
 

 
 Abstract⎯ Scheduling check-in station operations are a 

challenging problem within airport systems. Prior to 
determining check-in resource schedules, an important step is 
to estimate the Baggage Handling System (BHS) operating 
capacity under non-stationary conditions. This ensures that 
check-in stations are not overloaded with bags, which would 
adversely affect the system and cause cascade stops and 
blockages. Cascading blockages can potentially lead to a poor 
level of service and in worst scenario a customer may depart 
without their bags. This paper presents an empirical study of a 
multiobjective problem within a BHS system. The goal is to 
estimate near optimal input operating conditions, such that no 
blockages occurs at check-in stations, while minimising the 
baggage travel time and maximising the throughput 
performance measures. We provide a practical hybrid 
simulation and binary search technique to determine a near 
optimal input throughput operating condition. The algorithm 
generates capacity constraint information that may be used by 
a scheduler to plan check-in operations based on flight arrival 
schedules. 
 

Index Terms⎯ BHS, network analysis, conveyor system, 
merge, optimisation, operating policies.  

I.  INTRODUCTION 

Baggage handling systems are conveyor-based networks 
that transfer baggage (bags) from service check-in and 
transfer stations to output piers (laterals or make-up loops). 
The baggage associated with a particular flight is assigned to 
a specific pier or set of piers for an allocated time window. 
After a customer checks in at the service station, their bags 
are transferred to a delivery conveyor and then into the 
baggage handling system. Raised levels of security now 
require 100% of bags to pass a security screening procedure, 
within this network, before dispatch to their plane. 

A BHS is a rapid material transfer medium designed such 
that the probability of a system resource failure is relatively 
low. This is because the system is fragile to any type of in-
system operation or resource failure. Any of these failures 
would create a large impact to the system performance, as 
bags gets miss tracked, pile up in a certain area in the 
network, backlog it self and clogging the check-in stations 
which then raising problems from area to area and in the 
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worse ever scenario it would overhauling the current airport 
operational activities. In these situations, one problem will 
give raise to another dilemma, causing the whole system to 
collapse.  

In this paper we present a deterministic binary-based 
heuristic algorithm to solve a real world multi-objective goal 
optimisation problem. The aim is to determine the near 
optimal input flow rates, in order not to block check-in 
stations, while maximising the output throughput and 
minimises baggage travel time for BHS systems. This paper 
is organised as follows: Section II we review previous work; 
Section III define the BHS environment; Section IV we 
describe the algorithm; Section V we estimate the solution 
bound; Section VI experimental results and discussion were 
given; and Section VII is the concluding remark to our work. 

II. RELATED LITERATURE  
An operational impact evaluation of airport passenger 

security systems was investigated by Pendergraft, Robertson 
and Shrader [1]. Simulation was successfully used to provide 
support and aid decision making with regard to resource 
requirements under different input loading, operating and 
staffing conditions and process layouts in order to increase 
service level. In our work the performance of the BHS is the 
source that provides capacity constraint for resource 
requirement planning. Simulation-based multi-objective 
optimisation was applied to a scheduling problem in the 
postal service industry by Persson et al. [2]. They modelled a 
mail sorting process, using the ARENA software package, 
and applied genetic algorithms to find an optimal mail 
schedule. The efficiency of the process was improved by 
performing rough estimation of the solutions before 
evaluating them on the time-consuming simulation. We 
employ a similar strategy in our algorithm, making a rough 
estimate of the upper and lower bounds of  input flow rates 
to simulate, to reduce the number of unnecessary simulation 
runs.  

In order to prevent or recover from system malfunctions 
and stoppages resulting from system overload, Lim and 
Jeong [3] applied simulation to evaluate difference loading 
and operating conditions on the Automatic Raw Material 
Inspection System (ARMIS). This provides the information 
so that good control logics can then be implements. This is 
similar to our work, where different loading conditions were 
applied to determine the system deliverable capacity, while 
trying to prevent potential developed bottleneck at check-ins 
stations without changing the control logics. 
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The combination of simulation, data mining and 
knowledge-based techniques is an emerging methodology 
and has been addressed in Painter et al. [4]. The method was 
employed to determine short term and long term impacts of 
aircraft engine maintenance decisions, based on life-cycle 
cost and operational availability in the Air Force. A 
clustering data mining technique was used to analyse 
simulation output to extract the subsystem interaction 
behaviour and the life-cycle. It was found that the method 
circumvents the risks and short comings of parametric 
model-based approaches and minimises dependency on 
historic maintenance. 

Binary search [5] is a well known and most effective way 
to search sorted data in collections, with a O(logn) solving 
time. Over the years it has been further improved and has 
evolved to different search forms. Onak and Parys [6] 
extended the binary search technique to search trees and 
forest-like structures, with partial order sets, resulting in an 
upper bound computation time of O(n3). This was an 
improvement over the algorithm developed by Ben-Asher et 
al. [7], which had a solving time of O(n4log3n). Chan et al. 
[8] derived an insertion sort, based on repeatedly performing 
binary search in an unordered array, having a running time 
of O(n2logn).  Some other evolved forms of binary search 
include the Fibonacci search [9, 10] and the interpolation 
search [11, 12]. Both of these algorithms generally perform 
faster than the traditional binary search. The Fibonacci 
search runs at O(logn), while the interpolation search has an 
O(log(logn)) searching time. 

Our work applies divide and conquer binary search on 
each input node for a series of deterministic ordered sets of 
bag loading, to obtain a near optimum input operating 
condition. The next section provides a description to the 
problem investigated in this paper. 

III. BHS ENVIRONMENT  
The baggage handling system operates in a way such that 

when a bag enters the system, after check-in or bag transfer 
from other planes, it goes through the x-ray security 
screening machine to ensure that no dangerous goods or 
threats are loaded onto a plane. If something suspicious is 
identified, the bag will be transferred to the next level of 
security screening. Eventually, the bag will travel to a 
manual handling department if all levels of screening are 
unable to pass the bag or a threat is positively identified. If 
the bag is passed during screening, it then travels through 
many merges onto the main line, where it is identified by a 
scanning machine, called an Automatic Tag Reader (ATR). 
The controller allocates the time windows for the bag at the 
ATR, so that when a bag arrives at an output pier within a 
determinate time window, it gets pushed by the pusher to the 
expected output. If the bag arrives earlier or later at the 
output it would be identified as unknown and re-looped back 
into the system where it would be rescanned and reallocated 
to a new time window. 

Baggage handling systems are generally rigid in structural 

design. However, when in operation, any unplanned system 
loading situation would easily cause the system to become a 
bottleneck. Resource planning and scheduling of check-in 
stations that didn’t consider the BHS capacity constraint 
would easily overload a particular conveyor section within 
the system. This overloaded problem would cause bags to 
accumulate over time, congesting adjacent conveyor lines 
and causing check-in input queue to grow, which greatly 
affecting the level of service. 

In seeing that the input loading rate is an important 
measurement to the BHS system, this paper performs 
optimisation study on the BHS simulation model illustrated 
in Figure 1. The aim is to determine the input operating 
parameters that would minimises the overall baggage travel 
time and optimises the output throughput and no blockage 
should occur to the check-in stations.  

 

 
 

Figure 1: An example of a small size airport BHS. 
 
The BHS shown in Figure 1 is an example of a smaller 

size system. It could be seen that, the system contains a 
number of merges that transfer bags from one conveyor to 
the next.  The complexity of the merging rules could 
significantly impact system performance. In order to reduce 
the model complexity, this paper assumed that merge rule 
follows a standard FIFO configuration, which operate 
similar to the actual system. To further simplify the problem, 
it is reduced to a simple black box with input and output 
characteristic as illustrated in Figure 2. 

 

 
Figure 2: Schematic diagram of the simulation-based 

optimisation system. 

IV. THE ALGORITHM  
The problem is derived such that there are a set of bags 

{bi, bi+1, bi+2…bi+n}, where i is the bag index, that feed into 
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each group of check-in and transfer input stations j. This 
occurs in such a way that the interarrival time Taj is 
deterministic, Taj є {T1, T2...Tk, Tm}. T1 is the minimum 
interarrival time, k is the interarrival time element index and 
Tm is the maximum interarrival time, where T1 is the lower 
and Tm is the upper bound of the input flow rate for each 
check-in, j є {1,2,3...N} respectively.   

The problem is solved by altering the input flow rate at 
each simulation run to each check-in input group. This 
means that there would be kN number of simulation runs that 
needed to be solved. Since each simulation is running for Ts, 
s є {1…H}, the total estimated simulation time and running 

time is ∑
=

H

s

N
skT

1

 or an O(kN) time problem type. Both the 

size of the problem and the chosen value of Ts will influence 
the actual simulation run time and optimisation solving time. 

In order to reduce the problem complexity and solving 
time the binary search strategy that traverses all the 
hierarchical B-Tree branches of data structure, to search for 
a satisfactory solution within the simulation runs. The search 
criterion reduces the simulation run times to compute for a 
feasible region in O(NlogN) time. The algorithm to find the 
optimal feasible solution for the simulation has been given 
schematically summarised in Figure 3. The embedded binary 
search routine used to update run time variables, 
BinarySearchUpdate (BreakOn, IsBreak), is shown in Figure 
4.  

The algorithm defined in Figures 3 and 4 behaves such 
that there are N order sets of bags interarrival time {T1, 
T2,,…,Tk, Tm}, which are prepared at each of the input j. 
Initially each input is loaded with the lower bound of bags 
interarrival time T1 and the simulation is run for a 
predetermined simulation time, Ts. If during this run time a 
check-in (j) becomes blocked or any check-in queue is 
greater than the soft queue limit constraint, the baggage 
interarrival time, Taj, will reset on j according to Equation 1. 
The blocked check-in (j) is stamped and added to a current 
break list Lbo(N). The simulation then waits for all the bags 
to drain out of the system with a set cool down time, Tc. The 
simulation is then re-run with this new loading condition. 

    
Taj  = ½ (Tkj + Tmj)  (1) 
 

If an alternative check-in j is blocked on the next run or 
the subsequence runs, the binary search pointer moves to 
this currently block check-in, j, where the bag loading 
interarrival time will compute using Equation 1, while the 
new break on input j is added to the list Lbo.(N). If the 
previous check-in j is blocked, its stamped information will 
not add to the list Lbo(N) as it is already in the list.  

In the situation where no blockage has occurred, the 
baggage output throughput and travel time get stamped. The 
weighted cost is computed on this stamped data and is 
compared to the previous results, where the optimal 
condition is stored. If no obstructions occurred in the last 

two runs, it assumed that no blockages will occur for the 
current loading conditions, and the last blockage item N is 
then removed from the list Lbo(N). The current pointer will 
be set to the previous element j, where binary search will 
resume on this current check-ins input j element.  

The simulation is continued until there are no further 
improvements on the results for three consecutive runs and 
there is one item left in the list Lbo(N). If there are more 
items left in the blockage list Lbo(N) and the result doesn’t 
alter in 3 runs, the search algorithm is assumed to be stuck 
on a local optimal solution. In order to escape from this local 
optimality the algorithm in Figure 4 picks a random check-in 
and runs with a different baggage interarrival time on this 
selected check-ins input. At the moment, this local optimum 
solution escaping routine just randomly pick a previously 
blocked check-in input and alter it on the next simulation 
run. It currently doesn’t take priority rules into the selection 
criteria. After attaining the results, the loading parameter get 
resets and the simulation running period is increased. 

 

 
Figure 3: The embedded simulation optimisation algorithm. 

 
In this work the simulation programming goal is that all 

bags have to exit the system within the travel time constraint 
and the throughput ratio (output/input) should be at least 
70% within the simulation run interval for the current 
optimise input interarrival time loading solution. The 70% 
constraint is a safety factor which allows less than 30% of 
bags to accumulate within the system for a determine 
duration monitored interval. The 30% build up of bags 
downstream may raise a problem at the later stage, however, 
if the bags travel time are still within the capacity limit on 
the current simulation time run interval then the results are 
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still valid and can possibly be a satisfactory solution. 
 

 
Figure 4: Variable updating binary search technique. 
 
In order to reduce the simulation running time and search 

space, determining of the appropriate solution bound, T1 and 
the Tm, is a crucial initial step in order to avoid unneeded 
simulation search time in large model. The next section 
attempt to estimate this inter-arrival time bound. 

V.  SIMULATION BOUNDING CONSTRAINTS  
This section attempt to estimate the bag inter-arrival time 

solution bound T1 and Tm to optimise simulation running 
time and preventing unnecessary processing time. 

The first bottleneck affecting the lower bound T1 value is 
the delivery conveyor at the check-ins. The inter-arrival of 
bags into the system should not be greater than the input 
conveyor takeaway capacity speed. That is, if the conveyor 
takeaway rate is Ċ (units of bags per hour), then T1 ≥ 
Ċ/3600, so that blockage will not occur.  

Blockages can also be caused by screening machines, if 
the processing rate is lower than the input feeding rate. 
Hence, the optimal design would be having the x-ray 
screening machine operating at equal to or greater than the 
conveyor delivery capacity. This ensures that the chance for 
a bottleneck to develop is minimised. In the situation where 
screening machine processing rate is lower than the input 
delivery rate, ensures that bags injection rate are less than 
the screening machine processing rate. This is to prevent any 
blockages building up at these sections that would 
deteriorate the system performance, whilst lowering the 
level of service. This would mean that the lower bound, T1, 
should be chosen to be greater than the mean interarrival of 

bags to further reducing the solution space and unnecessary 
simulation time. 

The upper bound mean interarrival time Tm was based on 
interarrival distributions generated from actual data collected 
at airport check-in and take away conveyors. The frequency 
of bags arriving into the system against interarrival time on a 
group of check-ins for flights has been plotted in Figure 5. 
This figure illustrates that the peak bag interarrival 
frequency is in between 6 and 7 seconds, at the mode values 
of data set. In this situation the mean bag interarrival time 
value lies somewhere to the right of the mode frequency. 
Hence the mode is more important to see that if the conveyor 
delivery capacity is broken, so that the previously chosen T1 
value could be overwritten.  
 

The mean interarrival time value can be used as an initial 
estimate to the upper bound Tm value. As long as a sensible 
value is chosen and the solution space constraint doesn’t 
overload the system and Tm > T1, then Tm is a soft constraint 
that could be arbitrary chosen.  
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Figure 5: Bags input frequency (1 second bin interval). 
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Figure 6: Daily bag input frequency profile. 

 
The baggage input frequency (in one minute buckets) to 

one of the check-in groups for one day is given in Figure 6. 
This is the condition when check-in stations are serving for 
one to more flight schedules, at different time periods 
throughout the day. In the early morning there would be one 
to two flights on that check-in group, while during the 
afternoon peak a higher number of flights would be serviced. 
This graph shows the combination of multiple sets of 
periodical data, similar to Figure 5. 

BinarySearchUpdate (string curElement, bool IsBreak) 
Begin 
    E = GET_ELEMENT(curElement) 
    Switch(IsBreak) 
 Case True: 
      If(curElement NotIn BlockageList_Lbo(N))  
               UpdateBlockageList_ Lbo(curElement) 
      EndIf 
      Remainder = (E->InterATime + E->MaxInterTime) Mod 2   
      If (Remainder == 0) 
           E->IntATime = (E->IntATime + E->MaxIntTime)/2  

  Else 
      E->IntATime = (E->IntATime + E->MaxIntTime - 1)/2 

       EndIf 
   Case False: 
       If (maxTravelTime > TravelTimeConstraint) 
 If(stuckOnLocalSolution) 
     E =  SelectRandomCheckinFromList_Lbo(N) 
 EndIf 

E->doubleMinInterTime = E->doubleMidInterTime 
E->doubleMaxInterTime = intMaxInterArrivalTime 

       Else 
                  E->doubleMaxInterTime = E->doubleMidInterTime 
       EndIf 
       Remainder = (E->InterATime + E->MaxInterTime) Mod 2   
       If (Remainder == 0) 
           E->IntATime = (E->IntATime + E->MaxIntTime)/2  

  Else 
      E->IntATime = (E->IntATime + E->MaxIntTime + 1)/2 

       EndIf       
    End Switch 
End 
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VI. EXPERIMENT AND RESULTS 
In this section, we present the investigation outcomes of 

the binary algorithm, which was applied to the BHS system 
in Figure 1. The respective input loading interarrival time 
parameters have been given in Table I. The transfer input 
has been set to a constant of 10 seconds interarrival. This is 
because we would like to study the effect caused by check-in 
input loading variation independent of the transfer bags 
input. Transfer baggage arrives in batches of 20 in the 
simulation, so a faster interarrival time at the transfer input 
would significantly affect the travel time of baggage 
merging from the Level 2 and Level 3 screening process. 
 

TABLE I 
 INPUT LOADING CONDITION 

Input Type Input (j) Taj (secs) 
Check-in 1 {3,4,..,16} 
Check-in 2 {3,4,..,16} 
Check-in 3 {3,4,..,16} 
Check-in 4 {3,4,..,16} 

Transfer Input 5 10 
   

In order evaluate the performance of the binary search 
algorithm, six sets of simulation runs have performed. The 
mean optimal results to each of these simulation runs for a 
non constraint travel time have been summarised in Table II. 
When 30 minute constraint is applied to the bag travel time, 
the results have been given in Table III. In both tables, it 
could be seen that the optimal solution for the simulation 
model having the bag interarrival time of four seconds, 
which is equivalent to 900 bags per hour, running for five 
hours straight without blockage develop at the check-ins. 

 
TABLE II 

NON BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS 
 Run Results 
 Taj,min 
Input 1 2 3 4 5 6 
1 4 4 4 4 4 4 
2 3 3 3 4 4 4 
3 4 4 4 4 4 4 
4 3 4 4 4 4 4 
5 10 10 10 10 10 10 
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295 
 

Max Travel Time (Secs) 1045 1048 1108 1567 1112 1895 
Min Travel Time (Secs) 212 212 212 212 212 212 
Mean Travel Time(Secs) 386 383 388 384 383 380 
Output Throughput 
(bags/hr) 

3352 3742 3989 3792 3833 3858 

Throughput Ratio (%) 73.51 87.84 93.64 95.58 96.79 97.42
Iterations 11 13 13 17 17 19 

 
By comparing the results for constrained and 

unconstrained travel time in Table II to Table III, it can be 
seen that visually there are no significant differences 
between the results. The near optimal bag interarrival time, 
maximum, minimum, mean travel time and throughput are 

comparable between the two. This was due to the travel time 
constraint being greater than the actual travel time for the 
majority of the bags. This means that the number of iteration 
to obtain a good solution is approximately similar between 
the two, as shown in Figures 1 and 2 respectively. Any 
differences between the results were caused by the stochastic 
processing screening rate security check for dangerous 
goods and potential threats. A percentage of bags miss 
screen, on the first pass through the x-ray machine, and are 
required to be rescreened. These backs must travel to the 
next level before being rerouted back into the main loop. 
Bags may not be scanned correctly at Automatic Tag 
Readers and must be routed to a manual scanning station for 
identification before going back into the main system. These 
unexpected situations affect the magnitude of bags travel 
time and throughput. These events also give rise to the build 
up of bags before local bottlenecks causing alternative 
check-in stations to blocks and affect the number of iteration 
runs to obtain a good set of solutions. 
 

TABLE III 
30 MIN BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS 
 Run Results 
 Taj,min 
Input 1 2 3 4 5 6 
1 4 4 3 4 4 4 
2 3 3 4 3 4 4 
3 4 4 4 4 4 4 
4 3 4 4 4 4 4 
5 10 10 10 10 10 10 
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295 
 

Max Travel Time (Secs) 1045 1048 1106 1285 1072 1189 
Min Travel Time (Secs) 212 212 212 212 212 212 
Mean Travel Time (Secs) 386 384 381 396 377 379 
Output Throughput 
(bags/hr) 

3353 3743 4005 4075 3835 3855 

Throughput Ratio 73.53 87.86 94.01 95.57 96.84 97.25
Iterations 11 13 14 14 18 17 

 
In situation when the travel time constraint is reduced so 

that no bag should be in the system longer than 16 minutes. 
The reason 16 minutes was chosen here instead of 15 
minutes was due to no feasible solution been found at the 15 
bounding constraint. Any feasible solution found for the 15 
minute constraint on this system is pure luck that contributed 
by lower missed screening and lower false tag reading rate, 
which causes bags to exit the system earlier. The optimised 
results obtained on the 16 minute travel time constraint are 
given in Table IV. The results have shown that bag loading 
interval has to increased, in order to meet the travel time 
requirement. As a consequence of this, the throughput is 
affected and reduced and the number of iteration required 
increases. The output measures on each sets of simulation 
subinterval running time for the travel time constraints 
equals to 16 minutes and 30 minute constraints are given in 
Figure 7.  
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TABLE IV 

16 MIN BAG TRAVEL TIME CONSTRAINT SIMULATION RESULTS 
 Run Results 
 Taj,min 
Input 1 2 3 4 5 6 
1 13 16 12 16 15 16 
2 10 10 16 13 16 16 
3 16 16 10 16 16 16 
4 3 10 12 10 10 16 
5 10 10 10 10 10 10 
Interval Run Time (Secs) 1800 3600 7200 10800 14400 18000
Cooling Time 1800 1889 1983 2082 2186 2295
 

Max Travel Time (Secs) 896 899 886 923 933 933 
Min Travel Time (Secs) 212 212 212 212 212 212 
Mean Travel Time (Secs) 379 368 327 331 325 299 
Output Throughput 
(bags/hr) 

1833 1353 1450 1313 1287 1198 

Throughput Ratio 75.68 88.43 93.85 90.74 91.28 95.08
Iterations 10 16 14 17 15 28 
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Figure 7: Comparison between constraint and non constraint 

travel time. 
 

The plotted results in Figure 7 for the solution time in the 
unconstrained and 30 minutes travel time constrained case 
show that both have comparable trend running time 
intervals. The solving time took approximately half of the 
duration compare to the simulation time at the lower data 
values. As the simulation time interval increases the solving 
time rapidly catches up to the simulation interval time. In the 
16 minute scenarios, the rate of change in solving time is 
relatively low. This situation has been facilitated by the 
algorithm such that as a bag leave the system, it travel time 
instantly been evaluate against the constraint. If a bag travel 
time is greater than the constraint time, the simulation restart 
and iterate through with new sets of loading conditions. This 
gives the effect that the solving time being lower. Although 
the solving time is lower, the actual number of iterations are 
higher, compared to the 30 minutes constraint and 
unconstraint experiment results. 

VII. CONCLUSION 
In this paper we have developed a hybrid simulation and 

binary search technique on the hierarchy B-Tree data 
structure, to optimise the baggage loading condition at 
check-in and transfer input stations for an airport BHS. This 

minimised the chance of a cascade stop traverse upstream 
from a merge bottleneck. Such blockages would 
significantly impact the customer service levels of an airport 
and airline. The optimised operating policy aids the 
scheduler in generating check-in station operational 
schedules, by providing schedulers with the estimated 
baggage loading capacity constraints. Studies have shown 
that the integrated algorithm could obtain the results in a 
manageable time. When the bag travel time constraint is 
reduced, both the simulation time and the number of 
iterations required to be performed increases and the input 
and output throughput rates are reduced. 

In this work the check-in input queuing constraint have 
been limited to one bag for each of the input. It could be an 
extension to monitor the effect from varying the input queue 
length and studying the affect from varying the input loading 
conditions. This would further increase the complexity scope 
of the underlying problem.  

The heuristic algorithm is an ideal integration with 
simulation environment to solve a multi-objective problem, 
like the BHS system in our investigation. It could be 
employed in transportation to estimate loading conditions 
and road blockages due to downstream traffic. 
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