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Abstract

Despite the enormous amount of data available on the importance of gut mic-

robiota in vertebrates (especially mammals), there is no information available

on the microbiota of seabirds. Procellariiformes are long-lived seabirds that con-

sume a diet high in lipids and are characterised by their ability to produce and

store large amount of stomach oils through the partial digestion of prey (with

the exception of the Pelecanoididae). Examining the faecal microbiota of three

Procellariiform species (short-tailed shearwater, common diving petrel and fairy

prion) provided a unique opportunity to not only characterise the gastrointesti-

nal (GI) microbial composition of seabirds but to also examine the influence of

stomach oils on the microbial community. The results indicated that Procellarii-

form seabirds host a highly diverse community of faecal microorganisms, domi-

nated by three phyla (Firmicutes, Proteobacteria and Bacteroidetes) and that each

species has its own species-specific GI microbiota. In addition, significant differ-

ences were observed in the microbial communities of oil-producing and non-

oil-producing seabirds. This study is the first whole-community examination

and classification of the faecal microbiota of Procellariiform seabirds.

Introduction

The order Procellariiformes contains some of the world’s

most threatened seabirds with 47% of the 129 living spe-

cies listed as threatened by BirdLife International, with

63% of Procellariiform species in Australia listed as threa-

tened by the International Union for the Conservation of

Nature [International Union for the Conservation of

Nature and Natural Resources (IUCN), 1994]. Procellarii-

formes are long-lived seabirds that consume a diet high in

dietary lipids and are characterised by their ability to pro-

duce stomach oils (with the exception of the Pelecanoidi-

dae) (Canani et al., 2011). Stomach oils are produced in

the proventriculus through partial digestion of prey. The

oil fractions of the prey are then concentrated and

retained for long periods via delayed gastric emptying

(Croxall, 1987). This adaptation reduces the cost of trav-

elling long distances by providing their chick with a

highly concentrated food source that is high in energy

and fats (Roby et al., 1989). Procellariiformes have a

highly extensible proventriculus, small gizzard and a

unique arrangement of their duodenal loop. The proven-

triculus acts as a separating funnel, separating the lighter

lipid layer from the denser aqueous layer. The dense

aqueous layer is the first to pass through the digestive

tract, while the lipid layer is retained longer. In diving

petrels (Pelecanoides spp.), however, the dorsal position-

ing of the pylorus and gizzard reduces the retention time

of the digesta, with the lighter lipid layers emerging

first (Speake et al., 1999). The absence of stomach oils

in common diving petrels (Pelecanoides urinatrix) is

explained by differences in their digestive morphology in

comparison with other Procellariiformes. In diving petrels,

the retention time of digesta is thought to preclude the

formation of stomach oils (Roby et al., 1989).

The diet of short-tailed shearwaters (Ardenna tenuiros-

tris) (STSW), fairy prions (Pachyptila turtur) (FP) and

common diving petrels (P. urinatrix) (CDP) is dominated

by krill (Euphausia spp. and Nyctohpanes spp.) (Prince &

Copestake, 1990; Weimerskirch & Cherel, 1998; Klomp &

Schultz, 2000; Schumann, 2012). Their krill-based diet is

a rich source of n-3 polyunsaturated fatty acids (PUFA),
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proteins and minerals (Warham, 1977). Krill is also a rich

source of provitamin E, phospholipids, flavonoids,

vitamin A, alpha-linolenic acid, astacin and other essential

nutrients (Virtue et al., 1995; Nicol et al., 2000; Connan

et al., 2005). In avian species, diets high in n-3 PUFA are

essential for normal metabolism, growth, heart health and

neurological development (Kakuschke et al., 2005; Zhu

et al., 2008).

The gut microbiota plays an important role in digestive

physiology, including energy extraction, fat metabolism

and storage, and host adiposity (B€ackhed et al., 2004;

Zoetendal et al., 2004; Zaneveld et al., 2008; Tremaroli

et al., 2010). However, the potentially important role of the

gastrointestinal (GI) microbiota in digestion by procellarii-

form seabirds remains unstudied, even though the complex

digestive physiology of procellariiform seabirds has been

extensively studied (Clarke & Prince, 1976; Imber, 1976;

Warham, 1977; Place et al., 1989; Roby et al., 1989, 1997;

Connan et al., 2005, 2007; Foster et al., 2010). The objec-

tive of this study was to elucidate the molecular diversity

and community composition of the procellariiform micro-

biota using 16S rRNA gene pyrosequencing.

Materials and methods

Sample collection

Faecal samples were collected from short-tailed shearwater

(STSW) on Phillip Island (northern Bass Strait, Australia;

38.4833°S, 145.2333°E), common diving petrel (CDP)

from Notch Island (northern Bass Strait, Australia;

38.950°S, 146.667°E) and fairy prion (FP) from Lady Julia

Percy (western Bass Strait, Australia; 38.420°S, 142.000°E).
All individuals were captured when returning to their

colony to provision chicks after foraging trips to sea. Indi-

viduals were captured by hand in the burrow (STSW), mist

nets (CDP) (Prince, 1980; Croxall et al., 1997) and hand

net (FP; Garthe & Furness, 2001). Faecal samples were

obtained by placing a sterile swab (CopanTM, Italy) into the

cloaca. Swabs were frozen in liquid nitrogen and then

stored at �80 °C as per Dewar et al. (2013).

Sample analysis

Genomic DNA was extracted using the QiagenTM QIAamp

DNA Stool Mini Kit (Hilden, Germany) following the

manufacturer’s instructions. Quantitative real-time PCR

(qPCR) was performed to examine the abundance of four

phyla (Firmicutes, Bacteroidetes, Actinobacteria and Proteo-

bacteria). The primer sequences and annealing tempera-

tures for the chosen bacterial groups can be found in

Dewar et al. (2013). The qPCR was performed on the Strat-

agene MX3000P. Each PCR mixture comprised of 5 lL of

Brilliant II SYBR green (StratageneTM), 20 pmol lL�1 of

forward and reverse primer, 2 ng of template DNA and

made up to a final volume of 20 lL with nuclease-free

water. The cycling conditions were 95 °C for 2 min, fol-

lowed by 40 cycles of 95 °C for 5 s, followed by annealing

and extension temperature for 30 s with all samples were

run in triplicate as per Dewar et al. (2013). Bacterial con-

centration was determined by comparing the threshold

value (ct values) with a standard curve. The standard curve

was created using a serial 10-fold dilution from DNA

extracted from a pure culture of Escherichia coli ranging

from 104 to 1010 colony-forming units (CFU) per gram as

per Dewar et al. (2013).

For 16S rRNA gene pyrosequencing, four samples per

species were pooled (with attachment of MID multiplex-

ing barcode) and amplified using universal primers Roche

adapter A (50GCC TCC CTC GCG CCA TCA GT-30) and
reverse 338R (50-CAT GCT GCC TCC CGT AGG

AGT-30) to amplify the V2–V3 region as previously

described in Dewar et al. (2013). Following amplification,

samples were sequenced on a Roche/454 GS FLX

Titanium Genome Sequencer by Engencore according to

Fierer et al. (2008).

Data processing and analysis

Quality control, removal of chimeras (Chimera Slayer),

clustering of sequences into operational taxonomic units

(OTUs; uclust_ref approach, sequences were aligned to

Greengenes database using UCLUST with 97% sequence

identity cut-off) and taxonomic classification assignment

(RDP-Classifier) were performed using QIIME (Caporaso

et al., 2010) (for rarefraction curve, and quality score and

quality score distribution see Figures S3–S5). The 16S

rRNA gene sequences reported in this study have been

submitted to EMBL under accession number ERA

ERP002293. Low-abundant OTUs were excluded from

subsequent analysis, that is only those OTUs were

included that had > 0.005 relative abundance (assigned

reads/total number of reads, Table S1) in at least one

sample. Data-mining and statistical analysis was carried

out in CALYPSO version 3 (https://bioinfo.qimr.edu.au/

calypso/). Differentially abundant OTUs between stomach

oil-producing (SOP) and nonstomach oil-producing

(NSOP) seabirds were identified by ANOVA (Fig. 5). The

statistical power, however, was quite low due to pooling

of samples. Shannon diversity, and richness of SOP and

NSOP seabirds were compared in CALYPSO by ANOVA on

OTU level.

As the qPCR data did not follow a normal distribution,

they were log-transformed in SPSS. To determine whether

there were significant differences among procellariiform

seabirds for the major phyla for qPCR, a one-way ANOVA
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was performed in SPSS, and a significance level of P < 0.05

was chosen.

Results

The abundance of Firmicutes, Bacteroidetes, Proteobacteria

and Actinobacteria was detected from DNA extracted

from faecal samples of CDP (n = 12), FP (n = 5) and

STSW (n = 20) using primers specific for each of the four

phyla. Overall, there were significant differences among

all Procellariiform seabirds for Firmicutes and Bacteroide-

tes, but no significant difference in Proteobacteria and

Actinobacteria (Fig. 1). STSW had a significantly higher

abundance of Firmicutes in comparison with FP

(P = 0.0001) and a significantly high abundance of Bac-

teroidetes in comparison with FP (P = 0.021) and CDP

(P = 0.023). In addition, FP had a significantly higher

abundance of Firmicutes in comparison with CDP

(P = 0.016), but no significant difference between Bacter-

oidetes, Proteobacteria and Actinobacteria (Fig. 1).

Comparison of the major phyla in Procellariiform using

multidimensional scaling analysis (MDS) indicates simi-

larity of the microbiota between different species of pro-

cellariiform seabirds (Fig. 2). However, despite a generally

similar microbiota of all three species, the MDS indicates

that procellariiform seabirds have a species-specific gut

microbiota as the samples of each species tend to be

grouped into distinct, species-specific clusters (Fig. 2).

The MDS analysis also shows a tight clustering of all FP

samples indicating little variation amongst individual FP.

For STSW and CDP, there is loose clustering of all indi-

viduals indicating that there is more individual variation

within these two species (Fig. 2). The MDS also indicates

that there is little intraspecies variation in the intestinal

microbial composition of all three bird species.

Characterisation of the Procellariiform

microbiota by 16S rRNA gene high-throughput

sequencing

The faecal microbiota of Procellariiform seabirds was fur-

ther characterised by 16S rRNA gene pyrosequencing of

whole-community 16S rRNA gene which provides an

in-depth overview of the microbial community structure.

A total of 2216 OTUs from 21 phyla were identified in

(a)

(b)

(c)

(d)

Fig. 1. Variation in the abundance of the major phyla; Firmicutes (a),

Bacteroidetes (b), Actinobacteria (c) and Proteobacteria (d) in CDP, FP

and STSW. Phyla abundance was assayed by quantitative real-time

PCR using phyla-specific primers. Abundances of Firmicutes and

Bacteroidetes were significantly different (*P ≤ 0.05, **P ≤ 0.0001)

among the three seabird species, but Actinobacteria and

Proteobacteria were not (*P < 0.05).
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the microbiota of the Procellariiform seabirds (n = 4 spe-

cies). The majority of OTUs were rare, and only five

OTUs had a relative abundance > 2% in at least one

sample. The majority of 16S rRNA gene sequences were

classified as Firmicutes, Proteobacteria and Bacteroidetes,

with Firmicutes and Proteobacteria dominating the micro-

bial communities of all three Procellariiform seabirds

(Fig. 3). At family level, Ruminococcaceae, Lachnospiraceae

and Porphyromonadaceae dominate the microbial compo-

sition of CDP with Faecalibacterium, uncultured Lachno-

spiraceae, Petrimonas and Barnesiella being the dominant

known genera. In FP and STSW, Leuconostocaceae and

Streptococcaceae are the dominant families, with Leuconos-

toc, Weissella and Lactococcus the dominant genera in FP

and Leuconostoc and Lactococcus the dominant genera in

STSW (Fig. 3). Microbial communities from the three

different host species had a different composition on a

global, whole-community level. A microorganism–seabird
association network, providing an overview of the associ-

ations identified from the three species of Procellariiform

seabirds, visualised in CALYPSO is shown in (Fig. 4). The

network association identified co-occurrence relationships

between gut microbial communities of all three seabird

species.

Influence of stomach oil

The faecal microbiota of SOP seabirds (FP and STSW) and

NSOP seabirds (CDP) was compared using the 16S rRNA

gene sequence data. A microorganism interaction network

analysis demonstrated that SOP and NSOP seabirds have

a distinct gut microbiota composition and that a large

number of genera are specific for either stomach oil or

nonstomach oil producers (Fig. 4). Also the Bray–Curtis
distance indicates that the intestinal microbiota of the

two SOP seabirds is more similar on the global, whole-

community level than the intestinal microbiota between

SOP and NSOP seabirds (Bray–Curtis distance FP-STSW:

0.43; CDP-FP: 0.95; CDP-STSW: 0.92). The network

shows co-occurring (yellow edges) and mutual exclusive

(blue edges) bacterial genera in the gut microbiota of the

three seabird species. The bacterial genera found in the

three seabirds form three distinct clusters, and each clus-

ter is associated with one of the three seabird species.

Positive correlations (yellow edges) between the clusters

associated with STSW and FP indicate that some bacterial

genera are found in both of these SOP seabirds. The clus-

ter associated with CDP on the other hand is clearly dis-

tinct from the clusters associated with STSW and FP.

These results indicate that each seabird has its own, spe-

cies-specific gut microbiota. While the SOP STSW and

FP show some overlap between their gut microbiota, the

NSOP CDP have a clearly distinct intestinal microbiota.

Nine phylotypes (OTUs) were shown to be significantly

differentially abundant in SOP and NSOP seabirds

(Fig. 5). SOP seabirds also show a significant higher over-

all diversity (Shannon index, P = 0.01, ANOVA) and rich-

ness (OTU richness, P = 0.2, ANOVA; Figs S1 and S2).

Discussion

This paper describes the first whole-community examina-

tion and classification of the faecal microbiota of Procellari-

iform seabirds, and provides evidence that the species

examined differ significantly in the composition of their

gut microbiota. In accordance within a range of other ver-

tebrates including polar bears, pinnipeds, terrestrial mam-

mals and avian species (including penguins, chickens and

gulls) (Lan et al., 2002; Eckburg et al., 2005; Ley et al.,

2008a, b; Costello et al., 2010; Glad et al., 2010a, b; Kohl,

2012; Lavery et al., 2012; Nelson, 2012; Dewar et al., 2013;

Nelson et al., 2013), the Procellariiform microbiota appears

to harbour a highly diverse community of microorganisms,

dominated by three phyla: Firmicutes, Proteobacteria and

Bacteroidetes. Microorganisms in the Procellariiform faeces

are abundant, with estimates of the total abundance of the

major phyla examined with qPCR estimated at over

1.2 9 106 CFU mL�1 for FP, 2.6 9 108 CFU mL�1 for

CDP and 2.8 9 108 CFU mL�1 for STSW.

In accordance with previous studies on other marine

vertebrates such as polar bears (Ursus maritimus) and

Australian sea lions (Neophoca cinerea), the faecal

microbiota of STSW and FP is highly dominated by the

Fig. 2. Similarity of the major bacterial phyla in Procellariiform seabirds

using qPCR. Three different seabird species were included: STSW

(Ardenna tenuirostris), FP (Pachyptila turtur) and CDP (Pelecanoides

urinatrix). MDS analysis shows tight clustering of individual FP indicting

little individual variation of the main bacterial phyla. Three different

seabird species were included: STSW (Ardenna tenuirostris), FP

(Pachyptila turtur) and CDP (Pelecanoides urinatrix). While most

bacterial communities from STSW and CDP clustered together, at least

one-third do not cluster together, indicating extensive variation among

communities from different host individuals.
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phylum Firmicutes (Glad et al., 2010a, b; Lavery et al.,

2012), whereas the domination of Firmicutes and

Bacteroidetes in CDP is similar to that of other vertebrates

including penguins (Lan et al., 2002; Ley et al., 2008a, b;

Banks et al., 2009; Costello et al., 2010; Glad et al.,

2010a, b; Kohl, 2012; Nelson, 2012; Dewar et al., 2013).

Members of the phylum Firmicutes are associated with

the breakdown of complex carbohydrates, polysaccha-

rides, sugars and fatty acids, which are then utilised by

the host as an energy source (Flint et al., 2008; Tap et al.,

2009). Members of the phylum Bacteroidetes in humans

have been associated with vitamin synthesis, polysaccha-

ride metabolism and membrane transport (Gross, 2007).

Although the CDP microbiota in this study is similar to

that of other vertebrate species, they do differ from other

vertebrates in regard to the relatively high abundance of

Proteobacteria (5–30%).

Most of the bacteria detected in STSW and FP microbi-

ota are lactic acid bacteria (Leuconostoc and Lactococcus),

known to have probiotic properties (Weissella), and are

commonly associated with the vertebrate GI tract and skin

microbiota (Walter et al., 2001; Rawls et al., 2004;

Bj€orkroth & Holzapfel, 2006; Casalta & Montel, 2008; Ogier

et al., 2008). In CDP, the microbiota is associated with

butyrate-producing microorganisms (Fusobacteria and Ru-

minococcus; Potrykus et al., 2008; Atarashi et al., 2011) and

Fig. 3. Relative abundance of major taxa in

Procellariiform faecal microbiota assayed by

16S high-throughput sequencing. Taxa with

relative abundances < 2% were not included.
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microorganisms associated with anti-inflammatory

properties (Faecalibacterium) (Louis et al., 2007). Butyrate

is an essential short-chain fatty acid produced in the colon

by bacteria. The main effects butyrate has on the intestinal

tract in humans include influence of ion absorption, cell

proliferation and differentiation, immune regulation, and

are an important anti-inflammatory agent (Canani et al.,

2011). In chickens, butyrate supplementation leads to a sig-

nificant increase in host defence peptide gene expression,

enhanced antibacterial properties of monocytes against

pathogenic bacteria, boosting host immunity and increas-

ing host adiposity (Panda et al., 2009).

Stomach oil vs. nonstomach oil

Significant differences were found in the abundance of

several OTUs and global community composition of the

microbiome between the oil- and non-oil-producing Pro-

cellariiform seabirds. These results, along with the negative

correlation observed by the Pearson’s network correlation,

highlight the potential influence of stomach oils on

the composition of the microbiota of Procellariiform sea-

birds (Fig. 4). These negative correlations indicate that

differences in digestive physiology and retention time

could influence the microbial composition. Ley et al.

(2008a, b) identified that host phylogeny and gut physiol-

Fig. 4. Pearson’s correlation network for

seabird microbiota. A network analysis was

carried out in CALYPSO. Genera are represented

as nodes, and lines connecting nodes (edges)

represent significant positive (yellow, r > 0.6)

or negative (blue, r < �0.6) associations as

defined by the Pearson’s correlation

coefficient. An overview of the associations

identified from three species of Procellariiform

seabirds is provided (visualised in CALYPSO). The

network association identifies the co-

occurrence relationships between gut

microbial communities of STSW (orange

circle), FP (blue circle) and CDP (purple circle).

Gut microbial communities of SOP (white

circle) and NSOP (purple circle) Procellariiform

seabirds form distinct clusters.

Fig. 5. Significant differences between SOP and NSOP

Procellariiformes at OTU level. (*P = 0.01, **P = 0.05 and

***P = 0.001).
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ogy are significant predictors of host microbial composi-

tion. In addition, retention time of digesta has also been

shown to influence the microbial composition of the GI

tract (Stevens & Hume, 1998). It is well known that the

digestive physiology in diving petrels differs to that of

other Procellariiformes, but retention time of digesta is

also significantly shorter than other Procellariiformes

(Roby et al., 1989). For example, in the Georgian diving

petrel Pelecanoides georgicus, the retention time for lipids

was 2.3 h, whereas in shy albatross (Macronectes gigan-

teus) and other large Procellariiformes, the retention time

was 12.5 h, and in the smaller oil-producing Procellarii-

form Antarctic prion (Pachyptila desolata), the average

retention time was 15 h (Roby et al., 1989).

Conclusion

This study has identified that there is large variation

within the microbiota of Procellariiformes, which corre-

lates with the presence or absence of stomach oils. Firmi-

cutes and Proteobacteria dominate the GI microbiota of

oil-producing Procellariiformes, whilst Firmicutes, Proteo-

bacteria and Bacteroidetes dominate the GI microbiota of

non-oil-producing species. Although the cause of these

differences is yet to be determined, host phylogeny, diges-

tive physiology and retention time could potentially play

major roles in determining the final microbial composi-

tion of individual seabird species (Stevens & Hume, 1998;

Ley et al., 2008a, b; Banks et al., 2009).
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