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INTRODUCTION

The management of coastal marine ecosystems such
as estuaries is becoming increasingly based upon a mix-
ture of empirical field monitoring and modelling of pos-
sible future ecological conditions. The importance of
identifying thresholds for management is now more ap-
parent than ever (Scheffer 2009, Suding & Hobbs 2009).
The existence of such thresholds may be indicated by
abrupt transitions from one ecosystem state to another,
thus displaying regime shifts (deYoung et al. 2008) or
catastrophic behaviour (Folke et al. 2004). These transi-
tions are assumed to occur when the underlying physico-
chemical drivers within an ecosystem exceed a certain
value (the threshold) that flips the system into a new, al-
ternative state. Awareness of the possibility of these sud-
den transitions, including their implications for manage-
ment, is currently high (e.g. van de Koppel et al. 2001,

Lozano-Montes et al. 2008, Andersen et al. 2009, Schef-
fer et al. 2009). Searching for these thresholds involves
detecting response to future climate change (Dakos et al.
2008, Scheffer 2009) or dire outcomes like benthic hy-
poxia (Conley et al. 2009) or coral reef loss (Mumby et al.
2007) that managers wish to avoid.

Current understanding of the role of thresholds is of-
ten based upon conceptual models of how the systems
work (Dennison et al. 2007), in particular the key pro-
cesses that give an ecosystem its distinctive character
that is valued by the public. Many estuaries and coastal
wetlands derive much of this character from the flows
of fresh water coming downstream from their associ-
ated rivers. Excessive extraction of water upstream for
human uses can, in turn, threaten an estuary’s future
and considerable progress has been made recently in
modelling these relationships using relatively simple
models (e.g. Kim & Montagna 2009, Lester & Fair-
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weather 2009a,b, 2010, Zweig & Kitchens 2009). Many
of these modelling approaches, such as state-and-tran-
sition modelling, have implied thresholds associated
with whatever environmental changes trigger the tran-
sitions between identified states. Especially of interest
is how likely future climate change might influence
flow regimes and consequential ecological effects (e.g.
Powell 2008, Lester et al. 2009). These issues have long
been recognised in freshwater ecology, where flows
determine many aspects of ecosystem behaviour (An-
derson et al. 2006), but the challenges of anticipating
rare or extreme events are less routinely considered in
marine ecology (but see Fuentes et al. 2006, Denny et
al. 2009, Kimmel et al. 2009), despite the predicted in-
crease of these events under climate change and their
potential role in shaping ecosystems. The search for
early-warning signals of thresholds is still in its infancy
(Andersen et al. 2009, Scheffer et al. 2009), and so we
believe that a variety of approaches needs to be ex-
plored and critically evaluated.

There is an inherent difficulty in predicting thresh-
olds that are approaching but not yet apparent, but this
is precisely what needs to occur to effectively manage
non-linear systems. Previous work on the detection of
upcoming transitions has focused upon recognising
increasing variance of response variables as a thresh-
old was approached (Carpenter & Brock 2006), shifts in
spectral properties of time series near a threshold
(Kleinen et al. 2003) or a slowing in rates of change
(Dakos et al. 2008). Thus the focus is often upon the
further moments of distributions of some variables (as
opposed to just their means or central tendencies),
where scientists become alert to increased overall vari-
ability within assemblages (Warwick & Clarke 1993) or
changes in skewness (Guttal & Jayaprakash 2008).
These properties have been demonstrated using deter-
ministic models of response variables (e.g. Mumby et
al. 2007, Carpenter et al. 2008) and, while threshold
dynamics have been found to follow theoretical expec-
tations, changes in many of these parameters have not
been detected in simulated data prior to the threshold
being crossed (e.g. see Carpenter et al. 2008). This
means that they may be of limited use in predicting
future transitions from measured or simulated time
series of driving variables.

Over the last 10 yr, there has been a major decline in
the ecological condition of the Coorong, the estuary
and terminal lagoon system for Australia’s largest river
system, the River Murray (Brookes et al. 2009). This
decline is due to prolonged drought combined with
past management of the Murray-Darling Basin. In
order to successfully manage these lagoons in the
future, predictions are needed to evaluate the effects
of possible management actions on the Coorong eco-
systems under a variety of climatic scenarios. To pro-

vide such predictions, thresholds and concepts derived
from the multiple stable-states literature have been
used to model ecosystem response in the Coorong
(Lester & Fairweather 2009b, 2010). The model itself is
a state-and-transition model, with the states defined by
the biotic assemblages found, and the transitions de-
fined by a classification and regression tree (CART)
analysis (De’ath & Fabricius 2000) of the physico-
chemical data for the region (Lester & Fairweather
2009a,b, 2010). Thus these transitions between ecosys-
tem states define the thresholds of interest for the
Coorong, and can be used by managers to set objec-
tives to manage towards or to define the limits of
acceptable change.

We have been developing an understanding of
thresholds for these ecosystem states in the Coorong
lagoons subsequent to our initial modelling approach.
The sensitivity of the ecosystem to and the behaviour
near these thresholds is, however, currently unknown.
Managers (in Australia at least) tend to manage to an
often arbitrarily-defined set of limits in natural re-
source management. Here we explore how thresholds
identified by analyses such as CART could be used to
provide advance warning of upcoming ecological
shifts. We use the Coorong model as an example to
outline a more general protocol for assessing the utility
of thresholds to derive leading indicators, focus upon
modelling the states via that protocol and provide rec-
ommendations regarding targeted experiments to con-
firm our findings aimed at improving the natural
resource management strategies currently in use.

A better understanding of these thresholds would
aid managers in determining which changes within
their dynamic system are worthy of concern. It would
thus allow them to target monitoring to better detect
when to act, and also fine-tune their actions based
upon the outcomes of that monitoring. Here we ex-
plored threshold dynamics based on an existing eco-
logical response model to identify whether any could
be of assistance to managers. Thus the aims of the pre-
sent study were to (1) describe the threshold dynamics
within the ecosystem states model for the Coorong,
with a view to predicting upcoming switches in state,
and (2) evaluate a variety of approaches for how to
assess which changes matter, and especially their util-
ity for an early-warning capacity as leading indicators
of ensuing change.

METHODS

Study area. The Coorong is the estuary at the termi-
nus of the River Murray, the largest river system in
Australia. The estuary is part of a Ramsar Convention-
listed Wetland of International Importance, and pro-
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vides important breeding and feeding habitat for many
species of birds and fish (Brookes et al. 2009). The
Coorong is a long, shallow lagoonal system, which is
typified by a natural gradient in environmental condi-
tions from an estuary around the Murray Mouth to
hypersaline conditions at the southern, terminal end of
the system, more than 100 km away. The Coorong can
thus be divided into 3 regions: the usually estuarine
Murray Mouth region at the northern end; and 2
lagoons separated by a constriction, the North and
South Lagoons. River Murray flows can be regulated
across a system of barrages at the northern end, with
much smaller volumes entering the South Lagoon at
Salt Creek, the Coorong’s only tributary. Additional
information on the characteristics of the system, in-
cluding maps, are presented in Brookes et al. (2009)
and Lester & Fairweather (2009b, 2010).

Ecosystem state model. An ecosystem response
model was developed for the Coorong based on
ecosystem states (Lester & Fairweather 2009a,b, 2010).
The model is described in detail elsewhere (e.g. Lester
& Fairweather 2009a) but is summarised to provide
context for the further analyses of threshold dynamics
presented here. The ecosystem states approach identi-
fies clusters of biota that occur together in space and
time and then finds thresholds for physico-chemical
parameters that are associated with the presence of
each cluster. Briefly, 2 data sets were compiled of the
available biological and physico-chemical (or environ-
mental) data, respectively. The biological data in-
cluded survey data for fish, birds, benthic macroinver-
tebrates and macrophytes across 12 sites between
1999 and 2007. The environmental data included
water quality and quantity, flow and meteorological
variables over the same time period. Particular atten-

tion was given to including maxima, minima, lagged
values and variances in the environmental data set
(thus 230 variables in total), because mean variables
are not always the best predictors of biological commu-
nities (Gaines & Denny 1993). The provenance of the
data sets used and references to the collection methods
are presented in Lester & Fairweather (2009b).

Clusters of co-occurring biota (including macro-
phytes, birds, fish and benthic macroinvertebrates) in
space and time were identified from the biological data
set using group-average clustering in PRIMER v6.0
(Clarke & Gorley 2006). Cluster membership was then
used as the response variable for a CART analysis per-
formed in CART Pro v6.0 (Steinberg & Golovnya 2007).
CART analysis sequentially splits a response variable
to maximise the difference between pre-defined
groups by identifying thresholds (or splitting points) in
the best of a range of independent variables (here the
environmental data set) (Steinberg & Golovnya 2007).
Thus the environmental conditions that were associ-
ated with each of the biotic clusters were identified.
The biological data from cases in each CART terminal
node were then tested for biological distinctness using
analysis of similarities in PRIMER v6.0 (Clarke & Gor-
ley 2006) and were combined when not statistically
different. Predictive capacity was tested using cases
withheld from the original model development and
each group (or ecosystem state) was characterised
based on its biological and environmental properties
(e.g. using similarity percentage in PRIMER v6.0;
Clarke & Gorley 2006).

For the Coorong, 8 ecosystem states were identified.
Associated triggers in terms of physico-chemical para-
meters (with their relevant threshold values given in
Table 1) were identified as average daily tidal range,
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Ecosystem state Relative Tidal range Maximum no. Water Water Depth Salinity
state health (m) days since level A level B (m) (g l–1)

flow (m AHD) (m AHD)

Estuarine/Marine Healthy >0.05 ≤339 – – – –
Marine Degraded >0.05 >339 – – >1.99 –
Unhealthy Marine Degraded >0.05 >339 – – ≤1.99 ≤64.5
Degraded Marine Degraded >0.05 >339 – – ≤1.99 >64.5
Healthy Hypersaline Healthy ≤0.05 ≤339 >0.37 – – –
Average Hypersaline Healthy ≤0.05 ≤339 ≤0.37 – – –
Unhealthy Hypersaline Degraded ≤0.05 >339 – >–0.09 – –
Degraded Hypersaline Degraded ≤0.05 >339 – ≤–0.09 – –

Table 1. The sequence of thresholds that determine each ecosystem state (see Lester & Fairweather 2009a, 2010 for a diagram-
matic representation of the model and species lists for each state). A transition in ecosystem state will occur whenever one of the
thresholds relevant for the original ecosystem state is crossed (as indicated by horizontal lines). Two horizontal lines are given for
the maximum number of days since flow because that threshold appears in the model twice, ‘–‘ indicates that a threshold is not
relevant for the ecosystem state in question. For example, no transition will occur from the Estuarine/Marine state if the water
level, depth or salinity thresholds are crossed. Depth is from the previous year, consistent with the predictive variable identified
in the ecosystem state model (refer to text for additional information). m AHD: metres above the Australian Height Datum, which 

approximates sea level
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the maximum number of days without barrage flows, 2
average annual water levels, average annual depth
from the previous year (thus a temporal component
was important here that was not so for other predictive
variables) and average annual salinity. Various se-
quential combinations of parameter values for each of
these 6 thresholds combine (Table 1) to predict the
ecosystem state for a given case (note that the thresh-
old for maximum number of days without flow of 339
appears twice in the model — once for cases with an
average daily tidal range above the threshold, and
once for those below the threshold — hence there are 6
thresholds that specify one of 8 possible states, rather
than the 7 that would usually be required; see Lester &
Fairweather 2009a,b for the model).

Because of the sequential nature of the thresholds in
the ecosystem states model (a characteristic of the
CART models upon which it is based; De’ath & Fabri-
cius 2000), not all crossings of a threshold result in a
change in ecosystem state. For example, changes in
average annual salinity over the threshold do not result
in ecosystem state changes unless depth from the pre-
vious year is less than 1.99 m, the maximum number
of days since flow is greater than 339 and the average
daily tidal range is greater than 0.05 m (Table 1).
Table 1 illustrates this sequence of thresholds and al-
lows the reader to determine when crossing a particu-
lar threshold will result in a change of state. In consid-
ering the threshold dynamics of the model, we have
investigated both crossings of the threshold (whether
or not an ecosystem-state change occurred) and only
those crossings that resulted in a change in state (tran-
sitions), but have focused on the latter as most relevant
to the management of the system.

Of the 8 possible ecosystem states, 5 occurred within
the Coorong only when the threshold for the maximum
number of days without barrage flow was exceeded.
Based on modelled natural flows for the Murray-Dar-
ling Basin, end-of-system flows down the River Murray
cease in only 1% of years (CSIRO 2008), so we defined
these 5 ecosystem states as being degraded. We be-
lieve that it is justified to consider a period of more
than 11 mo without end-of-system flows as a degraded
condition for the Coorong, and this is supported by the
relatively simplified biotic assemblages associated
with those 5 ecosystem states (see Lester & Fair-
weather 2009a,b for characteristics and species lists
typical of each ecosystem state).

Each of the ecosystem states has been characterised
based on its biological characteristics. As an example,
the Average Hypersaline state (one of the healthy states
lacking a tidal influence) was characterised by relatively
low numbers of fish, including greenback flounder
Rhombosolea tapirina and mulloway Argyrosomus
japonicus. Correspondingly, few piscivorous bird species

were associated with the state (with the exception of the
Australian pelican Pelecanus conspicillatus). Instead,
bird communities included waders (e.g. banded stilt
Cladorhynchus leucocephalus, red-necked stint Calidris
ruficollis and red-necked avocet Recurvirostra novaehol-
landiae) and waterfowl (e.g. grey teal Anas gracilis).
Ruppia tuberosa, a macrophyte, had greater coverage
here than for any other state for which data was avail-
able. There were relatively few benthic invertebrate
taxa associated with this state, but chironomid larvae
and amphipods occurred in high numbers. This state had
moderate average salinities and low average depths, but
freshwater flows occurred regularly. Water quality char-
acteristics included high nutrient concentrations (e.g. to-
tal Kjeldahl nitrogen and ammonia), chlorophyll a and b
concentrations and turbidity. In contrast, the Unhealthy
Hypersaline state had higher average salinities, low av-
erage water levels and low variability in water levels
with long periods since freshwater flows. Nutrient con-
centrations and turbidity remained high. Small-
mouthed hardyhead Atherinosoma microstoma was the
only fish species present in any large numbers. Avifauna
were characterised by hoary-headed grebe Polio-
cephalus poliocephalus, Australian pelican (both pisciv-
orous), banded stilt (a wader) and Australian shelduck
Tadorna tadornoides (a waterfowl). This state supported
a very limited diversity of invertebrates including poly-
chaetes, but still had high numbers of chironomid larvae.
Similar descriptions of the remaining states, along with
tabulated average values for each, are presented in
Lester & Fairweather (2009a).

Baseline scenario for the Coorong. In order to pre-
dict a sequence of ecosystem states for the region, the
ecosystem states model was used in combination with
a climate model, a river model and a hydrodynamic
model for the region (Webster 2007, CSIRO 2008). A
sequence of daily flows for the Coorong was developed
using historical climate data with current infrastruc-
ture and extraction levels for the Murray-Darling Basin
for the period of 1895 to 2008, largely in line with Sce-
nario A in the Murray-Darling Basin Sustainable Yield
Project (CSIRO 2008). This, coupled with average daily
flows from the south via the Salt Creek tributary (from
2001 to 2008) and sea levels in Encounter Bay, was
used as input to a hydrodynamic model developed for
the Coorong (Webster 2007, Lester et al. 2009). The
hydrodynamic model then predicted hourly water lev-
els and salinities along the length of the Coorong over
the 114 yr model run that were used as input to the
ecosystem states model. The ecosystem states model
predicted an annual time series of ecosystem states for
each of 12 focal sites spread along the Coorong (see
Lester & Fairweather 2009a, 2010 for additional detail).
Thus the model predicted ecosystem states for a hypo-
thetical 114 yr sequence that had historical climate
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variability but present-day infrastructure and extrac-
tion levels throughout. Such a sequence provides an
understanding of the level of variability in ecosystem
condition under a particular climate scenario, rather
than attempting to replicate historical conditions
exactly.

Threshold analyses. Some basic statistics were cal-
culated for each threshold. These included the number
of times each threshold was crossed under the baseline
scenario simulation (described above), the return inter-
val for crossing each threshold and the average num-
ber of years for which that threshold was exceeded
(average exceedance interval).

The specific sites at which thresholds were crossed
and the years in which each crossing occurred were
also identified. Years in which thresholds were crossed
at each site were identified using the R statistical envi-
ronment v2.8.1 (R Core Development Team 2009). The
years in which thresholds were crossed were also com-
pared with lists of El Niño and La Niña years in Aus-
tralia (BOM 2009). The El Niño Southern Oscillation
(ENSO) affects large-scale Australian weather pat-
terns, with drought periods associated with El Niño
years and wetter periods with La Niña years. This pat-
tern is in contrast to the associations seen in other parts
of the world.

Determining rates of change: It is feasible that
physico-chemical time series might exhibit different
behaviour when they approach a threshold. Thus we
wanted to see whether we could predict upcoming
thresholds based on something simple, like changes in
rates of change over time. Previous research on
response variables suggests that rates of change slow
as a threshold is approached (Dakos et al. 2008), and
this may also be the case for predictive variables. A
series of nested rates of change were developed for
various time periods preceding each unique crossing
of each threshold. For each site, rates of change were
calculated for the week, month, year and decade prior
to each threshold crossing. In order to preserve statisti-
cal independence, where a particular threshold was
crossed at more than one site per year, only one site
was selected at random for inclusion in the analysis.
The site to be included was selected post hoc using a
random number generator (having assigned each site a
numeric tag). This site was included in the analysis and
all other sites where the thresholds were crossed in the
same year were excluded. Absolute values were taken
for each rate of change, and the minimum, maximum
and mean rates of change were calculated for each
time step. Rates of change were calculated for each
time period using linear regression in SYSTAT v.11
(SYSTAT 2004). Standardised rates of change were
also computed by dividing each data point by the max-
imum rate of change observed within that time series.

This scaling allowed comparison of trends for variables
changing over different ranges. Confidence intervals
were calculated for each rate of change (and standard-
ised rate of change) by bootstrapping the mean rate of
change using the ‘boot’ function in R.

Characterising transitions: Years in which individ-
ual sites crossed each threshold in the ecosystem state
model were identified in the baseline scenario de-
scribed above. For each, the value of the relevant para-
meter was recorded for the year in which the transition
occurred and also for the following year to understand
what values each variable takes immediately on either
side of a threshold crossing.

Logistic regressions: Understanding the width of any
transition zone for predictive variables around a
threshold could assist in predicting whether upcoming
transitions are likely. If these transition zones are suffi-
ciently narrow, when values fall within that zone may
be a good indication that a transition is imminent.
Logistic regression is a classic method for exploring the
shape of changes between binary variables, such as 2
ecosystem states governed by a threshold. Logistic re-
gression was used for those thresholds that were
crossed enough times to make analysis meaningful
(here, a cut-off of more than 20 times over the 114 yr of
the baseline scenario was used; see ‘Results’ for the
number of times that each transition occurred), using
the values that these physico-chemical variables took
immediately prior to and following each transition.
Binomial general linear models were fitted using the
bias-correction algorithm for maximum likelihood esti-
mates developed by Firth (1993). This was done using
the ‘brglm’ package developed for R (Kosmidis 2007).

Zones of transition: Another method for exploring
the width of the transition zone is to explicitly investi-
gate the range of values that variables take immedi-
ately before and after a transition. Again, this could
potentially assist in identifying a window within which
transition is likely, where driving variables falling
within the range could prompt management interven-
tion. Again, this window would need to be sufficiently
narrow to be of value for management. Maxima and
minima were identified both before and after each
threshold was crossed in each year in which it was
crossed and the extremes of these were used to derive
a zone of transition. This zone of transition comprised
the minimum value of the parameter of interest in the
year that threshold was exceeded and the maximum
value of the same parameter the year after (and vice
versa for falling below a threshold). As such, it gave
the maximum range of values observed on either side
of a threshold crossing. For each site, and for the
Coorong as a whole, the proportion of time in which
predicted parameter values fell within this zone of
transition was calculated.
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Developing a predictive model for future degraded
ecosystem states: Identifying an appropriate time lag:
An attempt was made to predict future degradation by
comparing the ecosystem state in any year to physico-
chemical conditions several years prior. Thus choice of
the time lags to include was a key step. Cross-correla-
tion analyses were used to identify significant time
lags between pairs of flow, hydrodynamic and biologi-
cal variables. These analyses were conducted using
the cross-correlation plotting function in the time
series module of SYSTAT v.11 (SYSTAT 2004). Based
on these cross-correlations, tables were compiled to
summarise the significant time lags identified.

A subset of the 230! (factorial, thus effectively infi-
nite) possible combinations of cross-correlations were
undertaken (with 230 being the total number of envi-
ronmental variables used in the original model devel-
opment; refer to the ‘Ecosystem state model’ section
above). This subset was chosen based on our under-
standing of the likely causal relationships within the
system, as well as relationships that were identified in
previous analyses (e.g. see Lester & Fairweather
2009a). We focused upon 4 types of correlations: corre-
lations among flow variables (pertaining directly to the
amount of flow passing over the barrages, e.g. total
flow volume); correlations between flow and hydro-
dynamic variables (variables that were outputs from
the hydrodynamic model, e.g. water levels and salini-
ties); correlations between flow or hydrodynamic and
biological variables; and correlations among biological
variables.

For flow, total flow volume per annum and average
daily flow volume were identified as the parameters
likely to be correlated with the hydrodynamic vari-
ables for the Coorong. The specific hydrodynamic vari-
ables investigated included the aver-
age, maximum, minimum and variance
of water levels and salinity for each of
the North and South Lagoons. These
were selected because they are easily
measured, interpretable and likely to
be of significance to the biotic assem-
blages in the region.

Biological variables investigated
were chosen as a representative subset
of the assemblage present, from the
data used in the construction of the
ecosystem state model. The species se-
lected were chosen either because of
identified ecological significance (e.g.
Ruppia tuberosa has been previously
identified as an ecosystem engineer in
the region; Rogers & Paton 2009), or
because they had previously been
identified as typical of one or more

ecosystem states (Lester & Fairweather 2009a). Biolog-
ical variables included the proportion of sediment
cores containing R. tuberosa (as a measure of the cov-
erage of that macrophyte); abundances of a selection of
bird species, including 2 wader species (red-necked
stint and banded stilt), 2 piscivorous species (little pied
cormorant Phalacrocorax melanoleucos and Australian
pelican) and 2 waterfowl (grey teal and Australasian
shelduck); catch per unit effort for 3 commercial fish
species (Australian salmon Arripis truttaceus, black
bream Acanthopagrus butcheri and yellow-eyed mul-
let Aldrichetta forsteri); and abundances of 3 benthic
macroinvertebrate groups (chironomid larvae and the
polychaetes Australonereis ehlersi and Capitella sp.).

The year with the single strongest correlation
(whether positive or negative) was identified for each
cross-correlation comparison, separating flow corre-
lated with hydrodynamic variables from flow or hydro-
dynamic variables correlated with biological variables.
From this analysis, those years that had the strongest
correlations most often were identified as time lags to
be used in the predictive modelling step.

Modelling future degraded ecosystem states for cho-
sen time lags: The most significant time lags identified
with cross-correlations were retained for use in pre-
dicting future degraded ecosystem states. Where sev-
eral years had very similar numbers of significant
cross-correlations (Table 2), time lags were chosen in
order to allow sufficient time for management inter-
vention (i.e. a 3 yr time lag) and to investigate how
the predictors of future degraded ecosystem states
changed over shorter times (i.e. a 1 yr lag).

Ecosystem states were modelled for 12 sites along
the length of the Coorong (see Lester & Fairweather
2009b for details) for the period of 1999 to 2007 using
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Time lag Flow vs. hydrodynamic Biological vs. flow, hydrodynamic
(yr) variables or biological variables

Positive Negative Total Positive Negative Total

1 9 9 18 5 2 7
2 7 7 14 4 4 8
3 8 6 14 3 3 6
4 10 4 14 3 3 6
5 8 0 8 4 3 7
6 2 6 8 4 3 7
7 0 3 3 5 1 6
8 0 9 9 5 2 7
9 8 7 15 2 2 4

Table 2. Numbers of significant time lags among flow, hydrodynamic and biologi-
cal cross-correlations. Bold numbers indicate the highest number of statistically
significant correlations for each column. For flow versus hydrodynamic variables,
n = 19. For biological versus flow, hydrodynamic or biological variables, n = 82. Bio-
logical variables were cross-correlated against a combination of flow and hydro-
dynamic variables, as well as among biological variables. Refer to ‘Methods:
Identifying an appropriate time lag’ for additional information on the variables used
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the model described in Lester & Fairweather (2009a,b,
2010), with each site for each year referred to as a site-
year. These predicted ecosystem states were offset
from the accompanying physico-chemical data set by
each of the identified significant lag periods (i.e. either
1 or 3 yr). The physico-chemical data set used was sim-
ilar to that described above and in Lester & Fair-
weather (2009a,b, 2010), and so included a range of
flows, water levels, depths, salinities, meteorological
variables and water quality variables described by
means, maxima, minima and variances. In addition,
variables averaging the hydrodynamic conditions
across all sites in each of the 2 lagoons were added to
the list. Averaged variables were included to represent
what is already in use by managers. These included
maxima, minima, means and variances of water levels
and salinities for each of the North and South Lagoons.

The ecosystem states were then classified as either
degraded or healthy (i.e. not-degraded) based on
whether there had been freshwater input from the
River Murray in the previous 339 d (as described
above). CART analyses were used to identify specific
physico-chemical variables associated with the pres-
ence of future degraded ecosystem states. The analy-
ses were conducted in CART v6.0 (Steinberg &
Golovnya 2007) using a twoing-splitting algorithm and
10-fold cross-validation. The minimum size of a parent
node was set to 5, with the minimum size of a child
node at 2. The best tree was selected using the 1-stan-
dard error rule (Breiman et al. 1984), and variables
were penalised for missing values using a value of β =
0.60 (Steinberg & Golovnya 2007). Pearson correla-
tions between variables identified as significant pre-

dictors of future degraded ecosystem states were ana-
lysed using linear regression and, where significant
correlations (α = 0.05) among predictor variables ex-
isted, the variable with the lower level of importance
for the model was excluded and the model then re-run.
This approach was consistent with that used originally
to construct the ecosystem state model.

RESULTS

Threshold characteristics

Within the model simulation, the system crossed the
different thresholds with uneven frequencies and
crossing events were not distributed equally across all
sites (Table 3). The return interval and duration of
exceedance of thresholds were not equal amongst the
3 regions within the Coorong (Table 3), but were
inversely related. The thresholds involving salinity,
tidal range and water level A were most commonly ob-
served to be crossed (Table 3), whereas the other
thresholds were crossed either uncommonly (maxi-
mum number of days since flow, depth) or only once
(water level B). Water level A and tidal-range thresh-
olds were crossed more commonly at the northern end
of the Coorong (i.e. the Murray Mouth or North
Lagoon regions), while the salinity threshold was
crossed more frequently in the South Lagoon.

There was no obvious relationship between thresh-
old crossings and the ENSO index. All variables
were crossed most frequently in years that were not
designated as either El Niño or La Niña years
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Threshold Threshold No. years Coincidence ENSO (yr) Return interval (yr) Exceedance duration (yr)
value crossed El Niño La Niña Neither MM NL SL MM NL SL

Tidal range 0.05 m 18 6 2 10 na 2.6 20.5 na 13.8 4.6
Maximum no. 339 d 4 3 0 1 34.3 na na 1.8 na na
days since flow

Salinity 64.5 g l–1 24 9 2 13 na 10.3 5.6 na 7.3 9.1
Depth 1.99 m 6 0 3 3 na 15.0 na na 1.7 na
Water level A 0.37 m AHD 11 2 3 6 8.2 5.0 10.2 1.8 1.6 1.6
Water level B –0.09 m AHD 1 0 0 1 na na na na na na

Table 3. Summary of threshold characteristics. These values are based on a simulation of historical conditions within the Coorong
over 114 yr. The coincidence with El Niño Southern Oscillation (ENSO) columns illustrate which threshold crossings coincided
with El Niño years, La Niña years or neither. The return interval and exceedance durations show the average number of years
between threshold crossings and the average length of time that a site remained over a threshold, respectively, for each of the 3
regions (Murray Mouth [MM], North Lagoon [NL] and South Lagoon [SL]). Depth is from the previous year, consistent with
the predictive variable identified in the ecosystem state model (refer ‘Methods: Ecosystem state model’ for additional informa-
tion). The depth threshold was only crossed at North Lagoon sites. The number of days since flow occurred over the barrages is
not spatially variable, so the return intervals and exceedance durations presented under the MM column are representative of
the whole Coorong. The water level B threshold was only crossed in the final year of simulation for the 3 southernmost sites (SL),
so it was not possible to calculate return intervals or exceedance duration. na: no value possible; m AHD: metres above the 

Australian Height Datum, which approximates sea level
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(including when the relative proportion of ENSO
years was taken into account), so we identified no
direct link between thresholds and ENSO in the
present study.

Determining rates of change

The rate of change in predictive variables in-
creased as a threshold was approached for those
thresholds where analysis was possible. This included
salinity, water level A, tidal range and depth. Analy-
sis of a rate of change is nonsensical for a count vari-
able such as the number of days since flow, so that
was not attempted. The threshold for water level B
was only crossed in a single year, so it had an insuffi-
cient sample size for analysis. Differences in the scale
of variables somewhat masked the increasing rate of
change for the tidal range, water level A and depth
thresholds (Fig. 1a vs. Fig. 1b), but all tended to
increase within 1 mo of the transition, or 1 yr for the
salinity threshold (and depth to a lesser extent; see
Fig. 1b). The patterns illustrated in Fig. 1 are for
mean rates of change, but minimum and maximum
rates of change also exhibited the same pattern. In
addition to increasing rates of change near a transi-
tion, the bootstrapped variability of the rate of change
also increased as a transition approached (Fig. 1),
again becoming apparent approximately 1 mo before
the transition occurred.

Characterising transitions

Transitions between ecosystem states occurred less
frequently than threshold crossings (as defined above).
Transitions between marine states and hypersaline
states occurred 61 times over the 114 yr model run.
Transitions over the maximum number of days since
flow threshold for marine states occurred 51 times (i.e.
from Estuarine/Marine to Marine, Unhealthy Marine or
Degraded Marine states; see Table 1), while transitions
over the same threshold occurred 23 times for hyper-
saline states (i.e. from Healthy Hypersaline or Average
Hypersaline to Unhealthy Hypersaline or Degraded
Hypersaline; see Table 1). There were only 3 transi-
tions observed between the Unhealthy Marine and De-
graded Marine states (salinity threshold), 3 between
Unhealthy Hypersaline and Degraded Hypersaline
states (water level B threshold) and none between the
Marine and either the Unhealthy or Degraded Marine
states (depth threshold). The remaining results will
relate to transitions between states, rather than the
crossing of individual thresholds (which may or may
not result in a shift in ecosystem state).

Logistic regression

Logistic regression of the predictive variables to
determine the shape of the transition was done for the
tidal range, water level A and maximum number of
days since flow thresholds. Regression analysis was
not undertaken for the water level B, depth or salinity
thresholds. The resultant regression equations showed
very sharp transitions. The regression for the water
level A threshold (Fig. 2) is presented here as an exam-
ple of the typical behaviour observed, with other vari-
ables (i.e. tidal range and maximum number of days
since flow) showing similar and consistent patterns.
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Fig. 1. Evidence of increasing rates of change in days preced-
ing a threshold crossing for 4 variables (note log scale on the
x-axis): tidal range (m d–1; black solid line), salinity (g l–1 d–1;
grey dashed line), depth (m d–1; black dotted line) and water
level A (m AHD d–1; grey solid line), given as (a) raw values
and (b) scaled to the maximum value in each variable. Error 

bars are SE
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The spread of values for each variable around the
threshold tended to be quite continuous (i.e. there was
no jump in values on either side of the threshold, sug-
gesting a gradual change in the variable of interest),
consistent with the notion that
small changes in physical variables
can result in large changes in bio-
logical communities. Ratios com-
paring the largest and smallest dif-
ferences across a threshold were
large for all variables, indicating
inconsistencies in the size of shifts
across each threshold (Table 4).

Zones of transition

In contrast to the sharp transi-
tions identified using logistic
regression, exploration of any zone
of transition showed extremely
wide zones around each threshold
(where sufficient numbers of tran-

sitions occurred for analysis). Again, the water level
A threshold has been used as an example (Fig. 3), but
other thresholds showed similar behaviour. For this
water level threshold, 94% of all cases fell within the
bounds of values that occurred in the year immedi-
ately prior to or following a transition (illustrated by
domain ‘b’ in Fig. 2), suggesting that using presence
within this wide zone of transition would not be a
useful predictor of impending transition because only
the most extreme cases fell outside this zone of tran-
sition and many false positives would be returned.
For other thresholds, the proportion of cases falling
within the zone of transition was 51% for tidal range
and 68% for the maximum number of days without
flow. Again, no zones were computed for the other
thresholds due to the small number of transitions
observed across each.

A predictive model for future degraded ecosystem
states

Identifying an appropriate time lag

The strongest cross-correlations were observed
between flow and hydrodynamic variables in the
Coorong. All cross-correlations undertaken comparing
flow and hydrodynamic variables had at least one sig-
nificant time lag (Table 2). One year time lags were the
strongest most commonly for flow and hydrodynamic
variables (Fig. 4), indicating a close relationship be-
tween flow, water levels and salinity within the
Coorong. Periodicity was also evident in the pattern of
significant lags, so that 2, 3 and 4 yr lags were also sta-
tistically significant for a high proportion of the cross-
correlations investigated (Table 2).
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Threshold Smallest distance Largest distance Ratio b:a
across a transition across a transition

(‘a’ in Fig. 2) (‘b’ in Fig. 2)

Tidal range (m) 0.00a 0.09 300.67b

Maximum no. days since flow
Hypersaline (southern) basin 74 577 7.80
Marine (northern) basin 74 421 5.69

Water level A (m AHD) 0.01 0.37 44.83
aSize of the difference in tidal range was below the precision of the hydrody-
namic model, so it is presented as 0.00

bValue of ‘a’ was below the precision of the hydrodynamic model, so this value
should be interpreted with caution, but is presented to demonstrate the size of
the difference in zones of transition for tidal range

Table 4. Width of the minimum and maximum zones of transition for each threshold.
Thresholds for water level B, salinity and depth were not crossed enough times to
justify logistic regression (i.e. <3 in each case). m AHD: metres above the Australian

Height Datum, which approximates sea level

Fig. 2. Logistic regression of threshold crossings for water
level A resulting in transitions in ecosystem state. Circles are
the data points from the hydrodynamic modelling and have
been jittered to assist in visualisation and interpretation (thus
the position of identical points has been varied slightly so that
all points are visible). The solid line is the line fitted to pre-
dicted values from the logistic regression. Domains ‘a’ (be-
tween the dashed vertical lines) and ‘b’ (between the dotted
vertical lines) correspond to values given in Table 4 and show
the smallest and largest distance across a threshold, respec-
tively. m AHD: metres above the Australian Height Datum, 

which approximates sea level
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Relationships amongst flow, hydrodynamic and bio-
logical variables were weaker. There were fewer signif-
icant cross-correlations observed (Table 2) and there was
less consistency in the lags that tended to be significantly
correlated among variables (Fig. 4). Interestingly, biolog-
ical variables were generally more strongly cross-corre-
lated with other biological variables than with either flow
or hydrodynamic variables. A 2 yr time lag was margin-

ally the most common significant cross-
correlation (Table 2), but all lags between
1 and 8 yr showed similar numbers of sig-
nificant correlations. The strongest corre-
lations occurred for longer time lags, with
lags of more than 5 yr being most com-
monly the strongest (Fig. 4).

Modelling future degraded ecosystem
states

The 1 and 3 yr intervals were used
as the time lags over which to model
future degraded ecosystem states in the
Coorong. Both models were relatively
simple, with only 1 or 2 predictive vari-
ables needed (Fig. 5).

The 1 yr model correctly predicted all
degraded site-years (Fig. 5a), but also
predicted that 15% of healthy site-years
would be degraded, to give an overall
misclassification rate of 14%. Signifi-
cant predictive variables were the aver-
age daily flow volume over the barrages

(adjusted for the distance of the relevant site along the
Coorong) and the maximum depth of water reached for
the year. Thus we conclude that degradation next year
could be predicted by monitoring daily flow and water
depth.

For the 3 yr model (Fig. 5b), there was a single pre-
dictive variable, average annual South Lagoon salinity.
Again, all degraded site-years were correctly classi-
fied. Here, 21% of healthy site-years were predicted to
be degraded, for an overall misclassification rate of
15%. Thus we conclude that degradation 3 yr hence
could be predicted by monitoring South Lagoon
salinity now.

DISCUSSION

Several different approaches were used here to
explore the behaviour of physico-chemical variables
around thresholds with a view to identifying any
mechanism for predicting upcoming ecological transi-
tions. These methods included investigating how rates
of change varied as thresholds approached, identifica-
tion of a zone of transition around each threshold, and
comparison with trends in environmental forcing fac-
tors. Rates of change and variability in rates of change
increased near transitions but not within a time frame
to assist managers. The increase happened late during
the time series (see Fig. 1, note the log scale for time)
and thus there was not much early-warning capacity. It
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Fig. 3. Extent of the zone of transition for the water level A threshold. Each line
predicts a trajectory of predicted average annual water levels for one site,
based on a simulation of historical conditions within the Coorong over 114 yr
for each of 12 focal sites in the Coorong. The shaded area indicates the extent
of the zone of transition that encompasses the highest water level in the year
prior to the threshold being crossed and the lowest water level in the year fol-
lowing the threshold crossing (or vice versa). m AHD: metres above the Aus-
tralian Height Datum, which approximates sea level. Note that water levels 

below 0 m AHD occurred for 3 sites at the end of the simulation
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Fig. 4. Cross-correlation histograms showing the frequency of
the strongest significant correlations for flow versus hydrody-
namic variables (black bars), and biological versus flow, hy-
drodynamic and biological variables (grey bars). Refer to
‘Methods: Identifying an appropriate time lag’ for additional 
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is likely that by the time managers were aware that
rates of change were increasing, the threshold would
have been crossed and thus intervention would no
longer be possible.

Attempts to identify a zone of transition were also of
limited value in predicting upcoming ecological transi-
tions. Logistic regression did not give a realistic idea of
the fuzziness of thresholds, which were extremely
sharp, thus giving rise to an impression of (false) preci-
sion. The crispness of these transitions is likely to be an
artefact of the CART methodology used to produce the
model, and such apparent precision may not be biolog-

ically meaningful. In an attempt to
remedy this artificial crispness, we in-
vestigated the range of values that fell
within a past observed zone of transi-
tion. This approach had the other prob-
lem: that zone was too broad to be of
use. In our case, 51 to 94% of occasions
fell within the zone in which transitions
were possible in the scenario investi-
gated, yet obviously did not always
result in transitions (see Table 3).

Thus the question remains of how to
‘fuzzify’ the artificially sharp transitions
arising from the CART methodology
without producing zones too broad to
be of use. Fuzzy logic techniques have
been applied in some ecological sys-
tems (Prato 2005) in a manner that may
be of use for this application. Field
experiments focused on how ecosys-
tems respond in practice are also likely
to be necessary to define real ranges of
transition. These experiments should
be based on specific hypotheses re-
garding the mechanisms by which
components of the ecosystem respond.
For example, the levels of treatments
used should be set as a range-finding
exercise to determine whether the
thresholds are crisp or fuzzy. Such an
experiment would use the observed
distribution of values around the ana-
lytically-derived threshold (e.g. from
CART analyses) to set the upper and
lower bounds of treatment levels
(Petraitis 1998). Thus the results of such
an experiment would directly relate to
the crispness of thresholds in practice.

In the past, efforts to predict ap-
proaching ecological transitions using
thresholds have focused upon charac-
teristics such as changes in variances,
critical slowing down, changes in re-

turn rates or skewness (Carpenter & Brock 2006, Car-
penter et al. 2008, Dakos et al. 2008, Guttal & Jaya-
prakash 2008). These have largely been detected
using deterministic models describing system behav-
iour in various response variables. The utility of these
characteristics for guiding management of complex
ecosystems has, in most cases, yet to be determined.
The detection of some of these characteristics requires
significant data resources, for example complete and
lengthy time series, and not all of the leading indica-
tors seem to become apparent in a time frame that
would allow management intervention (e.g. see simu-
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Fig. 5. Classification and regression tree models to predict future degraded
ecosystem states for (a) 1 yr in advance and (b) 3 yr in advance. Each is pre-
sented as a logic tree, which can be followed to identify whether degraded
ecosystem states are likely in either 1 or 3 yr time. Each decision box (black out-
line) contains a splitting parameter and its threshold value. The arrows indicate
the direction the tree should be followed when the statement is true versus false.
When a terminal node box (grey outline) is reached, the future presence of either
degraded or healthy ecosystem states has been identified. Degraded ecosystem
states (5 of 8) are defined as those that occur when no freshwater barrage flows
have occurred in 339 d; healthy ecosystem states (3 of 8) are all others. 

MM: Murray Mouth
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lations in Carpenter et al. 2008). Our alternative ap-
proach used thresholds derived from a statistical
model, and focused on the behaviour of thresholds
derived from predictive variables (as there is no time
series of values associated with ecosystem states; they
are either present or absent). Here we used descrip-
tions of the past to infer the future and so focused on a
nested set of rates of change, logistic regression, envi-
ronmental forcing and zones of transition. However,
these approaches also proved of limited use for man-
agement with the results either too precise or not pre-
cise enough to be useful, or where the early warning
comes too late.

Instead, more value was seen in using lagged envi-
ronmental variables to identify changes toward
degraded states. It is theoretically possible to construct
models of these leading indicators using different
lengths of lag. Models were developed at both 1 and
3 yr lags to investigate differences in the drivers of
degraded ecosystem states at different points in time,
as well as to provide managers with ongoing predic-
tions of the likely future condition of the region. Both
resulted in quite good levels of prediction, given the
inherent variability of the system and the time lags
involved (particularly for 3 yr in advance). A 3 yr
advance model, in particular, would give sufficient
warning to managers to intervene in the system to pre-
vent future degradation (see below).

The choice of time lag based on cross-correlations for
these predictive models was not clear-cut. Particularly
for relationships involving biological variables, many
lags had numerous significant correlations. Therefore,
we based our choice of 1 and 3 yr lags on the practical-
ity of using the resultant models for management of the
system. Three years gives good opportunity for man-
agers to act. In a large system like the Murray-Darling
Basin, it would realistically take at least 1 yr to deliver
additional environmental water by the time the need
for that water had been established, politically sanc-
tioned and then the water sourced and actually di-
verted to the estuary. Three years would give managers
at least 1 yr to source the water and 1 yr for the effects
of that water to begin to be apparent. This would then
allow managers to use the 1 yr model to see if the inter-
vention had been successful. There would be much less
opportunity to intervene with only a 1 yr lag, but this
model could highlight any imminent need for emer-
gency actions. Time frames longer than 3 yr are outside
(Australian) political time frames and many manage-
ment planning cycles, so are not likely to be practical
for informing the management of the site, because it is
unlikely that water could be reliably secured that far
in advance. In addition, weather within the Murray-
Darling Basin is so variable that we expect the predic-
tive capacity of the models would diminish as the lag

involved increased, and it would be more difficult to
justify that the water be required in the long run. The
wisdom of allowing ecological modelling to be driven
by political time periods is debatable, and it could be
argued that management, in particular, should be dri-
ven by ecological time frames, rather than vice versa.
We do not pretend to have a solution for this philosoph-
ical question, but better understanding the significant
time lags within an ecological system should contribute
to future debate on the issue.

Thus the 2 models were derived quite deliberately.
We wanted to investigate the consistency of the predic-
tors of future degraded ecosystem states over time. The
2 models we derived for the different time lags gave
different thresholds and had different predictors (i.e.
the physico-chemical variables involved) to focus upon.
Thus the choice of indicator of future degradation is
specific to the time frame involved. Managers should
not expect modelling (or any other approach to natural
resource management) to provide a ‘silver bullet’ that
will cover all situations. Instead they need to look at a
range of threshold values to fit specific purposes and
then use them appropriately. It would also be possible
to combine the use of the different models in clever
ways to allow for different decisions to be made. For ex-
ample, the 3 yr model could be used to predict future
degraded states, the system could be managed accord-
ingly and then the 1 yr model (with its different thresh-
olds) implemented to test whether the intervention that
was imposed had indeed succeeded in avoiding those
conditions associated with a high likelihood of future
degraded states, before they occurred.

Both the 1 and 3 yr models tended to err on the side
of conservatism, with all observed misclassifications
consisting of site-years that supported healthy ecosys-
tem states being predicted to be degraded (Type I
error). A moderate bias for such conservatism is almost
certainly preferable to failing to predict degradation
when it does occur (Type II error), because it allows
managers the opportunity to intervene so as to prevent
irreparable harm to the ecosystem (Fairweather 1991).
Unnecessary intervention in up to 15% of cases is not
likely to be unreasonable, given the inherent climatic
and flow variability within the system and the time
frame of up to 3 yr in advance.

Thus modelling specifically for upcoming degrada-
tion did identify useful trigger levels in a suitable time
frame, so this approach could be used to inform future
management (e.g. by using the leading indicator of
average South Lagoon salinity for degradation 3 yr
hence as a trigger for environmental flows or for other
restoration/rehabilitation actions), but it does not pro-
vide clues about as yet unknown thresholds in the sys-
tem (e.g. transition to a novel but overly degraded
state) as the threshold dynamics options were looking
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to explore. Thus we can never know when we are
approaching a new threshold using this method.

There is another caveat to this approach. In many
cases, we have not yet tested the predictions from the
models (Lester & Fairweather 2009a). The outcomes
that are predicted should be contrasted against what
observations occur over the fullness of time, but we
also feel that targeted experiments might be possible
to speed up our understanding of how these models
translate in practice. Experiments could attempt to
force specific predictive variables over thresholds and
then observe whether the predicted state changes
occurred. This could be actively done on a small scale,
or could be undertaken more passively: following the
development of a stated hypothesis, a wait-and-see
approach could be adopted and the behaviour of the
system then observed. Additional water will either be
available for the system or not, and in either case spe-
cific hypotheses could be developed based on both the
1 and 3 yr models and compared with observations. We
would also suggest the use of time-series analysis to
routinely explore possible lags for both auto-correla-
tion (within an environmental variable) and cross-
correlations (amongst sets of variables) as a means to
better understand the overall system behaviour for
predictive purposes, as done here.

The present study illustrates the nature of threshold
dynamics for one Australian estuary. It does, however,
raise several points of interest for other estuarine and
marine ecosystems, should these patterns prove applic-
able more broadly. Different estuaries will show other
characteristics and different behaviour, and so need to
be modelled by our general approach to identify
ecosystem states in terms of biota and the environmen-
tal transitions between them. Here the ecological re-
sponse model we developed was built at 2 distinct time
frames (i.e. seasonally and annually) with 12 sites dis-
tributed along the Coorong. The modelling approach,
however, is not constrained to these, and spatio-tempo-
ral scales can be changed to reflect the available data.
Despite the spatio-temporal resolution included here,
there was a general lack of portents identified for
changes in ecosystem states in the estuary based on
threshold dynamics. This suggests that focus should be
placed on those aspects of threshold dynamics that
have been shown to be able to potentially predict
changes in ecosystem state (e.g. identified via direct
modelling); these should be tested with monitoring and
then management should be directed accordingly.

It is clear that concern about climate change will put
more pressure upon water resources into the future,
particularly for semi-arid estuaries. An essentially syn-
thetic approach can be seen being actively developed
in a few studies to date from across the globe (e.g. see
Anderson et al. 2006, Powell 2008, Kim & Montagna

2009, Lester et al. 2009, Zweig & Kitchens 2009) to ful-
fil a need that water resource managers shall feel
keenly over the years to come. This synthesis entails an
ability to realistically infer what the future climate is
likely to be in specific locations, translate how that
might diminish water flows but increase demands for
irrigation and other extractive uses, and then foresee
the ecological consequences of such changes. Given
this growing need, models that are able to predict
future ecological degradation in a suitable time frame,
with reasonable predictive accuracy, will be a signifi-
cant and useful resource for estuarine management.

In conclusion, our main recommendations are that
exploring threshold dynamics may not be the best
method for predicting upcoming changes in ecosystem
states with a view to preventing ecological degrada-
tion through active management. Instead we may need
to identify leading indicators of likely future change by
specifically modelling for known degraded states in
the future and thus identifying usable thresholds to
trigger management action in the region. However, a
mechanism for predicting unknown transitions in the
future remains a key knowledge gap.
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