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Abstract: Here, we evaluated the potential of using bathymetric Light Detection and 

Ranging (LiDAR) to characterise shallow water (<30 m) benthic habitats of high energy 

subtidal coastal environments. Habitat classification, quantifying benthic substrata and 

macroalgal communities, was achieved in this study with the application of LiDAR and 

underwater video groundtruth data using automated classification techniques. Bathymetry 

and reflectance datasets were used to produce secondary terrain derivative surfaces  

(e.g., rugosity, aspect) that were assumed to influence benthic patterns observed. An 

automated decision tree classification approach using the Quick Unbiased Efficient 

Statistical Tree (QUEST) was applied to produce substrata, biological and canopy structure 

habitat maps of the study area. Error assessment indicated that habitat maps produced were 

primarily accurate (>70%), with varying results for the classification of individual habitat 

classes; for instance, producer accuracy for mixed brown algae and sediment substrata, was 

74% and 93%, respectively. LiDAR was also successful for differentiating canopy 

structure of macroalgae communities (i.e., canopy structure classification), such as canopy 

forming kelp versus erect fine branching algae. In conclusion, habitat characterisation 

using bathymetric LiDAR provides a unique potential to collect baseline information about 

biological assemblages and, hence, potential reef connectivity over large areas beyond the 

range of direct observation. This research contributes a new perspective for assessing the 
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structure of subtidal coastal ecosystems, providing a novel tool for the research and 

management of such highly dynamic marine environments. 

Keywords: LiDAR; subtidal macroalgae; coastal; habitat mapping; exposed coast; 

bathymetry; reflectance; groundtruth video 

 

1. Introduction 

Shallow marine environments are vulnerable to a range of anthropogenic threats, including nutrient 

inputs, invasive marine pests, fisheries over-exploitation, and climate change [1]. Hence, it is 

important to quantify, understand, and manage a representative suite of habitats in the coastal marine 

environment [2]. The production of benthic habitat maps using remotely-sensed information offers a 

practical means to define potential community distributions in the marine environment, and hence 

facilitate ecosystem scale management [3,4]. However, mapping the seafloor is difficult along coastal 

margins, particularly in areas exposed to high wave action and turbidity (termed “exposed coasts” 

from here onwards). Habitat classification of these environments presents significant obstacles 

including logistical access restricting data collection and fluctuating water clarity [5]. 

A number of techniques are used for the ecological habitat mapping of marine environments. For 

example, multibeam echosounders (MBES) accurately define potential seabed habitat [6–10]. 

Geophysical datasets derived from MBES provide morphometric base layers, which may be 

supplemented with underwater observation data to “ground truth” inferred seabed habitats, providing a 

basis for supervised classification techniques [11]. However, MBES has several limitations when used 

in coastal marine habitats. For instance, MBES inherently loses efficiency in shallow water, with the 

ensonified area declining as water depth decreases [12]. Furthermore, nearshore areas are not always 

accessible for vessel-based sonar surveys because of heavy wave action and potential hazards  

(i.e., reefs) that have been poorly delineated [13]. These obstacles often result in an area of no 

information, termed “the white stripe,” between sonar coverage and the coastline. Hence, approaches 

to fill these knowledge gaps are required, particularly because of the proximity of coastal 

environments to anthropogenic disturbances and other potential threats.  

Airborne sensors have recently emerged as a cost-efficient option for surveys involving high 

resolution mapping of shallow water areas [14]. The invention of dual frequency Light Detection and 

Ranging (LiDAR) equipment has facilitated the use of aerial mapping sensors for hydrographic 

applications [15]. As a result, the detailed bathymetric data generated by LiDAR now provides a 

practical approach towards investigating the relationships between biotic and geophysical factors 

across large extents of shallow marine areas [16]. With the development of bathymetric LiDAR a 

number of studies have combined benthic terrain analysis techniques with LiDAR-derived 

information. Examples of such studies include relating terrain rugosity or complexity with fish species 

richness and abundance [17,18], detecting bottom type variation in relation to seagrass distribution [5,19], 

and discriminating between coral reef and non-coral dominated habitats [20,21]. Surveys using LiDAR 

have great potential for “seamless” (i.e., consistent) mapping over large geographical extents, therefore 

it remains important to evaluate information assimilated by LiDAR to characterise different marine 
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environments. The application of multiple LiDAR terrain derivatives to inform classifications beyond 

the local scale i.e., <10‟s of km
2
 represents a novel approach for sub-tidal marine habitat classification.  

Plant communities in terrestrial environments are often characterised from the canopy structure of 

vegetation [22,23]. A similar approach may be used for macroalgae communities, as demonstrated in a 

previous study in southern Australia [24]. The macroalgal communities of southern Australia are 

dominated by large kelps such as Macrocystis pyrifera and Ecklonia radiata, which are habitat 

engineers and provide ecosystem resources often supporting the biological productivity of mid  

latitude (temperate) shallow reef systems [25]. Therefore, it is necessary to develop a method to  

obtain accurate spatial information about the distribution of macroalgae communities over large areas 

(>10‟s of km
2
), and hence characterise exposed coastal environments. Bathymetric LiDAR provides a 

potential to delineate habitat availability for macroalgal communities and establish baseline 

information for future comparison. 

Habitat classifications provide critical information about the distribution of macroalgae assemblages 

and substrata types in shallow subtidal coastal habitats. The study evaluates bathymetric LiDAR for 

benthic habitat characterisation of exposed marine environments where other mapping techniques 

cannot be used due to logistical constraints. We use video observation data to confirm the potential of 

LiDAR to bridge the knowledge gap in habitat classification from the shoreline to navigable waters in 

exposed coastal environments. In addition, we investigate the ability of LiDAR to classify temperate 

marine macroalgal distributions based on canopy structure. By validating the utility of LiDAR to 

differentiate habitat and macroalgal canopy types in high energy marine systems, we demonstrate the 

potential versatility of this technique for use in other coastal environments around the world. 

2. Methods 

2.1. Study Area 

The study area is located on the coast of western Victoria, Australia (Figure 1), and is typical of a 

southern Australian coastal environment, which is exposed to the full force of the Southern Ocean 

weather systems [26]. The study area extends approximately 1.5 km offshore, with water depths 

ranging from 0 to 32 m (relative to Australian Height Datum; AHD) and fluctuating turbidity typical of 

temperate coastal marine waters (i.e., 0 to 4 nephelometric turbidity units, NTU). This area is 

characterised by shorelines containing high energy sandy beaches and cliffs, with a moderate to steep 

depth gradient [26]. In this region, shallow subtidal reef habitats are interspersed by areas of 

biolocastic carbonates and quartz marine sediments [27]. Benthic assemblages are dominated by 

canopy forming macroalgae, such as Phyllospora comosa and Ecklonia radiata, with a diverse 

understorey of rhodophytes and sessile invertebrates, representing a range of dynamic and diverse 

biological communities [28]. This marine environment cannot be accessed for extensive inshore boat 

based surveys, thus preventing the classification of benthic habitats by acoustic techniques. 

Furthermore, it is not possible to characterise the habitats using passive remote sensing, such as  

multi-spectral imagery, because of issues with water depth and surface reflectance.  
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Figure 1. Study area showing the coastal zone between Warrnambool and Port Fairy, 

western Victoria, Australia. Digital Elevation Model of hill-shaded LiDAR bathymetry 

with the tow video tracks overlaid. Zoomed extent shows bathymetric detail of the Hopkins 

Bank region. 

 

2.2. Video Data Acquisition 

Eight ground truthing transects (17 km) were designed to maximise coverage across the known 

physical gradients of the study area, ranging from 3–32 m deep (Figure 1). Video data were collected 

in April 2010 using a VideoRay Remotely Operated Vehicle (ROV), retro fitted with a tow camera 

hydro-wing. The camera system was monitored and adjusted in real-time via an onboard ROV 

operator, maintaining the camera approximately 1m above the seafloor, survey speed was generally 

between 1–2 knots. This enabled camera angle and altitude to record a consistent field of view 

maintaining spatial resolution for data classification. Video position on the seafloor was linked via a 

Tracklink Ultra Short Baseline system (USBL) to a differential GPS (Omnistar Satellite dGPS) and a 

KVH motion sensor (correcting for vessel pitch, roll and yaw). The cumulative contribution of each 
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component resulted in a total propagated error (TPE) of ±3.6 m for video seafloor position [29]. Track 

data logging was completed using Starfix suite 7.1, while a time stamp text overlay enabled video data 

to be co-located with track data. 

2.3. Video Data Processing 

Video ground truth data were examined to extract benthic biota and substrata characteristics of the 

seafloor. This information was extracted for each data record (representing 1 second of video) using 

the Victorian Towed Video Classification Program designed in Microsoft Access [30]. The recorded 

benthic characteristics included substrata type and percentage cover of dominant biota (Table 1), 

which were then used to aggregate the detailed video data into broad habitat classes (Table 1; Figure 2). 

Georeferenced point data records were imported into ArcGIS 9.3, and resampled into a grid that had 

the same resolution as LiDAR images (5 m) using a nearest neighbour approach.  

Table 1. Class selection criteria of groundtruth video data for (a) substrata; (b) biological, 

and (c) canopy structure habitat classes, including density thresholds used to aggregate 

data. Reef (REEF), sediment (SED), mixed reef and sediment (REEF/SED), mixed brown 

algae (MB), mixed red algae (MR), mixed brown and red algae (MBMR), mixed seagrass 

(SG), no visible biota (NVB), canopy forming algae (CAN), fine-branching algae (FB). 

Habitat Class 

% Cover 

Groundtruth 

Pixels (5 m) Reef Sediment 
Brown 

Algae 

Red 

Algae 
Seagrass 

Canopy 

Algae 

(i.e., Kelps) 

Fine-Branching 

Algae 

(a) 

REEF ≥75% ≤25% - - - - - 992 

SED ≤25% ≥75% - - - - - 1416 

REEF/SED ≥25% ≥25% - - - - - 1716 

(b) 

MB - - ≥75% ≤25% Absent - - 1192 

MR - - ≤25% ≥75% Absent - - 360 

MBMR - - ≥25% ≥25% Absent - - 1076 

SG - - ≤25% Absent ≥25% - - 76 

NVB - - Absent Absent Absent   1348 

(c) 

CAN - - - - - ≥75% ≤25% 1324 

FB - - - - - ≤25% ≥75% 1224 

NVB - - - - - Absent Absent 1348 

2.4. LiDAR Acquisition  

LiDAR depth and reflectance data were collected in April 2007 using a LADS Mk II system 

coupled with a GEC-Marconi FIN3110 inertial motion sensing system and a dual frequency kinematic 

geographic positioning system (kGPS), aboard a DeHavilland Dash-8 aircraft. LiDAR penetration into 

the water column was typically 2–3 times the Secchi depth [19]; this information was impaired in 

certain areas by high turbidity and breaking waves. The discrepancy in survey dates between 

groundtruth video and LiDAR was unavoidable in the current study as mapping surveys were 

originally conducted for the purpose of storm surge modelling the Victorian coastline and were only 
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made available for habitat mapping post 2009. Groundtruth observations were completed in April 

corresponding with mapping surveys conducted in April three years earlier. This was done to limit the 

influence of seasonal variation in kelp biomass; as per seasonal variation observed in canopy forming 

macroalgae of southern Australia [31]. 

Figure 2. Still frames from ground truth video data, representing classified benthic 

habitats. (a) Sparse Ecklonia radiata and mixed red algae on high profile reef, classified 

as; reef (REEF), brown and red algae (MBMR) and fine-branching algae (FB);  

(b) Macrocystis pyrifera canopy on low profile reef, classified as; reef (REEF), brown 

algae (MB) and canopy forming algae (CAN); (c) Mixed Cystophora spp on high profile 

reef, classified as; reef (REEF), brown algae (MB) and fine-branching algae (FB);  

(d) Sparse seagrass bed on rippled sediments, classified as; sediment (SED) and seagrass (SG). 

 

The survey flight was conducted from heights between 365 and 670 m at a ground speed of 

175 knots. An Nd: Yag laser operating at 900 Hz on a stabilised platform, provided soundings with 

laser spot spacing set at 5 × 5 m for appropriate data density. Flight lines for the mapping survey were 

spaced at approximately 220 m, with a swath width of 240 m, leaving an overlap of 10 m. This 

amounted to a total of 19 flight lines across the study area. All depths were reduced to Australian 

Height Datum (AHD) as defined by observed tides connected to local survey marks. Vertical accuracy 

was determined by combining the errors due to the LADS Mk II system, tidal model, swell and water 

clarity. For horizontal accuracy the total expected error is a combination of the following errors; GPS 

errors, platform and laser positioning errors, position errors of detecting objects due to the distance 
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between laser spots and sea surface errors. Vertical accuracy of the survey area is expected not to 

exceed ±0.56 m (95% confidence) and total expected horizontal error is ±3.17 m (95% confidence). 

Reflectance data used was a measure of relative reflectivity of the seabed in a single wavelength 

(green/blue 532 nm), calculated by determining the ratio between transmitted laser pulse energy and 

the compensated returned laser energy. The model used for producing Reflectance accounts for the 

following; laser energy transmitted on the pulse basis, beam incidence angles, water column 

attenuation, Aircraft Height and therefore losses in the air and energy loss at the water surface. The 

general equation used to calculate Reflectance is of the following form: 

             
          

            
 (1) 

Where Er = Received Energy, El = Transmitted Energy, H = Slant Height above sea surface,  

D = Slant Observed depth, C = Beam Attenuation Coefficient,   = Angle of incidence at sea floor. 

The above equation describes Raw Relative Reflectance that is subsequently normalized and 

logarithmically scaled to an 8-bit integer range 0–255. Because the dataset is of relative reflectance 

rather than an absolute value for each point, the entire dataset is scaled to ensure the full dynamic 

range is used over the dataset. 

The bathymetry and reflectance values were processed to remove land (represented by values  

above 0 m AHD), null values, and obvious data acquisition artifacts. Bathymetry and reflectance data 

was processed using the following software; UNIX Generic Mapping Tools-UNIX MBSystem 

(processing/gridding), ERMapper (grid conversion, QC and 3D modelling) and ArcGIS (format 

conversions). Bathymetry and reflectance surfaces were gridded using the UNIX Generic Mapping 

Tools (GMT) application “near neighbor”, using a search radius of 10%. The nearest neighbor 

algorithm assigns an average value to each node that has one or more points within a radius centred on 

the node. The average value is computed as a weighted mean of the nearest point from each sector 

inside the search radius. The final output cell size was 5 m. 

2.5. LiDAR Processing 

LiDAR data were used to produce a digital elevation model (DEM) of the study area (57 km
2
) at  

5 m resolution. Bathymetry and reflectance datasets were used to create secondary terrain derivative 

surfaces (Table 2; Figure 3). The predictive capability of the LiDAR classification system may be 

increased by applying a multivariate approach that reflects proxies that potentially influence the 

distribution of biotic communities [5,32,33]. For example, bathymetric position index (BPI) defines 

the elevation of substratum in terms of troughs, flats, or peaks [34,35]. In comparison, maximum 

curvature describes the convex or concave surface of surrounding pixels [36], while aspect defines 

seabed orientation [37], which provides a proxy for exposure to wave action or seabed currents  

(Table 2; Figure 3). Rugosity [34,35] and slope [38] are considered strong potential surrogates for 

benthic biodiversity, through definition of seafloor structures such as sedimentation forms, which 

influence larval and spore settlement patterns and provide microhabitats for benthic assemblies [32]. 

The reflectance derivatives, Hue Saturation Intensity (HSI) [39] helps to separate encoding of surface 

scattering and topographic effects. In addition to bathymetry and reflectance, eight additional 
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derivative datasets were produced using a range of processing techniques and applications in ENVI 4.7 

and ArcGIS 9.3 software platforms (see Table 2). 

Table 2. LiDAR bathymetry and reflectance derivative surfaces produced for  

habitat classifications. 

LiDAR Derivative Description Source References 

Bathymetric Position 

Index (BPI) 

A measure of the relationship between the elevation 

of a focal point compared to the elevation of the 

surrounding terrain, defining peaks, flats, and 

troughs. Both broad and fine scale BPI were 

produced, by defining different sampling radii  

(i.e., 50 m and 15 m) 

Bathymetry [34,35] 

Maximum Curvature 

Describes the curvature of surrounding pixels. 

Negative values indicate concave surfaces, while 

positive values indicate convex surfaces. 

Bathymetry [36] 

Aspect 

Identifies the orientation of each pixel with values 

between 0 and 359 degrees, using the value of the 

steepest down-slope direction from each pixel to its 

adjacent neighbours. 

Bathymetry [37] 

Slope 

The Slope function derivative denotes the maximum 

rate of change between each pixel and its neighbours. 

Slope values are defined by a tangent to a surface, 

slope =               , where (d) and (e) are 

coefficients of the quadratic equation representative 

of the surface. 

Bathymetry [38] 

Rugosity 

A measure of surface roughness; values that are 

closer to zero represent a smooth surface with low 

rugosity, while high values indicate a rough surface. 

Rugosity data is derived from the ratio between flat 

surface area and the curved surface area of a defined 

group of 5 m pixels. 

Bathymetry [34,35] 

Complexity 

Complexity is derived from the Slope derivative 

product and is defined as a second derivative of 

elevation, i.e., a measure of the slope of the slope. 

The greater the variability in the slope between a 

pixel and its adjacent neighbours, the higher the 

surface complexity. 

Bathymetry [38] 

Hue Saturation 

Intensity (HSI) 

HSI was employed to separate surface scattering and 

topographic influence, effectively reducing noise 

levels within the reflectance dataset. HSI is a three 

band (i.e., red, green, blue) synthetic color image, 

separating areas of low and high frequency 

reflectance by mapping them to Hue (dominant 

colour wave-length of pixel) and Intensity (measure 

of pixel brightness). Filter parameters: Hi-pass = 3; 

Low-pass = 11. 

Reflectance [39] 
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Figure 3. LiDAR derivative surfaces produced for habitat classifications. Bathymetry 

derivatives: (a) complexity (i.e., slope of slope); (b) aspect; (c) Bathymetric Position  

Index (BPI); (d) rugosity; (e) maximum curvature; and (f) slope. Reflectance & 

derivatives: (g) Relative Reflectance; (h) HSI-Green; and (i) HSI–Blue. 

 

2.6. Image Classification 

The Quick, Unbiased, Efficient Statistical Tree algorithm (QUEST) was used for the predictive 

classification of benthic habitats (Figure 4) [40]. The QUEST decision tree algorithm uses a  

series of binary decisions (nodes) to define rule based relationships between in situ video data  

and LiDAR derived predictor variables, implemented using the ENVI 4.7 RuleGen extension.  

The following parameters were used for QUEST to reduce over-fitting of classification trees, Minimum 

Node Size = 5, Split Method = Univariate, Variable Selection Method = Unbiased, Alpha Value = 0.05, 

Number of SEs for Pruning = 1, Number of Folds = 10. The QUEST classifier was selected instead of 

more traditional statistical methods such as maximum likelihood procedures due to certain advantages. 

Including, QUEST making no statistical assumptions, able to handle data represented on different 

measurement scales and non-exhaustive search routines, hence, avoiding overfitting the classification 

algorithm [41]. Predictor variables were tested for collinearity using Spearman‟s rho routine and 

variables returning correlation values >0.8 were omitted. Three classification maps were produced to 
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assess the predictive capability of LiDAR to define different subtidal habitat types; namely, substrata 

type, biological structure, and canopy structure. The ground truth video data were organised according 

to the classification scheme levels, with each being subsequently used to inform the predictive 

modeling/image classification process (Table 2). Habitat classes for the substrata and biological 

classifications were defined using a standardised local-scale classification scheme described by  

Rattray et al. [9] and Ierodiaconou et al. [8]. The habitat classes for the canopy structure were defined 

from the canopy structure of algal assemblages, following a similar method to that used in the 

classification of macroalgae according to the Collaborative and Annotation Tools for Analysis of 

Marine Imagery and video (CATAMI) [42]. This approach was selected to investigate the efficacy of 

LiDAR for the predictive classification of macroalgal communities based on canopy structure alone. 

Figure 4. Conceptual schematic showing the processing steps for the image classification 

of biological and geophysical habitat classes using a decision tree classifier. 

 

2.7. Image Evaluation 

Before classification, the video ground truth data were randomly split into a training dataset (75%) 

and a validation dataset for error assessment (25%), after Franklin [43], error assessment data were 

excluded from the thematic classification process. Classification accuracy was assessed using standard 

error confusion matrices [44]. The error matrices permit the calculation of a suite of classified map 

accuracy measures for individual classes within biota and substrata classes [11]. 

The overall classification accuracy of a map is presented as a percentage, which is calculated by 

dividing the number of correctly classified error assessment pixels by the total number of error 
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assessment pixels. Error matrices were used to calculate User’s and Producer’s accuracy, which 

provide percentage probability for the correct classification of individual habitat classes [45]. 

Accuracy percentages reported are corrected for bias by incorporating map marginal proportions [46]. 

In addition to accuracy percentages, the Tau coefficient (tau) was calculated, presenting a measure of 

the improvement of classification accuracy over a random assignment of map units to map classes [47]. 

3. Results 

A total of 11 different habitat classes were defined across the three separate habitat classifications 

(Table 1; Figure 5). Both biological and substrata habitat classifications produced overall accuracies 

~70%, with moderate agreement between classification and error assessment data. As expected, 

decision tree models that incorporated broader habitat classes had the best accuracies, while more 

complex habitat classifications resulted in reduced accuracy of some map classes. 

3.1. Substrata Classification 

The substrata classification was based on three broad geophysical categories; reef, bare sediment, 

and mixed reef/sediment. Classification for substrata was the most accurate of the three classifications 

produced with 74.8% overall accuracy and a tau of 0.623, indicating overall moderate agreement 

between map classification and error assessment data (Table 3a; Figure 5a). The QUEST classifier 

produced a decision tree with 313 nodes (binary splits). The “reef” and “reef/sediment” classes had  

23 decision tree layers and the “sediment” class had 17 tree layers. 

The reef habitat was primarily characterised by medium profile reef with shallow fractures and 

overhanging ledges. The most distinct separation was obtained between the reef and sediment habitat 

classes (Table 3a), with the error assessment showing that reef habitats were incorrectly classified as 

sediment only 3.2% of the time, and no sediment pixels were incorrectly classified as reef (0%). The 

error matrices indicated that the poorest accuracy occurred in the reef/sediment transition class. Hence, 

the reef/sediment class was equally misclassified as either reef (15.4%) or sediment (15.4%). This 

class was composed of both sediment dominated habitat with sporadic reef (<25% coverage) and reef 

with considerable sand inundation.  

The “sediment” class contained unconsolidated sediments that occurred within exposed 

embayments and deeper regions of the study area. Sediment was the most accurately predicted class 

(92.6%), which was probably because the highest percentage was held by this habitat type in the study 

area (Table 3a; Figure 5a). 

3.2. Biological Classification  

Biological habitat classification produced a map with an overall accuracy of 71.8% and a tau of 

0.648 (Table 3b; Figure 5b). The QUEST classifier produced a decision tree with 377 nodes (binary 

splits). The “mixed brown algae” (MB) and “mixed brown/red algae” (MBMR) mapping classes had 

20 tree layers, “mixed red algae” (MR) and “no visible biota” (NVB) classes had 16 tree layers, while 

the “seagrass” (SG) class had only 7 layers. “No visible biota” was the most accurate biota class 

(93.6%). The “brown algae” class was dominated by phaeophytes, such as Ecklonia radiata, 
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Sargassum spp, and Acrocarpia paniculata, and was the most accurate algae class (74.0%). Brown 

macroalgae covered the largest area of any algae class (16.5 km
2
), representing 28.8% of the study 

area. Misclassification of “brown algae” was primarily due to confusion as “mixed brown and red 

algae” (Table 3b). The “mixed brown/red algae” class represented the transition in habitat between 

areas dominated by either “brown algae” or “red algae”. However, the majority of error within the “red 

algae”class was caused by confusion with “no visible biota” (i.e., 24.4% of MR misclassified as NVB). 

This is presumably due to red algae often observed in areas of sparse low profile reef interspersed with 

soft sediment patches, similar to the sediment dominated habitat often classified as “no visible biota”. 

Table 3. Error matrix for each classification comparing map class against groundtruth 

class. This table presents classified pixel numbers and users and producers accuracy for the 

individual habitat classes of each classification type: (a) substrata; (b) biological structure; 

and (c) canopy structure. Accuracy percentages are adjusted incorporating map marginal 

proportions. Te represents the tau coefficient.  

(a) 

Map Class Error Assessment Class  

 REEF REEF/SED SED Total User‟s Accuracy 

REEF 145 62 0 207 70.1% 

REEF/SED 95 284 40 419 67.8% 

SED 8 63 314 385 81.6% 

Total 248 409 354 1011  

Producer‟s 

Accuracy 
61.1% 62.2% 92.6% Te = 0.623  

(b) 

Map Class Error Assessment Class  

 NVB SG MB MBMR MR Total User‟s Accuracy 

NVB 308 19 16 17 22 382 80.6% 

SG 0 0 1 0 0 1 0% 

MB 13 0 222 94 17 346 64.2% 

MBMR 8 0 53 144 12 217 66.4% 

MR 8 0 6 14 39 67 58.2% 

Total 337 19 298 269 90 1013  

Producer‟s 

Accuracy 
93.6% 0% 74.1% 46.3% 49.1% Te = 0.648  

(c) 

Map Class Error Assessment Class  

 NVB CAN FB Total User‟s Accuracy 

NVB 228 16 37 281 81.1% 

CAN 8 261 63 332 78.6% 

FB 105 54 206 365 56.4% 

Total 341 331 306 978  

Producer‟s 

Accuracy 
73.3% 77.2% 64.8% Te = 0.580  
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Figure 5. Habitat classifications of the study area, with the zoomed extent showing the 

distribution of habitat classes in the Hopkins Bank region. (a) Substrata type; (b) Biological 

structure; and (c) Canopy structure. Classified tow video tracks are overlaid. 

 

The “seagrass” habitat class covered an area of 0.025 km
2
. However, poor classification accuracy 

was achieved (~0%), as seagrass was typically classified as NVB (Table 3b). There were few 

groundtruth observations of seagrass for the training and evaluation of this habitat class (Table 1); 

consequently, seagrass contributed a negligible amount within the study area (<0.1% coverage). This 

low presence was reflected by poor discrimination between bare sand and sparse seagrass habitat. 

Shoot density of seagrass beds is estimated to be <1000 shoots/m
2
 in the study area. Blade-shaped 

seagrass beds at this density have been shown not to alter LiDAR bathymetry [48], therefore it is 
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logical that habitat maps failed to accurately define the distribution of seagrass, given seagrass density 

and lack of groundtruth observations.  

3.3. Canopy Structure Classification 

The most accurate biological classification type was that using canopy structure, with a mapping 

accuracy of 72.0% and of tau of 0.58, indicating moderate agreement between classification and error 

assessment data (Figure 5c). The QUEST classifier produced a decision tree with 197 nodes (binary splits). 

“Canopy macroalgae” (CAN) and “fine branching algae” (FB) had 17 tree layers, “no biota” had  

14 decision tree layers. The most accurate classification was obtained for the “canopy macroalgae” 

(CAN) class (77.2%), while the least accurate classification was obtained for the „fine branching algae‟ 

(FB) class (64.7%) (Table 3c; Figure 5c). The “no visible biota” class represented 35% of the study 

area coverage, primarily containing bare sediment habitats. Most of the error for the „no visible biota‟ 

class was attributed to confusion with the „fine branching algae‟ class (Table 3c). This assumption was 

confirmed by “no visible biota” being most commonly misclassified as “fine branching algae” 

(30.8%), rather than “canopy macroalgae” (2.4%). The “canopy macroalgae” class represented a 

mixture of large phaeophytes with dense vegetative canopy growth and long fronds (>1 m). This 

habitat class was dominated by the kelps Ecklonia radiata and Phyllospora comosa, and mainly 

occurred on higher profile subtidal reefs at high wave energy locations. Classification error in the 

“canopy macroalgae” class was also caused by confusion with “fine branching algae”, rather than “no 

visible biota” (Table 3c). This result reinforces the observation that error between canopy structure 

classes was predominantly caused by confusion with the “fine branching algae” class, as “no visible 

biota” and “canopy macroalgae” were clearly differentiated. The “fine branching algae” class covered 

35%
 
of the study area, and algae was characterised by mixed tufting algal species with thallouse fronds 

of <1 m in length (e.g., Plocamium sp. and Phacelocarpus peperocarpus). This habitat also contained 

sparsely distributed kelps (e.g., Ecklonia radiata and Macrocystis paniculata), and was typical of low 

to medium profile sand inundated reefs. These results indicate that much of the error associated with 

classification accuracy is attributed to confusion between habitat classes of similar physical 

characteristics, because of the lack of “abrupt” boundaries in the distribution of benthic habitat types. 

4. Discussion  

This study used video observations to validate LiDAR-derived seafloor characteristics in a 

spatially-explicit modeling approach to delineate benthic habitats. The use of LiDAR bathymetry and 

reflectance datasets provided good classification results with overall predictive accuracies exceeding 

71%. Furthermore, the prediction accuracy was also high for certain habitat classes, including 

sediment (93%), mixed brown algae (74%), and canopy algae (77%) (Table 3). Discrepancies 

primarily occurred between classes that had similar physical habitat characteristics. Classification 

categories were grouped according to distinct habitat attributes; however, certain species and 

substratum traits inevitably overlapped across classes. For example, the results indicate that the 

misclassification of the “reef” and “sediment” classes was caused by the overlapping habitat class 

“reef/sediment”. This misclassification was evident along the spatial boundaries of habitat classes, 

where “speckling” occurred (Figure 5). This issue was attributed to the lack of clearly delineated 
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boundaries in the benthic distribution of actual seafloor habitats. Often, biological communities are not 

“neatly” defined with clear spatial boundaries, as species composition often changes gradually along 

environmental gradients [49]. Prediction error associated with these types of transitional zones 

between habitats has been previously observed for a range of classification techniques [9,50–52]. The 

predictive classification method adopted in this study presents bathymetric LiDAR as a viable 

mechanism for mapping macroalgal assemblages in exposed marine environments. However, error 

associated with misclassification between similar habitats illustrates the difficulty in defining clear 

decision rules to distinguish between different benthic habitats.  

Benthic characterisation using LiDAR enables a knowledge gap to be filled regarding exposed 

coastal systems (of <25 m seabed depth). Surveying coastal environments is traditionally limited to 

areas where the access of acoustic systems is possible, or high water clarity when using aerial remote 

sensing techniques. Acoustic systems represent a widely used technique for the benthic 

characterisation of marine environments, producing high resolution habitat maps [6,7,53]. 

Nevertheless, a data gap arises adjacent to the shoreline, because vessel mounted MBES systems 

cannot enter shallow water environments [54,55]. In this study, LiDAR was specifically used to target 

the onshore-offshore transition zone (0–30 m), linking bathymetry information from shallow to deeper 

marine habitats in exposed coastal environments. The advantage of LiDAR is illustrated by its ability 

to target littoral habitats, capturing the shallow section of the ecological transition from macroalgae 

dominated habitats through to sessile invertebrate assemblages. A limiting factor is the cost of LiDAR 

surveys which are influenced by different components such as survey remoteness, scale and data 

density considerations. However, in comparison LiDAR efficiency still outweighs MBES while 

remaining able to detect comparable seafloor features and survey benthic habitat inaccessible to  

vessel based surveys [14]. Surveying littoral marine habitats provides the potential to integrate LiDAR 

and MBES classification systems. This could be further developed by combining data from the  

current study with the MBES habitat characterisation of the Hopkins Bank extending further offshore 

(~6.5 km) from the study area [30]. Copeland et al. [55] demonstrated the difficulty of using MBES 

for benthic classification in the littoral zones of a closed marine embayment, suggesting bathymetric 

LiDAR as a suitable solution for the littoral gap. The validation of LiDAR methodology by the current 

study indicates the potential of obtaining full coverage of benthic habitat distribution in exposed 

coastal environments, making this approach highly unique. Therefore, it is worth further developing 

this technique for mapping the habitats of exposed coastal environments.  

Spatial-dependence within groundtruth video transects and the possible influence of spatial 

autocorrelation remained a challenging issue for the current study. Tow video transects provide 

continuous coverage of seafloor habitat enabling efficient collection of in situ observation data and 

identification of transition zones in habitat types. However within transect groundtruth points have the 

potential for lack of spatial independence, resulting in possible inflation of predictive accuracy leading 

to false confidence in model capability [44,56]. It is acknowledged that the models presented in the 

current study may contain an unknown degree of spatial autocorrelation. However, accounting for 

spatial autocorrelation structure in community models is difficult and an ongoing issue [57,58]. 

Methods for assessing spatial autocorrelation in community classifications area generally restricted to 

continuous as opposed to categorical information such as different dominant habitat classes used in the 

current study. Foster et al. [57] propose using a Bayesian Markov model approach in order to account 
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for spatial autocorrelation while retaining representation of within transect variability of groundtruth 

data. Accordingly, a key aspect of further work will be to revise sample design and/or statistical 

methods [57] to remove any possible source of spatial-dependence while retaining coverage efficiency 

in the groundtruth survey.  

The active nature of the LiDAR sensor was able to generate good results in the relatively turbid and 

exposed coastal waters of southeastern Australia. Survey data was reliable to ~25–30 m, approximately 

half the LiDAR penetration reported in some coral reef tropical marine environments [59]. Several 

studies have recently emerged that employ bathymetric LiDAR with ground truth observations to 

accurately classify different marine environments [5,33,60,61]. Specifically, Chust et al. [5] used 

LiDAR-derived bathymetric datasets in conjunction multi-spectral imagery and MBES to the delineate 

shallow-water habitats of the Oka estuary in Spain, with accurate results (between 84.5% and  

92.1% accuracy). Chust et al. [5] concluded that bathymetric LiDAR provides unique seafloor 

information obscured from MBES that improves habitat mapping reliability in the coastal fringe. 

Tulldahl et al. [62] accurately classified benthic habitats such as soft and hard substrate with 

vegetation to 10 m finding that accuracy was significantly increased using LiDAR, bathymetric 

derivatives and satellite data to inform classifiers. Other studies have also successfully characterised 

the physical substratum of sheltered coastal waters with the biological classification and habitat 

suitability modeling of various environments, including seagrass beds and saltmarshes [33,63,64]. The 

current study expands on this knowledge by successfully applying LiDAR for classification of 

temperate macroalgae in a dynamic marine environment exposed to high wave action and turbidity, 

previously considered “no data” areas for benthic habitat classification. This expands the range of 

known physical environments that we may characterise using active remote sensing techniques, 

revealing the potential to define the distribution of important macroalgae (e.g., kelps) at fines scales 

over large extents (>100 km
2
). In addition, this study extends on previously published literature by 

incorporating LiDAR reflectance data and other derivative surfaces to further inform the decision  

tree classifiers applied. This approach was selected to validate bathymetric LiDAR based on video 

observation data for its ultimate use as a standalone tool for habitat classification of exposed  

coast environments. 

Different habitat classifications were assessed to investigate different macroalgae assemblages 

using LiDAR. The biological and canopy structure classifications represented different approaches to 

grouping macroalgae communities, the former was solely based on taxonomic groupings, while the 

latter was based on species structural compositions. In terrestrial systems, it is common to use the 

structure of plants to classify different habitats. For instance, LiDAR has been previously used to 

assess canopy height and the biomass of terrestrial forests [22], or to delineate different woodland 

classes, based on species composition and vegetation structure [23]. The composition of macroalgal 

communities obtained from the video ground truth data was used to define the habitat classes for the 

LiDAR canopy structure classification. Even though the two algae classes that were defined  

through this classification system contained similar species, they were assessed based on key 

differences in canopy structure and species abundance. Conversely, for the biological classification, 

the “brown algae” class contained a range of habitats, including Macrocystis pyrifera kelp forests and 

dense E. radiata canopy growth, in addition to lower profile Sargassum spp. Although these habitats 

represent different distinct macroalgal assemblies, in the biological classification they were classed as 
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the same habitat; see examples Figure 2. Kelp dominated communities based on algal canopy structure 

were also delineated in a previous study in southern Australia. Toohey [24] observed that macroalgal 

communities dominated by E. radiata were significantly different to topographically simple and 

complex reefs, and suggested that they should be considered as two distinct habitats. Topography was 

not seen as a single factor driving differences in algae assemblages; rather, it was used to label a 

collection of co-varying factors that alter key biological processes [24]. For instance, high sediment 

loads on low profile reef can reduce benthic recruitment via burial or scour effects [24,65]. In contrast, 

increased water motion and light attenuation on higher profile reef reduces interspecific competition 

for light, leading to greater understorey species richness and vegetative growth [24]. The combined 

effect of these factors indicates that these algal communities should be categorised as different 

habitats. The current study validated the effectiveness of LiDAR at delineating macroalgae 

communities by comparing it against: (1) maps derived from canopy structure classification; and  

(2) maps derived from taxonomic classification. 

5. Conclusions 

This study validated LiDAR for the effective benthic classification of macroalgae communities in a 

highly dynamic and exposed coastal environment. Traditionally, biological communities in exposed 

marine environments have been difficult to survey; however, this technique presents an opportunity to 

characterise seafloor habitats over large extents at fine resolution. The habitat classifications produced 

by this study provided baseline information about the distribution of benthic assemblages across the 

study area, and demonstrated the capacity of LiDAR to define temperate macroalgal communities 

based on assemblage structure. This information could be applied to monitor habitats and to model 

natural and anthropogenic induced change to marine environments. Within the context of climate 

change, bathymetric LiDAR could provide valuable information for monitoring biological communities 

that are vulnerable to the impact of storm surges and global sea level rise [5]. The combination of 

LiDAR and established acoustic classification techniques provides an opportunity for the seamless 

characterisation of seabed habitats from the shoreline to deeper marine environments. The relatively 

cost efficient, continuous datasets produced from LiDAR, allow benthic habitat mapping to be 

conducted systematically over large areas. LiDAR provides a mechanism to quantify information 

about benthic assemblages for the habitat classification of the coastal fringe, representing a novel 

development for the environmental management of exposed coastal ecosystems.  
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