

 Abstract⎯ Scheduling check-in station operations are a

challenging problem within airport systems. Prior to
determining check-in resource schedules, an important step is
to estimate the Baggage Handling System (BHS) operating
capacity under non-stationary conditions. This ensures that
check-in stations are not overloaded with bags, which would
adversely affect the system and cause cascade stops and
blockages. Cascading blockages can potentially lead to a poor
level of service and in worst scenario a customer may depart
without their bags. This paper presents an empirical study of a
multiobjective problem within a BHS system. The goal is to
estimate near optimal input operating conditions, such that no
blockages occurs at check-in stations, while minimising the
baggage travel time and maximising the throughput
performance measures. We provide a practical hybrid
simulation and binary search technique to determine a near
optimal input throughput operating condition. The algorithm
generates capacity constraint information that may be used by
a scheduler to plan check-in operations based on flight arrival
schedules.

Index Terms⎯ BHS, network analysis, conveyor system,
merge, optimisation, operating policies.

I. INTRODUCTION

Baggage handling systems are conveyor-based networks
that transfer baggage (bags) from service check-in and
transfer stations to output piers (laterals or make-up loops).
The baggage associated with a particular flight is assigned to
a specific pier or set of piers for an allocated time window.
After a customer checks in at the service station, their bags
are transferred to a delivery conveyor and then into the
baggage handling system. Raised levels of security now
require 100% of bags to pass a security screening procedure,
within this network, before dispatch to their plane.

A BHS is a rapid material transfer medium designed such
that the probability of a system resource failure is relatively
low. This is because the system is fragile to any type of in-
system operation or resource failure. Any of these failures
would create a large impact to the system performance, as
bags gets miss tracked, pile up in a certain area in the
network, backlog it self and clogging the check-in stations
which then raising problems from area to area and in the

1V. Le is with the Intelligent Systems Research Lab, Deakin University.

Geelong, Australia (vtl@deakin.edu.au).
2 Dr. D. Creighton is with the Intelligent Systems Research Lab, Deakin

University. Geelong, Australia (dougc@deakin.edu.au)
3 Prof. S. Nahavandi is with the Intelligent Systems Research Lab,

Deakin University, Geelong, Australia (nahavand@deakin.edu.au).

worse ever scenario it would overhauling the current airport
operational activities. In these situations, one problem will
give raise to another dilemma, causing the whole system to
collapse.

In this paper we present a deterministic binary-based
heuristic algorithm to solve a real world multi-objective goal
optimisation problem. The aim is to determine the near
optimal input flow rates, in order not to block check-in
stations, while maximising the output throughput and
minimises baggage travel time for BHS systems. This paper
is organised as follows: Section II we review previous work;
Section III define the BHS environment; Section IV we
describe the algorithm; Section V we estimate the solution
bound; Section VI experimental results and discussion were
given; and Section VII is the concluding remark to our work.

II. RELATED LITERATURE
An operational impact evaluation of airport passenger

security systems was investigated by Pendergraft, Robertson
and Shrader [1]. Simulation was successfully used to provide
support and aid decision making with regard to resource
requirements under different input loading, operating and
staffing conditions and process layouts in order to increase
service level. In our work the performance of the BHS is the
source that provides capacity constraint for resource
requirement planning. Simulation-based multi-objective
optimisation was applied to a scheduling problem in the
postal service industry by Persson et al. [2]. They modelled a
mail sorting process, using the ARENA software package,
and applied genetic algorithms to find an optimal mail
schedule. The efficiency of the process was improved by
performing rough estimation of the solutions before
evaluating them on the time-consuming simulation. We
employ a similar strategy in our algorithm, making a rough
estimate of the upper and lower bounds of input flow rates
to simulate, to reduce the number of unnecessary simulation
runs.

In order to prevent or recover from system malfunctions
and stoppages resulting from system overload, Lim and
Jeong [3] applied simulation to evaluate difference loading
and operating conditions on the Automatic Raw Material
Inspection System (ARMIS). This provides the information
so that good control logics can then be implements. This is
similar to our work, where different loading conditions were
applied to determine the system deliverable capacity, while
trying to prevent potential developed bottleneck at check-ins
stations without changing the control logics.

Simulation-based Input Loading Condition Optimisation of Airport
Baggage Handling Systems

Vu T. Le 1, Dr Doug Creighton2, Prof Saeid Nahavandi3, Senior Member, IEEE

Proceedings of the 2007 IEEE
Intelligent Transportation Systems Conference
Seattle, WA, USA, Sept. 30 - Oct. 3, 2007

TuD1.1

1-4244-1396-6/07/$25.00 ©2007 IEEE. 574

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

The combination of simulation, data mining and
knowledge-based techniques is an emerging methodology
and has been addressed in Painter et al. [4]. The method was
employed to determine short term and long term impacts of
aircraft engine maintenance decisions, based on life-cycle
cost and operational availability in the Air Force. A
clustering data mining technique was used to analyse
simulation output to extract the subsystem interaction
behaviour and the life-cycle. It was found that the method
circumvents the risks and short comings of parametric
model-based approaches and minimises dependency on
historic maintenance.

Binary search [5] is a well known and most effective way
to search sorted data in collections, with a O(logn) solving
time. Over the years it has been further improved and has
evolved to different search forms. Onak and Parys [6]
extended the binary search technique to search trees and
forest-like structures, with partial order sets, resulting in an
upper bound computation time of O(n3). This was an
improvement over the algorithm developed by Ben-Asher et
al. [7], which had a solving time of O(n4log3n). Chan et al.
[8] derived an insertion sort, based on repeatedly performing
binary search in an unordered array, having a running time
of O(n2logn). Some other evolved forms of binary search
include the Fibonacci search [9, 10] and the interpolation
search [11, 12]. Both of these algorithms generally perform
faster than the traditional binary search. The Fibonacci
search runs at O(logn), while the interpolation search has an
O(log(logn)) searching time.

Our work applies divide and conquer binary search on
each input node for a series of deterministic ordered sets of
bag loading, to obtain a near optimum input operating
condition. The next section provides a description to the
problem investigated in this paper.

III. BHS ENVIRONMENT
The baggage handling system operates in a way such that

when a bag enters the system, after check-in or bag transfer
from other planes, it goes through the x-ray security
screening machine to ensure that no dangerous goods or
threats are loaded onto a plane. If something suspicious is
identified, the bag will be transferred to the next level of
security screening. Eventually, the bag will travel to a
manual handling department if all levels of screening are
unable to pass the bag or a threat is positively identified. If
the bag is passed during screening, it then travels through
many merges onto the main line, where it is identified by a
scanning machine, called an Automatic Tag Reader (ATR).
The controller allocates the time windows for the bag at the
ATR, so that when a bag arrives at an output pier within a
determinate time window, it gets pushed by the pusher to the
expected output. If the bag arrives earlier or later at the
output it would be identified as unknown and re-looped back
into the system where it would be rescanned and reallocated
to a new time window.

Baggage handling systems are generally rigid in structural

design. However, when in operation, any unplanned system
loading situation would easily cause the system to become a
bottleneck. Resource planning and scheduling of check-in
stations that didn’t consider the BHS capacity constraint
would easily overload a particular conveyor section within
the system. This overloaded problem would cause bags to
accumulate over time, congesting adjacent conveyor lines
and causing check-in input queue to grow, which greatly
affecting the level of service.

In seeing that the input loading rate is an important
measurement to the BHS system, this paper performs
optimisation study on the BHS simulation model illustrated
in Figure 1. The aim is to determine the input operating
parameters that would minimises the overall baggage travel
time and optimises the output throughput and no blockage
should occur to the check-in stations.

Figure 1: An example of a small size airport BHS.

The BHS shown in Figure 1 is an example of a smaller

size system. It could be seen that, the system contains a
number of merges that transfer bags from one conveyor to
the next. The complexity of the merging rules could
significantly impact system performance. In order to reduce
the model complexity, this paper assumed that merge rule
follows a standard FIFO configuration, which operate
similar to the actual system. To further simplify the problem,
it is reduced to a simple black box with input and output
characteristic as illustrated in Figure 2.

Figure 2: Schematic diagram of the simulation-based

optimisation system.

IV. THE ALGORITHM
The problem is derived such that there are a set of bags

{bi, bi+1, bi+2…bi+n}, where i is the bag index, that feed into

 Travel Time Constraint

BHS
System

Non Block at Check-ins Constraint

Maximize Output Throughput
Minimize Bag Travel Time

Bags
Loading

Check-in
Inputs j

Level 1
Screening

Level 2 & 3
Screening

Transfer
Baggage
Screening

Transfer
baggage
Input j+1

Output(s)

Merge(s)

Dangerous
Goods
Output

Automatic Tag
Reader(ATR)

575

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

each group of check-in and transfer input stations j. This
occurs in such a way that the interarrival time Taj is
deterministic, Taj є {T1, T2...Tk, Tm}. T1 is the minimum
interarrival time, k is the interarrival time element index and
Tm is the maximum interarrival time, where T1 is the lower
and Tm is the upper bound of the input flow rate for each
check-in, j є {1,2,3...N} respectively.

The problem is solved by altering the input flow rate at
each simulation run to each check-in input group. This
means that there would be kN number of simulation runs that
needed to be solved. Since each simulation is running for Ts,
s є {1…H}, the total estimated simulation time and running

time is ∑
=

H

s

N
skT

1

 or an O(kN) time problem type. Both the

size of the problem and the chosen value of Ts will influence
the actual simulation run time and optimisation solving time.

In order to reduce the problem complexity and solving
time the binary search strategy that traverses all the
hierarchical B-Tree branches of data structure, to search for
a satisfactory solution within the simulation runs. The search
criterion reduces the simulation run times to compute for a
feasible region in O(NlogN) time. The algorithm to find the
optimal feasible solution for the simulation has been given
schematically summarised in Figure 3. The embedded binary
search routine used to update run time variables,
BinarySearchUpdate (BreakOn, IsBreak), is shown in Figure
4.

The algorithm defined in Figures 3 and 4 behaves such
that there are N order sets of bags interarrival time {T1,
T2,,…,Tk, Tm}, which are prepared at each of the input j.
Initially each input is loaded with the lower bound of bags
interarrival time T1 and the simulation is run for a
predetermined simulation time, Ts. If during this run time a
check-in (j) becomes blocked or any check-in queue is
greater than the soft queue limit constraint, the baggage
interarrival time, Taj, will reset on j according to Equation 1.
The blocked check-in (j) is stamped and added to a current
break list Lbo(N). The simulation then waits for all the bags
to drain out of the system with a set cool down time, Tc. The
simulation is then re-run with this new loading condition.

Taj = ½ (Tkj + Tmj) (1)

If an alternative check-in j is blocked on the next run or
the subsequence runs, the binary search pointer moves to
this currently block check-in, j, where the bag loading
interarrival time will compute using Equation 1, while the
new break on input j is added to the list Lbo.(N). If the
previous check-in j is blocked, its stamped information will
not add to the list Lbo(N) as it is already in the list.

In the situation where no blockage has occurred, the
baggage output throughput and travel time get stamped. The
weighted cost is computed on this stamped data and is
compared to the previous results, where the optimal
condition is stored. If no obstructions occurred in the last

two runs, it assumed that no blockages will occur for the
current loading conditions, and the last blockage item N is
then removed from the list Lbo(N). The current pointer will
be set to the previous element j, where binary search will
resume on this current check-ins input j element.

The simulation is continued until there are no further
improvements on the results for three consecutive runs and
there is one item left in the list Lbo(N). If there are more
items left in the blockage list Lbo(N) and the result doesn’t
alter in 3 runs, the search algorithm is assumed to be stuck
on a local optimal solution. In order to escape from this local
optimality the algorithm in Figure 4 picks a random check-in
and runs with a different baggage interarrival time on this
selected check-ins input. At the moment, this local optimum
solution escaping routine just randomly pick a previously
blocked check-in input and alter it on the next simulation
run. It currently doesn’t take priority rules into the selection
criteria. After attaining the results, the loading parameter get
resets and the simulation running period is increased.

Figure 3: The embedded simulation optimisation algorithm.

In this work the simulation programming goal is that all

bags have to exit the system within the travel time constraint
and the throughput ratio (output/input) should be at least
70% within the simulation run interval for the current
optimise input interarrival time loading solution. The 70%
constraint is a safety factor which allows less than 30% of
bags to accumulate within the system for a determine
duration monitored interval. The 30% build up of bags
downstream may raise a problem at the later stage, however,
if the bags travel time are still within the capacity limit on
the current simulation time run interval then the results are

576

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

still valid and can possibly be a satisfactory solution.

Figure 4: Variable updating binary search technique.

In order to reduce the simulation running time and search

space, determining of the appropriate solution bound, T1 and
the Tm, is a crucial initial step in order to avoid unneeded
simulation search time in large model. The next section
attempt to estimate this inter-arrival time bound.

V. SIMULATION BOUNDING CONSTRAINTS
This section attempt to estimate the bag inter-arrival time

solution bound T1 and Tm to optimise simulation running
time and preventing unnecessary processing time.

The first bottleneck affecting the lower bound T1 value is
the delivery conveyor at the check-ins. The inter-arrival of
bags into the system should not be greater than the input
conveyor takeaway capacity speed. That is, if the conveyor
takeaway rate is Ċ (units of bags per hour), then T1 ≥
Ċ/3600, so that blockage will not occur.

Blockages can also be caused by screening machines, if
the processing rate is lower than the input feeding rate.
Hence, the optimal design would be having the x-ray
screening machine operating at equal to or greater than the
conveyor delivery capacity. This ensures that the chance for
a bottleneck to develop is minimised. In the situation where
screening machine processing rate is lower than the input
delivery rate, ensures that bags injection rate are less than
the screening machine processing rate. This is to prevent any
blockages building up at these sections that would
deteriorate the system performance, whilst lowering the
level of service. This would mean that the lower bound, T1,
should be chosen to be greater than the mean interarrival of

bags to further reducing the solution space and unnecessary
simulation time.

The upper bound mean interarrival time Tm was based on
interarrival distributions generated from actual data collected
at airport check-in and take away conveyors. The frequency
of bags arriving into the system against interarrival time on a
group of check-ins for flights has been plotted in Figure 5.
This figure illustrates that the peak bag interarrival
frequency is in between 6 and 7 seconds, at the mode values
of data set. In this situation the mean bag interarrival time
value lies somewhere to the right of the mode frequency.
Hence the mode is more important to see that if the conveyor
delivery capacity is broken, so that the previously chosen T1
value could be overwritten.

The mean interarrival time value can be used as an initial
estimate to the upper bound Tm value. As long as a sensible
value is chosen and the solution space constraint doesn’t
overload the system and Tm > T1, then Tm is a soft constraint
that could be arbitrary chosen.

Frequency vs Interarrival Time

0

2

4

6

8

10

12

14

16

0 20 40 60 80 100 120 140 160 180 200 220 240

Interarrival Time (Sec)

Fr
eq

ue
nc

y
(b

ag
s)

 _y

Figure 5: Bags input frequency (1 second bin interval).

Bag Arrival Frequency vs Time

0

2

4

6

8

10

12

14

16

2:24 4:48 7:12 9:36 12:00 14:24 16:48 19:12 21:36

Time(HH:MM)

Fr
eq

ue
nc

y
(B

ag
s)

Figure 6: Daily bag input frequency profile.

The baggage input frequency (in one minute buckets) to

one of the check-in groups for one day is given in Figure 6.
This is the condition when check-in stations are serving for
one to more flight schedules, at different time periods
throughout the day. In the early morning there would be one
to two flights on that check-in group, while during the
afternoon peak a higher number of flights would be serviced.
This graph shows the combination of multiple sets of
periodical data, similar to Figure 5.

BinarySearchUpdate (string curElement, bool IsBreak)
Begin
 E = GET_ELEMENT(curElement)
 Switch(IsBreak)
 Case True:
 If(curElement NotIn BlockageList_Lbo(N))
 UpdateBlockageList_ Lbo(curElement)
 EndIf
 Remainder = (E->InterATime + E->MaxInterTime) Mod 2
 If (Remainder == 0)
 E->IntATime = (E->IntATime + E->MaxIntTime)/2

 Else
 E->IntATime = (E->IntATime + E->MaxIntTime - 1)/2

 EndIf
 Case False:
 If (maxTravelTime > TravelTimeConstraint)
 If(stuckOnLocalSolution)
 E = SelectRandomCheckinFromList_Lbo(N)
 EndIf

E->doubleMinInterTime = E->doubleMidInterTime
E->doubleMaxInterTime = intMaxInterArrivalTime

 Else
 E->doubleMaxInterTime = E->doubleMidInterTime
 EndIf
 Remainder = (E->InterATime + E->MaxInterTime) Mod 2
 If (Remainder == 0)
 E->IntATime = (E->IntATime + E->MaxIntTime)/2

 Else
 E->IntATime = (E->IntATime + E->MaxIntTime + 1)/2

 EndIf
 End Switch
End

577

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

VI. EXPERIMENT AND RESULTS
In this section, we present the investigation outcomes of

the binary algorithm, which was applied to the BHS system
in Figure 1. The respective input loading interarrival time
parameters have been given in Table I. The transfer input
has been set to a constant of 10 seconds interarrival. This is
because we would like to study the effect caused by check-in
input loading variation independent of the transfer bags
input. Transfer baggage arrives in batches of 20 in the
simulation, so a faster interarrival time at the transfer input
would significantly affect the travel time of baggage
merging from the Level 2 and Level 3 screening process.

TABLE I
 INPUT LOADING CONDITION

Input Type Input (j) Taj (secs)
Check-in 1 {3,4,..,16}
Check-in 2 {3,4,..,16}
Check-in 3 {3,4,..,16}
Check-in 4 {3,4,..,16}

Transfer Input 5 10

In order evaluate the performance of the binary search
algorithm, six sets of simulation runs have performed. The
mean optimal results to each of these simulation runs for a
non constraint travel time have been summarised in Table II.
When 30 minute constraint is applied to the bag travel time,
the results have been given in Table III. In both tables, it
could be seen that the optimal solution for the simulation
model having the bag interarrival time of four seconds,
which is equivalent to 900 bags per hour, running for five
hours straight without blockage develop at the check-ins.

TABLE II

NON BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS
 Run Results
 Taj,min
Input 1 2 3 4 5 6
1 4 4 4 4 4 4
2 3 3 3 4 4 4
3 4 4 4 4 4 4
4 3 4 4 4 4 4
5 10 10 10 10 10 10
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295

Max Travel Time (Secs) 1045 1048 1108 1567 1112 1895
Min Travel Time (Secs) 212 212 212 212 212 212
Mean Travel Time(Secs) 386 383 388 384 383 380
Output Throughput
(bags/hr)

3352 3742 3989 3792 3833 3858

Throughput Ratio (%) 73.51 87.84 93.64 95.58 96.79 97.42
Iterations 11 13 13 17 17 19

By comparing the results for constrained and

unconstrained travel time in Table II to Table III, it can be
seen that visually there are no significant differences
between the results. The near optimal bag interarrival time,
maximum, minimum, mean travel time and throughput are

comparable between the two. This was due to the travel time
constraint being greater than the actual travel time for the
majority of the bags. This means that the number of iteration
to obtain a good solution is approximately similar between
the two, as shown in Figures 1 and 2 respectively. Any
differences between the results were caused by the stochastic
processing screening rate security check for dangerous
goods and potential threats. A percentage of bags miss
screen, on the first pass through the x-ray machine, and are
required to be rescreened. These backs must travel to the
next level before being rerouted back into the main loop.
Bags may not be scanned correctly at Automatic Tag
Readers and must be routed to a manual scanning station for
identification before going back into the main system. These
unexpected situations affect the magnitude of bags travel
time and throughput. These events also give rise to the build
up of bags before local bottlenecks causing alternative
check-in stations to blocks and affect the number of iteration
runs to obtain a good set of solutions.

TABLE III
30 MIN BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS
 Run Results
 Taj,min
Input 1 2 3 4 5 6
1 4 4 3 4 4 4
2 3 3 4 3 4 4
3 4 4 4 4 4 4
4 3 4 4 4 4 4
5 10 10 10 10 10 10
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295

Max Travel Time (Secs) 1045 1048 1106 1285 1072 1189
Min Travel Time (Secs) 212 212 212 212 212 212
Mean Travel Time (Secs) 386 384 381 396 377 379
Output Throughput
(bags/hr)

3353 3743 4005 4075 3835 3855

Throughput Ratio 73.53 87.86 94.01 95.57 96.84 97.25
Iterations 11 13 14 14 18 17

In situation when the travel time constraint is reduced so

that no bag should be in the system longer than 16 minutes.
The reason 16 minutes was chosen here instead of 15
minutes was due to no feasible solution been found at the 15
bounding constraint. Any feasible solution found for the 15
minute constraint on this system is pure luck that contributed
by lower missed screening and lower false tag reading rate,
which causes bags to exit the system earlier. The optimised
results obtained on the 16 minute travel time constraint are
given in Table IV. The results have shown that bag loading
interval has to increased, in order to meet the travel time
requirement. As a consequence of this, the throughput is
affected and reduced and the number of iteration required
increases. The output measures on each sets of simulation
subinterval running time for the travel time constraints
equals to 16 minutes and 30 minute constraints are given in
Figure 7.

578

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

TABLE IV

16 MIN BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS
 Run Results
 Taj,min
Input 1 2 3 4 5 6
1 13 16 12 16 15 16
2 10 10 16 13 16 16
3 16 16 10 16 16 16
4 3 10 12 10 10 16
5 10 10 10 10 10 10
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295

Max Travel Time (Secs) 896 899 886 923 933 933
Min Travel Time (Secs) 212 212 212 212 212 212
Mean Travel Time (Secs) 379 368 327 331 325 299
Output Throughput
(bags/hr)

1833 1353 1450 1313 1287 1198

Throughput Ratio 75.68 88.43 93.85 90.74 91.28 95.08
Iterations 10 16 14 17 15 28

Solving Time vs Simulation Time Interval

0

2000

4000

6000

8000

10000

12000

14000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Simulation Time Interval (Secs)

So
lv

in
g

Ti
m

e
(S

ec
s)

Unconstraint travelTime
30 min constraint
16 min constraint

Figure 7: Comparison between constraint and non constraint

travel time.

The plotted results in Figure 7 for the solution time in the
unconstrained and 30 minutes travel time constrained case
show that both have comparable trend running time
intervals. The solving time took approximately half of the
duration compare to the simulation time at the lower data
values. As the simulation time interval increases the solving
time rapidly catches up to the simulation interval time. In the
16 minute scenarios, the rate of change in solving time is
relatively low. This situation has been facilitated by the
algorithm such that as a bag leave the system, it travel time
instantly been evaluate against the constraint. If a bag travel
time is greater than the constraint time, the simulation restart
and iterate through with new sets of loading conditions. This
gives the effect that the solving time being lower. Although
the solving time is lower, the actual number of iterations are
higher, compared to the 30 minutes constraint and
unconstraint experiment results.

VII. CONCLUSION
In this paper we have developed a hybrid simulation and

binary search technique on the hierarchy B-Tree data
structure, to optimise the baggage loading condition at
check-in and transfer input stations for an airport BHS. This

minimised the chance of a cascade stop traverse upstream
from a merge bottleneck. Such blockages would
significantly impact the customer service levels of an airport
and airline. The optimised operating policy aids the
scheduler in generating check-in station operational
schedules, by providing schedulers with the estimated
baggage loading capacity constraints. Studies have shown
that the integrated algorithm could obtain the results in a
manageable time. When the bag travel time constraint is
reduced, both the simulation time and the number of
iterations required to be performed increases and the input
and output throughput rates are reduced.

In this work the check-in input queuing constraint have
been limited to one bag for each of the input. It could be an
extension to monitor the effect from varying the input queue
length and studying the affect from varying the input loading
conditions. This would further increase the complexity scope
of the underlying problem.

The heuristic algorithm is an ideal integration with
simulation environment to solve a multi-objective problem,
like the BHS system in our investigation. It could be
employed in transportation to estimate loading conditions
and road blockages due to downstream traffic.

Acknowledgement

This project was funded by an ARC Linkage Project under
contract number LP0454009.

REFERENCES
 [1] D. R. Pendergraft, C. V. Robertson and S. Shrader, “Simulation of an

airport passenger security system”, Proceeding of the 2004 Winter
Simulation Conference. pp. 874-878, 2004.

[2] A. Persson, H. Grimm, Ng. Amos, T. Lezama, J. Ekberg, S. Falk and
P. Stablum, “Simulation-based multi-objective optimization of a real-
world scheduling problem”, Proceedings of the 2006 Winter
Simulation Conference. pp. 1757-1764, 2006.

 [3] T. G. Lim and K. W. Jeong, “Evaluation of operation load in
automatic raw material inspection system”, In IEEE 2003. pp. 870-
875, 2003.

[4] M. K. Painter, M. Erraguntla, G. L. Hogg Jr. and B. Beachkofski,
“Using simulation, data mining, and knowledge discovery techniques
for optimised aircraft engine fleet management”, Proceeding of the
2006 Winter Simulation Conference. pp. 1253-1260, 2006.

[5] D. E. Knuth, “The art of computer programming: sorting and
searching”, Addison-Wesley, Massachusetts, second edition Vol. 3.
pp. 412, 1998.

[6] K. Onak and P. Parys, “Generalization of binary search: searching in
trees and forest-like partial orders”, Warsaw University. Aug14. 2006.

[7] Y. Ben-Asher, E. Farchi and I. Newman, “Optimal search in trees”,
SIAM Journal on Computing. 28(6), pp. 2090-2102, 1999.

[8] T. Biedl, T. Chan, E. D. Demaine, R. Fleischer, M. Golin, J. A. King
and I Munro, “Fun-sort-or the chaos of unordered binary search”, on
Science Direct Discrete Applied Mathematics. 144(3), 231-236, 2004.

[9] D. E. Ferguson, “Fibonaccian searching”, Communication of the
ACM. 3(12). pp. 648, 1960.

[10] B. Yildiz and E. Karaduman, “On Fibonacci search method with k-
Lucas numbers”, in Applied Mathematics and Computation, Elsevier
Science Inc. 143(2-3), pp. 523-531, 2003.

[11] W. W. Peterson, “Addressing for random-access storage”, IBM
Journal of Research and Development, 1(2), pp.130-146, 1957.

[12] K. Mehlhorn and A. Tsakalidis, “Dynamic interpolation search”,
Journal of the ACM. 40(3), pp. 621-634, 1993.

579

Authorized licensed use limited to: DEAKIN UNIVERSITY LIBRARY. Downloaded on April 13,2010 at 23:54:54 UTC from IEEE Xplore. Restrictions apply.

