2005 3rd IEEE Intemational Conference on Industrial Informatics (INDIN)

A Heuristic Algorithm for Carton to Pallet
Loading Problem

VuT. Lel, Doug Creighton, Saeid Nahavandi
Intelligent Systems Research Lab, Deakin University, Geelong, Australia

Abstract— This paper presents an algorithm used to solve
a carton to pallet packing problem
manufacturing firm. The aim was to determine the cartons
loading sequence and the number pallets required, prior to
dispatch by truck. The algorithm consists of a series of nine
parts to solve this industrial application problem. The
pallet loading solution relatively computationally efficient
and reduces the number pallets required, compared to
other ‘trail and error’ or manual spreadsheet calculation
methods.

Index Terms—Multi-item, multi-class, multi-group, bin
packing, pallet allocation.

I. INTRODUCTION

The bin-packing problem is very popular amongst
researchers [1-3, 5-7]. The problem usually involves the
packing of objects of different sizes into some finite
confined space. That is, there consists a set of objects to
be placed into a set of bins. In this work we study a drink
carton to pallet packing problem in a busy drink
manufacturer. The large scale of the drinks
manufacturing operation means that many trucks would
come to pickup the finish drink products and deliver to
the assigned destination every working day of the week.
The amount of stock required for dispatch is such that it
was necessary to design rules to minimize the loading
calculation time, while reducing the number of pallet
required before loading onto truck. This in turn reduces
the number of delivery trucks, and consequently long-
term transportation costs.

Most bin-packing problems involve the assignment of
objects with different dimensions. These need to be
arranged and stacked in a way that minimises the total
bin usage or fits as many objects into a determined
dimension bin. One of the earlier authors who looked at
these bin-packing problem was Korf [2]. He developed
an algorithm to packing unoriented rectangles into unit
square bins. Korf found that his algorithm provides a
similar result for packing 24 squares into a 70x70 square
bin to the earlier hand calculated solution by Gardner
[3]. Manyem [4] studied a one-dimensional, NP-hard
online bin-packing problem. He provided several
modified heuristic algorithms to solve different what-if
on arrival object length scenarios. Items with a longer
length have the priority, being placed at the bottom of
the bin. A population-based heuristic search algorithm
that could be used for both three-dimensional pallet
loading and two and three-dimensional multiple-
destination bin packing problems was presented by

0-7803-9094-6/05/$20.00 ©2005 IEEE

in a drink-

593

VerWeij [5]. He demonstrated that the algorithm
improved the packing result as the running time
increases.

A NP-Hard Multi-Pallet Loading problem was studied
by Terno et. al. [6], where a branch and bound algorithm
was developed to arrange a set of distinct rectangular
shaped products onto a restricted pallet space and to
minimize the total number of pallets required in the
system. Through experiments, the authors have shown
that their designed algorithms were efficient. The only
problem is that in some test cases it permitted the
loading of rectangle product pieces in undesired
overhanging positions. An earlier publication from the
same authors, Scheithauer and Sommerwei [7], involved
the development of a heuristic algorithm. The algorithm
was based on the G4-heuristic algorithm for pallet
loading problem to pack and aligning smaller rectangular
shape into a larger rectangle shape while maximizing the
utilization area. Another paper in the pallet loading
problem chain, by Scheithauer and Terno [8], provides a
heuristic algorithm for two-dimensional pallet loading
problem. Other authors who studied the pallet loading
including NeliBen [9], who developed a hybrid of
recursion heuristic and branch and bound algorithms to
allocate rectangular box onto pallet by computing the
upper bound solution. Through experiments Naliben [9]
has shown that the developed algorithms were able to
solve problem instances for which other known other
heuristic algorithm fail.

A simple but efficient algorithm for pallet loading
problem is presented in this paper. Experimental results -
and discussion from factory floor data running the
algorithm are also given.

II. THE BASIC RULE AND STRUCTURE

Given that there is a set of all products, includes boxes
of different sizes and quantities, where each set of
similar products has a unique product number. A subset
of product number must be prepared for loading onto
pallets, before being loaded on to trucks. In this carton to
pallet loading problem, a full pallet is defined as 7100%
loaded. Each box of different products, when allocated
to a pallet, will take up a certain percentage on the pallet,
given by a volume product cube percentage value. The
product structure for each product is given in Table 1.

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

Table 1. Product data structure

Data Structure Fields
Product Number

Product Description

Product Cube Percentage (%)
Product Group ID

In order to reduce the number of combinations in the
algorithm, grouping of products with a similar cube size
box together methodology was developed and provided
as the input data. A unique Product Group ID assigned
to each such group as shown in Table 1.

In Table 1 the Product Group ID referencing from the
product group structure such that similar volume size
drinks of different types are grouped together. The data
schema of each of this product group is given in Table 2.

Table 2. Product group data structure

Data Structure Fields

Product Group ID

Product Group Description

Product Group Minimum Percent {%)
Product Class ID

The Product Group Minimum Percent is a rule that
simply said that if the quantity of boxes of the same
group contains greater than or equals to this percentage
then the loaded pallet is acceptable.

In Table 2 the Product Class ID is a reference from the
class schema. The class schema was derived such that,
since some groups of soft-drink have a package box size
similar to some group of beer and so on, therefore one
could loaded different groups of products on the same
pallets. The reason being that since one would like to
keep all similar product boxes together as a whole. The
product class data structure is given in Table 3.

Table 3. Product class data structure

Data Structure Fields

Product Class ID

Product Class Description

Product Class Minimum Percent (%)

In Table 3, the Product Class Minimum Percent means
that if a loaded pallet of the same class is greater than
this percentage then the pallet is acceptable.

The Tables 1 to 3 stored the standard sets of constant
input data. These tables are the basic input framework
that are used by the bin-packing algorithm.

II1. THE ALGORITHM

The developed algorithm sequentially allocates
product boxes to pallets using ten sub steps. These are
summarised in Figure 1.

594

Read Input Data
- Read orders data

- Read in standard product data
- Read standard group data
- Read standard class data

v

Foreach Remaining Load

v

Step 1
Assign Full Pallets

v

Step2
Calculate Based Pallet to Assign by

Group.

v

Step3
Assign Carton to Pallet by Group.

v

Step 4
Assign Carton to Partial Pallets of

Same Class.

v

Step 5
Assign Cartons to Empty Pallets of
Same Class where Class Cube >
Class Cube Minimum %.

v

Step 6
Assign Cartons to Partial Pallets of

Same Class Without Splitting
Group.

v
Step7
Assign Cartons to Empty Pallets
without Splitting Products

v

Step 8
Assign Any Products Carton by all

Quantity to Any Pallets

Step 9
Assign One Product to the Last

Pallet if Pallet Cube < 120 %

v

OutPut
- Output Number of Pallet
Required and Pallet Loading
Sequence

Figure 1: Overall box to pallet loading algorithm

From Figure 1 above, each load is the unique
identifier that concatenate between the delivery date and
location, which was read in from the input order data.
The structure of the load identifier is it departing date
and it’s delivery location. The details of each step are
described in the following proceeding sections.

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

1. Assign Full Pallets

The first step assigns any products order that has
cartons quantity greater than or equal to 100% pallet
utilization to a new pallet. Any left over cartons are
allocated in later steps of the algorithm. The structure of
the algorithm has been given in Figure 2.

calculate total product cube from input order file
for item = 1 to NoOfProduct
oldProductList = OriginalProductList [i]
CurrentBoxCube = oldProductList. CurrentCube
while (CurrentBoxCube >=100)
assign a new pallet
CurrentBoxCube = CurrentBoxCube — 100
add left over to product list

Figure 2: Assign similar full product orders to full pallet

2. Calculate Based Pallet to Assign by Group

Step 2 involves calculating the number of remaining
cartons not allocated in Step 1. It also prepares the data
for Step 3. The step starts with sorting the product by
group and then by descending leftover cube percentage.
If the group cube sum is greater than the minimum group
cube specified in Table 2, it then sums the product group
by cube, creating a virtual pallet count. The pseudo code
defining this step is given in Figure 3.

sort left over product by group then by descending cube
for item i = 1 to LeftOverProductListCount
Product = LeftOverProductList[i]
PGroup = ProductGroupList[i]
PGroup.Group = Product.Group
while (PGroup.Group = Product.Group)
PGroup.Cube = Pgroup.Cube + Product .Cube
i+
if (i <= LeftOverProductListCount)
Product = ProductGroupList[i]
else .
break
1=-
add product group data to product group list
for group i =1 to ProductGroupListCount
PGroup = ProductGroupList[i]
if (PGroup.GroupCube > 100)
PGroup .NoPalletRequired = round(GroupCube/100)
PGroup.GroupCube -= GroupNoPalletRequired*100
end if
groupMinPercent = ProductGroupTable2.PGM
if(PGroup.GroupCube < 100)
if (PGroup.GroupCube >= groupMinPercent)
PGroup.NoPalletRequired++
ProductGroupList[i] = PGroup

Figure 3: Calculate base pallet to assign by group

3. Assign Carton to Pallet by Group

Step 3 groups the leftover cartons and assigns the
number of cartons, by group to a new pallet. The pseudo
code is given in Figure 4.

sort by group then by group cube descending
for group i= 1 to ProductGroupListCount
PGroup = ProductGroupList[i]
While(PGroup.NoPalletAssign< PGroup.NoPalletRequired)
PGroup.NoPalletAssign++
ProductGroupList[i] = PGroup

CreateBasePalletData
for item j = 1 to LeftOverProductListCount
if{ CurrentProductGroup = Pallet.Group)
if (Pallet.Cube + CurrentProductCube <= 100)
Pallet.Cube+= CurrentProductCube
assign new or reassign to current pallet
remove current group products
J_-

Figure 4: Assign carton to pallet by group

4. Assign Cartons to Partial Pallets of Same Class

~ This step assigns product to partial filled pallets of the

same product class, where a complete product group can
be assigned to that existing pallet. The step structure is
shown in Figure 5.

calculate group list from left over product cartons
sort group list by class
calculate class list from left over group
sort class list by descending cube
sort pallet list descending order
for class i = 1 to ProductClassListCount

PClass = ProductClassList[i]

for pallet j = PalletListCount

thisPallet = PalletList[j]
if (thisPallet.Cube < 100)
if (thisPallet.Class == Pclass.Class)
for group k = 1 to ProductGroupListCount
PGroup = ProductGroupList[k]
if (Pgroup.Class = Pclass.Class)
if (thisPallet.Cube + Pgroup.Cube <= 100)
thisPallet.Cube+= Pgroup.Cube
PalletList[j] = thisPallet
for item 1 =1 to LeftOverProductListCount
Product = LeftOverProductList[i]
if (Product.Group == PGroup.Group)
remove current product
l--

Figure 5: Assign carton to existing pallet by class

5. Assign Cartons to Empty Pallets of Same Class where
Class Cube > Class Cube Minimum %

This section of the algorithm attempts to assign Class
Cube Volume Percentage to empty pallets, where the
Product Class Minimum Percentage is satisfied. The
program structure is given in Figure 6.

calculate group list from left over product cartons
sort group list by class then by cube
calculate class list from left over group
sort class list by descending cube
for class i = 1 to ProductClassListCount
PClass = ProductClassList[i]
classMinPercent = ProductClassTable3.PCM
if(Pclass > classMinPercent)
create base pallet data
for group j = 1 to ProductGroupListCount
PGroup = ProductGroupList[k]
if (Pgroup.Class = Pclass.Class)
if (Pallet.Cube + Pgroup.Cube <= 100)
Pallet. Cube+= Pgroup.Cube
assign new or reassign to current pallet
remove current class products

Figure 6: Assign class to a new pallet where class cube
greater than minimum class cube

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

6. Assign Cartons to Partial Pallets of Same Class
Without Splitting Group

The procedure then continues by assigning the product
cartons to partial pallets of the same product class, where
the complete article can be assigned to that pallet. The
pseudo code is given in Figure 7.

calculate group list from left over product cartons
sort group list by class
sort pallet list descending order
calculate class list from left over group
sort class list by descending cube
for class i = 1 to ProductClassListCount

PClass = ProductClassList[i]

for pallet j = PalletListCount

thisPallet = PalletList[j]
if{ thisPallet.Cube < 100)
if (thisPallet.Class = Pclass.Class)
for group k = 1 to ProductGroupListCount
PGroup = ProductGroupList[k]
if (Pgroup.Class = Pclass.Class)
if (thisPallet.Cube + Pgroup.Cube <= 100)
thisPallet. Cube+= Pgroup.Cube
PalletList[j] = thisPallet
for item 1= 1 to LeftOverProductListCount
Product = LeftOverProductList[i]
if (Product.Class = PGroup.Class)
remove current product
I--

Figure 7: Assign carton to partial pallets of same class

7. Assign Cartons to Empty Pallets without Splitting
Products

This step assigns cartons to empty pallets of any class,
where the pallet are not full, in ordered of descending
product cube percentage. The products would be
assigned only if the pallet has space for the full
remaining product cube percentage. If there was only
one product left then assign it to any of the pallet that is
less than 120 %. The underlying pseudo code is shown
in Figure 8.

sort group list by class()
calculate class list from left over group
sort class list by descending cube
for class i = 1 to ProductClassListCount
PClass = ProductClassList[i]
create base pallet data
for item j = 1 to LeftOverProductListCount
Product = LeftOverProductList[j]
if (Pallet.Cube + Product.Cube <= 100)
Pallet.Cube+= Product.Cube
assign new or reassign to current pallet
RemoveCurrentProduct(j)
-
else
curCube = Pallet.Cube + Product.Cube
if (ProductListCount == 1) AND (curCube <= 120)
assign current pallet
remove current product(j)

J-

Figure 8: Assign carton to empty pallets without splitting

596

8. Assign Any Products Carton by all Quantity to Any
Pallets

This section attempts to assign the remaining product
cartons, sorted in descending cube size, onto partially
filled pallets. The partially filled pallets are sorted by
their cube percent in descending order. The products are
assigned only if the pallet has space for all the remaining
cartons of the same product. The pseudo code is given in
Figure 9 below.

sort pallet list in ascending order
sort product list by descending cube
for pallet i = PalletListCount
thisPallet = PalletList[i]
for item j = 1 to LeftOverProductListCount
if (thisPallet.Cube == 100)
break

Product = LeftOverProductList[j];

If (thisPallet.Cube + Product.Cube <= 100)
thisPallet.Cube = thisPallet.Cube + Product.Cube
PalletList[i] = thisPallet
remove product list(j)

J--
Figure 9: Assign any product to partial pallets

9. Assign One Product to the Last Pallet if Pallet Cube
<120 %

This step provide the last clean up, so that at this stage
if there is only one carton left in the current load, then
assign it to the last pallet that results in a total cube value
of lesser than or equals to 120 %. If there are more than
one box left after this then report un-allocate boxes to
pallet error on this load, so that it could be reinvestigate
and reassign outside the algorithm. The listing pseudo
code is shown in Figure 10.

sort pallet list ascending order
sort product list by descending cube
thisPallet = PalletList[PalletListCount - 1]
for item i = 1 to LeftOverProductListCount
Product = LeftOverProductList[j]
if (thisPallet.Cube + Product.Cube <= 120)
thisPallet.Cube+= Product.Cube
PalletList[PalletListCount - 1] = thisPallet
remove product list(i)
1=--
if (ProductListCount > 0)
{

report error
break
}

Figure 10: Assign product to last pallet

IV. EXPERIMENT AND RESULT

The cartons to pallet allocation algorithm was
implemented using the C# programming language. The
experiments were performed on the developing platform
that has a core CPU clock speed at 2.6 GHz running
Windows XP Service Pack 2.

a) Experiment 1

In this experiment only one load input order file was

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

considered. The input order file is given in Table 4.

Table 4. Experiment 1: Input order file for selected load

Product Order Order

Number Quantity Number
1822 28 1233
3680, 12 1233
3685 5 1233
3945 2 1233]
5661 40 1233
5702] 1 1233
5705 15 1233]
5732 21 1233]
5734 42 1234)
7342 5| 1234
7601 42 1234]
7602 80 1234
8668 110) 1234

A feasible loading and pallet utilization for a selected
load, obtained within 50 milliseconds, is presented in
Table 5.

Table 5. Pallet loading results for selected load

On |This Pallet| Order | Product | QtyOn | Pallet |Program|
Pallet | Class | Number | Number | Pallet [Utilization| Section
1 A 1234 7602 78] 100% 1
2 B 1234 866 108} 100% 1
3 A 1234 7601 42] 3
3 A 1233 5705] 15] 3
3 A 1234 7342} 5| 8333% | 3
3 A 1234 7602 2 3
3 A 1233 5702 1 3
4 C 1234 5734 42| 87.33% 3
4 C 1233 3945 2 6
5 C 1233 1822 28] 98% 5
5 C 1233 5732] 21 5
6 A 1233 5661 40| 5
6 A 1233 3680, 12| 71.38% 8
6 A 1233 3685 5| 8
6 A 1234 8668| 2] 8

From Table 5, the important columns to be observed
are the “On Pallet”, “Qty On Pallet”, Pallet Utilization”
and “Program Section” respectively. On each row in this
table it tell us that, on the current pallet, how many
cartons was added, what was the total utilized percentage
on the pallet and what algorithm section was run
respectively. The result obtained, listed in Table 5,
shows that the developed algorithm has split the order
cartons of a particular product and rearranged them
feasibly onto pallets ready for loading. It can be seen
from the pallet utilization results that the developed
algorithm, although not optimal, generates a promising
feasible result within 50 milliseconds of the running
time.

b) Experiment 2

In this experiment the affect of the number of input
load increases is considered. The purpose was to test the
reliability of the algorithm in solving these problems.
Due to the size of the test dataset only computational
results are provided. The experimental result for the
increase in the number of orders and load numbers is

597

given in Table 6. The plot of number of orders versus the
algorithm solving time was plotted and shown in Figure
11. The number of pallet created for a given input
cartons was plotted and has been given in Figure 12.

Table 6. Load numbers for increased carton orders

No. | No.Of | No. | Pallet Time Manual | Manual
Of |Cartons| Of | Required (sec) Min Max
Order load Pallet Pallet
Required | Required
13 403 1 6 0.05 6 6
4000) 31972 154 607 0.52 505 611
8000| 61808 220 1109 1.09 969 1114
12000} 92391] 283 1611 1.82 1431 1617
16000 | 128964 | 500 2271 3.40 1965 2286
20000 | 159316 | 630 2776 5.15 2391 2793
24000 191361 | 736 3323 6.84 2869 3341
28000 | 222187] 822 3862 8.79 3355 3881
In Table 6, the experiment results columns are the

“Pallet Required” and “Time”. The “Pallet Required”
column shows the algorithm output Total Number of
Pallets Required. The “Manual Min Pallet Required”
column shows the total estimated minimum number of
pallet required, when cartons were filled on to any
pallets regardless of their sizes and types. The “Manual
Max Pallet Required” was the manually calculated
feasible pallet loading results. By comparing the “Pallet
Required” column to the “Manual Max Pallet Required”
column, it could be seen that as the number of cartons
increases, the pallet differences between these two
columns increases. The pallet differences when the
number of cartons equals to 222187 is 19 pallets
comparing a feasible manually calculated maximum
solution result to the algorithm solution, which shows
that the developed algorithm provides promising results
that was much better than the manually calculated
results. As it could also be seen from Table 6, that as the
number of input cartons increases, the solving time only
increases slightly.

From Figure 11, it can be seen that the solving time
grows rapidly after the 12000 orders as it started turning
into an exponential function. This is caused by a greater
increase in the number of cartons between the 12000
orders and 16000 orders, as seen in Table 6 previously.
Despite worse case exponential increases in the solving
time, the solving time was less than 9 seconds for a
28000 lines of orders with a 222187 cartons, which is
overall a very promising result. Although the solving
time issue might takes it toll, this algorithm successfully
handled actual factory orders data, where these sets of
orders data are unlikely to be greater than 50000 lines.
As the solving time were in the orders of number of
seconds, this shows that the developed algorithm is
reliable, hence solving time is not an issue to worry
about.

In Figure 12, it was noticed that the computed number
of pallets required grows linearly with the number of
input cartons. This shows that, no matter how large the
number of input cartons is, the number of output pallets
change linearly with it. This also shows that the
algorithm and the developed rule provide a linear
packing behavior of cartons onto pallets.

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

Solving Time Vs Number of Orders

-
(=]

;—é ® /
E ! /
52 —
0 . . ® . . ’ . . .
13 4000 8000 12000 16000 20000 24000 28000
Number of Orders
Figure 11: Solving time over input number of orders
Pallet Required vs Input Cartons
8 5000
g 4000 /
& 2000 P
2 1000
E /
ERN) . . : : . , .
403 31972 61808 92391 128964 159316 191361 222187
Input Cartons Quantity

Figure 12: Number of pallet loaded verses input cartons

V. CONCLUSION

This paper describes an algorithm to efficiently solve
the cartons to pallet allocation and loading problem. The
carton to pallet software developed using this algorithm
is currently used by the drink manufacturer involved in
the study.

In this paper, through experiments, it was found that
the developed algorithm efficiently solves carton to
pallet loading problems very well and in a very
manageable short computing time. A problem with
28000 orders, and 222187 cartons, was solved in 9
seconds and the load was allocated to 3862 pallets.

The developed algorithm finds a feasible solution, but
does not seek to further improve on this. Future
enhancement could be made to improve the algorithm by
adding a branch and bound algorithm around Steps 4 to
7, to optimise the loading sequence and thus overall
pallet utilization.

REFERENCES

[1] E.G. Coffman Jr., M. R. Garey, and D. S. Johnson, “Bin Packing
Approximation Algorithms: A Survey” in Approximation
Algorithms for NP-Hard Problems, D. Hochbaum (ed.), PWS
Publishing Co., Boston MA. 1996.

[21 E. R Korf, “Optimal Rectangle Packing: New Results”, in
Proceedings of the Fourteenth International Conference on
Automated Planning and Scheduling (ICAPS 2004), pp. 142-149.

[3] M. Gardner, “Mathematical games: The problem of Mrs. Perkin’s
quilt and answers to last month’s puzzles”. Scientific American
215(3):264-272. 1966.

598

[4] P. Manyem, “Bin packing and covering with longest items at the
bottom: online version”. Australian Mathematical Society. 2002,

http://anziamj.austms.org.au/V43/E044/Manvem. pdf, 2005.

[51 A. M. Verweij, “Multiple Destination Bin Packing”. Institute of
Information & Computing Sciences technical Reports.

http://www.cs.uu.nl/research/techreps/aut/bram.html. 03-2005.

[6] J. Temo, G. Scheithauer, U. Sommerwei and J. Richme. “An
Efficient Approach for the Multi-Pallet Loading Problem”. in
European Journal of Operational Research, 2000, pp. 372-381.

[71 G. Scheithauer, U. SommerweiB. “4-Block Heuristic for the
Rectangle Packing Problem”. in European Journal of
Operational Research, 1996, pp. 509-526.

[8] G. Scheithauer, U. SommerweiB. “A new heuristic for the Pallet
Loading Problem”. in Operation Research Proceeding, 1995,
Springer-Verlag Berlin Heidelberg (1996), pp. 84-89.

[9] J. NeliBen. “New Approaches to the Pallet Loading Problem”.
Lehrstuhl fiir Angewandte Mathematik, insbesondere Informatik
RWTH, Aachen, Germany. 1993.

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:34:59 UTC from IEEE Xplore. Restrictions apply.

