
Deakin Research Online

This is the published version:

Kouzani, Abbas Z. and Nasireding, Gulisong 2009, Multilabel classification by BCH code
and random forests, International journal of recent trends in engineering, vol. 2, no. 1, pp.
113-116.

Available from Deakin Research Online:

http://hdl.handle.net/10536/DRO/DU:30028670

Reproduced with the kind permission of the copyright owner.

Copyright: 2009, Academy Publisher.

FULL PAPER
 International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009

113

Multilabel Classification by BCH Code and Random
Forests

Abbas Z. Kouzani and Gulisong Nasireding
School of Engineering, Deakin University, Geelong,VIC 3217, Australia

Email: {kouzani, gn}@deakin.edu.au

Abstract—Multilabel classification deals with problems in which
an instance can belong to multiple classes. This paper uses error
correcting codes for multilabel classification. BCH code and
Random Forests learner are used to form the proposed method.
Thus, the advantage of the error-correcting properties of BCH
is merged with the good performance of the random forests
learner to enhance the multilabel classification results. Three
experiments are conducted on three common benchmark
datasets. The results are compared against those of several
exiting approaches. The proposed method does well against its
counterparts for the three datasets of varying characteristics.

Index Terms—multilabel data, multilabel classification, error
correcting codes, BCH code, ensemble learners, random forests

I. INTRODUCTION

Singlelabel classification refers to learning from a
collection of instances that each is related to only one label l
from a set of labels L. Multilabel classification, on the other
hand, refers to learning from a set of instances that each is
associated with a set of labels Y L [1]. A sample multilabel
dataset is shown is Table I. It consists of three instances.
Each instance contains four features. There are three classes
L = {C1,C2,C3}. Each instance belongs to one class or
multiple classes.

TABLE I.

SAMPLE MULTILABEL DATASET
Inst Features C1 C2 C3
1 F11 F12 F13 F14 0 1 1
2 F21 F22 F13 F24 1 1 0
3 F31 F32 F13 F34 0 0 1

Multilabel classification has received some attentions in

the past several years. A number of methods have been
developed to tackle multilabel classification problems. Some
key methods are reviewed in the following.

According to Brinker et al. [2], Binary Relevance (BR)
considers the prediction of each label as an independent
binary classification task. It trains a separate binary relevance
model for each possible label using all examples related to
the label as positive examples and all other examples as
negative examples. For classifying a new instance, all binary
predictions are obtained and then the set of labels
corresponding to positive relevance classification is
associated with the instance.

Zhang and Zhou [3] report a multi-label lazy learning
approach which is derived from the traditional k-Nearest
Neighbour (kNN) and named ML-kNN. For each unseen
instance, its k nearest neighbors in the training set are
identified. Then, based on statistical information gained from
the label sets of these neighboring instances, maximum a
posteriori principle is used to determine the label set for the
unseen instance.

Zhang and Zhou [4] present a neural network-based
algorithm that is Backpropagation for Multi-Label Learning
named BP-MLL. It is based on the backpropagation
algorithm but uses a specific error function that captures the
characteristics of multi-label learning. The labels belonging
to an instance are ranked higher than those not belonging to
that instance.

Tsoumakas and Vlahavas [5] propose RAndom K-
labELsets (RAKEL) which is an ensemble method for
multilabel classification based on random projections of the
label space. An ensemble of Label Powerset (LP) classifiers
is trained on smaller size of label subset randomly selected
from the training data. The RAKEL takes into account label
correlations by using single-label classifiers that are applied
on subtasks with manageable number of labels and adequate
number of examples per label. It therefore tackles difficulty
of learning due to a large number of classes associated with
only a few examples.

Several other important works can be also found in [6-11].
The main motivation behind the work reported in this paper
is our desire to improve the performance of the multilabel
classification methods. This paper explores the use of error
correcting code for multilabel classification. It uses the Bose,
Ray-Chaudhuri, Hocquenghem (BCH) code and Random
Forests learner to form a method that can deal with
multilabel classification problems improving the
performance of several popular exiting methods. The
description of the theoretical framework as well as the
proposed method is given in the following sections.

II. BOSE, RAY-CHAUDHURI, HOCQUENGHEM CODE

Bose, Ray-Chaudhuri, Hocquenghem (BCH) Code is a
multilevel, cyclic, error-correcting, variable-length digital
code that can correct errors up to about 25% of the total
number of digits [12-13]. The original applications of BCH
code were limited to binary codes of length 2m-1 for some
integer m. These were extended later to the nonbinary codes
with symbols from Galois field GF(q). Galois field is a field
with a finite field order (number of elements). The order of a
Galois field is always a prime or a power of a prime number.
GF(q) is called the prime field of order q where the q
elements are 0,1, …, q-1.

BCH codes are cyclic codes and can be specified by a
generator polynomial. For any integer m ≥ 3 and t < 2m−1,
there exists a primitive BCH code with the following
parameters:

 (1)

© 2009 ACADEMY PUBLISHER

FULL PAPER
 International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009

114

The code can correct t or fewer random errors over a span
of 2m-1 bit positions. The code is called a t-error-correcting
BCH code over GF(q) of length n. This code is specified as
follows:

1. Determine the smallest m such that GF(qm) has a
primitive nth root of unity β.

2. Select a nonnegative integer b. Frequently, b=1.
3. Form a list of 2t consecutive powers of β:

. Determine the minimal
polynomial with respect to GF(q) of each of these
powers of β.

4. The generator polynomial g(x) is the least common
multiple (LCM) of these minimal polynomials. The
code is a (n, n- deg(g(x))) cyclic code.

Due to the fact that the generator is constructed using

minimal polynomials with respect to GF(q), the generator
g(x) has coefficients in GF(q), and the code is over GF(q).
Two fields are involved in the construction of BCH codes.
GF(q) is where the generator polynomial has its coefficients
and is the field where the elements of the codewords are.
GF(qm) is the field where the generator polynomial has its
roots. For encoding purpose, it is adequate to work only with
GF(q). However, decoding requires operations in GF(qm).

For binary BCH codes, let α be a primitive element in
GF(2m). For 1≤ i ≤ t , let Φ2i-1(x) be the minimum
polynomial of the field element α2i−1. The degree of Φ2i-1(x)
is m or a factor of m. The generator polynomial g(x) of t-
error-correcting BCH codes of length 2m-1 is given by:

 (2)

The first explicit decoding algorithm for binary BCH

codes was Peterson’s algorithm that was useful only for
correcting small numbers of errors. Berlekamp introduced
the first truly efficient decoding algorithm for both binary
and nonbinary BCH codes. This was further developed by
Massey and is usually called the Berlekamp-Massey
decoding algorithm.

Consider a BCH code with n = 2m-1 and generator
polynomial g(x). Suppose a code polynomial c(x) = c0 + c1 x
+ ... + cn-1 xn-1 is transmitted. Let r(x) = r0 + r1 x + ... + rn-1 xn-1
be the received polynomial. Then, r(x) = c(x) + e(x), where
e(x) is the error polynomial. To check whether r(x) is a code
polynomial, r(α) = r(α2) = ... = r(α2t) = 0 is tested. If yes, then
r(x) is a code polynomial, otherwise r(x) is not a code
polynomial and the presence of errors is detected. The
decoding procedure includes three steps: syndrome
calculation, error pattern specification, and error correction.

III. RANDOM FORESTS

Ensemble learning refers to the algorithms that produce
collections of classifiers which learn to classify by training
individual learners and fusing their predictions. Growing an
ensemble of trees and getting them vote for the most popular
class has given a good enhancement in the accuracy of
classification. Random vectors are built that control the
growth of each tree in the ensemble. The ensemble learning
methods can be divided into two main groups: bagging and
boosting.

In bagging, models are fit in parallel where successive
trees do not depend on previous trees. Each tree is

independently built using bootstrap sample of the dataset. A
majority vote determines prediction. In boosting, models are
fit sequentially where successive trees assign additional
weight to those observations poorly predicted by previous
model. A weighted vote specifies prediction.

A random forest [14] adds an additional degree of
randomness to bagging. Although each tree is constructed
using a different bootstrap sample of the dataset, the method
by which the classification trees ate built is improved.

A random forest predictor is an ensemble of individual
classification tree predictors. For each observation, each
individual tree votes for one class and the forest predicts the
class that has the plurality of votes. The user has to specify
the number of randomly selected variables m_try to be
searched through for the best split at each node. Whilst a
node is split using the best split among all variables in
standard trees, in a random forest the node is split using the
best among a subset of predictors randomly chosen at that
node. The largest tree possible is grown and is not pruned.
The root node of each tree in the forest contains a bootstrap
sample from the original data as the training set. The
observations that are not in the training set are referred to as
“out-of-bag” observations.

Since an individual tree is unpruned, the terminal nodes
can contain only a small number of observations. The
training data are run down each tree. If observations i and j
both end up in the same terminal node, the similarity
between i and j is increased by one. At the end of the forest
construction, the similarities are symmetrised and divided by
the number of trees. The similarity between an observation
and itself is set to one. The similarities between objects form
a matrix which is symmetric, and each entry lies in the unit
interval [0, 1]. Breiman defines the random forest as [14]:

A random forest is a classifier consisting of a collection of
tree-structured classifiers },1),,({ K=Θ kh kx where }{ kΘ
are independent identically distributed random vectors and
each tree casts a unit vote for the most popular class at
input x.

Fig. 1 displays a pseudo-code for the random forest

algorithm. A summary of the random forest algorithm for
classification is given below [15]:

• Draw K bootstrap samples from the training data.

• For each of the bootstrap samples, grow an unpruned
classification tree, with the following modification:
at each node, rather than choosing the best split
among all predictors, randomly sample m of the
predictors and choose the best split from among
those variables.

• Predict new data by aggregating the predictions of
the K trees, i.e., majority votes for classification,
average for regression.

© 2009 ACADEMY PUBLISHER

FULL PAPER
 International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009

115

Figure 1. Pseudo-code for the random forest algorithm.

The random forest approach works well because of: (i) the
variance reduction achieved through averaging over learners,
and (ii) randomised stages decreasing correlation between
distinctive learners in the ensemble. The generalisation error
of a forest of tree classifiers depends on the strength of the
individual trees in the forest and the correlation between
them. Using a random selection of features to split each node
yields error rates that compare to AdaBoost [16] An estimate
of the error rate can be obtained, based on the training data,
by the following [15]:

• At each bootstrap iteration, predict the data that is
not in the bootstrap sample, called ``out-of-bag'' data,
using the tree which is grown with the bootstrap
sample.

• Aggregate the out-of-bag predictions. On the
average, each data point would be out-of-bag around
36.8% [17] of the times. Calculate the error rate, and
call it the “out-of-bag” estimate of error rate.

With regard to the 36.8%, the random forest forms a set of
tree-based learners. Each learner gets different training set of
n instances extracted independently with replacement from
the learning set. The bootstrap replication of training
instances is not the only source of randomness. In each node
of the tree the splitting attribute is selected from a randomly
chosen sample of attributes. As the training sets of individual
trees are formed by bootstrap replication, there exists on
average %8.361

≈
e

 of instances not taking part in construction

of the tree [17]. The random forest performs well compared
to some other popular classifiers. Also, it has only two
parameters to adjust: (i) the number of variables in the
random subset at each node, and (ii) the number of trees in
the forest. It learns fast.

IV. PROPOSED METHOD

This paper explores the utilization of an error correcting
code and random forests learner for multilabel classification.
The proposed method is called MultiLabel Bose, Ray-
Chaudhuri, Hocquenghem Random Forests (ML-BCHRF).
The block diagram description of the ML-BCHRF is shown
in Fig. 2.

The method first transforms the set of labels L using the
Bose, Ray-Chaudhuri, Hocquenghem (BCH) encoding
algorithm. For a k class dataset, each set of labels that is
associated with an instance containing k binary values is
treated as a message codeword and is transformed into an n
bit binary values where n > k. the n bit binary word is called
the encoded message. Then, the multilable classification
problem is decomposed into n binary classification problems.

Next, n random forests classifiers are developed one for each
binary class. After that, the n classification decisions of n
binary classifiers are transformed using the BCH decoding
algorithm and again k binary values are obtained. Therefore,
the advantage of the error-correcting properties of the BCH
code is incorporated into the system that helps correct
possible misclassification of some individual n binary
classifiers.

Figure 2. Block diagram description of the proposed ML-BCHRF method.

For classification of a new instance, its features are
independently presented to n binary classifiers. Then the n
classification decisions of n binary classifiers are
transformed into k binary values using the BCH decoding
algorithm. The error-correcting is applied during this
transformation that helps correct possible misclassification of
some individual n binary classifiers. The bits of the k
resultant binary values that are ‘1’ indicate that the instance
belong to the associated class.

V. EXPERIMENTAL RESULTS

To evaluate ML-BCHRF, its performance was evaluated
against a number of exiting methods on three different
datasets. These are among the popular benchmark datasets
for multi-label classification. Their characteristics are
presented in Table II.

The ML-BCHRF employs the random forest learner as its
base classifier. The random forest learner has two important
parameters, called number-of-trees-to-grow and number-of-
variables-at-each-split, that can be varied to get the best
number of tree within the forest for the specific training data.

TABLE II.

CHARACTERISTICS OF BENCHMARK DATASETS
Dataset Features Classes Train Testing
Scene 294 6 1211 1196
Yeast 103 14 1500 917

Mediamill 120 101 30993 12914

In the first experiment, we trained and tested the ML-

BCHRF on the Yeast dataset. The (63, 16) BCH encoder was
used and two dummy bits were added to the label set making

© 2009 ACADEMY PUBLISHER

FULL PAPER
 International Journal of Recent Trends in Engineering, Vol 2, No. 1, November 2009

116

it have 16 binary bits. We used number-of-trees-to-grow =
60 and number-of-variables-at-each-split = 20. However,
these two parameters can be varied to achieve better results.
The ML-BCHRF results were compared against those of
MMP [6], AdaBoost.HM [7], ADTBoost.HM [8], LP [5], BR
[2], RankSVM [9], ML-KNN [3], RAKEL [5], 1vsAll SVM
[10], and ML-PC [11] found in the literature. Table III shows
the experimental results for the Yeast dataset.

TABLE III.

RESULTS FOR YEAST
Method Hamming Loss

MMP 0.297
ADTBoost.HM 0.215
AdaBoost.HM 0.210
LP 0.202
BR 0.199
RankSVM 0.196
ML-KNN 0.195
RAKEL 0.193
1vsAll SVM 0.191
ML-PC 0.189
ML-BCHRF 0.188

In the second experiment, we trained and tested the ML-

BCHRF on the Scene dataset. The (31, 6) BCH encoder was
used. We used number-of-trees-to-grow = 60 and number-of-
variables-at-each-split = 20. The ML-BCHRF results were
compared against those of BR [2], LP [5], RAKEL [5] found
in the literature. Table IV shows the experimental results for
the Scene dataset.

In the third experiment, we trained and tested the ML-
BCHRF on the Mediamill dataset. The (255, 107) BCH
encoder was used and six dummy bits were added to the
label set making it have 107 binary bits. We used number-of-
trees-to-grow = 60 and number-of-variables-at-each-split =
20. The ML-BCHRF results were compared against those of
LP [5], BR [2], ML-KNN [3], RAKEL [5] found in the
literature. Table V shows the experimental results for the
Mediamill dataset.

TABLE IV.
RESULTS FOR SCENE

Method Hamming Loss
BR 0.114
LP 0.099
RAKEL 0.095
ML-BCHRF 0.074

The experimental results show that ML-BCHRF has

performed better than its reported counterparts. It has
performed very well for three datasets of varying
characteristics. The reason for the demonstrated performance
relates to the mixture of: (i) the error correcting capability of
the BCH code, and (ii) the superior performance of the
random forest learner.

TABLE V.
RESULTS FOR MEDIAMILL

Method Hamming Loss
LP 0.046
BR 0.038
ML-KNN 0.031
RAKEL 0.030
ML-BCHRF 0.028

VI. CONCLUSION

A method was proposed that BCH-encodes labels and then
decomposes the problem into binary classification. One
random forests classifier is developed for each binary class.
The classification decisions are BCH-decoded using the
BCH decoding algorithm and again k binary values are
obtained. The experimental results show that the proposed
method has performed better than its reported counterparts.
Future work will include experiments in which the
parameters of the random forests learner could be varied for
achieving better results.

REFERENCES

[1] G. Tsoumakas and I. Katakis, “Multi-label classification: An
overview,” International Journal of Data Warehousing and
Mining, vol. 3, no. 3, pp. 1-13, 2007.

[2] K. Brinker, J. Furnkranz, and E. Hullermeier, “A united model
for multilabel classification and ranking,” Proceedings of the
17th European Conference on Artificial Intelligence (ECAI
'06), Riva del Garda, Italy, 2006, pp. 489-493.

[3] M.-L. Zhang and Z.-H. Zhou, “A k-nearest neighbour based
algorithm for multi-label classification,” Proceedings of IEEE
GrC'05, Beijing, China, 2005, pp. 718-721.

[4] M.-L. Zhang and Z.-H. Zhou, “Multi-label neural networks
with applications to functional genomics and text
categorization,” IEEE Transactions on Knowledge and Data
Engineering, vol. 18, no. 10, pp. 1338–1351, 2006,

[5] G. Tsoumakas and I. Vlahavas, “Random k-labelsets: An
ensemble method for multilabel classification,” Proceedings of
the 18th European Conference on Machine Learning (ECML
2007), Warsaw, Poland, 2007, pp. 406-417.

[6] C. Crammer and Y. Singer, “A family of additive online
algorithms for category ranking”, Machine Learning Research,
3, pp. 1025-1058, 2003.

[7] R. E. Schapire and Y. Singer, “BoosTexter: A boostingbased
system for text categorization”, Machine Learning, 39, pp.
135-168, 2000.

[8] F.D. Comite, R. Gilleron and M. Tommasi, “Learning multi-
label alternating decision tree from texts and data”,
Proceedings of MLDM 2003, Lecture Notes in Computer
Science, 2734, Berlin, 2003, pp. 35–49.

[9] A. Elisseeff and J. Weston, “A kernel method for multilabelled
classification”, Proceedings of NIPS’02, Cambridge, 2002.

[10] J. Platt, “Probabilistic Outputs for Support Vector Machines
and Comparison to Regularized Likelihood Methods”. Adv. in
Large Margin Classifiers. MIT Press, pp. 61–74. 1999.

[11] M. Petrovskiy, “Paired comparisons method for solving multi-
label learning problem,” Proceedings of the Sixth International
Conference on Hybrid Intelligent Systems (HIS'06), 2006.

[12] C.-H. Wei, “Channel coding notes,” [Online]. Available:
http://cwww.ee.nctu.edu.tw/course/channel_coding/

[13] A. Rudra, “BCH codes,” Lecture 24, Error Correcting Codes:
Combinatorics, Algorithms and Applications (Spring 2009),
2009.

[14] L. Breiman, "Random Forests," Machine Learning, vol. 45, pp.
5-32, 2001.

[15] A. Liaw and M. Wiener, "Classification and regression by
randomForest," R News, vol. 2, pp. 18-20, 2002.

[16] Y. Freund and R. E. Schapire, "A short introduction to
boosting," Journal of Japanese Society for Artificial
Intelligence, vol. 14, pp. 771--780, 1999.

[17] L. Breiman, "Bagging predictors," Machine Learning, vol. 24,
1996.

© 2009 ACADEMY PUBLISHER

