A Heuristic Algorithm for Carton to Pallet Loading Problem

Vu T. Le1, Doug Creighton, Saeid Nahavandi
Intelligent Systems Research Lab, Deakin University, Geelong, Australia

Abstract

This paper presents an algorithm used to solve a carton to pallet packing problem in a drink manufacturing firm. The aim was to determine the cartons loading sequence and the number pallets required, prior to dispatch by truck. The algorithm consists of a series of nine parts to solve this industrial application problem. The pallet loading solution relatively computationally efficient and reduces the number pallets required, compared to other 'trail and error' or manual spreadsheet calculation methods.

Index Terms-Multi-item, multi-class, multi-group, bin packing, pallet allocation.

I. INTRODUCTION

The bin-packing problem is very popular amongst researchers [1-3, 5-7]. The problem usually involves the packing of objects of different sizes into some finite confined space. That is, there consists a set of objects to be placed into a set of bins. In this work we study a drink carton to pallet packing problem in a busy drink manufacturer. The large scale of the drinks manufacturing operation means that many trucks would come to pickup the finish drink products and deliver to the assigned destination every working day of the week. The amount of stock required for dispatch is such that it was necessary to design rules to minimize the loading calculation time, while reducing the number of pallet required before loading onto truck. This in turn reduces the number of delivery trucks, and consequently longterm transportation costs.

Most bin-packing problems involve the assignment of objects with different dimensions. These need to be arranged and stacked in a way that minimises the total bin usage or fits as many objects into a determined dimension bin. One of the earlier authors who looked at these bin-packing problem was Korf [2]. He developed an algorithm to packing unoriented rectangles into unit square bins. Korf found that his algorithm provides a similar result for packing 24 squares into a 70×70 square bin to the earlier hand calculated solution by Gardner [3]. Manyem [4] studied a one-dimensional, NP-hard online bin-packing problem. He provided several modified heuristic algorithms to solve different what-if on arrival object length scenarios. Items with a longer length have the priority, being placed at the bottom of the bin. A population-based heuristic search algorithm that could be used for both three-dimensional pallet loading and two and three-dimensional multipledestination bin packing problems was presented by

VerWeij [5]. He demonstrated that the algorithm improved the packing result as the running time increases.

A NP-Hard Multi-Pallet Loading problem was studied by Terno et. al. [6], where a branch and bound algorithm was developed to arrange a set of distinct rectangular shaped products onto a restricted pallet space and to minimize the total number of pallets required in the system. Through experiments, the authors have shown that their designed algorithms were efficient. The only problem is that in some test cases it permitted the loading of rectangle product pieces in undesired overhanging positions. An earlier publication from the same authors, Scheithauer and Sommerwei [7], involved the development of a heuristic algorithm. The algorithm was based on the G4-heuristic algorithm for pallet loading problem to pack and aligning smaller rectangular shape into a larger rectangle shape while maximizing the utilization area. Another paper in the pallet loading problem chain, by Scheithauer and Terno [8], provides a heuristic algorithm for two-dimensional pallet loading problem. Other authors who studied the pallet loading including NeliBen [9], who developed a hybrid of recursion heuristic and branch and bound algorithms to allocate rectangular box onto pallet by computing the upper bound solution. Through experiments Naliben [9] has shown that the developed algorithms were able to solve problem instances for which other known other heuristic algorithm fail.
A simple but efficient algorithm for pallet loading problem is presented in this paper. Experimental results and discussion from factory floor data running the algorithm are also given.

II. The Basic Rule And Structure

Given that there is a set of all products, includes boxes of different sizes and quantities, where each set of similar products has a unique product number. A subset of product number must be prepared for loading onto pallets, before being loaded on to trucks. In this carton to pallet loading problem, a full pallet is defined as 100% loaded. Each box of different products, when allocated to a pallet, will take up a certain percentage on the pallet, given by a volume product cube percentage value. The product structure for each product is given in Table 1.

Table 1. Product data structure

Data Structure Fields
Product Number
Product Description
Product Cube Percentage (\%)
Product Group ID

In order to reduce the number of combinations in the algorithm, grouping of products with a similar cube size box together methodology was developed and provided as the input data. A unique Product Group ID assigned to each such group as shown in Table 1.

In Table 1 the Product Group ID referencing from the product group structure such that similar volume size drinks of different types are grouped together. The data schema of each of this product group is given in Table 2.

Table 2. Product group data structure

Data Structure Fields
Product Group ID
Product Group Description
Product Group Minimum Percent $\{\%)$
Product Class ID

The Product Group Minimum Percent is a rule that simply said that if the quantity of boxes of the same group contains greater than or equals to this percentage then the loaded pallet is acceptable.
In Table 2 the Product Class ID is a reference from the class schema. The class schema was derived such that, since some groups of soft-drink have a package box size similar to some group of beer and so on, therefore one could loaded different groups of products on the same pallets. The reason being that since one would like to keep all similar product boxes together as a whole. The product class data structure is given in Table 3.

Table 3. Product class data structure

Data Structure Fields
Product Class ID
Product Class Description
Product Class Minimum Percent (\%)

In Table 3, the Product Class Minimum Percent means that if a loaded pallet of the same class is greater than this percentage then the pallet is acceptable.
The Tables 1 to 3 stored the standard sets of constant input data. These tables are the basic input framework that are used by the bin-packing algorithm.

III. The Algorithm

The developed algorithm sequentially allocates product boxes to pallets using ten sub steps. These are summarised in Figure 1.

Figure 1: Overall box to pallet loading algorithm
From Figure 1 above, each load is the unique identifier that concatenate between the delivery date and location, which was read in from the input order data. The structure of the load identifier is it departing date and it's delivery location. The details of each step are described in the following proceeding sections.

1. Assign Full Pallets

The first step assigns any products order that has cartons quantity greater than or equal to 100% pallet utilization to a new pallet. Any left over cartons are allocated in later steps of the algorithm. The structure of the algorithm has been given in Figure 2.

```
calculate total product cube from input order file
for item \(=1\) to NoOfProduct
    oldProductList \(=\) OriginalProductList [i]
    CurrentBoxCube \(=\) oldProductList. CurrentCube
    while (CurrentBoxCube >=100)
        assign a new pallet
        CurrentBoxCube \(=\) CurrentBoxCube -100
    add left over to product list
```

Figure 2: Assign similar full product orders to full pallet

2. Calculate Based Pallet to Assign by Group

Step 2 involves calculating the number of remaining cartons not allocated in Step 1. It also prepares the data for Step 3. The step starts with sorting the product by group and then by descending leftover cube percentage. If the group cube sum is greater than the minimum group cube specified in Table 2, it then sums the product group by cube, creating a virtual pallet count. The pseudo code defining this step is given in Figure 3.

```
sort left over product by group then by descending cube
for item \(\mathrm{i}=1\) to LeftOverProductListCount
    Product \(=\) LeftOverProductList[i]
    PGroup \(=\) ProductGroupList[i]
    PGroup.Group = Product.Group
    while (PGroup.Group \(=\) Product.Group)
        PGroup.Cube \(=\) Pgroup.Cube + Product .Cube
        i++
            if ( \(\mathrm{i}<=\) LeftOverProductListCount)
                Product \(=\) ProductGroupList[i]
        else
            break
    i--
    add product group data to product group list
for group \(\mathrm{i}=1\) to ProductGroupListCount
    PGroup \(=\) ProductGroupList[i]
    if (PGroup.GroupCube > 100)
        PGroup .NoPalletRequired \(=\) round \((\) GroupCube/100)
            PGroup.GroupCube = GroupNoPalletRequired*100
    end if
    groupMinPercent \(=\) ProductGroupTable2.PGM
    if(PGroup.GroupCube < 100)
        if (PGroup.GroupCube >= groupMinPercent)
            PGroup.NoPalletRequired++
    ProductGroupList[i] = PGroup
```

Figure 3: Calculate base pallet to assign by group

3. Assign Carton to Pallet by Group

Step 3 groups the leftover cartons and assigns the number of cartons, by group to a new pallet. The pseudo code is given in Figure 4.

[^0]```
CreateBasePalletData
for item \(\mathrm{j}=1\) to LeftOverProductListCount
 if(CurrentProductGroup = Pallet.Group)
 if (Pallet.Cube + CurrentProductCube \(<=100\))
 Pallet.Cube \(+=\) CurrentProductCube
 assign new or reassign to current pallet
 remove current group products
 j--
```

Figure 4: Ássign carton to pallet by group

## 4. Assign Cartons to Partial Pallets of Same Class

This step assigns product to partial filled pallets of the same product class, where a complete product group can be assigned to that existing pallet. The step structure is shown in Figure 5.
calculate group list from left over product cartons
sort group list by class
calculate class list from left over group
sort class list by descending cube
sort pallet list descending order
for class $\mathrm{i}=1$ to ProductClassListCount
PClass $=$ ProductClassList[i]
for pallet $\mathrm{j}=$ PalletListCount
thisPallet $=$ PalletList[j]
if (thisPallet.Cube < 100)
if (thisPallet.Class $=$ Pclass.Class)
for group $\mathrm{k}=1$ to ProductGroupListCount
PGroup $=$ ProductGroupList [k]
if (Pgroup.Class = Pclass.Class)
if (thisPallet.Cube + Pgroup.Cube $<=100$ )
thisPallet.Cube $+=$ Pgroup.Cube
PalletList $[\mathrm{j}]=$ thisPallet
for item I = 1 to LeftOverProductListCount
Product $=$ LeftOverProductList[i]
if (Product.Group $=$ PGroup.Group)
remove current product
1--
Figure 5: Assign carton to existing pallet by class

## 5. Assign Cartons to Empty Pallets of Same Class where Class Cube > Class Cube Minimum \%

This section of the algorithm attempts to assign Class Cube Volume Percentage to empty pallets, where the Product Class Minimum Percentage is satisfied. The program structure is given in Figure 6.
calculate group list from left over product cartons
sort group list by class then by cube
calculate class list from left over group
sort class list by descending cube
for class $\mathrm{i}=1$ to ProductClassListCount
PClass $=$ ProductClassList $[$ i]
classMinPercent $=$ ProductClassTable3.PCM
if(Pclass > classMinPercent)
create base pallet data
for group $\mathrm{j}=1$ to ProductGroupListCount
PGroup $=$ ProductGroupList[k]
if (Pgroup.Class $=$ Pclass.Class)
if (Pallet.Cube + Pgroup.Cube $<=100$ )
Pallet.Cube $+=$ Pgroup.Cube assign new or reassign to current pallet remove current class products

Figure 6: Assign class to a new pallet where class cube greater than minimum class cube

## 6. Assign Cartons to Partial Pallets of Same Class Without Splitting Group

The procedure then continues by assigning the product cartons to partial pallets of the same product class, where the complete article can be assigned to that pallet. The pseudo code is given in Figure 7.
calculate group list from left over product cartons
sort group list by class
sort pallet list descending order
calculate class list from left over group
sort class list by descending cube
for class $\mathrm{i}=1$ to ProductClassListCount
PClass $=$ ProductClassList[i]
for pallet $\mathrm{j}=$ PalletListCount
thisPallet $=$ PalletList $[\mathrm{j}]$
if ( thisPallet.Cube < 100)
if (thisPallet.Class $=$ Pclass.Class)
for group $\mathrm{k}=1$ to ProductGroupListCount
PGroup $=$ ProductGroupList[k]
if (Pgroup.Class = Pclass.Class)
if (thisPallet.Cube + Pgroup.Cube $<=100$ )
thisPallet.Cube $+=$ Pgroup.Cube
PalletList $[\mathrm{j}]=$ thisPallet
for item $\mathrm{I}=1$ to LeflOverProductListCount
Product $=$ LeftOverProductList[i]
if (Product.Class $=$ PGroup.Class)
remove current product 1--

Figure 7: Assign carton to partial pallets of same class

## 7. Assign Cartons to Empty Pallets without Splitting Products

This step assigns cartons to empty pallets of any class, where the pallet are not full, in ordered of descending product cube percentage. The products would be assigned only if the pallet has space for the full remaining product cube percentage. If there was only one product left then assign it to any of the pallet that is less than $120 \%$. The underlying pseudo code is shown in Figure 8.

```
sort group list by class()
calculate class list from left over group
sort class list by descending cube
for class i=1 to ProductClassListCount
 PClass = ProductClassList[i]
 create base pallet data
 for item j=1 to LeftOverProductListCount
 Product = LeftOverProductList[j]
 if (Pallet.Cube + Product.Cube <= 100)
 Pallet.Cube+= Product.Cube
 assign new or reassign to current pallet
 RemoveCurrentProduct(j)
 j--
 else
 curCube = Pallet.Cube + Product.Cube
 if (ProductListCount =1) AND (curCube <=120)
 assign current pallet
 remove current product(j)
 j--
```

Figure 8: Assign carton to empty pallets without splitting

## 8. Assign Any Products Carton by all Quantity to Any Pallets

This section attempts to assign the remaining product cartons, sorted in descending cube size, onto partially filled pallets. The partially filled pallets are sorted by their cube percent in descending order. The products are assigned only if the pallet has space for all the remaining cartons of the same product. The pseudo code is given in Figure 9 below.

```
sort pallet list in ascending order
sort product list by descending cube
for pallet \(\mathrm{i}=\) PalletListCount
 thisPallet \(=\) PalletList \([\mathrm{i}]\)
 for item \(\mathbf{j}=1\) to LeftOverProductListCount
 if \((\) thisPallet.Cube \(=100)\)
 break
 Product \(=\) LeftOverProductList[j];
 If (thisPallet.Cube + Product.Cube \(<=100\))
 thisPallet.Cube \(=\) thisPallet.Cube + Product.Cube
 PalletList \([\mathrm{i}]=\) thisPallet
 remove product list(j)
 j--
```

Figure 9: Assign any product to partial pallets

## 9. Assign One Product to the Last Pallet if Pallet Cube

 < $120 \%$This step provide the last clean up, so that at this stage if there is only one carton left in the current load, then assign it to the last pallet that results in a total cube value of lesser than or equals to $120 \%$. If there are more than one box left after this then report un-allocate boxes to pallet error on this load, so that it could be reinvestigate and reassign outside the algorithm. The listing pseudo code is shown in Figure 10.

```
sort pallet list ascending order
sort product list by descending cube
thisPallet \(=\) PalletList[PalletListCount - 1]
for item \(i=1\) to LeftOverProductListCount
 Product \(=\) LeftOverProductList[j]
 if (thisPallet.Cube + Product.Cube \(<=120\))
 thisPallet.Cube \(+=\) Product.Cube
 PalletList[PalletListCount - 1] = thisPallet
 remove product list(i)
 i--
 if (ProductListCount \(>0\))
 \(\{\)
 report error
 break
 \}
```

Figure 10: Assign product to last pallet

## IV. EXPERIMENT AND RESULT

The cartons to pallet allocation algorithm was implemented using the C\# programming language. The experiments were performed on the developing platform that has a core CPU clock speed at 2.6 GHz running Windows XP Service Pack 2.

## a) Experiment 1

In this experiment only one load input order file was
considered. The input order file is given in Table 4.
Table 4. Experiment 1: Input order file for selected load

| Product <br> Number | Order <br> Quantity | Order <br> Number |
| ---: | ---: | ---: |
| 1822 | 28 | 1233 |
| 3680 | 12 | 1233 |
| 3685 | 5 | 1233 |
| 3945 | 2 | 1233 |
| 5661 | 40 | 1233 |
| 5702 | 1 | 1233 |
| 5705 | 15 | 1233 |
| 5732 | 21 | 1233 |
| 5734 | 42 | 1234 |
| 7342 | 5 | 1234 |
| 7601 | 42 | 1234 |
| 7602 | 80 | 1234 |
| 8668 | 110 | 1234 |

A feasible loading and pallet utilization for a selected load, obtained within 50 milliseconds, is presented in Table 5.

Table 5. Pallet loading results for selected load

| On Pallet | This Pallet Class | Order Number | Product Number | Qty On Pallet | Pallet Utilization | Program Section |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | A | 1234 | 7602 | 78 | 100\% | 1 |
| 2 | B | 1234 | 8668 | 108 | 100\% | 1 |
| 3 | A | 1234 | 7601 | 42 | 83.33\% | 3 |
| 3 | A | 1233 | 5705 | 15 |  | 3 |
| 3 | A | 1234 | 7342 | 5 |  | 3 |
| 3 | A | 1234 | 7602 | 2 |  | 3 |
| 3 | A | 1233 | 5702 | 1 |  | 3 |
| 4 | C | 1234 | 5734 | 42 | 87.33\% | 3 |
| 4 | C | 1233 | 3945 | 2 |  | 6 |
| 5 | C | 1233 | 1822 | 28 | 98\% | 5 |
| 5 | C | 1233 | 5732 | 21 |  | 5 |
| 6 | A | 1233 | 5661 | 40 | 71.38\% | 5 |
| 6 | A | 1233 | 3680 | 12 |  | 8 |
| 6 | A | 1233 | 3685 | 5 |  | 8 |
| 6 | A | 1234 | 8668 | 2 |  | 8 |

From Table 5, the important columns to be observed are the "On Pallet", "Qty On Pallet", Pallet Utilization" and "Program Section" respectively. On each row in this table it tell us that, on the current pallet, how many cartons was added, what was the total utilized percentage on the pallet and what algorithm section was run respectively. The result obtained, listed in Table 5, shows that the developed algorithm has split the order cartons of a particular product and rearranged them feasibly onto pallets ready for loading. It can be seen from the pallet utilization results that the developed algorithm, although not optimal, generates a promising feasible result within 50 milliseconds of the running time.

## b) Experiment 2

In this experiment the affect of the number of input load increases is considered. The purpose was to test the reliability of the algorithm in solving these problems. Due to the size of the test dataset only computational results are provided. The experimental result for the increase in the number of orders and load numbers is
given in Table 6. The plot of number of orders versus the algorithm solving time was plotted and shown in Figure 11. The number of pallet created for a given input cartons was plotted and has been given in Figure 12.

Table 6. Load numbers for increased carton orders

| No. <br> Of <br> Order | No. Of <br> Cartons | No. <br> Of <br> load | Pallet <br> Required | Time <br> (sec) | Manual <br> Min <br> Pallet <br> Required | Manual <br> Max <br> Pallet <br> Required |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 13 | 403 | 1 | 6 | 0.05 | 6 | 6 |
| 4000 | 31972 | 154 | 607 | 0.52 | 505 | 611 |
| 8000 | 61808 | 220 | 1109 | 1.09 | 969 | 1114 |
| 12000 | 92391 | 283 | 1611 | 1.82 | 1431 | 1617 |
| 16000 | 128964 | 500 | 2271 | 3.40 | 1965 | 2286 |
| 20000 | 159316 | 630 | 2776 | 5.15 | 2391 | 2793 |
| 24000 | 191361 | 736 | 3323 | 6.84 | 2869 | 3341 |
| 28000 | 222187 | 822 | 3862 | 8.79 | 3355 | 3881 |

In Table 6, the experiment results columns are the "Pallet Required" and "Time". The "Pallet Required" column shows the algorithm output Total Number of Pallets Required. The "Manual Min Pallet Required" column shows the total estimated minimum number of pallet required, when cartons were filled on to any pallets regardless of their sizes and types. The "Manual Max Pallet Required" was the manually calculated feasible pallet loading results. By comparing the "Pallet Required" column to the "Manual Max Pallet Required" column, it could be seen that as the number of cartons increases, the pallet differences between these two columns increases. The pallet differences when the number of cartons equals to 222187 is 19 pallets comparing a feasible manually calculated maximum solution result to the algorithm solution, which shows that the developed algorithm provides promising results that was much better than the manually calculated results. As it could also be seen from Table 6, that as the number of input cartons increases, the solving time only increases slightly.

From Figure 11, it can be seen that the solving time grows rapidly after the 12000 orders as it started turning into an exponential function. This is caused by a greater increase in the number of cartons between the 12000 orders and 16000 orders, as seen in Table 6 previously. Despite worse case exponential increases in the solving time, the solving time was less than 9 seconds for a 28000 lines of orders with a 222187 cartons, which is overall a very promising result. Although the solving time issue might takes it toll, this algorithm successfully handled actual factory orders data, where these sets of orders data are unlikely to be greater than 50000 lines. As the solving time were in the orders of number of seconds, this shows that the developed algorithm is reliable, hence solving time is not an issue to worry about.

In Figure 12, it was noticed that the computed number of pallets required grows linearly with the number of input cartons. This shows that, no matter how large the number of input cartons is, the number of output pallets change linearly with it. This also shows that the algorithm and the developed rule provide a linear packing behavior of cartons onto pallets.

## Solving Time Vs Number of Orders



Figure 11: Solving time over input number of orders

Pallet Required vs Input Cartons


Figure 12: Number of pallet loaded verses input cartons

## V. CONCLUSION

This paper describes an algorithm to efficiently solve the cartons to pallet allocation and loading problem. The carton to pallet software developed using this algorithm is currently used by the drink manufacturer involved in the study.

In this paper, through experiments, it was found that the developed algorithm efficiently solves carton to pallet loading problems very well and in a very manageable short computing time. A problem with 28000 orders, and 222187 cartons, was solved in 9 seconds and the load was allocated to 3862 pallets.

The developed algorithm finds a feasible solution, but does not seek to further improve on this. Future enhancement could be made to improve the algorithm by adding a branch and bound algorithm around Steps 4 to 7 , to optimise the loading sequence and thus overall pallet utilization.

## REFERENCES

[1] E. G. Coffman Jr., M. R. Garey, and D. S. Johnson, "Bin Packing Approximation Algorithms: A Survey" in Approximation Algorithms for NP-Hard Problems, D. Hochbaum (ed.), PWS Publishing Co., Boston MA. 1996.
[2] E. R. Korf, "Optimal Rectangle Packing: New Results", in Proceedings of the Fourteenth International Conference on Automated Planning and Scheduling (ICAPS 2004), pp. 142-149.
[3] M. Gardner, "Mathematical games: The problem of Mrs. Perkin's quilt and answers to last month's puzzles". Scientific American 215(3):264-272. 1966.
[4] P. Manyem, "Bin packing and covering with longest items at the bottom: online version". Australian Mathematical Society. 2002, http://anziamj.austms.org.au/V43/E044/Manyem.pdf, 2005.
[5] A. M. Verweij, "Multiple Destination Bin Packing". Institute of Information \& Computing Sciences technical Reports. http://www.cs.uu.nl/research/techreps/aut/bram.html. 03-2005.
[6] J. Terno, G. Scheithauer, U. Sommerwei and J. Riehme. "An Efficient Approach for the Multi-Pallet Loading Problem". in European Journal of Operational Research, 2000, pp. 372-381.
[7] G. Scheithauer, U. SommerweiB. "4-Block Heuristic for the Rectangle Packing Problem". in European Journal of Operational Research, 1996, pp. 509-526.
[8] G. Scheithauer, U. SommerweiB. "A new heuristic for the Pallet Loading Problem". in Operation Research Proceeding, 1995, Springer-Verlag Berlin Heidelberg (1996), pp. 84-89.
[9] J. NeliBen. "New Approaches to the Pallet Loading Problem". Lehrstuhl für Angewandte Mathematik, insbesondere Informatik RWTH, Aachen, Germany. 1993.


[^0]:    sort by group then by group cube descending
    for group $\mathrm{i}=1$ to ProductGroupListCount
    PGroup $=$ ProductGroupList[i]
    While(PGroup.NoPalletAssign< PGroup.NoPalletRequired) PGroup.NoPalletAssign++
    ProductGroupList[i] = PGroup

