase in two de novo mutations
er year of advancing paternal age was observed, indicating a
 PRESS
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linear relationship between paternal age and the number of de
novo mutations in offspring (Kong et al., 2012). Recently, “selfish
spermatogonial selection” which means clonal expansion of germs
cells carrying pathogenic mutations has been proposed to be a
mechanism for association between advanced paternal age and the
risk of schizophrenia (Goriely et al., 2013). The clonal expansion
leads to relative enrichment of de novo mutations that essentially
explain the effect of advanced paternal age on schizophrenia.

3.2. Endogenous risk factors

3.2.1. Obstetric events
Obstetric complications are well established predictors of risk of

schizophrenia (Cannon et al., 2002a). Although the term “obstetric
events” includes a wide range of complications, the most commonly
found complications are fetal growth retardation, fetal hypoxia and
prenatal complications.

Low birth weight and reduced length at birth are crude indi-
cators of IUGR or abnormally slow fetal growth. Fetal growth
restriction increases risk of later schizophrenia (Eide et al., 2013).
Smaller head circumference and small gestational age have been
associated with schizophrenia, indicating the implications of fetal
growth restriction (McNeil et al., 2000). Although the underly-
ing mechanism of growth restriction and risk of schizophrenia is
poorly understood, accumulating evidence suggests that a combi-
nation of factors such as environment, placental, and genetic enable
expression of a particular mental health outcome. Recent animal
data suggests that IUGR leads to metabolic alterations in the fetal
brain by influencing neuronal viability, inflammatory regulation,
energy metabolism and oxidative stress pathways (van Vliet et al.,
2013). Suggesting the importance of genetic effects on fetal growth
restriction, it has been found that mothers with schizophrenia also
have higher rates of low birth weight among offspring (Jablensky
et al., 2005). However, in a study on same-sex twins discordant for
schizophrenia, it was observed that within these twin pairs, low
birth weight and smaller head circumference were significantly
associated with later development of schizophrenia, indicating that
the fetal growth restriction may  be independent of familial factors
(Nilsson et al., 2005).

Fetal hypoxia is an environmental risk factor of schizophre-
nia in the offspring. Hypoxia-associated obstetric complications
and the increased risk of schizophrenia is a replicated finding
(Zornberg et al., 2000; Dalman et al., 2001). It is evident that
interactions between neuronal genes and molecular regulators of
oxygen could lead to hypoxia induced neurodevelopmental abnor-
mality and subsequent risk of neuropsychiatric disorders. Fetal
hypoxia also appears to influence the severity of certain neu-
ropathological attributes of schizophrenia, such as hippocampal
and cortical gray matter reduction (Cannon et al., 2002b). Impor-
tantly, such changes in schizophrenia are proposed to be mediated
by interactions between schizophrenia susceptibility genes and
hypoxia related regulatory processes (Van Erp et al., 2002; Schmidt-
Kastner et al., 2012). A large number of schizophrenia susceptibility
genes viz. AKT1, BDNF, COMT, DNTBP1, NOTCH4, NRG1, PRODH,
RELN, RGS4 are regulated by hypoxia (Schmidt-Kastner et al.,
2006). Furthermore, genes regulated by hypoxia also interact with
serious obstetric complications and influence schizophrenia risk
(Nicodemus et al., 2008).

3.2.2. Gut microbiota and developmental immune modulation
Microbial colonization of gut is an evolutionary process, which

influences both metabolic and immune functions, particularly
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

during early neonatal life. However, recent findings indicate that
microbial colonization or contact of the fetus with maternal
gut microbiota may  start in utero as bacteria from maternal
gastrointestinal tract (GIT) have been detected in amniotic fluid,
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lacental and fetal membranes (Hitti et al., 1997). Pregnancy is
ssociated with a profound alteration of maternal gut micro-
iota, and the changes in gut microbiota composition have been
ssociated with weight gain, altered biochemical and metabolic
arameters during pregnancy (Santacruz et al., 2010; Koren et al.,
012). Obstetric complications, long known to increase risk for
chizophrenia, may  in theory be mediated through higher rates
f cesarean section, which limits the infants accrual of a normal
icrobiota from the maternal genitourinary tract through birth

Boksa and El-Khodor, 2003). This has been hypothesized to also
e a factor in autism (Curran et al., 2014). This implies the possible
oles of the gut microbiota composition in mother’s health during
regnancy as well as on maternal-fetal interactions, influencing
he infant’s health later in life.

The perinatal colonization of the gut by microbes contributes
o developmental programming of gut homeostasis, angiogenesis
nd immune competence (Hooper and Gordon, 2001; Lundin et al.,
008). There are extensive interactions between the gut microbiota
nd the host immune system in the newborns and the development
f the adaptive immune system is regulated by bacterial coloniza-
ion of the gut. It is now evident that time variation in microbial
olonization of the gut during early life shapes future immune sys-
em reactivity. For example, delayed colonization seems to exert
ermanent changes in the immune system (Hansen et al., 2012). A
ange of environmental factors including caesarian section, toxins,
nfectious agents, diet and stress could affect the gut microbiome
uring this critical developmental period. Disruption of the devel-
ping miocrobiome could lead to long-term changes in immune
nd psychological development. Furthermore, disturbances in the
icrobiota can also result in dysregulation of adaptive immune

ells, intestinal inflammation and potentially enhance the host’s
usceptibility to immune-mediated diseases.

The gut microbiota communicates with the brain and affects
ormal brain development and subsequent adult behavior (Diaz
t al., 2011). Gut–brain communication occurs through direct
euronal, immune-related signaling and hormonal pathways.
xposure to many of the afore-mentioned environmental factors
uring both the pre-and post-natal periods has been established as
isk factors for disorders including schizophrenia and autism. One
f the widely accepted underlying mechanisms that mediates the
nteraction between such environmental factors and host as well
s gut–brain communication is through immunological signaling
nvolving cytokines. Animal studies suggest that perturbation in
he composition of gut microbiota influence the risk of depres-
ion and anxiety-like behaviors (Neufeld et al., 2011; Dinan and
ryan, 2013). In autistic children, there appears to be a distinct and

ess diverse gut microbe composition (Kang et al., 2013). A recent
tudy highlighted the importance of gastrointestinal inflammation
n schizophrenia pathology (Severance et al., 2012). Translocation
f commensal microbiota such as Citrobacter koseri,  Hafnia alvei,
seudomonas aeruginosa,  Pseudomonas putida,  Klebsiella pneumonia
nd Morganella morganii across the gastrointestinal barrier can lead
o an antibody response to bacterial translocation, and lysozyme
roduction and consequently leads to persistent low-grade inflam-
ation and increases the risk of depression (Maes et al., 2012,

013). Bacterial translocation causes an imbalanced and activated
nnate immune state (Severance et al., 2013). Quality data linking
hese processes to schizophrenia is awaited.

.2.3. Role of placenta in fetal brain development
There is a wide appreciation that perturbations in the mater-

al hormonal and nutrient environment have deleterious effects
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

n the developing brain and subsequently influence susceptibil-
ty to a range of metabolic, neurodevelopmental and psychiatric
isorders in adulthood (Fernandez-Twinn and Ozanne, 2010; Bale
t al., 2010). Importantly, such effects can be transmitted to the
 PRESS
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fetus by changes in placental function (Jansson and Powell, 2007),
thereby indicating a direct role of placenta in developmental pro-
gramming of brain and behavior. Placental insufficiency causes
intrauterine growth restriction (Barry et al., 2008). In mice, food
deprivation for 24 h on days E12–E13 has been shown to affect
placental gene expression, through which placenta provides pro-
tection to the fetal brain (Broad and Keverne, 2011). Interestingly,
recent studies suggest that the placenta can convert maternal tryp-
tophan into the neurotransmitter serotonin (5-hydroxytryptamine
or 5-HT), which is essential for developing mouse forebrain at mid-
gestation (Bonnin et al., 2011). This implies a significant role of
tryptophan catabolites (TRYCATs) in the placenta in modulating fetal
brain development and well as affecting long-term brain function
(Bonnin and Levitt, 2012; Goeden et al., 2013). However, devel-
opmental disruption of 5-HT signaling in specific regions of fetal
brain causes abnormal wiring of major axonal pathways, altered
cell division and laminar organization in the neocortex (Vitalis and
Parnavelas, 2003; Bonnin et al., 2007). Altered brain 5-HT signaling
is consistently linked to several psychiatric disorders. Considering
the significant role of 5-HT in essential neurodevelopmental pro-
cesses, genetic or environmental perturbations directly affecting
placental tryptophan metabolism can lead to neurodevelopmental
abnormality, and therefore contribute to the developmental origin
of diverse psychiatric disorders.

Prenatal exposure to maternal infection leads to increased
expression of pro-inflammatory cytokines such as IL-6 and TNF-� in
the placenta and also leads to fetal inflammation which in turn can
cause organ damage and potentially downstream developmental
deficiencies (Urakubo et al., 2001; Cardenas et al., 2010). Activa-
tion of the maternal immune system induces endocrine changes in
the placenta, especially IL-6 dependent disruption of the growth
hormone-insulin-like growth factor (GH-IGF) axis i.e. decreased
levels of GH, IGFI and IGFBP3 (Hsiao and Patterson, 2011). Taken
together, these observations suggest that the placenta might act
as a central mediator of fetal programming of the TRYCAT path-
way that may  underlie developmental origin of adult psychiatric
disorders including schizophrenia (Goeden et al., 2013).

3.2.4. Prenatal neuroendocrine pathway
Hormones are established environment-dependent coordi-

nators of the developing “neuro-endocrine-immune network”.
However, non-physiological concentrations of hormones during
crucial phases of embryogenesis can act as ‘endogenous functional
teratogens’. This is exemplified by fetal and neonatal hyper-
insulinism in the offspring of diabetic mothers. Diabetes mellitus is
the most common metabolic complication during gestation and is
known to have neurodevelopmental sequelae. A number of studies
have highlighted relationship between maternal diabetes and the
risk of schizophrenia in the offspring (Van Lieshout and Voruganti,
2008). Importantly, the risk of schizophrenia in the offspring born to
diabetic mothers could be induced by hyperglycemia and mediated
by hypoxia, inflammation and oxidative stress.

Endocrine disruption as etiological component is theoretically
implicated in schizophrenia. Estrogen is proposed to be a potential
mediator of brain functions during development and adulthood.
Estrogen protects brain cells against injury from oxidative stress,
inflammation and apoptosis (Arevalo et al., 2010; Behl, 2002).
Estrogen is relevant to schizophrenia due to its significant effects on
synaptogenesis, neurogenesis, neuroendocrine and inflammatory
processes. Recently, combinations of both estrogen and selec-
tive estrogen receptor modulators with antipsychotics have been
shown to decrease positive and negative symptoms significantly
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

in women  with chronic schizophrenia (Kulkarni et al., 2010, 2014;
Ghafari et al., 2013). However, prenatal exposure to excess estrogen
could increase the risk of schizophrenia in the offspring through
certain mechanisms (Brown, 2011). For example, estrogen has
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Fig. 2. Summary of potential prenatal endogenous and exoge

een found to increase susceptibility to certain viral infections
y altering innate and adaptive immune responses, such as by
educing CD4 T-cell responses and by inhibiting type 1 interferon
roduction and dendritic cell maturation (Escribese et al., 2008;
azos et al., 2012). Interestingly, many such viruses including borna
isease virus, mumps, influenza, corona viruses, etc. are associ-
ted with increased risk of schizophrenia. A summary of prenatal
ndogenous and exogenous risk factors and/or mechanisms leading
o schizophrenia has been presented in Fig. 2.

.3. Specificity of the risk factors of schizophrenia

Converging evidence from multiple animal studies indicate
hat prenatal infection can act as a “neurodevelopmental disease
rimer’, and this seems to be a shared environmental risk fac-
or across a number of chronic mental illnesses (as reviewed in

eyer, 2014; Knuesel et al., 2014). It is now widely appreciated
hat activation of IO& NS pathway due to prenatal infection is one
f the underlying mechanisms in the pathogenesis of various neu-
opsychiatric disorders like schizophrenia, autism, bipolar disorder
Anderson et al., 2014; Anderson and Maes, 2014). Although the
pecificity of prenatal infection on subsequent disease or symptoms
s yet to be precisely understood, it is likely to be influenced by the
nteractions between genetic and additional environmental factors.
or example, major histocompatibility complex (MHC) molecules
ave been shown to play important roles during neurodevelop-
ent (Chacon and Boulanger, 2013). Neurons exposed to MIA  were

ound to have higher levels of MHC  class I expression and lower
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

ynapse density (Elmer et al., 2013), suggesting that such effects of
IA on MHCI expression could affect activity-dependent plasticity

nd synaptic pruning during crucial phases of neurodevelopment.
 plethora of genetic studies have consistently implicated MHC  as
risk factors and/or mechanisms leading to psychopathology.

a risk determinant of schizophrenia (Debnath et al., 2013); how-
ever, this has not been observed in bipolar disorder (Corvin and
Morris, 2014). Furthermore, MHC  is also found to be associated
with various schizophrenia risk factors such as obstetric compli-
cations, season of birth, infection and so on (Debnath et al., 2013),
thus implying that genetic components along with environmental
factors might determine the specificity of disease pathogenesis.

4. Neurodevelopmental origin of schizophrenia: a unifying
genetic–epigenetic–environmental pathway

4.1. Genomic imprinting

The expression of some genes in the human genome depends on
whether they are located on the maternal or paternal chromosome.
This is accomplished through a highly powerful epigenetic phe-
nomenon called genomic imprinting, which is a significant form of
gene regulation. Several of the imprinted genes that are expressed
from only one of the parental chromosomes have novel roles in the
normal placental development and fetal growth (Frost and Moore,
2010). Although most known imprinted genes are expressed dur-
ing placentation, a considerable number are expressed primarily
or entirely in the brain (Davies et al., 2008). Brain development
is strongly influenced by the epigenetic regulation of imprinted
genes, and there is increasing evidence that imprinted genes can
influence neurogenetic and psychiatric manifestations by affect-
ing neurodevelopmental processes (Isles and Wilkinson, 2000;
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

Wilkinson et al., 2007). A recent family based trio study has sug-
gested the occurrence of imprinting of schizophrenia candidate
gene, GABRB2 that codes for GABA(A) receptor �(2) subunit (Pun
et al., 2011). Evidence of imprinting in schizophrenia has also been

656

657

658

659

dx.doi.org/10.1016/j.neubiorev.2014.12.003


 ING Model
N

8  Biobeh

o
i

4

m
e
p
a
2
i
w
H
e
c
r
c

n
p
o
e
s
l
m
f
M
s
o
s
b
e
o
c
r
e

4

t
p
i
a
r
t
e
p
n
a
c
2

s
b
s
(
r
a
r
t
t
e
e
b

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781
ARTICLEBR 2090 1–15

 M. Debnath et al. / Neuroscience and

bserved in other chromosomal locus, such as DLK1-DIO3 region
n chromosome 14q32 (Gardiner et al., 2012).

.2. Feto-maternal genetic conflict

Fetal–maternal genetic conflict may  potentially contribute to
any disorders related to pregnancy including preeclampsia (Hiby

t al., 2004). Interestingly, a combination of maternal/fetal genetic
redisposition and environmental factors has been implicated
s potential risk factors for preeclampsia (Roberts and Cooper,
001). This may  be based on MHC  and Rh gene compatibil-

ty/incompatibility (Haig, 1997). With respect to HLA antigens,
hen there is a lack of maternal recognition i.e. if paternally derived
LAs do not differ from maternal HLAs, this may  have an adverse
ffect on reproductive outcomes (Ober, 1998). HLA matching, in
ouples or between mother and fetus, increases prenatal or obstet-
ic complications including pre-eclampsia, low birth weight, and
an even lead to fetal loss (Ober et al., 1998).

The first indication of the importance of HLA matching in
eurodevelopmental disorders came from a study showing that
arents of children with autism are more likely to share at least
ne HLA-A, -B, or -C antigen in common compared to the par-
nts of unaffected children (Stubbs et al., 1985). Recently, the
ignificance of maternal–fetal genotype incompatibility at HLA
oci in schizophrenia susceptibility has been described, in that

aternal–fetal matching at the HLA-B locus increases fetal risk
or developing schizophrenia (Palmer, 2010; Palmer et al., 2006).

aternal–fetal HLA-B matching may  only increase the risk of
chizophrenia in female offspring (Childs et al., 2011). Various roles
f MHC  molecules in neuronal development by in vitro and in vivo
tudies and risk of schizophrenia conferred by MHC  variants have
een well supported by genome wide association studies (Debnath
t al., 2013; McAllister, 2013; Corvin and Morris, 2013). These
bservations led to the hypothesis that maternal–fetal genotype
ombinations at HLA loci, by modulating feto-maternal immune
esponses, can affect fetal neurodevelopment and subsequently
nhance one’s risk of developing schizophrenia.

.3. Developmental epigenetic modifications

Environmental signals during prenatal life lead to adverse long-
erm effects. Although the mechanisms underlying such risk remain
oorly understood, emerging studies both in animals and humans

ndicate that maternal exposure to infection, stress, drugs or toxins
lter epigenetic programming in regulatory as well as growth-
elated genes (Gicquel et al., 2008). There is a growing recognition
hat prenatal epigenetic dysregulation due to such adverse in utero
nvironments not only affect fetal brain development, but also
redispose an individual to neurodevelopmental, behavioral and
eurocognitive deficits later in life (Fagiolini et al., 2009; Petanjek
nd Kostović, 2012). A recent study has demonstrated that MIA
auses epigenetic changes in adolescent mouse brain (Basil et al.,
014).

The impact of prenatal stress on the modification of epigenetic
ignatures during critical periods of fetal brain development has
een elucidated by several recent studies. Exposure to gestational
tress increases DNA methylation at the glucocorticoid receptor
GR) gene promoter and reduces methylation at the corticotrophin-
eleasing factor (CRF) gene promoter in hypothalamic tissue in
dult male mice (Mueller and Bale, 2008). Prenatal stress down-
egulates 11�-hydroxysteroid dehydrogenase type 2 (HSD11B2)
hat converts cortisone/corticosterone into inactive metabolites
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

hrough DNA methylation in the placenta and fetal brain (Jensen
t al., 2012). Further evidence suggest that the offspring of mice
xposed to gestational stress have an altered transcriptomic
rain profile of genes related to development, axonal guidance
 PRESS
avioral Reviews xxx (2014) xxx–xxx

and neuropathology due to up-regulation and down-regulation
of certain microRNA (miRNA) (Zucchi et al., 2013). In addition,
prenatal stress through disruption of DNA methylation network
affects GABAergic interneurons associated with schizophrenia-like
phenotypes (Matrisciano et al., 2013).

Maternal cigarette smoking during pregnancy is a common haz-
ard affecting key pathways crucial for proper fetal growth and
development. Recent data suggests that maternal cigarette smok-
ing during pregnancy can lead to alteration in DNA methylation and
expression of microRNA (Valerie et al., 2012). Importantly, mater-
nal smoking during pregnancy has been found to be associated with
increased DNA methylation in a key gene involved in brain devel-
opment, brain-derived neurotrophic factor (BDNF) in adolescent
offspring (Toledo-Rodriguez et al., 2010).

Maternal diet during pregnancy can also effect brain develop-
ment and function by modifying the fetal epigenome. Persistent
epigenetic changes were observed in the offspring exposed to pre-
natal famine. Peri-conceptional exposure to famine during Dutch
Hunger Winter was  associated with reduced DNA methylation of
Insulin-like growth factor II (IGF2), which is a key factor in human
growth and development (Heijmans et al., 2008). Dietary intake of
methyl-group (choline, methionine, and folate) containing nutri-
ents during critical phases of prenatal development can alter the
epigenomic profile of the developing offspring, thereby resulting in
altered fetal and lifelong changes in gene expression. Unbalanced
maternal diet during pregnancy alters DNA methylation in impor-
tant genes controlling glucocorticoid function and fetal growth
(Drake et al., 2012). Recently, an association between maternal pre-
natal nutrition and schizophrenia risk in the offspring via epigenetic
effects has been highlighted (Kirkbride et al., 2012).

4.4. Gene–environment interactions

A large number of environmental factors have been pro-
posed to cause neurodevelopmental abnormalities and confer
enhanced risk of schizophrenia in offspring. It is now becoming
apparent that genetic factors potentially modulate the adverse
effects of environmental stressors on neurodevelopment during
pre- and peri-natal periods as well as behavioral outcomes in
the offspring (Cannon et al., 2003). Importantly, the impact of
gene–environmental interactions on perinatal programming of
schizophrenia is a critical issue in prenatal adversity induced
changes in neurodevelopment. The genetic liability of perinatal
environmental adversities has been exemplified by various studies.
A recent study has shown how maternal cytomegalovirus infection
influences the risk of schizophrenia in the offspring by interacting
with the genotype of CTNNA3 gene of the progeny (Borglum et al.,
2014). The additive or interactive effects of hypoxia with genetic
factors in influencing liability to schizophrenia have been reported
(Cannon et al., 2000). Animal studies have demonstrated that MIA
during pregnancy with polyI:C of mice with mutation in DISC1,
a consistently replicated risk gene of schizophrenia exacerbate
schizophrenia-like phenotypes (Abazyan et al., 2010; Lipina et al.,
2013). Another study has shown that prenatal immune activation
in mice with mutations in Nurr1, a transcription factor crucial
for dopaminergic development leads to neuropathological conse-
quences, such as locomotor hyperactivity, deficits in sensorimotor
gating, and attentional impairments (Vuillermot et al., 2012).
Furthermore, recent animal studies demonstrated that combined
effects of neonatal immune activation and mutant DISC1 on the
risk of schizophrenia like behavioral phenotypes in the offspring
(Ibi et al., 2010). One of the important pathways that can be
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

modulated by perinatal adverse conditions is HPA axis activity in
offspring. Perinatal exposure to excess glucocorticoids can lead to
a persistently altered HPA axis and subsequently enhance the risk
of schizophrenia (Huang, 2011). Disturbed genome regulation due
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o adverse perinatal environmental conditions has been shown to
ontribute to schizophrenia risk and pathophysiology.

Recent observations indicate that prenatal infection increases
he associated risk of schizophrenia if occurring in offspring with

 family history of psychosis; this implies an interaction of genetic
ulnerability with prenatal infection (Clarke et al., 2009). This could
ossibly be mediated by certain gene loci such as MHC, HLA-G,
oll-like receptor (TLR) 3 and 4 that are known to have predomi-
ant expression during pregnancy (Debnath and Chaudhuri, 2006;
enkatasubramanian and Debnath, 2013). Taken together, such
vidence suggests that fetal immune programming may  have pro-
ound consequences on brain and behavior, and is associated with
he adult presentation of schizophrenia.

. Prenatal events and neuroprogression in schizophrenia

There is now strong evidence of pathological reorganization of
he central nervous system along the course of severe mental disor-
er. Neuroimaging studies have demonstrated significant volume
eduction of certain specific regions in the brain of schizophrenia
atients, providing evidence of neuroprogressive processes includ-

ng neurodegeneration and neuronal apoptosis (Ho et al., 2003).
ver the past few years, multiple studies based on epidemiological
nd neuropathological studies have provided convergent clues to
he neurodevelopmental hypothesis of schizophrenia (Piper et al.,
012). There is a wide appreciation that neuroprogression is par-
ially mediated by inflammatory, oxidative and nitrosative stress
athways, apoptosis and mitochondrial energy dysregulation (Berk
t al., 2011; Anderson et al., 2013b).

The generation of ROS and RNS has both physiologic and patho-
ogic roles in the placenta, embryo and fetus; the developing brain is
ighly vulnerable to ROS and RNS. Amongst the several causative
echanisms of fetal origin of adult diseases, a significant role of

xidative and nitrosative stress (O&NS) in fetal programming is
redominant (Thompson and Al-Hasan, 2012). It is now evident
hat a number of factors such as prenatal hypoxia, maternal under-
nd over-nutrition, excessive glucocorticoid exposure can induce
&NS process during pregnancy and subsequently lead to neuronal
eath/brain injury (Ikonomidou and Kaindl, 2011). In a recent study

t was observed that chronic fetal hypoxia induced brain injury is
ssociated with altered nitric oxide synthase activity (Dong et al.,
011).

It is now becoming evident that a range of prenatal adver-
ities can lead to heightened maternal inflammation, which can
ontribute to placental hypoxia and O&NS process underlying
ltered fetal growth and development. For example, the effects of
renatal malnutrition have also been found to be mediated by pro-

nflammatory factors (Shen et al., 2008). Fetal hypoxemia can cause
etal inflammatory response syndrome as well as fetal brain injury
y up-regulating inflammatory cytokine cascade (Guo et al., 2010).

It is interesting to note that melatonin, an endogenously pro-
uced indoleamine from the pineal gland, acts as an antioxidant,
ree radical scavenger and anti-inflammatory molecule (Radogna
t al., 2010). Importantly, melatonin has a role in redox modifi-
ation in fetal programming and reverses oxidative stress during
renatal period. Further, melatonin influences epigenetic modifica-
ions associated with developmental programming (Korkmaz et al.,
012). Melatonin might play a pivotal role in epigenetic modifica-
ions induced by maternal stress, maternal under-nutrition or IUGR
Chen et al., 2013). As melatonin levels and melatonin circadian
hythm are significantly decreased in schizophrenia (Anderson and
aes, 2012), a role of melatonin in neuroprogressive pathways
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
(2014), http://dx.doi.org/10.1016/j.neubiorev.2014.12.003

eems credible.
Molecular hydrogen is an odorless and tasteless gas, and this

ioactive molecule has various biological attributes including
nti-inflammatory, anti-apoptotic and anti-oxidative effects (Ohta,
 PRESS
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2011). Animal studies have indicated that inhalation of hydro-
gen decreased acute lung inflammation and hydrogen enriched
water decreased the production of ROS (Xie et al., 2012; Katakura
et al., 2012). Importantly, a protective role of hydrogen on fetal
brain injury during maternal hypoxia has also been recently high-
lighted (Liu et al., 2011b). Some intestinal bacteria, e.g. Escherichia
coli can produce a remarkable amount of molecular hydrogen and
under certain circumstances can suppress inflammation (Kajiya
et al., 2009). Considering the above biological properties of molec-
ular oxygen and their relevance in neurodevelopment and function
including neuroprogressive changes, implications of molecular
hydrogen have been highlighted recently in bipolar disorder and
schizophrenia (Ghanizadeh and Berk, 2013).

6. Implications: prediction and prevention

Understanding the pathophysiological basis of schizophrenia
from the perspectives of MIA  with fetal programming aberrations
permits potential translational implications as well. Over the past
few years multiple blood-based, imaging, neurophysiologic and
neurocognitive biomarkers have been identified for schizophre-
nia (Chan et al., 2011a; Light et al., 2012; Zarogianni et al., 2013).
However, there seems to be a considerable imprecision in the
nosology of biomarkers that have been identified in schizophrenia.
Recent conceptualization suggests that a classification of biomark-
ers based on six categories such as risk, diagnosis/trait, state or
acuity, stage, treatment response and prognosis may be appli-
cable to neuropsychiatric disorders (Davis et al., 2014). Several
studies have consistently shown altered levels of markers of inflam-
mation, oxidative stress, metabolism and hormonal status in the
first onset schizophrenia patients and have suggested the poten-
tial implications of such risk biomarkers of schizophrenia (Guest
et al., 2011; Perkins et al., 2014). Considering the ever growing
support toward the neurodevelopmental origin of schizophrenia,
identification of biomarkers bearing signatures of events from as
early as embryonic development or birth would be of consider-
able interest in predicting risk as well as treatment responses. A
recent methylome-wide association study examining blood based
biomarkers in schizophrenia has shown changes in genes that
reflect the effects of environmental insults related to hypoxia, infec-
tion etc. (Aberg et al., 2014), suggesting that pathogenic events
might be preserved in the methylome. Such understanding essen-
tially highlights the importance of environmental adversities on
fetal epigenome, therefore, early epigenomic profiling might be
one of the areas which could offer potential schizophrenia risk
predicting biomarker. In addition, elevated levels of inflammatory
marker such as maternal C-reactive protein, TNF-� and IL-8 have
robustly been associated with increased risk of schizophrenia in
adult offspring (Buka et al., 2001; Brown et al., 2004; Canetta et al.,
2014). Such maternal inflammatory markers could also be consid-
ered as potential risk biomarker in predicting schizophrenia early
in life. Maternal stress is an established risk factor of schizophrenia.
Recently, O-GlcNAc transferase (OGT) has been demonstrated to be
a placental biomarker of maternal stress (Howerton et al., 2013).
This biomarker might also be useful in predicting gestational stress
exposure and risk of schizophrenia in adult offspring.

Impaired sensory gating indicative of aberrant cerebral inhi-
bition is a documented component of the pathogenesis of
schizophrenia (Vlcek et al., 2014). Significantly, prenatal MIA  can
result in sensory gating aberrations (Romero et al., 2010). Hence,
within the pathogenetic paradigm of aberrant fetal programming
due to prenatal immune disturbances, certain biomarkers like P50,
g of schizophrenia: Select mechanisms. Neurosci. Biobehav. Rev.

that are indicative of sensory gating deficits, especially in combi-
nation with other significant biomarkers like P85, P300, Mismatch
Negativity and eye movement aberrations (smooth pursuit as well
as antisaccades) (Bender et al., 2007) in conjunction with analyses
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or markers for persistent immune activation (cytokines, lympho-
yte functions (Drexhage et al., 2011) as well as microglia imaging
sing positron emission tomography (Doorduin et al., 2009) might
acilitate reliable prediction of risk for schizophrenia.

Prevention of psychiatric disorders of neurodevelopmental ori-
in such as schizophrenia is becoming a challenging issue (Jacka
nd Berk, 2014). Public health approaches including control of
nfectious diseases, improvements in obstetric and neonatal care
nd nutritional supplementation might be beneficial. For instance,
holine, an essential nutrient, has been shown to improve immune
arameters with associated adaptive modulation of cognitive func-
ions (McCann et al., 2006; Lewis et al., 2014a,b). Choline plays a
ritical role in optimal neurodevelopment (Reland, 2011). Interest-
ngly, several maternal factors that elevate schizophrenia risk can
ead to decreased availability of choline during fetal developments
Zeisel, 2006). Recently, a randomized placebo-controlled clinical
rial examined 100 healthy pregnant women with dietary phos-
hatidylcholine supplementation that was initiated in the second
rimester until the time of delivery. After birth, infants were given
00 mg  of phosphatidylcholine in an oral suspension once daily
r placebo (Ross et al., 2013). In comparison with placebo-treated
nfants, choline-treated infants demonstrated better sensory gating
s examined by P50 response (Ross et al., 2010). Choline supple-
entation was shown to enhance sensory gating measures in

ealthy adults as well (Knott et al., 2014). Availability of safe inter-
entions like choline supplementation is worth exploring with
arge scale studies to ascertain potential preventive interventions.

. Limitations of neurodevelopmental theory and future
irections

The neurodevelopmental origin of schizophrenia although has
ecome one of the most influential etiologic theories in recent
imes; however, there are certain limitations of this theory.
mongst the range of factors and mechanisms that are shown to
lter the developmental trajectories, the association of certain risk
actors/mechanisms remain weak and needs to be replicated. Vari-
us risk factors seem to mediate a large number of mechanisms that
mpair crucial phases of fetal development and result in a similar
et of behavioral outcomes in the offspring. It is essential to classify
he risk factors that confer predominant risk and delineate their

echanistic basis. The current understanding suggests that devel-
pmental modulation during embryogenesis by various factors
nd mechanisms could potentially predict behavioral outcomes
n the offspring during adolescence or early adulthood and these
recede the onset of illness. Early onset schizophrenia is a severe
orm of schizophrenia that occurs during childhood or adolescence
nd is often chronic and persistently debilitating. However, the
requency of early onset schizophrenia has been reported to be
round 4% (Cannon et al., 1999). Although converging functional
enomics suggests involvement of multiple genes in neurodevel-
pment, certain genes are found to confer susceptibility to various
eurodevelopmental disorders. Furthermore, most of the risk genes
ave a variable pattern of expression and different effects at differ-
nt developmental stages. Some of the genes exhibit preferential
xpression in the fetal brain and high gene expression occurring
uring fetal development can be reversed in early postnatal life
Colantuoni et al., 2011). In addition, progressive brain changes
ave also been reported in chronic adult patients with schizophre-
ia (Chan et al., 2011b). Therefore, it is important to study the effect
f various risk factors including genes as well as neuroprogressive
hanges at different time points during the lifespan to gain more
Please cite this article in press as: Debnath, M.,  et al., Fetal programmin
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nsights on the pathogenesis of schizophrenia rather than focussing
mphatically on neurodevelopmental insults. The developmental
euroinflammation has also been contradicted by a recent study
here neonates who later developed schizophrenia had unaltered
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levels of 17 inflammatory markers, thus refuting an association
between neonatal inflammation and risk of schizophrenia (Nielsen
et al., 2014).

Future research should pay more focus to establish ‘missing
heritability’ aspects and to disentangle the different effects of
prenatal environmental and genetic exposures. The early-life
epigenetic disruption also plays pivotal role in the neurodevel-
opmental origin of schizophrenia. This notion is experimentally
supported by methylomic profiling of human brain tissue of
schizophrenia patients, identifying disease-associated differential
DNA methylation in the prefrontal cortex and discrete modules
of co-methylated loci associated with the disorder that are sig-
nificantly enriched for genes involved in neurodevelopmental
processes (Pidsley et al., 2014). Improved understanding of the
genetic as well as epigenetic contribution to environmental risk
mediation will offer possible candidate for primary prevention
and early intervention strategies. Combined studies of prenatal
exposures and neurodevelopmental disorders with simultaneous
evaluation of neural and immune systems might delineate the
mechanisms enhancing individual vulnerability or resilience to
neurodevelopmental disorders. This would also contribute to the
development of primary preventions and early interventions. The
importance of early life programming as a target for prevention
of mental disorders in the offspring has recently been highlighted
by Lewis et al. (2014b) and several recommendations were made
with respect to public health and clinical implications.

8. Conclusion

There is strong evidence that schizophrenia is a complex multi-
factorial disorder and no one factor seems to be of solitary
significance in the genesis of schizophrenia. Among the various
etiological models tested so far, gene–environmental interactions
appear to be most widely appreciated one in schizophrenia. The
adverse effects of certain risk factors are found to be linked to
genetic components, therefore, it is essential to identify specific
genetic components that confer major risk to schizophrenia in com-
bination with environmental stressors. The series of neurological
insults rendered by an array of environmental factors during ges-
tation reviewed above strongly level schizophrenia to a disorder
of neurodevelopment and significantly highlight the implications
of fetal programming of schizophrenia. Such compelling evidence
calls upon researchers to translate these findings into interventions
designed to prevent mental disorders.
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