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Abstract

Primary open angle glaucoma affects more than 67 million people. Elevated intraocular pressure (IOP) is a risk factor for
glaucoma and may reduce nutrient availability by decreasing ocular perfusion pressure (OPP). An interaction between
arterial blood pressure and IOP determines OPP; but the exact contribution that these factors have for retinal function is not
fully understood. Here we sought to determine how acute modifications of arterial pressure will affect the susceptibility of
neuronal function and blood flow to IOP challenge. Anaesthetized (ketamine:xylazine) Long-Evan rats with low
(,60 mmHg, sodium nitroprusside infusion), moderate (,100 mmHg, saline), or high levels (,160 mmHg, angiotensin
II) of mean arterial pressure (MAP, n = 5–10 per group) were subjected to IOP challenge (10–120 mmHg, 5 mmHg steps
every 3 minutes). Electroretinograms were measured at each IOP step to assess bipolar cell (b-wave) and inner retinal
function (scotopic threshold response or STR). Ocular blood flow was measured using laser-Doppler flowmetry in groups
with similar MAP level and the same IOP challenge protocol. Both b-wave and STR amplitudes decreased with IOP elevation.
Retinal function was less susceptible to IOP challenge when MAP was high, whereas the converse was true for low MAP.
Consistent with the effects on retinal function, higher IOP was needed to attenuated ocular blood flow in animals with
higher MAP. The susceptibility of retinal function to IOP challenge can be ameliorated by acute high BP, and exacerbated by
low BP. This is partially mediated by modifications in ocular blood flow.
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Introduction

Glaucoma is the second leading cause of blindness in those of

working age and is characterized by a progressive death of the

cells that make up the optic nerve [1]. The most well

documented risk factor for glaucoma is elevated eye pressure

(intraocular pressure, IOP). Elevated IOP is thought to cause

retinal damage by mechanical and vascular mechanisms. The

vascular compromise is thought to occur through direct

compression of blood vessels in the optic nerve head and retina.

When IOP elevation reduces ocular perfusion pressure (OPP)

beyond the capacity for autoregulation, ocular blood flow will

become compromised leading to retinal dysfunction. Since OPP

represents a balance between mean arterial pressure and IOP

(OPP = MAP2IOP), it is likely that a reduction in systemic

blood pressure (BP) or a comparable increase in IOP will have

similar effects on retinal function. Thus, for a given IOP

elevation, retinal dysfunction should be exacerbated by low BP,

but ameliorated by high BP.

Several studies suggest that blood pressure plays an important

role in glaucoma. More specifically, nocturnal hypotension may

exacerbate the progression of visual field loss in patients with

glaucoma [2–4]. It is thought that when a nocturnal BP dip

coincides with an IOP spike, a substantial OPP reduction produces

an intermittent insult that increases the risk of disease progression

[5]. In agreement with this hypothesis low BP has consistently

been found to be a risk factor in glaucoma [6–15]. However,

epidemiological studies offer equivocal conclusions as to whether

systemic hypertension reduces glaucoma risk. A number of large

scale epidemiological trials report a lower risk of glaucoma in

individuals with elevated blood pressure [12,15–17], whereas

others [13,18–21] have found the opposite. This suggests that the

influence of systemic hypertension on glaucoma is complex [22].

On the one hand, one might expect high BP to improve OPP and

provide protection against IOP elevation. On the other hand,

systemic hypertension may be complicated by vascular dysfunc-

tion, which may counteract any protective effect afforded by high

BP.

Given the above, a better understanding of how IOP and BP

interact to influence retinal function is needed. An acute

experimental approach that affords accurate simultaneous control

of both IOP and BP is useful as it avoids long term cardiovascular

confounds. Few studies have measured retinal function during

simultaneous manipulation of IOP and BP [23,24]. To date, no

study has measured retinal function and blood flow during IOP

and BP manipulation. Thus the aim of this study is to evaluate

retinal function and blood flow over a wide range of OPPs,

induced by IOP elevation in rats with low, moderate and high

levels of acutely modified BP.
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Materials and Methods

Subjects
All experimental procedures were in compliance with the

ARVO Statement for the Use of Animals in Ophthalmic and

Vision Research and the NHMRC Australian Code of Practice for

the care and use of animals for scientific purposes. Animal ethics

approval was obtained from the Animal Ethics Committee,

Science Faculty, University of Melbourne. Animals used in this

study were male Long-Evans rats (aged 10–15 weeks, 300–400 g,

Monash Animal Service, Clayton, VIC, Aust). Rats were housed

in a 12-hour light (50 lux) /12-hour dark environment with

normal rat chow and water available ad libitum. All experimental

procedures were conducted under general anaesthesia (ketami-

ne:xylazine, 60:5 mg/kg, im). As ketamine is known to affect blood

pressure in rodents [25], care was taken to standardise the

anaesthesia regimen and duration in all animals. A topical

anaesthetic (proxymetacaine 0.5% eye drops) and mydriatic

(0.5% tropicamide) was given as necessary.

Acute IOP elevation
To assess ocular susceptibility across a gradient of OPPs,

animals underwent stepwise IOP elevation from 10 to 120 mmHg

(increment of 5 mmHg for 3 min) while MAP was held stable at

low, moderate or high level (Figure 1). Each BP cohort was

subdivided into two groups to measure either retinal function or

ocular blood flow during IOP challenge. In the functional assay,

IOP was raised manometrically by vitreal chamber cannulation,

whereas in the blood flow assay, IOP was raised manometrically

by anterior chamber cannulation. Vitreal chamber cannulation

was chosen during functional assay to avoid interference with the

placement of electroretinogram (ERG) electrodes on the cornea.

Anterior chamber cannulation was used for ocular blood flow

measurement to allow placement of a 26G laser-Doppler

flowmetry (LDF) probe in the vitreal chamber. A pilot study

showed that both vitreal and anterior chamber cannulations

produce the same level of IOP elevation (Figure S1). Following

cannulation, the desired IOP was achieved by placing a saline

reservoir at a precalibrated height.

Blood pressure monitoring and manipulation
Blood pressure was monitored via an indwelling cannula in the

left femoral artery. Blood pressure was modulated by pharmaco-

logical intervention. Blood pressure reduction and elevation was

achieved by variable infusion into the femoral vein of sodium

nitroprusside (SNP, 84 mmol/ L in 0.9% saline, Sigma Aldrich,

Castle Hill, Australia) and angiotensin II (AngII, 10 mmol/L in

0.9% saline, Auspep, Parkville, Australia), respectively.

To cannulate the femoral arteries and veins, the left groin area

was shaved and disinfected with 70% ethanol. The left femoral

artery and vein were exposed with a 2 cm skin incision and

separated from the surrounding connective tissue by blunt

dissection. A small incision was made through the arterial wall.

A heparinised polyethylene cannula (inner and outer diameter

0.28 and 0.61 mm respectively) was inserted 3 cm proximally into

the femoral artery. The exterior end of the cannula was connected

to a pressure transducer (Transpac, Abbott Critical Care Systems,

Sligo, IRE) to give direct and continuous BP monitoring.

Using the same method, the femoral vein was also cannulated,

which allowed systemic BP to be maintained at low, moderate and

high levels by infusion of SNP (2.5%; 50–250 mg/kg/min), normal

saline (5 ml/min) or AngII (1%; 45–90 mg/kg/min), respectively.

The rate of infusion was constantly adjusted within these ranges

using an electronic syringe pump (HA22I, Harvard Apparatus,

MA, USA) to produce a stable BP level during the simultaneous

stepwise IOP elevation (Figure 1). The average MAP in the

functional assay was 6362, 10063, and 16164 mmHg (low,

moderate and high BP groups respectively), which are similar to

the groups used for the blood flow (5962, 10864 and

15665 mmHg; p = 0.934, two-way ANOVA). As MAP was

Figure 1. Blood pressure during experimental manipulations. Experimental protocol for stepwise IOP elevation in animals with acute high,
moderate and low blood pressure. MAP (mean 6 SEM) was held stable during IOP elevation. In each blood pressure group, animals were assigned to
either functional (white symbols) or blood flow assay (grey symbols). MAP levels in animals in the functional assay were similar to their counterparts
in the blood flow assay (p.0.05).
doi:10.1371/journal.pone.0031104.g001
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similar between animals for retinal function and ocular blood flow

assays, the two outcome measures could be directly compared,

despite being obtained from different cohorts of animals.

While one eye underwent IOP challenge, the fellow eye served

as control with IOP set manometrically to 10 mmHg via vitreal

chamber cannulation. Retinal function was found to remain

unchanged in these sham control eyes (Figure S2). This suggests

that, under current experimental conditions, SNP and AngII

infusion do not affect retinal function.

In this study, OPP is calculated as the difference between mean

arterial pressure and IOP (OPP = MAP2IOP), which differs

slightly from the relationship used in humans (OPP = 2/3

MAP2IOP). The ‘2/3’ MAP adjustment factor is only applicable

to primates in an upright position and therefore not incorporated

here, as rat OPP is measured in a supine position. This estimate of

OPP for rats is consistent with previous estimates from pigs [26],

cats [27,28] and rabbits [29].

Retinal function: electroretinography
To quantify retinal susceptibility to IOP challenge, scotopic

electroretinograms (ERG) were recorded at each IOP step. In

rodents, the scotopic b-wave reflects rod bipolar cell function [30],

and the scotopic threshold response (STR) is representative of

retinal ganglion cells [31,32]. The ganglion cell contribution to the

STR has been established in previous studies of experimental

glaucoma [33–35], optic nerve transection [31], as well as those

using pharmacological agents [31,32,36] and behavioral ap-

proaches [37]. One limitation of the STR is that its signal-to-

noise ratio is smaller than the b-wave. To address this issue, the

STR recorded at each IOP step represents an average of 20

repeats.

Prior to functional measurement, animals were dark-adapted

overnight (12 hours). To maintain dark-adaptation, all procedures

including simultaneous acute IOP elevation and BP manipulations

were performed in darkness with the aid of night vision goggles

(NVMT24021, Yukon Advanced OpticsH, USA) and an infra-red

light source (L = 880 nm, 18 LED IR Spotlight). Anaesthetized

rats were placed on a heated platform. The active electrode

(custom-made chlorided silver electrode) was placed on the cornea,

and the ring-shaped reference electrode positioned around the

limbus. The ground electrode was inserted subcutaneously in the

tail. At each IOP step, a pair of stimuli of 21.12 and 25.25 log

cd.s.m22 was presented via a Ganzfeld integrating sphere

(Photometric Solutions International, VIC, Aust), which elicited

the b-wave and the STR (STR averaged over 20 repeats),

respectively. Signals were digitized at 4 kHz with 61000

amplification and a band-pass of 0.3 to 1000 Hz (23 dB). Both

b-wave and STR were quantified in terms of the peak-to-trough

amplitude.

Ocular blood flow: laser-Doppler flowmetry
Laser-Doppler flowmetry (LDF; ML191, ADInstruments Pty

Ltd, NSW, Australia) was employed to measure ocular blood flow

by inserting an invasive needle probe (MNP110XP, ADInstru-

ments) into the vitreal chamber. The working principle of LDF

and its applications in the eye are detailed elsewhere [38–41].

Briefly, a Doppler frequency shift of the incident laser light is

produced by moving blood cells but not by static tissue. Within a

given measurement volume, this Doppler shift is processed to

derive blood flow. Prior to IOP elevation, a small puncture was

made at the 12 o’clock position, 1 mm posterior to the limbus

using a 22G needle, which provides access for the LDF probe into

the vitreal chamber. Using a micromanipulator (KITE, World

Precision Instruments, FL, USA), the tip of the LDF probe was

inserted 2 mm intravitreally pointing towards the retina. The

measurement depth of the LDF probe is 1 mm [42], which in rats

reflects a weighted average of both retinal and choroidal blood

flow (Figure S3). Therefore, the term ‘‘ocular blood flow’’ is used

throughout this study.

Normalization of relative ocular blood flow
For any given eye, the LDF provides a reliable intra-subject

comparison and is excellent for continuous blood flow monitoring,

which makes it ideal for assessing a relative change in response to

IOP challenge [43]. To allow for inter-subject comparison

between blood pressure groups, baseline flow (IOP = 10 mmHg)

in different groups was compared by characterizing the effect of

MAP variation on ocular blood flow. A full MAP-flow curve was

collected in a separate group of animals (n = 5) with IOP kept at

10 mmHg. More specifically, blood flow was measured over a

wide range of MAPs (25–165 mmHg) by using a combination of

renal and coeliac artery ligation to produce hypertension, followed

by variable SNP infusion to produce hypotension. This curve was

used to determine the baseline blood flow for each animal prior to

IOP elevation. Blood flow measured during IOP challenge, was

then normalized to each animals adjusted baseline.

Data analysis
All group data were expressed as mean 6 SEM. At baseline,

ERG and LDF measurements were found to be normally

distributed (Kolmogorov-Smirnov normality statistics) with equal

variance. ERG amplitudes were also expressed relative to baseline

(IOP of 10 mmHg). The relationship between IOP and relative

retinal function (b-wave and STR amplitude) was described using

a cumulative normal function [33],

y~1{
1
ffiffiffiffiffiffiffiffi
2ps
p e{ x{10P50ð Þ2

�
2s2

� �
ð1Þ

where, relative retinal function (y, %) is described as a function of

IOP (x, mmHg). The parameter s indicates the steepness of the

curve, whereas IOP50 represents the IOP for a 50% reduction in

retinal function, which provides a measure of susceptibility to IOP

elevation. To consider the association between blood pressure and

function or blood flow susceptibility to IOP challenge, the

correlation between MAP and IOP50 was examined with a

Deming regression, which is a robust method of regression that

accounts for the variability in both axes (MAP and IOP50).

Equation 1 was also fitted to relative retinal function plotted

against OPP, where OPP50 is the index of susceptibility.

Results

Influence of blood pressure on functional susceptibility
to IOP

Figure 2 shows individual examples of ERG b-wave (Panels A

and C) and STR (Panels B and D) responses recorded during

simultaneous BP and IOP manipulation. At baseline IOP,

waveforms in the hypotensive rat (MAP 63 mmHg, thick traces,

Panels A and B) were similar to those in the control (MAP

101 mmHg, thin traces) despite differences in BP. The effect of BP

becomes manifest as IOP increases. In particular, the b-wave and

STR were reduced to a greater extent in the hypotensive when

compared with the normotensive rat.

The same control animal (moderate MAP, 101 mmHg) shown

in Figures 2A and 2B (thin traces) was replotted in Figures 2C and

2D, to allow comparison with a hypertensive animal (MAP

Ocular Perfusion Pressure and the Retina
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156 mmHg, thick traces). Baseline b-wave and STR in the

hypertensive rat were not different to the control. IOP elevation

produces less dysfunction in the hypertensive rat. This was

especially evident at 100 mmHg, where retinal function was

abolished in the normotensive rat (MAP 101 mmHg,

OPP,0 mmHg) but preserved in the hypertensive animal (MAP

156 mmHg, OPP 56 mmHg).

Figure 3 shows the group data (mean 6 SEM) for absolute and

relative ERG amplitude as a function of IOP. At baseline IOP

(10 mmHg), absolute b-wave and STR amplitudes were similar

between the three BP groups (p = 0.881 and 0.720 for Figures 3A

and 3D, respectively; one-way ANOVA), indicating that neither

changes in MAP (from 63 to 161 mmHg) nor the pharmacological

agents per se (AngII and SNP) had any detectable effect on the

ERG. Therefore b-wave and STR amplitude were normalized to

their own baseline (Figures 3B and 3E). When comparing BP

groups, the IOP-response curve gradually shifts rightward with

increasing MAP (interaction p,0.001 for both Figures 3B and 3E,

two-way RM ANOVA), meaning that retinal function was more

resistant to IOP as BP increased.

The susceptibility of retinal function to elevated IOP was

quantified using a cumulative normal function (Equation 1, curves

in Figures 3B and 3E), which returns the IOP for 50% dysfunction

(IOP50, arrow in Figure 3B). As shown in Figures 3C and 3F,

individual IOP50 for both b-wave and STR amplitude increased

proportionately with MAP. Deming regressions showed a

significant correlation with a slope of less than 1 (p,0.001 for

both Figures 3C and 3F). A positive correlation between MAP and

IOP50 indicates that hypertension increases the ability of neurons

to resist IOP insult. However, a slope of less than unity suggests

that MAP elevation does not fully compensate for the retinal

dysfunction induced by the same amount of IOP elevation. This

issue is better illustrated when retinal function is plotted against

OPP (Figure 4).

If OPP were the sole determinant of retinal function then

relative function for all three blood pressure groups should overlie

Figure 2. Effect of blood pressure on ERG waveforms during IOP elevation. Representative ERG b-wave and STR (to 21.12 and 25.25 log
cd.s.m22 stimuli, respectively) showing the effect of low BP (A & C, thick traces, MAP 63 mmHg) and high BP (B & D, thick traces, MAP 156 mmHg)
on retinal susceptibility to IOP elevation. Overlaid with the hypo- and hypertensive responses is that from a control rat with moderate blood pressure
(thin traces, MAP 101 mmHg).
doi:10.1371/journal.pone.0031104.g002
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each other when plotted against OPP. In contrast, the OPP-

response functions clearly did not overlie each other. Moreover,

when modeled with a cumulative normal function (Equation 1,

curves in Figure 4), the OPP50 (the OPP for 50% functional loss)

should be the same for all animals regardless of blood pressure.

However, this was not the case. The presence of a significant

positive correlation between OPP50 and MAP (Figures 4B and 4D,

Deming regression, all p,0.05) shows that function in the

hypertensive group was not as well protected as one might expect

from the OPP improvement, whereas for the low BP group

susceptibility was not as bad as anticipated from the change in OPP.

Influence of blood pressure on vascular susceptibility to
IOP

To consider whether the retinal dysfunction found during OPP

changes (Figures 2 to 4) was mediated by blood flow, Figure 5

compares the IOP-flow relationships for high, moderate and low

BP groups. Unlike the functional study (Figure 3) where baseline

ERG in all groups could be normalized to 100%, baseline ocular

blood flow varies with BP and therefore cannot be set to the same

level. Figure 5A shows that baseline ocular blood flow increased

with MAP elevation, except at an intermediate level where there

was a plateau, consistent with autoregulation. This curve provides

a means to determine the starting point for blood flow in the three

different BP groups. At baseline IOP (10 mmHg), the average

MAP for the low, moderate and high BP groups was 59, 108 and

156 mmHg, which corresponds to a relative blood flow of 78%,

116% and 204%, respectively (arrows in Figure 5). Here 100%

represents the normal pre-manipulation condition (IOP

10 mmHg, MAP 9363 mmHg). Figure 5B shows that relative

ocular blood flow when plotted as a function of IOP (Figure 5B)

was shifted to higher IOPs in animals with acute high BP, and to

lower IOPs in animals with low BP (interaction, p,0.001, two-

way RM ANOVA).

Comparing functional and blood flow response to OPP
As summarized in Figure 6, both retinal function and blood flow

were progressively reduced with lower levels of OPP, achieved

with high IOP or low MAP. However, retinal function and ocular

blood flow clearly did not decline at the same rate. At low and

moderate MAP, retinal function remained relatively preserved

despite substantial IOP-induced blood flow deficiency, suggesting

that a ‘‘functional reserve’’ protects against relative ischemia.

However, the relationship between function and blood flow was

reversed in the high BP group. Retinal function begins to decline

when IOP was at 60 mmHg, but blood flow was still well above

baseline. This outcome suggests that retinal function has a ceiling

and does not improve with hyper-perfusion.

Discussion

Effect of OPP on retinal function
A key finding of this study was that OPP (determined by BP and

IOP) substantially influences retinal function. In animals with low

BP, milder IOP elevations were needed to compromise retinal

function compared with controls. In contrast, animals with an

acute increase in BP endured a greater IOP challenge before

retinal dysfunction occurred (Figure 3). These results confirm

previous studies which have found that bipolar cell function,

measured with the ERG b-wave [24], and ganglion cell function,

Figure 3. Effect of BP on the susceptibility of retinal function to IOP elevation. Given that baseline function was similar between low,
moderate and high BP groups, the absolute amplitudes of b-wave (A) and STR (D) are also expressed relative (B & E) to their own baselines. Curves:
cumulative normal function (Equation 1). Arrow: definition of IOP50 as the IOP for 50% ERG deficit. Error bars: SEM. Relationships between individual
IOP50 and MAP for b-wave (C) and STR (F) are modelled using a Deming regression.
doi:10.1371/journal.pone.0031104.g003

Ocular Perfusion Pressure and the Retina

PLoS ONE | www.plosone.org 5 February 2012 | Volume 7 | Issue 2 | e31104



measured with axonal impulse conduction [23] or pattern ERG

[24], were affected by the balance between BP and IOP.

Therefore, OPP is a more important determinant of neuronal

function, than IOP alone.

In addition, the current study extends previous work [23,24] to

show that retinal susceptibility to a common IOP challenge

(quantified as IOP50) is linearly related to BP (Figures 3C and 3F).

However, OPP was not the only determinant of retinal function.

Figure 4. Relationship between retinal function and ocular perfusion pressure. Retinal function (mean & SEM) is plotted as a function of
OPP for various BP groups. Data for b-wave (A) and STR (C) are reproduced from Figures 3B and 3E respectively. Curves: cumulative normal function
as per Figure 3 (Equation 1). Arrow: definition of OPP50 as the OPP for 50% functional deficit. Relationship between individual OPP50 and MAP was
correlated with Deming regression (lines in B & D).
doi:10.1371/journal.pone.0031104.g004

Figure 5. Effect of BP on the susceptibility of ocular blood flow to IOP elevation. Relative ocular blood flow (6 SEM) during MAP (A, fixed
IOP) and IOP manipulation (B, fixed MAP). Data in A shows characteristics of blood flow autoregulation as evident by a relative plateau at
intermediate MAPs. As LDF does not measure absolute flow, the autoregulation curve in A is used to set the starting blood flow level for the three
blood pressure groups (arrows in B). Thus all data are effectively normalized to a ‘‘normal’’ baseline condition (in A, IOP 10 mmHg, MAP 9363 mmHg,
n = 5).
doi:10.1371/journal.pone.0031104.g005
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Had IOP elevation and BP reduction produced the same effect,

the relationship between IOP50 and MAP (Figures 3C and 3F)

would have returned a unity line. In fact, a slope of less than one

showed that as BP increased, the increment in IOP50 was less than

expected based solely on OPP. In other words, MAP elevation

cannot fully compensate for the retinal dysfunction induced by the

same amount of IOP elevation. This was somewhat counterintu-

itive given that OPP, by definition, contains the same contribution

from MAP and IOP (i.e. OPP = MAP2IOP).

That IOP is more important than BP in determining retinal

function was further illustrated in Figure 4, wherein retinal

function plotted against OPP did not collapse to a single curve.

That is, for a given OPP, the higher IOP elevation induced greater

retinal dysfunction. This is possibly because BP modification

influences vascular supply only, whereas an IOP elevation affects

the vascular supply via a reduction in OPP, and produces

mechanical stress on retinal neurons that is OPP independent.

Although previous studies [23,24] have also assessed retinal

function during IOP and BP manipulation, those studies did not

independently compare the influence of BP and IOP. To our

knowledge, this is the first study to show that IOP is more

important than BP in determining retinal function for a given

OPP.

Comparing retinal function and ocular blood flow
Measurement of ocular blood flow by laser Doppler indicates

that the IOP-flow relationship was rightward shifted with

increasing BP (Figure 5B), indicating that BP modifies suscepti-

bility to IOP challenge. This finding agrees with previous studies of

ocular blood flow as recently reviewed by Schmidl and colleagues

[44]. In particular, Kiel and van Heuven [29] showed in rabbit

eyes that it took more IOP elevation to reduce choroidal blood

flow as MAP increased (20 to 80 mmHg). The current study

extends their observations to include higher MAPs (108 and

156 mmHg). More recently, Liang and colleagues [45] also

showed that IOP-induced ischemia at monkey optic nerve head is

exacerbated by systemic hypotension (MAP 56 mmHg).

As it is technically difficult to monitor retinal function and blood

flow simultaneously whilst concurrently manipulating IOP and

BP, we adopt an alternate approach. We measured these outcomes

in separate groups of animals under closely matched experimental

conditions (same IOP and similar MAP modifications, Figure 1).

Figure 6 showed that BP modifies vascular (filled bars) and

functional (unfilled bars) susceptibility to IOP elevation in a similar

way. This suggests that the protection afforded by acute high BP

on retinal function is in part mediated by improved blood flow.

That retinal function was relatively preserved despite substantial

blood flow reduction (Figure 6) provides evidence for a ‘‘functional

reserve’’ [22]. One mechanism that could underlie this functional

reserve is a capacity to increase oxygen extraction from residual

arterial blood during mild ischemia, which helps to maintain tissue

oxygenation [22]. With low perfusion pressure it would be

predicted that erythrocyte transit would be slower and oxygen

extraction may be increased.

The current study sought to understand basic retinal physiology

in terms of functional and hemodynamic response to OPP stress,

therefore only acute IOP and BP manipulations were employed.

Interpretation of our findings in the context of chronic diseases

such as glaucoma and essential hypertension requires caution. In

future studies, it will be of interest to examine the effect of chronic

hypertension on the susceptibility to IOP challenge.

Summary
In summary, the susceptibility of retinal function to IOP

challenge can be partially ameliorated by acute high BP, and

exacerbated by low BP. The mechanism behind this change can

be partly attributed to alterations in OPP and its effects on ocular

blood flow. We find that retinal function can be normal even when

Figure 6. Comparison of relative retinal function and ocular blood flow during IOP elevation. Data for animals with acute low, moderate,
and high BP are re-plotted here. Black circles: blood flow autoregulation curve at baseline IOP (reproduced from Figure 5A). Function (unfilled bars, b-
wave amplitude) is normalized to baseline. Starting blood flow (filled bars) is adjusted based on the autoregulation curve. Bars represent mean + SEM.
doi:10.1371/journal.pone.0031104.g006
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blood flow is partially reduced. This may reflect the presence of an

additional compensatory mechanism, possibly related to the

capacity to regulate oxygen extraction. Interestingly, IOP

elevation produces more dysfunction than does BP reduction of

the same magnitude. This difference is likely to reflect the potential

for IOP to produce both vascular insufficiency and mechanical

stress on retinal neurons.

Supporting Information

Figure S1 Comparison of IOP elevation induced by
anterior and posterior chamber cannulation. Both

anterior (A) and vitreal chamber (B) show a strong and similar

linear relationship with IOP elevation induced via anterior

chamber cannulation.

(TIF)

Figure S2 Effect of SNP, saline and AngII on retinal
function. Relative retinal function remained stable in the sham

control eye (IOP = 10 mmHg) during continuous infusion of SNP

(A & D), saline (B & E) or AngII (C & F) to sustain low, moderate

or high blood pressure. Time ‘‘0’’ represents the beginning of

stepwise IOP elevation in the fellow eye. A, B & C: relative b-wave

amplitude; D, E & F: relative STR amplitude; Shaded area: 95%

confidence intervals for b-wave and STR amplitudes at time ‘‘0’’.

(TIF)

Figure S3 Effect of 100% O2 breathing on ocular blood
flow. Backscatter (A), MAP (B) and ocular blood flow (C)
were measured before, during and after100% oxygen
breathing. Error bars: SEM; n = 6. Shaded area: duration

(2 minutes) of 100% oxygen administration. Dashed line: baseline

blood flow (100%).

(TIF)

Author Contributions

Conceived and designed the experiments: ZH BVB AJV JAA CTON.

Performed the experiments: ZH BVB CTON. Analyzed the data: ZH BVB

AJV JAA CTON. Contributed reagents/materials/analysis tools: ZH BVB

AJV JAA CTON. Wrote the paper: ZH BVB AJV JAA CTON.

References

1. Quigley HA, Broman AT (2006) The number of people with glaucoma

worldwide in 2010 and 2020. Br J Ophthalmol 90: 262–267.

2. Hayreh SS, Zimmerman MB, Podhajsky P, Alward WL (1994) Nocturnal

arterial hypotension and its role in optic nerve head and ocular ischemic
disorders. Am J Ophthalmol 117: 603–624.

3. Choi J, Jeong J, Cho HS, Kook MS (2006) Effect of nocturnal blood pressure

reduction on circadian fluctuation of mean ocular perfusion pressure: a risk

factor for normal tension glaucoma. Invest Ophthalmol Vis Sci 47: 831–836.

4. Meyer JH, Brandi-Dohrn J, Funk J (1996) Twenty four hour blood pressure
monitoring in normal tension glaucoma. Br J Ophthalmol 80: 864–867.

5. Choi J, Kim KH, Jeong J, Cho HS, Lee CH, et al. (2007) Circadian fluctuation

of mean ocular perfusion pressure is a consistent risk factor for normal-tension

glaucoma. Invest Ophthalmol Vis Sci 48: 104–111.

6. Collignon N, Dewe W, Guillaume S, Collignon-Brach J (1998) Ambulatory
blood pressure monitoring in glaucoma patients. The nocturnal systolic dip and

its relationship with disease progression. Int Ophthalmol 22: 19–25.

7. Demailly P, Cambien F, Plouin PF, Baron P, Chevallier B (1984) Do patients

with low tension glaucoma have particular cardiovascular characteristics?
Ophthalmologica 188: 65–75.

8. Graham SL, Drance SM (1999) Nocturnal hypotension: role in glaucoma
progression. Surv Ophthalmol 43 Suppl 1: S10–16.

9. Graham SL, Drance SM, Wijsman K, Douglas GR, Mikelberg FS (1995)

Ambulatory blood pressure monitoring in glaucoma. The nocturnal dip.
Ophthalmology 102: 61–69.

10. Kaiser HJ, Flammer J, Burckhardt D (1993) Silent myocardial ischemia in
glaucoma patients. Ophthalmologica 207: 6–7.

11. Kaiser HJ, Flammer J, Graf T, Stumpfig D (1993) Systemic blood pressure in

glaucoma patients. Graefes Arch Clin Exp Ophthalmol 231: 677–680.

12. Leske MC, Heijl A, Hyman L, Bengtsson B, Dong L, et al. (2007) Predictors of

long-term progression in the early manifest glaucoma trial. Ophthalmology 114:
1965–1972.

13. Memarzadeh F, Ying-Lai M, Chung J, Azen SP, Varma R (2010) Blood

pressure, perfusion pressure, and open-angle glaucoma: the Los Angeles Latino

Eye Study. Invest Ophthalmol Vis Sci 51: 2872–2877.

14. Sachsenweger R (1963) [The influence of hypertension on the prognosis of
glaucoma.]. Klin Monbl Augenheilkd 142: 625–633.

15. Topouzis F, Coleman AL, Harris A, Jonescu-Cuypers C, Yu F, et al. (2006)
Association of blood pressure status with the optic disk structure in non-

glaucoma subjects: the Thessaloniki eye study. Am J Ophthalmol 142: 60–67.

16. Leske MC, Wu SY, Hennis A, Honkanen R, Nemesure B (2008) Risk factors for

incident open-angle glaucoma: the Barbados Eye Studies. Ophthalmology 115:
85–93.

17. Leske MC, Wu SY, Nemesure B, Hennis A (2002) Incident open-angle

glaucoma and blood pressure. Arch Ophthalmol 120: 954–959.

18. Bonomi L, Marchini G, Marraffa M, Bernardi P, Morbio R, et al. (2000)

Vascular risk factors for primary open angle glaucoma: the Egna-Neumarkt
Study. Ophthalmology 107: 1287–1293.

19. Dielemans I, Vingerling JR, Algra D, Hofman A, Grobbee DE, et al. (1995)

Primary open-angle glaucoma, intraocular pressure, and systemic blood pressure

in the general elderly population. The Rotterdam Study. Ophthalmology 102:
54–60.

20. Hulsman CA, Vingerling JR, Hofman A, Witteman JC, de Jong PT (2007)

Blood Pressure, Arterial Stiffness, and Open-angle Glaucoma: The Rotterdam
Study. Arch Ophthalmol 125: 805–812.

21. Mitchell P, Lee AJ, Rochtchina E, Wang JJ (2004) Open-angle glaucoma and

systemic hypertension: the blue mountains eye study. J Glaucoma 13: 319–326.

22. He Z, Vingrys AJ, Armitage JA, Bui BV (2011) The role of blood pressure in
glaucoma. Clin Exp Optom 94: 133–149.

23. Grehn F, Prost M (1983) Function of retinal nerve fibers depends on perfusion

pressure: neurophysiologic investigations during acute intraocular pressure
elevation. Invest Ophthalmol Vis Sci 24: 347–353.

24. Siliprandi R, Bucci MG, Canella R, Carmignoto G (1988) Flash and pattern

electroretinograms during and after acute intraocular pressure elevation in cats.

Invest Ophthalmol Vis Sci 29: 558–565.

25. Janssen BJ, De Celle T, Debets JJ, Brouns AE, Callahan MF, et al. (2004) Effects
of anesthetics on systemic hemodynamics in mice. Am J Physiol Heart Circ

Physiol 287: H1618–1624.

26. Kyhn MV, Klassen H, Johansson UE, Warfvinge K, Lavik E, et al. (2009)
Delayed administration of glial cell line-derived neurotrophic factor (GDNF)

protects retinal ganglion cells in a pig model of acute retinal ischemia. Exp Eye
Res 89: 1012–1020.

27. Riva CE, Cranstoun SD, Mann RM, Barnes GE (1994) Local choroidal blood

flow in the cat by laser Doppler flowmetry. Invest Ophthalmol Vis Sci 35:

608–618.

28. Yancey CM, Linsenmeier RA (1988) The electroretinogram and choroidal PO2

in the cat during elevated intraocular pressure. Invest Ophthalmol Vis Sci 29:

700–707.

29. Kiel JW, van Heuven WA (1995) Ocular perfusion pressure and choroidal blood
flow in the rabbit. Invest Ophthalmol Vis Sci 36: 579–585.

30. Hood DC, Birch DG (1990) A quantitative measure of the electrical activity of

human rod photoreceptors using electroretinography. Vis Neurosci 5: 379–387.

31. Bui BV, Fortune B (2004) Ganglion cell contributions to the rat full-field
electroretinogram. J Physiol 555: 153–173.

32. Saszik SM, Robson JG, Frishman LJ (2002) The scotopic threshold response of

the dark-adapted electroretinogram of the mouse. J Physiol 543: 899–916.

33. Bui BV, Edmunds B, Cioffi GA, Fortune B (2005) The Gradient of Retinal
Functional Changes during Acute Intraocular Pressure Elevation. Invest

Ophthalmol Vis Sci 46: 202–213.

34. Fortune B, Bui BV, Morrison JC, Johnson EC, Dong J, et al. (2004) Selective
ganglion cell functional loss in rats with experimental glaucoma. Invest

Ophthalmol Vis Sci 45: 1854–1862.

35. Frishman LJ, Shen FF, Du L, Robson JG, Harwerth RS, et al. (1996) The

scotopic electroretinogram of macaque after retinal ganglion cell loss from
experimental glaucoma. Invest Ophthalmol Vis Sci 37: 125–141.

36. Naarendorp F, Sieving PA (1991) The scotopic threshold response of the cat

ERG is suppressed selectively by GABA and glycine. Vision Res 31: 1–15.

37. Naarendorp F, Sato Y, Cajdric A, Hubbard NP (2001) Absolute and relative
sensitivity of the scotopic system of rat: electroretinography and behavior. Vis

Neurosci 18: 641–656.

38. Fredriksson I, Fors C, Johansson J (2007) Laser Doppler Flowmetry - a
Theoretical Framework. Department of Biomedical Engineering, Linköping
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