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Abstract. This paper presents a triple-random ensemble learning method for 

multi-label classification problems, especially aimed at application to image to 

text translation and automatic image annotation. The proposed randomized 

learning method integrates the concepts of random subspace, bagging and 

random k-label sets ensemble learning methods to form an approach to 

classification of multi-label data. It applies the random subspace method to 

feature space, label space as well as instance space at the same time. The 

devised subset selection procedure is executed iteratively. Each multi-label 

classifier is trained using the randomly selected subsets. At the end of the 

iterations, the ensemble MLC classifiers are constructed. The proposed method 

is implemented and its performance is evaluated. The experimental results 

demonstrate that the proposed method outperforms the examined counterparts 

in most occasions when tested on six multi-label datasets from different 

domains. It is shown that the developed method possesses a general usability in 

dealing with various multi-label classification problems. Therefore, the triple 

random ensemble learning method is recommended for application to image to 

text translation system, which is based on the positive outcome of predictive 

performance of TREMLC on scene image dataset. 

 

Index Terms: Triple-random ensemble, multi-label classification, subspace 

method, RAkEL, bagging,   

 

1   Introduction 

Image to text translation (ITT) is the process of translating a given un-labelled image 

into a set of semantic concepts or keywords.  Automated image annotation can be 



considered as a category of image to text translation where the task is to assign a set 

of semantic concepts to un-labelled image [Duy02, Bar03]. Besides, automated image 

region annotation is another option for realization of image to text translation [Bar03, 

Yua07]. The Automated image annotations can be grouped into two categories: 

statistical model based and classification based approaches [Liu07, Wan08]. The 

statistical model based approaches give rise to a problem called semantic gap. In 

order to avoid such problem, classification based approaches have appeared. They can 

be further divided into single-label and multi-label classification [Tsa08, Wan08], 

which can be seen in figure 1. However, single-label classification ignores the 

correlation among semantic concepts associated with the image. Therefore, multi-

label classification is emerging as a robust candidate for image annotation problems 

[Kan06, Wan08].  

 

 

           

     Fig. 1: Categorisation of image to text translation. 

 

Although, a number of multi-label classification methods have been developed for 

multi-label image classification and automatic image and video annotations [Bou04, 

Zhou06, Li04, Joh05, Kan06, Wan08, Nas09, Qi07, Dim09], their performances are 

yet to match the basic requirement of image annotation systems. Therefore, a novel 

triple random ensemble multi-label classification (TREMLC) method is proposed in 

this paper, which can be applied to image to text translation and automatic image 

annotation. 

 



The remaining content of this technical report is organized as follow. Section 2 

introduces the related work to this paper include overview of the popular MLC 

algorithms and the baseline ensemble learning methods. Section 3 describes the 

proposed TREMLC method. Section 4 provides the experimental setup, including the 

datasets used for evaluation, the evaluation methods, as well as the experimental 

settings. Section 5 presents the experimental results and the associated discussions. 

Additionally, prospective application of the proposed TREMLC method is pointed out 

in section 6, which is based on the positive outcome of predictive performance of 

TREMLC on several multi-label datasets. Finally, conclusion and the future direction 

of this work are given in Section 7.   

 

2  Related Work 

This section introduces the concepts of multi-label classification and overviews of the 

related popular multi-label classification methods. The multi-label classification 

algorithms in these methods are used as the comparative counterparts for the proposed 

TREMLC algorithm. Besides, the baseline ensemble learning methods are also briefly 

introduced.  

  

2.1 Multi-label Learning  

Traditional single-label classification is concerned with learning from a set of 

examples that are associated with a single label l from a set of disjoint labels L, |L| > 

1. In multi-label classification (MLC), on the other hand, the examples are associated 

with a set of labels Y  L [1, 10, 11, 12]. In order to describe multi-label problems, 

using }...1:{ MjlL j   to denote the finite set of labels in a multi-label learning 

task and },...,1),,{( NiYxD ii 


to represent a set of multi-label training 

examples, where 
ix


 denotes a feature vector, and 
iY   L denotes a set of labels of the 

i-th example in D. Multi-label classification problems can be found in various 

domains, examples of these problems include text document classification [13 - 16, 

26 - 27], bioinformatics data classification [17-19, 11], music categorization [20-21], 

scene image classifications [1-2, 22],   image and video annotation [3- 9]. Therefore, a 

variety of MLC approaches have been explored to tackle these problems. Multi-label 

classification methods can be mainly categorized into two groups: (i) problem 

transformation methods and (ii) algorithm adaptation methods [12, 19]. The former 



includes methods that are algorithm independent. They transform the multi-label 

classification task into one or more single-label classification, regression or ranking 

tasks. The latter one includes methods that extend specific learning algorithms to 

adapt multi-label learning by handling multi-label data directly [19]. What type of 

method should be developed for a particular multi-label task depends on the 

characteristics of the multi-label problem.  

 As an algorithm adaptation method, the multi-label k-nearest neighbour (ML-KNN) 

method [11] extends the popular k Nearest Neighbours (kNN) lazy learning algorithm 

using a Bayesian approach [23]. It uses the maximum a posterioris principle in order 

to determine the label set of the test instance, based on prior and posterior 

probabilities for the frequency of each label within the k nearest neighbours.   

 Binary relevance (BR) method [18] is a popular PT method that learns M binary 

classifiers, one for each different label in L. For the classification of a new instance, 

BR outputs the union of the labels that are positively predicted by the M classifiers.  

 Label Power set (LP) is an effective problem transformation method [1, 19]. It 

considers each unique set of labels that exists in a multi-label training set as one of the 

classes of a new single-label classification task. Given a new instance, the single-label 

classifier of LP outputs the most probable class, i.e. a set of labels. Due to the large 

number of classes produced by the label power set method, many of the classes 

correspond to a few examples causing difficulties for the learning process. 

 The random k-label sets (RAkEL) method [24, 16] builds an ensemble of LP 

classifiers. Each LP classifier is trained using a different small random subset of the 

set of labels. In such a way, RAkEL is able to take label correlations into account, 

while avoiding LP's problems. A ranking of the labels is produced and threshold is 

then used to produce a classification.  

The calibrated label ranking (CLR) method [22] learns a mapping from instances to 

rankings over a finite number of predefined set of class labels. The main idea of the 

approach is to separate the relevant labels from the irrelevant labels in each example 

by introducing artificial calibration labels.  

 In the Hierarchy Of Multi-label ClassifiERs (HOMER) method [25], a tree-shaped 

hierarchy of simple multi-label classifier is constructed and each one of the classifiers 

handles a smaller set of labels compared with the entire large label set L. The better 



balanced example distribution and divide-and-conquer strategies are adopted for 

designing the HOMER.  Different approaches for distribution of labels into subsets 

are presented in the literature for HOMER. 

Furthermore, in addition to the aforementioned algorithm adaptation and problem 

transformation based methods, various multi-label classification approaches are 

formed by combining and integrating the methods within these two groups [19], such 

as a probabilistic generative model [26], Adaboost.MH and Adaboost.MR [10], and 

ML-KNN [11]. A number of baseline algorithms including decision trees and 

boosting, probabilistic methods, neural networks, support vector machines, and lazy 

and associative methods are employed for development of multi-label classification 

and label ranking methods [12, 19]. Besides, the feature dimensionality reduction and 

the feature selection methods are also explored for multi-label classification [27-29].  

However, the development of robust MLC algorithms is still in demand for improving 

the classification performance. 

2.2  Ensemble Learning  

Bagging [30], boosting [10] and Random Forests [31] are conventional popular 

ensemble classification methods that are initially designed to handle single-label 

classification problems. The results of these ensemble learning methods [30 - 37] are 

appealing compared to single classifiers. Specifically, the bagging method uses 

random sub-sampling to train instances. Also, the random subspace method [31] 

applies the base-level algorithm on randomly selected subset of features at each step 

of tree construction and selects the best among these to build ensemble classifiers. 

Breiman [32] combined the concepts of bagging and random subspaces to form 

random forests, which construct better ensemble classifiers. Attribute bagging method 

was proposed for improving accuracy of classifier ensembles by using random feature 

subsets [34]. Bootstrap-inspired techniques [35] and Random feature subset selection 

for ensemble based classification [36] are also become popular.   More recently, 

Panov et al [37] developed a variant of random forests in order to achieve a similar 

effect of random forests, which improved ensemble classification performance. 

However, these methods only targeted single-label classification. 

Along with multi-label classification problems have increasingly drawn researchers’ 

attention, development of various ensemble learning methods become prevailed [2, 4, 

10, 14, 15, 16, 24, 28]. The results demonstrate that the ensemble strategies can also 



bring robustness to multi-label classification performances. For example, a model-

shared random subspace bagging method automatically finds shares and combines a 

number of base models through multiple labels [28]. Johnson et al[Joh05] learned not 

only relationship between image and words, but also the relationship between image 

regions and words through multi-class boosting and multi-label weak learners 

(MLBoost).  Furthermore, multi-instance, a multi-label learning framework was 

proposed by Zhou et al. [Zho06], in which, MIMLBOOST and MIMLSVM learning 

algorithms were formed.  However, these methods ignore sub-sampling the label set 

in the label space, so that the label correlation was not taken into account. RAndom k-

label sets Ensemble Learning (RAkEL) method [16, 24] was merged by constructing 

an ensemble of m LP classifiers iteratively. RAKEL considered the label correlations 

in the label space which enables avoiding the learning difficulty where a large number 

of classes are associated with a few examples. Besides, computational complexity of 

RAKEL is also reduced comparing with its base multi-label classifier LP. These 

ensemble methods provide a solid foundation and inspiration for emerging the 

proposed triple-random ensemble multi-label classification method in this paper. 

 

3 A Triple-Random Ensemble Multi-label Classification Method 

This section describes the proposed Triple-Random Ensemble Multi-Label 

Classification (TREMLC) method. TREMLC is a combination of the random 

subspace method (RSM) [31, 34], bagging [30, 35] and random k-labelset ensemble 

learning (RAkEL) [16, 24], where RSM applies the random subspace strategy to 

feature space, and RAKEL applies the strategic random subspace scheme to label 

space, whereas bagging [30] brings the random sub-sampling method to instance 

space. Furthermore, since random forest [32] and its variants [37] employ the random 

subset selection scheme in both feature space and instance space, TREMLC can be 

considered combining and extending the ideas of the RSM, bagging and RAkEL, or  

integration the ideas of Random Forests and RAKEL. That is, TREMLC applies RSM 

to feature space, label space, as well as instance space. The triple random algorithm 

can be described in the form of a pseudo code as shown in Figure 1. 

 

 

 



 Input: Set of training data D of size N, set of attributes A of size F, set of labels L with size M, 
size of feature subset  Sf < F, size of label subset Sl  < M, bag percentage b, number of models 
m 

 Output: An ensemble of LP classifiers hi, i=1…m. 

  FS  {},   LS  {} 
   for i =1 to m 

       { 
        Di  random selection of N*b% instances from D; 
         do 
             { 
                Fi  random selection of Sf features from A  
              } while (Fi not in FS); 
         FS FS union {F} 
            do 
              { 
                Gi  random selection of Sl labels from L  
                } while (Gi not in LS); 
         LS  LS union {G} 
          Ri  projection of Di to the attribute and label dimensions, F and G. 
Train an LP classifier hi based on Ri; 
      } 

(a) TREMLC Training Process. 

 
(b) TREMLC Testing Process. 

Fig. 1: Pseudo code for the proposed TREMLC algorithm. 

 Input: Set of labels L with size M, number of models m, LP classifiers hi, sets of attributes Fi and 

labels Gi, new instance x


 

 Output: Multi-label classification vector Result 

for(int i = 1 to m) { 

      x’  projection of x in dimensions of Fi and Gi; 

      p = hi(x’); 

   for(int j = 1 to L)  

       { 

         SumVote j = SumVote j + Vote(p); 

         LengthVote j++; 

      } 

   } 

for(int j = 1 to M) 

    { 

       Confj  SumVotej / LengthVotej; 

         if(Confj > threshold) 

          { 

           Resultj 1; 

           } 

   else Resultj  0; 

       }                                    



A set of feature subsets, a set of label subsets, and a set of instance sets are selected 

randomly and iteratively for TREMLC, and the random subset selections are without 

replacement. By end of iteration, a set of ensemble multi-label classifiers are 

constructed based on the randomly selected subsets. Note that, LP [16, 19] is used as 

multi-label Lerner base and Decision Tree [38] is used as base classifier for LP in this 

problem transformation based TREMLC algorithm. 

 

4 Experimental Setup 

This section provides details of the experimental setup. First, it describes the datasets 

used for the evaluation of the proposed algorithm and the associated counterparts. 

Next, the evaluation criteria used for measuring the performance of the examined 

MLC algorithms are presented. Finally, the experimental setting is explained. 

 

4.1 Datasets 

The proposed TREMLC algorithm and the examined counterparts are tested on six 

multi-label datasets in this paper, including scene image dataset [1], jmlr2003 image 

dataset Corel16k001 [39], multimedia mediamill dataset [40] biological yeast dataset 

[17], music categorical emotions dataset [20], diagnostic medical report dataset [15]. 

The scene image dataset contains 2407 images annotated with up to 6 concepts such 

as beach, mountain and field. Each image is described with 294 visual numeric 

features and these features are represented with spatial colour moments in Luv colour 

space. Each instance in the train and test datasets is labelled with possible 6 object 

classes as mentioned above [1, 22].  

The Corel16k001 is produced from the first (001) subset of the data jmlr2003 [39], 

which is derived from a popular benchmark dataset eccv2002 [41] by eliminating less 

frequently appeared keyword classes. That is, 374 keyword classes in eccv2002 were 

reduced to 153 in jmlr2003-001. Before this stage, images are segmented using 

normalized cuts, then useful 46 numeric features are extracted from each region/blob 

and vector quantized. Next, the blobs are clustered into 500 blob clusters. The 

Corel16k001 data is created based on 13766 images, and 500 blob clusters are used as 

nominal features of the dataset.   

 The mediamill dataset is based on the mediamill challenge data set [40]. It contains 

pre-computed low-level multimedia features from 85 hours of international broadcast 



news video of the TRECVID 2005/2006. This dataset contains Arabic, Chinese, and 

US news broadcasts that were recorded during November 2004, and the contents are 

annotated with multiple labels. The component used for the evaluation of MLC 

algorithms are based on still image data from the video shot key frames extracted. The 

annotation of the mediamill data was extended to current 101 concepts from a manual 

annotation of 39 labels by the TRECVID 2005. 

The yeast dataset can be used for biological gene function classification evaluation. 

This dataset contains 2417 gene examples and each of which is related up to a set of 

14 functional gene classes from the comprehensive Yeast Genome Database of the 

Munich Information Center for protein Sequences. Each gene is expressed with 103 

numeric features [17, 18, 11].  

The emotions dataset can be used for evaluating the predictive power of several audio 

features in a new multi-label feature selection method [20, 21]. The emotion dataset 

contains a set of 593 songs with 6 clusters of music emotions, which is constructed 

based on the Tellegen-Watson-Clark model. 

The medical dataset was constructed from the available data in Computational 

Medicine Center’s 2007 Medical Natural Language Processing Challenge [15]. This 

dataset contains 978 clinical free text reports and each diagnostic report is related to 

one or more disease code from the 45 classes [15, 16].    

These datasets are widely used as benchmark datasets for evaluating the MLC 

algorithms [2, 7, 9, 11, 12, 15-16, 19-22, 24-25, 42-43]. Table 1 shows general 

characteristics of these datasets, including name, number of examples, number of 

features and number of labels for each dataset, types of attributes, and the domains 

that these datasets are belonging to.  Note that the ‘num’ in the table 1 refers to 

numerical attribute dataset, and ‘nom’ refers to nominal attribute dataset. 

 
Table1. Characteristics of the datasets used. 

 

Datasets Names Domain Instances Attributes Num.  labels 

scene image 2407 294 num. 6 
Corel16k001 image 13766 500 nom. 153 
mediamill video 43907 120 num. 101 
yeast biology 2417 103  num 14 
emotions music 593 72  num 6 
medical text 978 1449 nom 45 



4.2 MLC Evaluation Methodology 

The evaluation measures for multi-label classification are different from those of 

single-label classification [11]. These evaluation methods can be divided into example 

based measures, label-based measures, and ranking based measures [10-12, 22, 42]. 

Several MLC evaluation measures from the three types aforementioned are adopted in 

this work as follows. 

Example-based Evaluation Measures bipartitions based on the average differences 

of the actual and predicted sets of labels over all examples of the evaluation dataset.  

The hamming-loss refers to average binary classification error. Suppose given the 

multi-label evaluation dataset D contains multi-label examples (
ii Yx , ), i=1, 2,…, N, 

LYi  is a set of true labels and L= {lj: j=1…M} is the set of all labels, and xi is a 

new instance. Predicted set of labels for the instance xi by using a MLC method set to 

be Zi , and ranking based prediction by using label ranking method for a label l  is 

assumed to be  ri (l). Hence, Hamming-Loss can be calculated as: 

                            Hamming-Loss = 


N

i

ii

M

ZY

N 1

||1

                                               (1)

 

where )( ii xhZ   is a set of labels that predicted by a multi-label classifier h 

for an example 
.ix [12]. The smaller the value of the Hamming-loss is the indicative 

of better performance of the classification. 

Label-Based Evaluation Measures: Label based F1-measure refers to the harmonic 

mean between precision and recall, where the recall refers to the percentage of 

relevant labels that are predicted and precision refers to the percentage of predicted 

labels that are relevant. F1-measure is widely used for single-label classification 

evaluation, which also is applicable for evaluating multi-label classification by using 

two averaging methods, i.e. Micro and Macro averaging. The F1-measure and micro 

averaging can be calculated as: 

                           F-measure= 
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where the 
llll fntnfptp ,., denote a number of true positive, false positive, true 

negative and false negative for l labels after binary evaluation[12]. The value of the 

micro F1-measure is the greater the better performance of the classification. 

Ranking-based Evaluation Measure: Label based ranking predict the rank of a 

label. The most relevant label is ranked to receive highest score, while the most 

irrelevant one is ranked to receive lowest score. The ranking based prediction by 

using label ranking method for a label l is assumed to be ri (l).  There are four ranking-

based metrics can be used to measure the label ranking, i.e. one-error, coverage, 

ranking-loss and average precision [12].  

One-error evaluates how many times the top-ranked label is not in the set of proper 

labels of the instance. One-error is equal to normal classification error for single-label 

classification problems. 

                                

))((
1

minarg
1

lr
N

errorOne i
Ll

N
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                                        (4) 

   where                          (l) = 
otherwise

Ylif i

0

1
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The smaller the value of the one-error is indicative of better performances of the 

classification.  

Coverage evaluates how far we need to cover all the proper labels of the instance on 

average.

                                      1)(max
1

1
 

 

N

i
i

Yl
lr

N
Coverage

i

                                                 (5) 

The smaller the value of the coverage, the better performance of the classification is 

indicated. 

Ranking-loss evaluates the average fraction of label pairs that are reversely ordered 

for the instance. 
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where iY  denotes the complementary set of 
iY  with respect to L.

 
The smaller values 

of the Ranking-loss the better performances of the classification.
 

Average precision evaluates the average fraction of labels ranked above a particular 

label 
iYl  , which actually is in Yi: 
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The larger value of the average precision the better performances of the classification.  

 

4.3 Experimental Setting 

This section provides experimental setting for evaluation of the proposed TREMLC 

algorithm and the selected counterparts. In order to empirical study of the proposed 

TREMLC, some popular MLC algorithms, as indicated in section2.1, are chosen from 

the open source MULAN library [19], which is built on top of the open source Weka 

library [44]. Default parameters are set for the examined MLC algorithms as indicated 

in the literature. Such as, ML-kNN is run with 10 nearest neighbours and a smoothing 

factor equal to 1.  RAKEL [16, 24] uses Label Powerset [1, 19] as multi-label learner 

base, and set the size of label subset k= 3, number of models (number of iterations) to 

be m= 2k, and threshold is set to be 0.5 for all the algorithm evaluations. HOMER 

distributes the labels evenly and randomly into 3 subsets, and CLR is chosen to be 

multi-label learner base for the HOMER.  Furthermore, Decision tree C4.5 [38] is 

used as base classifier for all the selected problem transformation based MLC 

methods in this paper including the proposed TREMLC. ML-KNN is the only 

algorithm adaptation MLC method among the examined existing methods in the 

current experimental setting.  

The same as RAKEL[24], LP [1, 19] is used as multi-label base learner in TREMLC. 

The rest of default parameters for TREMLC are set as follow: each subset covers 70% 

of the original training set in the feature space and instance space, while the number 

of models is set to be twice size of the label set size of a multi-label dataset, and label 

subset size is set to be 3. Additionally, the minimum size of models is set to be 200 if 

m=2L < 200.  



Multi-label classification evaluation measures including the example-based 

Hamming-loss, the label-based micro F1-measure and ranking-based all measures are 

employed to measure the predictive performances of the examined MLC algorithms. 

Additionally, the records of the evaluation time for each examined algorithm are also 

presented in order to estimate the computational complexity of the algorithms. The 

experiments have been performed on the Victorian Partnership for Advanced 

Computing machines. The predictive performances are evaluated using the 10-fold 

cross-validation.    

 

5 Results and Discussion 

This section presents experimental evaluation results of predictive performance of the 

examined MLC algorithms and accompanied discussion to the results.  

 

5.1 Predictive Performance     

 Predictive performances of TREMLC vs. existing MLC counterparts are given in the 

following tables. Although the predictive performances of the examined MLC 

algorithms are obtained in various MLC evaluation measures, the results are 

presented in this paper only in some popular measures, i.e. example based Hamming-

loss, label-based micro F1-measure and ranking-based all the measures. 

As can be seen from Table 2 and Figure 1, the TREMLC performed the best in terms 

of Hamming-loss when tested on almost all the selected multi-label datasets, i.e. 

scene, mediamill, yeast, emotions and medical, and performed the second best on 

Corel16k001. In the second high performance level, ML-KNN presented good results 

on scene ,mediamill and yeast, while RAEEL performed nicely on emotions and 

medical, then a minor inferior to ML-KNN on scene, Corel16k001, mediamill and 

yeast. Furthermore, ML-KNN performed the best on Corel16k001, and CLR also 

achieved reasonably good results on all the selected datasets. Note that, the 

performances of examined MLC algorithms are achieved in different level on 

different datasets under Hamming-loss measure, thus, the presentation in figures are 

divided into two, i.e. Figure 1(a) presents Hamming-loss measures on scene, yeast 

and emotions datasets; and Figure 1(b) presents Hamming-loss measures on 

Corel16k001, mediamill and medical datasets. Overall, TREMLC achieved the top 

performance on five out of six evaluation datasets under Hamming-loss measures. 



Table 2:  Predictive performances of MLC algorithms measured with Hamming-loss. 

MLC 
Algorithms 

scene Corel16k 
-001 

mediamill  yeast emotions medical Top-
scores 

TREMLC 0.082821 0.018989 0.02814 0.18783 0.180758 0.010319   5 
ML-KNN 0.085309 0.018669 0.02834 0.194151 0.26177 0.015112   1 
BR 0.136762 0.019729 0.03349 0.245432 0.247401 0.010344   - 
LP 0.143819 0.032102 0.042314 0.277901 0.27775 0.013476   - 
RAKEL 0.098884 0.019327 0.029003 0.219515 0.217538 0.010411   - 

CLR 0.138348 0.018921 0.028317 0.220227 0.242302 0.010364   - 
HOMER 0.165357 0.035103 0.04496 0.286063 0.278315 0.011229   - 

 Note: The smaller value of Hamming-loss, the better performance of the MLC algorithms. 

 

 

                                                              (a) 

 

 

                                                           (b) 
Fig.1:   Predictive performances of MLC algorithms measured with Hamming-loss. 
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Table 3 and Figure 2 present that TREMLC is the best performing algorithm on 

mediamill, yeast and emotions, and achieved second high performance on scene, and 

minor difference to the top performers on medical.  ML-KNN achieved best 

performance on scene and reached second high performance level on yeast, while BR 

showed the best on medical, and HOMER the highest performance on Corel16k001. 

Furthermore,  RAKEL reached the second highest position on emotions and medical, 

and minor difference to the top performance on scene, mediamill and yeast. In the 

next level, CLR also performed reasonably well on almost all the selected datasets, 

except the Corel16k001. Overall, TREMLC achieved the top performance on three 

out of six evaluation datasets under micro F1-measure, while ML-KNN, BR and 

HOMER achieved the best performance individually on one dataset only. 

Table 3: Predictive performance of MLC algorithms measured with micro F1-measure. 

Note: The greater value of micro F1-measure, the better performance of the MLC algorithms. 

 

 

      Fig.2 Predictive performance of MLC algorithms measured with micro F1-measure. 
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MLC 
Algorithms 

scene Corel16k 
-001 

mediamill   yeast emotions medical Top-
scores 

TREMLC 0.730163 0.077886 0.62180 0.654469 0.680128 0.803205   3 

ML-KNN 0.737853 0.012653 0.59346 0.639716 0.468944 0.678398   1 

BR 0.619391 0.117836 0.56484 0.585697 0.601974 0.809087   1 
LP 0.597837 0.123865 0.50677 0.54057 0.548976 0.752437   - 
RAKEL 0.697095 0.105382 0.610112 0.620809 0.638645 0.808453   - 
CLR 0.627572 0.08579 0.596357 0.615765 0.627627 0.807684   - 
HOMER 0.574643 0.200592 0.533611 0.589529 0.601781 0.798167   1 



 

 Table 4 and Figure 3 indicated that TREMLC achieves highest performance on 

majority the selected datasets in terms of one-error. That is, TREMLC presented the 

best performance on scene, yeast, emotions and medical, while CLR reached to the 

top performance level on Corel16k001 and mediamill, and climbed to the second top 

on medical. In the second highest performance level, ML-KNN achieved top results 

on scene, mediamill and yeast, while RAkEL was approaching to the second top on 

mediamill and emotions. Besides, BR achieved the second best on Corel16k001 

dataset. Overall, TREMLC achieved the top performance on four out of six evaluation 

datasets under one-error measure, while CLR achieved the best performances on 

Corel16k001 and mediamill, which are relatively larger datasets, especially in the 

respect of label set sizes. 

 Table 4: Predictive performance of MLC algorithms measured with one-error. 

 
  Note: The smaller value of one-error, the better performance of the MLC algorithms. 

 

 

          Fig.3 Predictive performance of MLC algorithms measured with one-error. 
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MLC  
Algorithms 

scene Corel16k 
-001 

mediamill   yeast emotions medical  Top- 
scores 

TREMLC 0.204843 0.743936 0.19045 0.220118 0.248079 0.150368   4 
ML-KNN 0.224343 0.728823 0.15562 0.226722 0.379548 0.240311   - 
BR 0.413821 0.703473 0.413988 0.399254 0.391328 0.191258   - 

LP 0.39343 0.798707 0.298472 0.341367 0.43339 0.205544   - 

RAKEL 0.267557 0.739868 0.169722 0.259825 0.300311 0.184126   - 

CLR 0.302434 0.659089 0.146195 0.241629 0.315452 0.160593   2 
HOMER 0.446658 0.76609 0.439815 0.283414 0.433531 0.216831   - 



The Tables 5 - 6 showed that TREMLC has been the top performer on relatively 

smaller label set sized datasets scene, yeast and emotions, and it showed second best 

performance on medical dataset when measured with the coverage and ranking-loss; 

while ML-KNN showed excellence on the rest of datasets, i.e. Corel16k001, 

mediamill and medical , and it reached the second best on scene and  yeast under 

these two measures. In the next level of performance, RAKEL performed nicely on 

scene, yeast and emotions, while CLR was approaching to this level on scene, 

mediamill, yeast and medical. Note that, BR achieved the second best on Corel16k001 

dataset. In overall ranking, TREMLC achieved the top performance on three out of 

six evaluation datasets under coverage and ranking-loss measures, while ML-KNN 

achieved the best performances on the rest of three datasets. Due to the predictive 

performances of the examined MLC algorithms on different datasets appeared in big 

gap under the coverage measure, therefore, these performances are presented in two 

separate figures, i.e. in Figure 4 (a) and (b). These figures support to the evaluation 

results of predictive performances in Table5. Besides, the predictive performances 

presented in Figure 5 supports to the evaluation results presented in Table 6. 

Table 5: Predictive performance of MLC algorithms measured with coverage. 

Note: The smaller the value of coverage the better performance of MLC algorithms. 
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scene Corel16k 
-001 

mediamill yeast   emotions medical  Top-
scores 

TREMLC 0.407569 100.3743 33.4002 6.241081 1.639718 2.880875 3 
ML-KNN 0.477343 51.27858 13.9070 6.263931 2.250424 2.637839 3 
  BR 1.334509 56.14361 50.63293 9.239836 2.550734 4.226667 - 
   LP 1.079805 92.99812 41.4132 8.654247 2.550367 4.379466 - 
 RAKEL 0.604065 99.74531 37.65036 7.378855 1.897401 4.6243 - 
    CLR 0.714613 76.69164 29.79459 7.540849 2.115028 3.306249 - 
HOMER 1.078247 92.16098 43.82133 9.055086 2.368051 4.562066 - 



 

 

                                                                    (b) 
            Fig. 4: Predictive performance of MLC algorithms measured with coverage. 

 

           Table 6: Predictive performance of MLC algorithms measured with ranking-loss.    

 Note: The smaller value of ranking-loss, the better performance of the MLC algorithms. 

 

 

         Fig.5 Predictive performance of MLC algorithms measured with ranking-loss.    
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scene Corel16k 
-001 

mediamill yeast emotions medical Top- 
Scores    

TREMLC 0.064957 0.395274 0.10542 0.160904 0.139232 0.046994 3 
ML-KNN 0.077846 0.172566 0.03888 0.165541 0.255745 0.040299 3 

BR 0.246473 0.188266 0.178647 0.309702 0.291476 0.074285 - 
LP 0.197284 0.35749 0.158698 0.316854 0.312612 0.076099 - 
RAKEL 0.103268 0.389452 0.116 0.211669 0.183373 0.080974 - 
CLR 0.12385 0.26427 0.09551 0.210149 0.213045 0.054857 - 
HOMER 0.196292 0.344173 0.159397 0.302147 0.273261 0.081113 - 



 

Table 7 and figure 6 present that TREMLC algorithm is outstanding among the 

counterparts when measure the predictive performances on scene, yeast, emotions and 

medical datasets using average precision. Besides, TREMLC approached to the 

second best performance on large dataset mediamill. Furthermore, ML-KNN reached 

the best performance on mediamill and it approached to the second best level on 

scene, Corel16k001 and yeast, while RAKELand CLR approached to the high 

performance on scene, mediamill, yeast, emotions and medical datasets. Note that, BR 

climbed to the best predictive performance level on the mediamill. Figure 6 also 

provided supportive evidence for this observation. Overall, TREMLC shows 

excellence on four out of six datasets, while ML-KNN shows the best performance on 

mediamill and BR achieved the best on Corel16k001.          

Table 7.  Predictive performance of MLC algorithms measured with average precisions. 

MLC 
Algorithms 

scene Corel16k 
-001 

mediamill  yeast emotions medical Top- 
Scores  

TREMLC 0.880521 0.1712 0.69915 0.771701 0.820078 0.871313     4 
ML-KNN 0.865763 0.287985 0.75502 0.765582 0.7141 0.813356     1 
BR 0.710852 0.289205 0.576282 0.621568 0.701352 0.834109     1 
LP 0.739422 0.185362 0.57648 0.645407 0.683013 0.814071     - 
RAKEL 0.835592 0.182094 0.691481 0.724137 0.783797 0.826389      - 

CLR 0.809449 0.282241 0.699258 0.729328 0.759014 0.851976      - 
HOMER 0.71679 0.201736 0.524566 0.64668 0.702491 0.801279      - 

Note: The greater value of average precision, the better performance of the MLC algorithms. 

 

 

Fig. 6: Predictive performance of MLC algorithms measured with average precisions. 
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A peculiar phenomenon can be observed from Tables 2-7 and Figure 1-6 that overall 

predictive performance levels of all the examined MLC algorithms are quite low on 

Corel16k001 compare to the performances on the rest of datasets. This is due to the 

unique characteristics of the Corel16k001 dataset, which can be seen from Table 1. 

Besides, the Corel16k001 dataset possesses the nominal data features, which are quite 

sparse in the features space; and the nominal-featured labels are also sparse in the 

label space. In order to improve the predictive performances of the examined MLC 

algorithms on this dataset, additional pre-processing and fine tuning this data is 

necessary, or specially designed algorithm may need to be explored. 

 

5.2 General Conclusion on Predictive Performance     

The predictive performances of examined MLC algorithms on six different datasets 

are summarized in Tables 8 under six evaluation measures. Table 8 shows that 

TREMLC achieved the best five out of six predictive performances on scene dataset, 

and gain the second best in sixth measure, micro F1-measure; at the same time, ML-

KNN achieved the second best in five out of six evaluation measures and reached to 

top performance when measured with micro F1-measure on the scene. On the 

Corel16k001 dataset, three top performances and one second top performance are 

measured for ML-KNN, while one top performance and three second-top 

performances are measured for BR. Additionally, CLR achieved one top and one 

second-top performance when measured with one-error and hamming-loss on the 

Corel16k001. Lastly, RAKEL is measured the a second best on Corel16k001. 

Furthermore,  TREMLC is the best when measured with Hamming-loss and micro 

F1-measure on large sized dataset mediamill, while the ML-KNN showed excellence 

when measured with almost all the ranking-based measures, except measured as 

second best on one-error. CLR also approached to the excellence on mediamill, i.e. it 

obtained one top performance when measured with one-error, and four second best 

performance when measured with Hamming-loss and three ranking-based measures. 

Nevertheless, TREMLC is measured to be outstanding on emotions and yeast 

datasets, and it approached to the top on medical dataset; while ML-KNN is measured 

to be top performances under coverage and ranking-loss measures on the medical, and 

it is measured to be the second best under all the selected evaluation measures on the 

yeast. Note that, RAKEL showed the second best performance on all the selected 

evaluation measures on the emotions, while CLR showed four second best 



performance on the medical. BR is obtained one top and one second top performances 

on medical when measured with micro F1-measure and Hamming-loss. 

Table 8: Ranking predictive performances of examined MLC algorithms on different datasets. 

MLC 
Algo. 

 scene Corel16k001 mediamill emotions Yeast 
 

medical 

 
 
 

TREMLC 

Hm-loss ^ - ^ ^ ^ ^ 
Mic. F1-m + - ^ ^ ^ - 
One-error ^ - - ^ ^ ^ 
Coverage ^ - - ^ ^ + 
Rank-loss ^ - - ^ ^ + 
Ave. 
precision 

^ - - ^ ^ ^ 

      Scoring 5^, + - 2^ 6^ 6^ 3^, 2+ 
 

 
 
 

ML-KNN 

Hm-loss + ^ - - + - 
Mic. F1-m ^ - - - + - 
One-error + - + - + - 
Coverage + ^ ^ - + ^ 
Rank-loss + ^ ^ - + ^ 
Ave.preci. + + ^ - + - 

     Scoring ^,  5+ 3^,  + 3^,  + - 6+ 2^ 
 
 
 
 
CLR 

Hm-loss - + + - - - 
Mic. F1-m - - - - - + 
One-error - ^ ^ - - + 
Coverage - - + - - - 
Rank-loss - - + - - + 
Ave.preci. - - + - - + 

      Scoring - ^,  + ^,  4+ - - 4+ 
 
 
 
 
BR 
 
 

Hm-loss - - - - - + 
Mic. F1-m - - - - - ^ 
One-error - + - - - - 
Coverage - + - - - - 
Rank-loss - + - - - - 
Ave.preci. - ^ - - - - 

       Scoring - ^,  3+ - - -    ^,   + 
 

 
 
 

RAKEL 

Hm-loss - - - + - - 
Mic. F1-m - - + + - + 
One-error - - - + - - 
Coverage - - - + - - 
Rank-loss - - - + - - 
Ave.preci. - + - + - - 

      Scoring - + + 6+ - + 

Note: symbol ‘^’ denotes the best predictive performance, and ‘+’ denotes the second best 

performance.  

 

Table 8 indicates that TREMLC and MLKNN are not only robust on smaller sized 

datasets with different type of attributes, i.e. nominal and numerical, but also effective 

on large sized datasets with both large label set size (e.g. mediamill) and large feature 



set size (e.g. medical). Hence, these two can be considered as high performing MLC 

algorithms and have potential for applying to various multi-label classification 

problems.  Note that, TREMLC showed more robustness compare to ML-KNN 

overall, which can be observed from Table 8, as well as from Tables 2-7 and Figures 

1-6. 

 

5.3 Evaluation Time of TREMLC vs. Counterparts 

This section presents evaluation time of examined MLC algorithms. Table 9 shows 

that the ML-KNN is the most efficient algorithm among the counterparts when tested 

on all the selected datasets, and BR is second efficient one. The most time consuming 

MLC algorithms on larger sized dataset mediamill  are LP and RAKEL, followed by 

is CLR and TREMLC, especially TREMLC is identified as time consuming algorithm 

on almost all the datasets. This is due to TREMLC constructs ensemble classifiers 

with randomly selected subsets iteratively, which is time consuming. The TREMLC 

achieved high performance in accuracy, but with cost of efficiency, which is 

considered as important research question for our next step. In the next level of time 

consuming MLC algorithms, RAkEL is accounted, which is also a randomized 

ensemble MLC algorithm; it takes time to build ensemble classifiers. Interestingly, LP 

showed to be efficient algorithm on Corel16k001, while it was measured as a most 

time consuming algorithm on mediamill. Again, the characteristics of the datasets 

play un-ignorable roles for the efficiencies of the MLC algorithms. 

 

                  Table 9. Evaluation times of the Examined MLC algorithms. 

MLC  
Algorithm 

scene Corel16k001 mediamill  yeast emotions medical 

TREMLC 172.8003 1231.66 2020.85 117.0322 8.769833 51.2055 

ML-KNN 2.757667 223.8587 181.238 1.2015 0.049833 0.1185 

BR 3.281833 
486.023 727.2203 

3.330667 0.153833 3.496833 
 LP 2.487 58.90133 3207.094 5.336 0.140167 0.7685 
RAKEL 16.16567 2371.159 3081.987 26.50683 0.770333 21.08367 

CLR 5.075333 1576.314 2577.75 9.6385 0.285 6.285 
HOMER 4.356 1088.286 533.3867 4.744833 0.225667 3.688833 

     
   Note: The smaller value of evaluation time, the more efficient of an MLC algorithm. 
 

 

 



6 Applications      

Empirical study of popular multi-label classification methods show that the proposed 

TREMLC algorithm outperforms examined counterparts when tested on several multi-

label datasets from different domains, which can be observed from the  tables and 

figures above. The initial goal for exploration of the TREMLC algorithm was to 

exploit and develop effective multi-label classification method for image to text 

translation and automatic image annotation [Nas08, Nas09, Nas10]. Based on 

experimental evaluation results of the examined MLC algorithms, TREMLC 

algorithm can be recommended for a number of multi-label classification problems, 

particularly, image to text translation and automatic image annotation tasks in hand.  

Since the predictive performance of TREMLC is presented nicely on scene image 

datasets, this can be observed from Tables 2- 8 and Figures 1-6.   

Furthermore, one can apply TREMLC for other multi-label classification problems 

too, such as music categorization based on the predictive performance of TREMLC 

on emotions dataset; biological information categorization based on the predictive 

performance of TREMLC on yeast data; as well as diagnostic medical report 

classification. Additionally, TREMLC also can be suggested for multimedia video 

news classification based on the positive result of TREMLC on mediamill. Moreover, 

TREMLC also can be considered for image to text translation based on Corel16k001 

with the condition of further processing and transforming the Corel16k001dataset to 

be more suitable for the TREMLC algorithm; alternatively, further optimizing the 

TREMLC to adapt the multi-label problem that represented with current 

Corel16k001. To sum up, the proposed TREMLC algorithm possess the general 

applicability for differently represented multi-label classification problems, therefore, 

it can be applied for the translation component of image to text translation system [45, 

46]. 

 

7 Conclusion 

This paper presented a triple-random ensemble MLC method, and the proposed 

TREMLC algorithm is recommended for image to text translation and automatic 

image annotation. The TREMLC algorithm is formed based on the baseline ensemble 

learning algorithms random subspace, bagging and k-label set ensemble learning 

methods. Some popular evaluation measures for multi-label classification were 



chosen from three major types, i.e. example-based, label-based and ranking-based, to 

present the experimental evaluation results of the examined methods. The empirical 

results show that TREMLC performs better than its examined counterparts when 

evaluated on a set of selected multi-label evaluation datasets from different domains. 

Therefore, TREMLC method can be suggested for applying to different representative 

multi-label classification problems thanks to its general applicability. Hence, 

TREMLC is particularly, recommended for applying to image to text translation and 

automatic image annotation task. However, TREMLC needs to be further improved 

especially from the execution-time efficiency standpoint in our future work.  
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