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Reduced glycogen availability is associated with
increased AMPKo2 activity, nuclear AMPKo2
protein abundance, and GLUT4 mRNA expression
in contracting human skeletal muscle

Gregory R. Steinberg, Matthew J. Watt, Sean L. McGee, Stanley Chan,
Mark Hargreaves, Mark A. Febbraio, David Stapleton, and Bruce E. Kemp

Abstract: Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through
unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play
an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK o2 translocates
to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study,
we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK o2 activity reduced the associa-
tion of AMPK with glycogen and increased AMPK o2 translocation to the nucleus and GLUT4 mRNA expression
following exercise. Seven males performed 60 min of exercise at ~70% VO, ¢, On 2 occasions: either with normal
(control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle bi-
opsy before and after exercise. Low muscle glycogen was associated with elevated AMPK o2 activity and acetyl-CoA
carboxylase B phosphorylation, increased translocation of AMPK a2 to the nucleus, and increased GLUT4 mRNA.
Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA,
providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of
AMPK 02 under conditions of low muscle glycogen enhances AMPK o2 nuclear translocation and increases GLUT4
mRNA expression in response to exercise in human skeletal muscle.

Key words: exercise, subcellular localization, glycogen binding domain, AMP-activated protein kinase.

Résumé : La disponibilité du glycogene peut influencer par des mécanismes non encore connus 1’expression de
GLUT4 (« glucose transporter 4 ») dans le muscle squelettique. La protéine kinase dépendante de I'AMP (AMPK)
jouerait, en présence de plusieurs substrats, un important rdle dans la régulation de I’expression de GLUT4 dans le
muscle squelettique. Au cours de la contraction musculaire, I’AMPK o2 passe dans le noyau et 1’activité de cette
isoforme de I’AMPK est accrue quand le contenu en glycogene est faible. Dans la présente étude, nous vérifions si un
faible contenu en glycogeéne avant I’effort associé a une activité accrue de I’AMPK o2 réduit 1’association de I’AMPK
au glycogene et augmente la translocation de I'’AMPK o2 dans le noyau et I’expression de I’ARNm codant pour GLUT4.
Sept hommes participent a 2 moments différents & une séance d’exercice d’une durée de 60 min et a une intensité
proche de 70 % du VO, de créte : (i) contenu normal de glycogene (control) et (ii) faible contenu de glycogene (LG)
avant ’effort. On préleve par biopsie a 1’aiguille des échantillons de tissu musculaire avant et apres la séance d’exercice.
Un faible contenu en glycogene est associé a une augmentation de I’activité de I’AMPK o2 et de la phosphorylation
de I’acétyl-CoA carboxylase, a une augmentation de la translocation de I’AMPK 02 dans le noyau et a une augmenta-
tion de I’ARNm codant pour GLUT4. La transfection de myotubes primaires humains comportant un adénovirus actif
de I’AMPK stimule I’expression de I’ARNm codant pour GLUT4, ce qui constitue une preuve du role de I’AMPK
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dans la régulation de I’expression de GLUT4. Nous concluons que 1’augmentation de I’activation de ’AMPK o2 en
présence d’un faible contenu en glycogéne améliore la translocation de I’AMPK o2 et accroit 1’expression de I’ARNm
codant pour GLUT4 a la suite d’un exercice musculaire chez I"’humain.

Mots clés : exercice physique, localisation infracellulaire, affinité du glycogene, protéine kinase dépendante de I’AMP.

[Traduit par la Rédaction]

Introduction

Muscle glycogen availability during contraction can influ-
ence the expression of glucose transporter 4 (GLUT4), the
major facilitative glucose transporter in skeletal muscle
(Richter et al. 2001). In rodent skeletal muscle, the mainte-
nance of low muscle glycogen levels after exercise stimu-
lates GLUT4 expression to a greater extent than if muscle
glycogen levels are restored after the exercise bout (Garcia
Roves et al. 2003). In addition, the overexpression of glyco-
gen phosphorylase in cultured human skeletal muscle cells,
resulting in increased glycogen turnover, increased GLUT4
expression (Baque et al. 1998). The regulation of GLUT4
transcription by contraction and glycogen availability is not
fully understood, but emerging evidence suggests that AMP-
activated protein kinase (AMPK) may play a role in mediat-
ing these effects. Low levels of muscle glycogen correlate
with greater activation of the AMPK 2 isoform in contracting
skeletal muscle (Wojtaszewski et al. 2003; Derave et al. 2000),
whereas activation of AMPK o2 by 5-aminoimidazole-4-
carboxamide riboside (AICAR) is suppressed when glycogen
levels are elevated (Aschenbach et al. 2002; Wojtaszewski et
al. 2000).

AMPK is a multi-substrate enzyme regulating glucose
transport, glycolysis, lipid metabolism, protein synthesis,
and gene transcription in response to many metabolic stress
signals, including exercise (Kemp et al. 2003). Recently,
work from our group has shown that an acute bout of exer-
cise results in translocation of AMPK o2 to the nucleus in
human skeletal muscle (McGee et al. 2003), suggesting that,
during contraction, a major role of AMPK may be to interact
with nuclear targets and influence gene expression.

Although the classic pathway for AMPK activation in-
volves an increase in AMP:ATP, the regulation of AMPK by
AMP is complex, involving not only direct covalent activa-
tion by LKB1 (Woods et al. 2003; Hawley et al. 2003) to
phosphorylate the o subunit at T172, but also allosteric regu-
lation through changes in AMP:ATP (Kemp et al. 2003).
Moreover, recent studies from our laboratory (Polekhina et
al. 2003) and others (Hudson et al. 2003) have identified the
presence of a glycogen-binding domain (GBD) within the Bl
subunit of AMPK. In this study, we demonstrated that muta-
tion of conserved residues within the GBD abolished bind-
ing to glycogen in vitro.

We have recently demonstrated that in a low-glycogen
state, AMPK activation is enhanced (Watt et al. 2004). In the
present study, muscle biopsies from a study by Watt et al.
(2004) were used to determine whether enhanced activation
of AMPK was associated with a reduced association of
AMPK with glycogen and whether enhanced AMPK activa-
tion increased AMPK nuclear translocation and GLUT4
mRNA expression. We hypothesized that reduced glycogen

availability would result in reduced binding of AMPK o2 to
a glycogen-enriched fraction isolated from skeletal muscle,
greater translocation of AMPK 02 to the nucleus, and en-
hanced GLUT-4 mRNA expression.

Materials and methods

The subjects’ characteristics, pre-experimental, and exper-
imental protocols have previously been described (Watt et al.
2004). Seven recreationally active men gave their written
informed consent to participate in the study, which was
approved by the RMIT Human Ethics Committee. The sub-
jects’ age, mass, and height averaged 24 + 2 y, 77 = 3 kg,
and 1.81 + 0.02 m, respectively. Subjects participated in 3-5
sessions of aerobic exercise weekly, but none were specifi-
cally endurance trained.

Pre-experimental protocol

Subjects visited the laboratory and performed an incre-
mental exercise test on a cycle ergometer until they reached
volitional exhaustion. Peak pulmonary oxygen uptake (VO, peq)
averaged 49.0 + 3.7 mL+(kg'min)~'. On subsequent visits,
subjects were asked to refrain from alcohol, caffeine, and
strenuous exercise for the 24 h before the experimental trial.
Glycogen-depleting exercises (see below) were completed
on 2 occasions between 4:00 and 5:00 pm the day before the
experimental trial. Subjects then returned to the laboratory
the following morning (8:00 am) to perform the experimen-
tal protocol (see below), following the consumption of a
high- or low-carbohydrate diet that was provided randomly.
The high-carbohydrate diet contained 6.2 MJ consisting of
79% carbohydrate, 3% fat, and 18% protein (denoted herein
as control); the low-carbohydrate diet contained 6.4 MJ con-
sisting of 4% carbohydrate, 59% fat, and 37% protein (de-
noted herein as LG). Subjects were instructed to consume all
food before 10:00 pm and were permitted to consume water
thereafter.

The glycogen-depleting exercise involved 2 alternating
periods of cycling at 70% VO, ey for 20 min, followed by
20 min of intermittent exercise. The intermittent exercise
consisted of 2 min cycling at 90% VO, .y, followed by 2
min at 50% VO, . Subjects then performed arm-cranking
exercise (~50 W) for 20 min and recommenced intermittent
cycle exercise until exhaustion. The subjects were then asked
to complete further arm-cranking exercise until exhaustion.
This regime was adopted to minimize any overnight glyco-
gen resynthesis during LG in the lower limbs.

Experimental protocol

After consuming either the high- or low-carbohydrate
meals, subjects arrived the following morning after an over-
night fast. Subjects lay supine while a teflon catheter was
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inserted into an antecubital vein and 1 leg was prepared for
subsequent needle biopsy by making 2 incisions through the
skin and fascia of the vastus lateralis under local anesthesia.
A venous blood sample (8 mL) was obtained, and a muscle
sample was obtained by needle biopsy immediately before
exercise. The subject subsequently commenced cycling at
~70% VO, peqr- Respiratory gases were collected for 4 min at
20, 40, and 60 min of exercise and analyzed for VO, and
carbon dioxide production using an on-line metabolic sys-
tem (Medgraphics, St. Paul, Minn.). Venous blood samples
were also obtained at these times. A second muscle sample
was immediately obtained at 60 min with the subject re-
maining on the cycle ergometer. Muscle samples were ob-
tained from the contralateral leg in the subsequent trial.

Blood analysis

Whole blood was mixed in a sodium-heparin collection
tube and the plasma was obtained after centrifugation at
10 000g for 2 min. Plasma samples were frozen at —80 °C
for later analysis of epinephrine (LDN, Nordhorn, Germany)
by radioimmunoassay.

Muscle analysis

Glycogen contents and muscle adenine nucleotides were
determined on freeze-dried samples, which were dissected
free of all visible connective tissue and blood and assayed as
we have described previously (Watt et al. 2002).

AMPK od and 02 activities and ACCB phosphorylation

Frozen vastus lateralis muscle samples weighing ~25 mg
were homogenized in 200 pUL of ice-cold lysis buffer as de-
scribed previously (Chen et al. 2000). Isoform-specific
AMPK activity was measured in immunoprecipitates from
140 puL of muscle lysates with saturating concentrations of
AMP (0.2 mmol/L) as previously described (Chen et al.
1999). The expression and phosphorylation of ACCP was
measured by Western blot of the same muscle lysate used to
measure AMPK activity as previously described by Chen et
al. (1999). ACCP phosphorylation is a substrate of AMPK
and is phosphorylated at Ser221 in human skeletal muscle.
The phosphorylation status of ACCR is considered an in vivo
indication of AMPK activity taking into account both the
allosteric and covalent regulation of AMPK. ACCPB phos-
phorylation was corrected for total ACCB phosphorylation as
previously described (Chen et al. 1999).

AMPK glycogen localization

Frozen tissue samples weighing ~50 mg were homoge-
nized into 750 UL glycogen isolation buffer (50 mmol/L Tris
(pH 8), 150 mmol/L NaCl, 2 mmol/LL. EDTA, 2 mmol/L
EGTA, and protease inhibitors cocktail (Roche, Basel, Swit-
zerland)), spun at 6000g for 10 min, and the resultant
supernatant spun at 50 000g for 30 min. This procedure
resulted in tightly packed translucent glycogen pellet under-
lying a well-defined looser microsomal pellet that was care-
fully removed. The resulting supernatant was called the
cytosolic fraction. Protein concentration was determined us-
ing the BCA protein assay (Pierce). The glycogen pellet was
resuspended into 250 puL glycogen isolation buffer. Glyco-
gen levels were determined by digesting an aliquot of the
glycogen pellet with amyloglucosidase at 50 °C for 30 min
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in a buffer containing 0.1 mol/L sodium acetate (pH 6.0).
Following centrifugation at 14 000g for 2 min, an aliquot
was removed and glucose levels determined using a 2-
enzyme, color-based glucose assay (Sigma Chemicals, St.
Louis, Miss.). As demonstrated in Fig. 1A, the relative gly-
cogen concentration in the purified glycogen fraction was
~20-fold greater then the cytosolic fraction. We then com-
pared 30 png of protein from human muscle cytosolic and
glycogen fractions by 12% self-denatured sodium
polyacrylamide gele electrophoresis (SDS PAGE) stained
with Coomassie blue dye as shown in Fig. 1B. Furthermore,
we identified 2 of the major proteins present in rat liver gly-
cogen by mass spectrometry (MS). Briefly, the proteins
were excised and digested with protein sequencing grade
trypsin overnight at 30 °C with the resulting peptides de-
salted by ZipTip™ (Millipore, Bedford, Mass.) and identi-
fied by tandem MS on a Q(q)TOF-type mass spectrometer
API QSTAR Pulsar i (Applied Biosytems, Foster City,
Calif.). The larger polypeptide was identified as glycogen-
debranching enzyme with 4 peptides were identified by tan-
dem MS and searching with the Mascot search engine (data
not shown). The smaller polypeptide was positively identi-
fied as rat liver glycogen phosphorylase based on the masses
of 14 peptides (data not shown). The 2 major polypeptides
shown in the human glycogen fraction have not been posi-
tively identified by mass spectrometry, but appear to be
glycogen phosphorylase and glycogen-debranching enzyme
given their identical size and relative quantities when com-
pared with the rat liver glycogen fraction. These proteins are
clearly not visible in the cytosolic fraction shown in Fig. 1B.
After the completion of quality-control experiments, hu-
man muscle biopsies were extracted as described above into
glycogen and cytosolic fractions. One hundred micrograms
of protein were solubilized into glycogen-isolation buffer
containing 1% NP-40. AMPK o2 antibody (3 1g) was added
to each fraction together with 100 pL of 20% Protein A
sepharose and incubated overnight at 4 °C with mixing.
Immunoprecipitates were collected, washed twice with gly-
cogen isolation buffer containing 1% NP-40, and analyzed
by Western blot by probing with an AMPK 02 antibody.
Densitometry was used to quantify the amount of AMPK o2
immunoreactivity in the glycogen fraction of each sample.

AMPK nuclear localization

Nuclear proteins were isolated and immunoblotted with
antibodies for AMPK ol and o2 as previously described
(McGee et al. 2003). To further characterize the nuclear and
cytosolic fractions and to ensure purification of the fractions,
quality-control experiments were performed using antibodies
against DHPR «l (plasma membrane, t-tubules), SERCA2
(sarcoplasmic reticulum (SR)), uncoupling protein-3 (UCP3,
mitochondria), and histone 1 (nucleus).

Quantification of GLUT4, and AMPK ol and o2
mRNA using real-time RT-PCR

A portion of muscle (~30 mg) was extracted for total
RNA using a modification of the acid guanidium thiocyanate —
phenol chloroform extraction method described previously
(Febbraio and Koukoulas 2000). The total RNA was subse-
quently quantified 2-3 more times before 1 g of each total
RNA sample was reverse transcribed in a 10 pL reaction
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Fig. 1. Human glycogen was purified as described in Materials and methods. (A) The relative glycogen concentration in the purified
glycogen fraction was ~20-fold greater than in the cytosolic fraction. (B) After purification, 30 g of protein from human muscle
cytosolic and glycogen fractions were stained with Coomassie blue dye as shown and major bands present in rat liver were identified

by mass spectrometry. Ld, molecular mass marker.
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containing 1x TagMan RT buffer, 5.5 mmol/L MgCl,,
500 mmol/L each 2-deoxynucleoside 5-triphosphate,
2.5 mmol/L random hexamers, 0.4 U/mL RNAse inhibitor,
1.25 U/mL Multiscribe reverse transcriptase (Applied
Biosystems), and made up to volume with 0.05% DEPC-
treated H,O. Control samples were also analyzed, where all
of the above reagents except the Multiscribe reverse tran-
scriptase were added to RNA samples. The reverse-
transcription reactions were performed using a GeneAmp
PCR system 2400 (Perkin Elmer,Wellesley, Mass.) with
conditions set at 25 °C for 10 min, 48 °C for 30 min, and
95 °C for 5 min. Two millilitres of 0.5 mol/L EDTA
(pH 8.0) was added to each sample and stored at —20 °C
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until further analysis. Real-time PCR was employed to quan-
tify human GLUT4 and AMPK al and o2 expression from
the cDNA samples. Human probes and primers were de-
signed (Primer Express version 1.0, Applied Biosystems)
from the human gene sequence accessed from GenBank-
EMBL and are presented in Table 1. Each TagMan probe
was labeled with the fluorescent tags FAM (6-
carboxyfluorescein) at the 5 end and TAMRA (6-carboxy-
tetramethylrhodamine) at the 3" end. We also amplified ribo-
somal 18S mRNA as our reference gene, since this gene is
known to be constitutively expressed and was not altered by
the dietary regime (data not shown). TagMan probes and
primers for 18S were supplied in a control reagent kit
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Table 1. VE, VO,, and RER in subjects during cycle exercise at
70% VO, peak With normal (control) or low (LG) pre-exercise
muscle glycogen levels.

VE (L/min) VO, (mL(kg-min)™") RER

Control

Ex 20 70.3+£3.8 36.1£2.0 0.93+0.01

Ex 40 66.4+4.6 34.2+2.7 0.90+0.01

Ex 60 62.3+£3.5 33.6x2.7 0.88+0.01
LG

Ex 20 73.2+5.7 39.2+2.2 0.85+0.01¢

Ex 40 75.4+7.5 37.3£2.7 0.81+0.02¢

Ex 60 73.3+7.3 36.1+£2.5 0.81+0.01¢

Note: VE, ventilatory exchange, VO,, pulmonary oxygen uptake; RER,
respiratory exchange ratio; Ex, exercise. Values are means + SE; n = 7.

(Applied Biosystems). We quantified gene expression using
a multiplex comparative critical threshold (Cy) method (Bio-
Rad i Cycler IQ™, Hercules, Calif.) as previously described
(Febbraio and Koukoulas 2000). PCRs were carried out in
25 uL reactions of TagMan universal PCR master mix (1x),
50 nmol/L TagMan 18S probe, 20 nmol/L. 18S forward
primer, 80 nmol/L 18S reverse primer, and probes and prim-
ers at specific concentrations ranging from 50 nmol/L to
150 nmol/L (probes) and from 50 nmol/L to 900 nmol/L
(primers) for each gene of interest. The sequences of the for-
ward (F) and reverse (R) primers and probes (P) are listed
from 5-3" and are as follows: AMPKaol (F) CAGGGACT
GCTACTCCACAGAGA, (R) CCTTGAGCCTCAGCATCT
GAA, (P) TCAGTTAGCAACTATCGATCTTGCCAAAG
GAGT; AMPK 02 (F) CAACTGCAGAGAGCCATTCACTT,
(R) GTGAAACTGAAGACAATGTGCTT, (P) CTGGCTC
TCTCACTGGCTCTTTGACCG; and GLUT4 (F) CCTGCC
AGAAAGAGTCTGAAGC, (R) ATCCTTCAGCTCAGCC
AGCA, (P) CAGAAACATCGGCCCAGCCTGTCA. The
specific concentrations for each gene were optimized in pre-
liminary experiments. cDNA and control preparations not
containing RT were amplified using the following condi-
tions: 50 °C for 2 min, 95 °C for 10 min, and 40 cycles of
95 °C for 15 s and 60 °C for 1 min.

Cell culture experiments

Primary skeletal muscle cell culture was established from
muscle biopsies of 5 male subjects (24 + 2y, 75 = 5 kg;
VO, peak = 41 = 3 mL~(kg-min)‘1) as described (Chen et al.
2005). Cells were grown to 80% confluence in a-MEM
supplemented with 10% v/v FBS, 0.5% v/v penicillin, and
0.5% v/v Fungizone in a 37 °C incubator with 5% CO,
before being differentiated for 4 d in a-MEM, 2% horse
serum, and 1% each of penicillin, streptomycin, and
amphotericin B (PSA). Cells were then infected with a con-
stitutively active AMPK adenovirus (100 plaque-forming
units (PFU)/plate) or control vector (AdGo, 100 PFU/plate)
as described (Woods et al. 2000). Expression levels of both
control and CA-AMPK infected cells was determined by vi-
sual examination of green fluorescence protein under ultravi-
olet light. Seventy-two hours post infection ~85% of all
myotubes were infected in both control and CA-AMPK-
infected cells (data not shown) and ~90% of myotubes were
differentiated (data not shown). mRNA was then extracted
according to manufacturer’s instructions using the RNeasy
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mini kit (Qiagen, Doncaster, Australia), reverse transcribed
using the thermoscript RT-PCR system (Invitrogen, Mt.
Waverley, Australia), and GLUT4 mRNA was analysed us-
ing quantitative real-time PCR as previously described (Chen
et al. 2005).

Calculations and statistics

Free ADP and AMP concentrations were calculated as de-
scribed previously (McGee et al. 2003). Statistical analysis
was performed by 2-way analysis of variance with repeated
measures (time X trial) and specific differences were located
using a Student—-Newman—Keuls post hoc test. For cell cul-
ture experiments, a ¢ test was performed. Statistical signifi-
cance was set at p <0.05. Data are expressed as the mean +
SEM.

Results

The exercise load (175 = 18 W), oxygen uptake, and ven-
tilation were not different at any point during exercise
(Table 1), whereas the respiratory exchange ratio was lower
in the low-glycogen trial. Plasma epinephrine was elevated
with exercise in the low-glycogen condition relative to the
control condition (60 min: 3.95 = 0.5 nmol/L vs. 2.05 +
0.3 nmol/L). The exercise—diet regimen was successful in
producing normal (control) and low muscle glycogen (LG,
p < 0.05) levels at the onset of exercise (Table 2). Muscle
glycogen content was higher (p < 0.05) in Control at com-
pletion of exercise (Table 2) and glycogen use was greater
(p < 0.05). Muscle nucleotide, creatine, and creatine phos-
phate concentrations were also unaltered by glycogen status
(Table 2). Circulating insulin and glucose values have previ-
ously been reported (Watt et al. 2004).

AMPK 02 activity and ACCJ phosphorylation

AMPK activities and ACCPB phosphorylation have been re-
ported previously (Watt et al. 2004) and are summarized in
Table 3. AMPK «l activity was unaltered by glycogen status
or exercise. AMPK o2 activity was not different between
control and LG groups at rest, but was greater (+134%, p =
0.05) in the LG compared with the control group at the ces-
sation of exercise. Exercise increased ACCP phosphorylation
in the LG group (+112%, p = 0.05); however, in the control
group, the increase in ACCP did not achieve statistical sig-
nificance.

AMPK association with human skeletal muscle
glycogen

As shown in Fig. 2, AMPK 02 associates with glycogen
in both control and LG, with less associated in the LG
condition. At rest, glycogen-bound AMPK ol and o2
immunoreactivity decreased by ~40% in the LG condition
when compared with the control. However, after exercise,
glycogen-bound AMPK o2 immunoreactivity did not change
in the LG condition when compared with control (Fig. 2).

AMPK 02 nuclear translocation

The nuclear protein histone 1 was only observed within
the nuclear fraction, suggesting significant purification of
this fraction from skeletal muscle. However, there was some
expression of DHPR ol and SERCA2 in the nuclear
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Table 2. Muscle glycogen, nucleotide (AMP), and creatine phosphate (PCr) concentrations before and immediately
after 60 min cycle exercise at 70% VO, e, with normal (control) or low (LG) pre-exercise muscle glycogen levels.

Glycogen (mmol/kg dm)

Free AMP (umol/kg dm)

ATP (mmol/kg dm) PCr (mmol/kg dm)

Control
Rest 390+37 0.16+0.05
Exercise 111£35¢ 2.86+1.24¢
LG
Rest 150+317 0.10+0.04
Exercise 17+6%0 4.42+1.61¢

23.8+0.8 84.4+4.7
24.0+1.6 42.4+9.8¢
24.3+1.0 89.3+4.8
23.4+1.3 41.6+8.6“

Note: Values are means = SE, n = 7. dm, dry mass.
“Significantly different from rest in the same trial.
"Significantly different from control at the same time (p < 0.05).

Table 3. AMPK ol and a2 activities and ACCB phosphorylation
before and immediately after 60 min cycle exercise at 70%
VO, peak With normal (control) or low (LG) pre-exercise muscle
glycogen levels.

AMPK ol AMPK o2
(pmol-(min-mg  (pmol-(min-mg PACCB/ACCPB
protein)™!) protein)~')) (arbitrary units)
Control
Rest 0.25+0.06 0.30+0.06 0.39+12
Exercise  0.16+0.05 0.38+0.20 0.67+0.14¢
LG
Rest 0.17+0.03 0.23+0.04 0.38+0.10
Exercise  0.20+0.06 0.89+0.15% 1.11+0.25%"

Note: Values are means = SE, n = 7.
“Significantly different from rest in the same trial.
"Significantly different from control at the same time (p < 0.05).

fraction, albeit at much lower levels than in the cytosolic
fraction, suggesting some contamination of the nuclear frac-
tion with plasma membrane and (or) t-tubule and SR. No
UCP3 was detected in the nuclear fraction. No difference
was observed in the nuclear AMPK 02 content when
comparing control with LG at rest. Exercise stimulated
translocation of AMPK o2 to the nucleus in LG (Fig. 3), an
effect that was not observed when skeletal muscle glycogen
was elevated. Consequently the nuclear AMPK o2 concen-
tration was greater (p < 0.05, power = 0.368) after exercise
in LG compared with control. Cytosolic AMPK ol and o2
protein expression was unaltered by exercise or glycogen
levels (data not shown).

GLUT4 and AMPK o1 and 02 mRNA expression

GLUT4 mRNA expression was increased (p < 0.05,
power = 0.697) after 60 min of exercise in the LG but not in
the control group (Fig. 4A). AMPK ol and o2 mRNA ex-
pression were not altered by exercise in either control or LG
conditions (data not shown). Primary human myotubes in-
fected with a CA-AMPK adenovirus had increased (p =
0.012) GLUT4 mRNA, relative to cells infected with a con-
trol vector (Fig. 4B).

Discussion

This study shows that increased activation of AMPK o2
when skeletal muscle glycogen is low is associated with in-
creased AMPK 02 nuclear translocation and increased

GLUT4 mRNA expression following acute exercise. These
data suggest that skeletal muscle glycogen may be an impor-
tant regulator of AMPK 02 activity, which in turn may play
a role in the regulation of GLUT4 mRNA expression.

Several studies have reported enhanced AMPK o2 activa-
tion by contraction (Derave et al. 2000; Kawanaka et al.
2000) or AICAR (Aschenbach et al. 2002) (Wojtaszewski et
al. 2002a) in skeletal muscle with low glycogen levels. We
have previously reported (Watt et al. 2004) that the reduction
of skeletal muscle glycogen by ~60% before exercise and
by ~85% at the completion of exercise leads to increased
AMPK 02 activation and ACCP phosphorylation compared
with individuals exercising with normal levels of muscle
glycogen. The finding that AMPK 02 activity was not stim-
ulated during moderate intensity exercise when muscle
glycogen content was normal was unexpected; however, it
should be noted that a recent report (Roepstorff et al. 2004)
has also failed to demonstrate significant activation of
AMPK o2 after exercise performed with similar glycogen
levels. Despite the lack of change observed in AMPKo2 ac-
tivity during the control condition, ACCB phosphorylation
was elevated. The finding of elevated ACCP phosphorylation
in control, despite no detectable increase in AMPK o2 activ-
ity is not the first time in which a dissociation between
AMPK 02 activity and ACCB phosphorylation has been
observed (Wojtaszewski et al. 2002b).

The molecular basis for the relationship between glycogen
and AMPK has only been recently elucidated by the identifi-
cation of a glycogen-binding domain within the AMPK f3
subunit (Polekhina et al. 2003; Hudson et al. 2003). The reg-
ulation of AMPK by glycogen remains unclear; however,
glycogen itself does not directly affect the activity of acti-
vated AMPK o1plyl (Polekhina et al. 2003). In the present
study, we hypothesized that the activation status of AMPK
may be related to the amount of AMPK associated with gly-
cogen at any time. To answer this question, we obtained a
glycogen-rich fraction by differential centrifugation and
isolated AMPK al and o2 by immunoprecipitation. We
demonstrate that AMPK associates with the glycogen-rich
fraction in vivo as shown in Fig. 2. Analysis of glycogen-
associated AMPK ol and o2 by immunoblot identified a
40% decrease in glycogen-associated AMPK al and o2 be-
tween control and low glycogen in the resting state (Fig. 2).
Taken together, these data suggest that increased access of
AMPK 02 to AMPKK may explain why AMPK &2 is more
readily activated in individuals with low muscle glycogen.
Despite the association between glycogen content and
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Fig. 2. Representative Western blot of AMPK a2 (above) and densitometry/quantification (below) of AMPK al and o2 expression
immunoprecipitated from cytosolic and glycogen fractions at rest. Values are means + SE (n = 7). “Significantly different from control

(p < 0.05).
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AMPK 02 expression and activity, we feel there are some
difficulties in the current experimental design, which limit
our interpretation of these results. Although we demonstrate
a significant enrichment in glycogen content (~25-fold) and
an association of this enriched glycogen fraction with
AMPK o2 expression, we are unable to distinguish between
non-specific trapping and (or) colocalization of AMPK
within the glycogen-enriched fraction and direct binding. Al-
though we (Polekhina et al. 2003) and others (Hudson et al.
2003) have demonstrated a direct interaction in mammalian
cells the observation that AMPK «l expression was also
reduced despite no change in activity suggests that non-
specific trapping of proteins within the glycogen pellet may
have occurred. Owing to the limited size of human muscle
biopsies, it was not possible to determine if the association
of other proteins with glycogen was also reduced after exer-
cise in the LG condition. These preliminary data suggest that
future studies in human skeletal muscle in vivo examining
the relationship between muscle glycogen and AMPK ex-
pression activity are warranted.

Despite the possibility of a direct effect of glycogen on
AMPK activity, other explanations are plausible. Firstly, al-

Alpha-1

though we demonstrated increased AMPK o2 activity after
exercise in LG in the absence of increased intramuscular
concentrations of AMP, there is a possibility of a potential
physiological effect of non-statistical, but biologically rele-
vant, elevations in AMP due to the sensitivity of AMPK to
small changes in AMP:ATP (Kemp et al. 2003). Secondly,
the hormonal responses to altered glycogen levels in re-
sponse to exercise could not be controlled in the present
study. In rodents, pharmacological concentrations of
isoprotenerol increase AMPK o2 activity, which suggests an
important role of catecholamines in regulating AMPK
(Minokoshi et al. 2002). In the present study, epinephrine
levels were elevated during the low glycogen trial compared
with the control trial (Watt et al. 2004), suggesting a possi-
ble stimulatory role for f-adernergic regulation of AMPK.
Alternatively increased release of interleukin-6 (IL-6) under
conditions of low muscle glycogen (Steensberg et al. 2001)
may also be a contributing factor to the enhanced activation
of AMPK (Kelly et al. 2004; MacDonald et al. 2003). Future
studies investigating these possibilities are warranted.

A single exercise bout enhances GLUT4 mRNA expres-
sion (Rodnick et al. 1990). Initial studies demonstrating that
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Fig. 3. Representative Western blot (above) and densitometry/quantification (below) of nuclear localization of AMPK o2 before and
immediately after 60 min cycle exercise at 70% VO, ¢, With normal (CON) or low (LG) pre-exercise muscle glycogen content. Values
are means * SE (n = 7). "Significantly different from 0 min of the same trial (p < 0.05).
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exercise stimulated AMPK activity suggested that AMPK
may be a potential regulator of GLUT4 transcription (Winder
and Hardie 1996). In support of this idea are observations in
rodent skeletal muscle demonstrating that the pharmacologi-
cal activation of AMPK by AICAR increases GLUT4
expression to a similar degree as chronic exercise training
(Holmes et al. 1999; Winder et al. 2000; Ojuka et al. 2000).
Similarly, infection of rodent skeletal muscle cells (Fryer et
al. 2002) with a constitutively active AMPK adenovirus also
increases GLUT4 expression demonstrating a direct effect of
AMPK on GLUT4 transcription, an effect which we have
replicated in primary human myotubes (Fig. 4B). Taken to-
gether these data support the concept that AMPK can influ-
ence GLUT4 transcription. It should be noted that these
studies do not indicate that AMPK is the only regulator of
GLUT#4 gene transcription. Indeed, recent data by Holmes et
al. (Holmes et al. 2004) elegantly demonstrate in a AMPK
dominant negative mouse that AMPK is not obligatory for
the effects of exercise on GLUT4 expression. Furthermore,
there was trend for resting GLUT4 mRNA to be higher in
the low glycogen condition, in the absence of any difference
in AMPK 02 activity. Other factors, such as the calcium
calmodulin dependent protein kinase (Ojuka et al. 2002)
may also contribute to exercise induced GLUT4 biogenesis

Exercise

and may be capable of compensating for reduced AMPK
activity in the AMPK dominant negative model. The mecha-
nisms by which AMPK activation may increase GLUT4 ex-
pression are unknown, but an important role of myocyte
enhancer factor (MEF) 2A, MEF2D, and peroxisome
proliferator-activated receptor gamma coactivator-1 (PGC-1)
has been demonstrated following AMPK activation by either
exercise (Baar et al. 2002; Pilegaard et al. 2003) or AICAR
treatment (Ojuka et al. 2002). In support of this concept, we
recently demonstrated translocation of AMPK o2 to the nu-
cleus with exercise in skeletal muscle (McGee et al. 2003),
and increased phosphorylation of MEF-2 (McGee and
Hargreaves 2004). In this study, nuclear AMPK o2
translocation after exercise occurred in the low glycogen
trial only. Furthermore, the enhanced AMPK o2 nuclear
translocation was associated with elevated GLUT4 mRNA
following exercise. The mechanism(s) contributing to the
translocation of AMPK 02 to the nucleus are unknown. Ex-
ercise in the Control trial did not significantly increase o2
nuclear translocation, consistent with the lack of change in
AMPK 02 activity in this group, which was unexpected
(Table 3). Future studies are needed to discern whether
different degrees of AMPK activation result in altered
translocation of AMPKo2 to the nucleus.
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Fig. 4. (A) GLUT4 mRNA expression before and immediately after 60 min cycle exercise at 70% VO, peak with normal (CON) or
low (LG) pre-exercise muscle glycogen content. Values are means + SE (n = 7). (B) GLUT4 mRNA expression in primary human
myotubes infected with a control vector (Ad-Go) or constitutively active AMPK (CA-AMPK). Values are means + SE (n = 5). “Signif-
icantly different from control (p < 0.05). “Significantly different from 0 min of the same trial (p < 0.05).
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In conclusion, our results suggest that reduced AMPK o2
association with glycogen may mediate the observed increase
in AMPK 02 activity and o2 nuclear translocation observed
following exercise when muscle glycogen content is re-
duced. Furthermore, our data suggest a role for elevated
AMPK activity in the regulation of GLUT-4 expression in
human skeletal muscle.
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