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Abstract

Aims/hypothesis The 5'-AMP-activated protein kinase
(AMPK) pathway is intact in type 2 diabetic patients and
is seen as a target for diabetes treatment. In this study, we
aimed to assess the impact of the AMPK activator 5-
aminoimidazole-4-carboxamide riboside (AICAR) on both
glucose and fatty acid metabolism in vivo in type 2 diabetic
patients.
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Methods Stable isotope methodology and blood and muscle
biopsy sampling were applied to assess blood glucose and
fatty acid kinetics following continuous i.v. infusion of
AICAR (0.75 mg kg ' min™") and/or NaCl (0.9%) in ten
male type 2 diabetic patients (age 64+2 years; BMI
28+1 kg/m?).

Results Plasma glucose rate of appearance (R,) was
reduced following AICAR administration, while plasma
glucose rate of disappearance (Ry) was similar in the
AICAR and control test. Consequently, blood glucose
disposal (R, expressed as a percentage of R,) was increased
following AICAR infusion (p<0.001). Accordingly, a greater
decline in plasma glucose concentration was observed
following AICAR infusion (p<0.001). Plasma NEFA R,
and Ry were both significantly reduced in response to
AICAR infusion, and were accompanied by a significant
decline in plasma NEFA concentration. Although AMPK
phosphorylation in skeletal muscle was not increased, we
observed a significant increase in acetyl-CoA carboxylase
phosphorylation (p<0.001).

Conclusions/interpretation The 1i.v. administration of
AICAR reduces hepatic glucose output, thereby lowering
blood glucose concentrations in vivo in type 2 diabetic
patients. Furthermore, AICAR administration stimulates
hepatic fatty acid oxidation and/or inhibits whole body
lipolysis, thereby reducing plasma NEFA concentration.

Trial registration: ISRCTN31384581
Funding: The study was funded by the Dutch Diabetes
Research Foundation. S. L. McGee is a National Health and

Medical Research Council (NHMRC) Peter Doherty Fellow
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Abbreviations
ACC acetyl-CoA carboxylase

AS160  phospho-Akt substrate of 160 kDa

AICAR  5-aminoimidazole-4-carboxamide riboside
AMPK  5'-AMP-activated protein kinase

ERK extracellular signal-regulated protein kinase
GSK glycogen synthase kinase

HDACS histone deacetylase 5

R, rate of appearance

R4 rate of disappearance

Introduction

5'-AMP-activated protein kinase (AMPK) is a key
enzyme in the regulation of energy metabolism. It acts
as a cellular energy sensor, and is activated by metabolic
stress, such as hypoxia, and muscle contraction [I].
AMPK controls both fatty acid and carbohydrate metabo-
lism [2—6] by increasing skeletal muscle glucose [2, 4, 6, 7]
and fatty acid [2, 3] uptake and/or oxidation, suppression of
hepatic glucose output [4] and inhibition of adipose tissue
lipolysis [5, 8]. Importantly, AMPK regulates these pro-
cesses in an insulin-independent manner. The AMPK
pathway appears largely intact in obese and/or type 2
diabetic rodents [3, 9-12] and humans [5, 13-16].
Consequently, AMPK is regarded as a potential target for
the treatment of type 2 diabetes.

AMPK is activated by 5-aminoimidazole-4-carboxamide
riboside (AICAR) in skeletal muscle [2—4], adipocytes [8]
and hepatocytes [17]. Although this agent has been widely
used to study the metabolic effects of AMPK activation in
rodents [2—4, 8, 17], studies investigating the effect of
AICAR on AMPK-regulated substrate metabolism in
human tissue are scarce [13, 14, 18]. A recent study
investigated the effect of AICAR infusion (10 mg kg ' h™")
on skeletal muscle 2-deoxyglucose uptake in young,
healthy males [19]. However, no studies have examined
the impact of AICAR on whole body glucose or fatty acid
metabolism in humans. Furthermore, the effects of AICAR
administration in type 2 diabetic patients remain to be
established.

We hypothesise that i.v. AICAR administration in type 2
diabetic patients reduces both plasma glucose and NEFA
concentrations by stimulating blood glucose disposal,
lowering hepatic glucose output, and inhibiting adipose
tissue lipolysis. In the present study, we combine stable
isotope methodology with blood and muscle biopsy
sampling to determine the effect of i.v. AICAR administra-
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tion on blood glucose and fatty acid kinetics in vivo in type
2 diabetic patients.

Methods

Participants Ten male type 2 diabetic patients (age 64+
2 years, BMI 28+1 kg/m?, body fat 29+1%, HbA,. 6.6+
0.2%, duration of diabetes 7+1 years) were selected to
participate in this study. Exclusion criteria were severe
diabetes complications, impaired renal or liver function, car-
diovascular complications, severe obesity (BMI>35 kg/m?),
gout, participation in any regular exercise programme and/
or exogenous insulin therapy. All participants were seden-
tary and taking metformin, sulfonylurea derivatives and/or
thiazolidinediones. Skinfold thickness was measured twice
using skinfold calipers at the triceps, biceps, subscapular
and suprailiacal region. The sum of the skinfold thicknesses
was used to calculate body fat percentage [20]. Volunteers
were informed about the nature and risks of the experi-
mental procedures before their informed consent was
obtained. The study was carried out in accordance with
the principles of the Declaration of Helsinki and was
approved by the Medical Ethics Committee of the Radboud
University Nijmegen Medical Centre (Nijmegen, The
Netherlands).

Experimental trials Each volunteer participated in two ex-
perimental tests, one in which AICAR (0.75 mg kg ' min™")
was infused and one in which only NaCl (0.9%) was
infused to ensure equal volume administration. The order of
the tests was randomised, and tests were separated by at
least 2 weeks. Each test consisted of 90 min of resting
measurements, during which NaCl (0.9%) was infused,
followed by either 120 min of AICAR or NaCl (0.9%)
infusion. [2,2-°H,]Palmitate and [6,6-*H,]glucose were
infused intravenously, with arterialised blood samples
collected at 15 min intervals. Muscle biopsy samples from
the vastus lateralis muscle were collected before the start of
the AICAR test and immediately after the last blood sample
was obtained, at which time AICAR was still being
continuously infused.

Medication, diet and physical activity prior to testing All
participants discontinued their use of blood glucose-
lowering medication for 4 days prior to the tests and
abstained from strenuous physical activity for 2 days prior
to testing. In addition, they were asked to record their
dietary intake during the 2 days prior to the first test and to
repeat this diet prior to the second test. Consumption of
caffeine-containing food and beverages was not allowed for
24 h prior to the tests, as caffeine is a potent adenosine
receptor antagonist [21]. The evening prior to each test, all
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participants consumed the same standardised meal (42 kJ/kg;
containing 61% of energy as carbohydrate, 24% as fat and
15% as protein).

Protocol After an overnight fast, participants arrived at the
research centre at 08:00 hours by car or public transport.
Two Teflon catheters (Baxter, Utrecht, The Netherlands)
were inserted into separate veins of one forearm for isotope
and AICAR and/or NaCl (0.9%) infusion. To obtain
arterialised venous blood, a third catheter was inserted into
a superficial dorsal hand vein of the contralateral arm, after
which the hand was warmed in a hot box that circulated air
at 55°C, to achieve adequate arterialisation [22]. In the
AICAR test, a percutaneous muscle biopsy sample was
taken from the vastus lateralis muscle after the participant
had rested for 30 min in the supine position. After an
additional 15 min of rest, participants were administered a
single i.v. primed infusion of [6,6-*H,]glucose (13.5 wmol/
kg; Cambridge Isotope Laboratories, Andover, MA, USA).
Thereafter, continuous infusions of [6,6-*H,]glucose
(0.3 pumol kg ™' min~") and [2,2-*H,]palmitate (0.035 pmol
kg ' min~'; Cambridge Isotope Laboratories) were started
(=0 min) via a calibrated IVAC pump (CNA Medical,
Royse City, TX, USA); NaCl (0.9%) was infused for
90 min via an IVAC pump. In the AICAR test, an AICAR
infusion (0.75 mg kg ' min~'; Toronto Research Chem-
icals, Toronto, ON Canada) was started at /=90 min and
continued for 120 min, whereas in the control trial an NaCl
infusion was continued at an infusion rate equal to that in
the AICAR trial. A second muscle biopsy sample was taken
immediately after the last blood sample was obtained but
under continued AICAR infusion.

Blood sample analysis Blood samples (8 ml) were collect-
ed in EDTA-containing tubes and immediately centrifuged
at 1,000 g for 10 min at 4°C. Aliquots of plasma were
immediately frozen in liquid nitrogen and stored at —80°C.
Plasma glucose (Roche, Basel, Switzerland), lactate (Wako
Chemicals, Neuss, Germany), NEFA (Wako Chemicals),
glycerol (Roche Diagnostics, Indianapolis, IN, USA) and
triacylglycerol (Sigma Diagnostics, St Louis, MO, USA)
concentrations were analysed with a COBAS semi-automatic
analyser (Roche). Plasma insulin was measured by radio-
immunoassay (Linco, St Charles, MO, USA). Blood HbA .
was analysed by HPLC (Variant II; Bio-Rad, Munich,
Germany). For determination of plasma palmitate and
NEFA kinetics, NEFA were extracted, isolated by thin-
layer chromatography and derivatised to their methyl esters.
Isotope enrichment of palmitate was analysed by GC-MS
(Agilent, Little Falls, DE, USA). Plasma palmitate concen-
tration was determined on an analytical GC with flame
ionisation detection using nonadecaenoic acid as the
internal standard, and was found to constitute 23.9+

0.18% of total NEFA. Following derivatisation, plasma
[6,6-"H,]glucose enrichment was determined by electron
ionisation GC-MS (Agilent). Palmitate and glucose tracer
concentrations in the infusates averaged 2.34+0.03 and
37.3£0.10 mmol/l, respectively, in the AICAR test vs 2.27+
0.06 and 37.3+0.06 mmol/l in the control test. Therefore,
the exact palmitate and glucose tracer infusion rates
averaged 27+1 and 27247 nmol kg ' min"!, respectively,
in the AICAR test vs 28+1 and 272+8 nmol kg ' min" in
the control test. Plasma AICAR concentrations were
determined by HPLC, with UV detection set at 260 nm,
using a 200x4.6 mm 5 pm Hypersil BDS C18 column
(ThermoFisher, Waltham, MA, USA). The mobile phase
consisted of methanol, 10 mmol/l tetrabutylammonium
hydrogen sulphate and 5 mmol/l K,HPO,, pH 8.2 (20:80,
vol./vol.).

Tracer calculations Rate of appearance (R,) and rate of
disappearance (Ry) of palmitate and glucose were calculated
using the single-pool non-steady-state Steele equations
adapted for stable isotope methodology:

F—V[(C+C)/2)[(E, — E1)/(t — t1)]

Fa= [(E2+ E1)/2] M
Ri=R V(% - f) 2)

where F is the infusion rate (in pumol kg ' min™"), ¥ is
distribution volume for palmitate or glucose (40 and
160 ml/kg, respectively), C; and C, are palmitate or
glucose concentrations (mmol/l) at time 1 (#) and 2 (1),
respectively, and £, and E; are the plasma palmitate or
glucose enrichments (tracer/tracee ratios, TTR) at #; and #,,
respectively.

Muscle sample analysis Muscle samples were dissected,
freed from any visible non-muscle material and immedi-
ately frozen in liquid nitrogen. Approximately 30 mg of
muscle was homogenised in ten volumes of homogenisa-
tion buffer (50 mmol/l Tris pH 7.5, 1 mmol/l EDTA,
1 mmol/l EGTA, 50 mmol/l NaF, 5 mmol/l NasP,0,, 10%
[wt/vol.] glycerol, 1% [wt/vol.] Triton X-100, 1 mmol/
1 DTT, protease inhibitor cocktail). Samples were centri-
fuged at 1,000 g for 5 min, and then the supernatant
fractions were assayed for total protein and 50 pg of protein
was resolved by SDS-PAGE and transferred to nitrocellu-
lose membranes. Membranes were incubated with anti-
bodies for pT172 AMPK«l, AMPKa2, pS79 acetyl-CoA
carboxylase (ACC), ACC, phospho-Akt substrate of
160 kDa (AS160), AS160, pT202/Y204 extracellular
signal-regulated protein kinase (ERK), ERK, pS21/9
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a antibodies (2 png) coupled to 15 pl of protein A beads
10 1 (Pierce, Rockford, IL, USA). Immune complexes were
= * washed twice with 1 ml of lysis buffer containing 0.5 mol/l
% 8 | NaCl, and once with 1 ml of Buffer A (50 mmol/l Tris pH
. 7.5, 0.1 mmol/l EGTA, 0.1% [wt/vol.] 2-mercaptoethanol).
‘_; 6 Assays were performed in a total volume of 50 ul
g (50 mmol/l Tris pH 7.5, 0.1 mmol/l EGTA, 0.1% 2-
e mercaptoethanol, 10 mmol/l MgCl,, 0.1 mmol/l [**P]ATP
T 4 (~200 cpm/pmol) and 30 umol/l AMARA peptide
;m (AMARAASAAALARRR). The assays were carried out
< 2 for 30 min at 30°C and terminated by applying 40 ul of the
m reaction mixture onto P81 papers. Phosphotransferase

0 S S activity was measured by scintillation counting.

0 15 30 45 60 75 90 105 120 135 150 165 180 195 21
b Time (min) Statistics All data are expressed as mean+SEM. To
18 - : compare tracer kinetics and plasma metabolite concentra-
" tions over time, a repeated-measures ANOVA was applied.
16 :

14

12 4

Glucose R, and Ry (umol kg1 min-1)
©

0 T T T T T T T T T T T T T |

0 15 30 45 60 75 90 105 120 135 150 165 180 195 210
Time (min)

Fig. 1 Plasma NEFA (a) and plasma glucose (b) tracer kinetics as de-
termined during the administration of i.v. AICAR (0.75 mg kg ' min")
and/or NaCl (0.9%). In the AICAR test, the AICAR infusion was
started at /=90 min. White symbols represent data from the AICAR test,
black symbols represent data from the control test. Circles represent R,
triangles represent Ry. The dotted line indicates the beginning of
AICAR infusion in the AICAR trial. Values are means+SEM.
*Significantly lower plasma NEFA R, and Ry during infusion of
AICAR vs the control test. fSignificantly lower glucose R, during
AICAR infusion (p<0.05)

glycogen synthase kinase (GSK) 3a/(3, GSK3 /3, Akt and
histone deacetylase 5 (HDACS) (Cell Signaling, Danvers,
MA, USA). Antibodies recognising HDACS5 phosphorylated
at S259 and S498 were produced as previously described
[23]. Following incubation with appropriate horseradish
peroxidase-conjugated secondary antibodies, bands were
visualised using a ChemiDoc chemiluminescence detection
system (Bio-Rad, Hercules, CA, USA) and quantified using
1D software (Bio-Rad, Hercules, CA, USA).

AMPK activity assays were performed as previously
described [23]. Briefly, AMPKxl and -2 were immuno-
precipitated from 100 pg of protein using isoform-specific
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A Scheffé post hoc test was applied in cases of a significant
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Fig. 2 R, Ry and disposal of glucose (a, ¢, e) and NEFA (b, d, )
during i.v. AICAR (0.75 mg kg~' min™") or NaCl (0.9%) infusion.
Values represent means+=SEM as calculated between =90 and =210
min (period of AICAR infusion in AICAR test). Disposal is Ry
expressed as a percentage of R,. *p<0.05 vs control test
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Table 1 Tracer kinetics as determined at baseline (NaCl infusion),
and during AICAR or continued NaCl (0.9%) infusion

Variable AICAR (n=10) Control (n=10)

Baseline
R, glucose 10.24+0.51 11.54+0.69
R4 glucose 12.53+0.70 13.07+0.64
%R, Ry glucose 126.5+£3.8% 114.7+1.8
R, NEFA 7.56+0.73 6.89+0.46
R4 NEFA 7.55+0.74 6.87+0.47
%R, Rq NEFA 99.8+0.4 99.8+0.4

AICAR/NaCl infusion (=90 to r=210 min)
R, glucose 7.18+0.32%° 9.61+0.58°
R4 glucose 9.94+0.47° 10.49+0.55°
%R, Rq glucose 141.8+2.6*° 110.6+1.1°
R, NEFA 5.52+0.27%° 6.69+0.32
R4 NEFA 5.59+0.28%° 6.65+0.32
%R, R4y NEFA 101.4+0.4%° 99.5+0.2

Values are means+=SEM (n=10). Unless stated otherwise, units are
pmol kg ' min”!

% R, Ry, percentage of R, that is taken up

2p<0.05 vs control group; ®p<0.05 vs basal values

F ratio, to detect specific differences. For non-time-
dependent variables, a Student’s ¢ test for paired or unpaired
(as applicable) observations was used. A p value of less
than 0.05 was considered significant.

Results

Plasma glucose kinetics There were no significant differ-
ences in the basal R, or disappearance Ry between the
AICAR and control tests (Figs. 1, 2 and Table 1). In both
the AICAR and control tests, plasma glucose R, and Ry
were significantly lower during the intervention period (from
t=105 to =210 min) than at baseline (Table 1). However,
during AICAR infusion, glucose R, was significantly lower
than Ry (7.18+0.32 vs 9.94+0.47 umol kg ' min ', p<
0.001), while glucose R4 rates were similar in the AICAR
and control test (9.94+0.47 vs 10.49+0.55 umol kg ' min",
p=0.29). Consequently, plasma glucose disposal (Rq4
expressed as a percentage of R,) during AICAR infusion
was significantly greater than during the control infusion
when compared with the control test (141.8+2.6 vs 110.6+
1.1%, respectively, p<0.0001).

Plasma NEFA kinetics No significant differences were
observed in baseline NEFA R,, Ry and/or NEFA disposal
between tests (Figs. 1, 2 and Table 1). Plasma NEFA R, and
R4 were significantly lower during AICAR infusion than at
baseline or during the control test (Figs. 1, 2 and Table 1).
Plasma NEFA R4 remained significantly higher than R,
during AICAR infusion (5.59+0.28 vs 5.52+0.27 pmol
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Fig. 3 Plasma glucose (a), triacylglycerol (b), NEFA (c), insulin (d),

lactate (e) and free glycerol (f) concentrations during the AICAR
(white circles) and control (black circles) tests. Values are means=+

0 15 30 45 60 75 §0 105120135150165180195210

Time (min)

0 ;
0 15 30 45 60 75 90 105120135150165180195210

Time (min)

SEM. Dotted lines mark the beginning of AICAR infusion in the
AICAR trial. Infusion of NaCl was continued in the control trial. *p<
0.05 vs control test; p<0.05 for rate for vs control test (p<0.05)
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kg ! min~!, p<0.02). On average, plasma NEFA disposal
rates were significantly higher during AICAR infusion than
during the control infusion (101.4+£0.4 and 99.5+0.2%,
respectively, p<0.001, Fig. 2).

Plasma metabolite concentrations Plasma metabolite con-
centrations are displayed in Fig. 3. The decline in plasma
glucose concentration during the intervention period,
corrected for baseline plasma glucose concentration, was
significantly greater during AICAR infusion than during
the control test (p<0.0001 for group interaction). Plasma
lactate concentrations increased significantly from 1.03+
0.26 to 1.92+0.27 mmol/l in response to AICAR infusion
and were significantly higher 45 min after the start of this
infusion (#=135) to the end of the infusion compared with
the control test (p<0.02). Plasma NEFA concentrations
declined significantly during AICAR infusion and were
significantly lower 45 min after the start of the infusion
to the end of the infusion compared with the control test
(»<0.002). Furthermore, a small but significant rise in
circulating plasma insulin concentrations was observed
following the onset of AICAR infusion (»p<0.001). No
significant differences in plasma triacylglycerol or free
glycerol concentrations were observed between tests.
Plasma AICAR concentrations increased during AICAR
infusion up to 161+11 umol/l (Fig. 4).

Muscle analyses Western blotting performed on muscle
biopsy samples collected prior to and after AICAR admin-
istration showed a significant 185+28% increase in the ratio
of pS79 ACC to unphosphorylated ACC following AICAR
administration (Fig. 5). No significant changes were
observed in the phosphorylation state of AMPK, AS160,
GSK3«, GSK3p, HDACS (5259 and S498), Akt and ERK.
AMPK activity assays showed a 1.7+0.5-fold change in
AMPK«x1 activity (p=0.16), and a 1.01+0.3-fold change
in AMPK«2 activity (NS) following AICAR infusion.

200+

150

a
o

0 -
0 15 30 45 60 75 90 105120135150165180195210

Plasma AICAR concentration (umol/l)
)
o

Time (min)

Fig. 4 Plasma AICAR concentrations during i.v. AICAR administra-
tion. Values are means+=SEM
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Fig. 5 Skeletal muscle AMPK (a) and ACC (b) phosphorylation prior
to (PRE) and after (POST) i.v. AICAR infusion (0.75 mg kg ' min").
The graphs show the ratio of phosphorylated to unphosphorylated
protein. Values are means+SEM. *p<0.05 vs control test

Discussion

The present study shows that i.v. AICAR infusion in vivo
in type 2 diabetic patients inhibits hepatic glucose output
while maintaining whole body glucose uptake, thereby
lowering plasma glucose concentrations. Furthermore,
AICAR infusion is shown to suppress whole body lipolysis,
resulting in a decline in plasma NEFA concentration.

The effects of AICAR on glucose metabolism have been
studied extensively in rodent models, both in vitro and in
vivo. These studies demonstrate that AMPK activation by
AICAR stimulates glucose uptake [2—4, 6, 7] and inhibits
hepatic glucose output [5] in an insulin-independent
manner. In obese and/or insulin-resistant rodent models,
glucose tolerance is improved after long-term AICAR
administration [10-12]. Ex vivo studies in human skeletal
muscle tissue samples have yielded similar results, demon-
strating that AICAR increases glucose transport [13] and
fatty acid oxidation [14], which is accompanied by an
increase in AMPK phosphorylation and/or activity [13, 14]
and ACC phosphorylation [13, 14]. It is evident that it
would be of great interest to determine the effects of in vivo
AICAR administration in humans. Cuthbertson et al. [19]
recently described a twofold increase in 2-deoxyglucose
uptake in skeletal muscle after 3 h of AICAR infusion
(10 mg kg'' h™") in young men. However, this was not
accompanied by changes in plasma glucose concentration
[19]. During a euglycaemic—hyperinsulinaemic clamp in
combination with AICAR infusion, whole body glucose
uptake (i.e. M value) was slightly increased (7%) [19].

To date, no study has investigated the effects of AICAR
administration on plasma glucose and fatty acid kinetics in
vivo in type 2 diabetic patients. In the present study, we
demonstrate a strong decline in the rate of appearance of
plasma glucose following AICAR infusion (0.75 mg kg’
min ', or 45 mg kg ' h™"), suggesting that AICAR infusion
strongly suppresses hepatic glucose output in type 2
diabetic patients. This is in accordance with previous
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results in obese Zucker rats, in which AICAR infusion was
shown to suppress hepatic glucose output [5]. Even though
plasma glucose appearance rates declined during AICAR
infusion, whole body glucose uptake remained unchanged
(Figs. 1, 2). Consequently, glucose disposal (when defined
as the percentage of glucose R, that is taken up from the
circulation) was significantly greater during AICAR infu-
sion (Figs. 1, 2). These findings extend the previous
observations by Cuthbertson et al. [19] and indicate that
AICAR infusion in patients with type 2 diabetes has only a
modest impact on plasma glucose uptake but strongly
inhibits hepatic glucose output. In contrast to Cuthbertson
et al. [19], we observed a significant decline in plasma glucose
levels during AICAR infusion. This discrepancy between
studies may be attributed to the 4.5-fold higher AICAR dose
that was administered and the selection of insulin-resistant
type 2 diabetic patients as opposed to healthy, young men.

In the present study we also assessed the effect of
AICAR infusion on plasma NEFA kinetics. Activation of
AMPK by AICAR has been shown to inhibit lipolysis and
lipogenesis in vitro in adipocytes [8, 24, 25] and in vivo in
both lean and insulin-resistant obese rat models [5]. This
study is the first to demonstrate that i.v. AICAR infusion
(0.75 mg kg~ ' min~") inhibits the whole body lipolytic rate
in type 2 diabetic patients, resulting in a significant decline
in circulating plasma NEFA concentrations (Fig. 3). Fur-
thermore, as AMPK activation in the liver also stimulates
hepatic fatty acid oxidation [26], it might be assumed that
the decline in the rate of appearance of plasma NEFA is
also partly due to a greater hepatic extraction and oxidation
rate of fatty acids released from the splanchnic area.
Altogether, it appears that the effects of AICAR infusion on
plasma glucose and NEFA levels in type 2 diabetic patients
are mainly exerted through its effects on the liver and adipose
tissue, by inhibition of endogenous glucose production,
stimulation of hepatic fatty acid oxidation and/or a reduction
in whole body lipolysis. Contrary to our expectations, the
effect of AICAR infusion on whole body and/or skeletal
muscle glucose and NEFA uptake seems to be of less
quantitative importance in type 2 diabetic patients.

To investigate the effects of AICAR on AMPK activa-
tion in skeletal muscle tissue, we measured potential
changes in the phosphorylation state of AMPK and its
downstream target, ACC, as a more sensitive marker of
AMPK activation [27]. Although we failed to detect a
significant increase in AMPK phosphorylation (Fig. 4), we
did observe a substantial increase in ACC phosphorylation
in muscle biopsy samples collected after 2 h of AICAR
infusion (185+28%). As the ACC phosphorylation state
can be used as a more sensitive measure of in vivo AMPK
activity, our findings suggest that modest allosteric activa-
tion of AMPK had occurred without substantial phosphor-
ylation of AMPK by its kinase. However, this was not

supported by the AMPK activity assays, which showed no
changes in either AMPK a1 or -2 activity. Alternatively, it
is possible that an unknown kinase that is responsive to
AICAR was responsible for the increase in ACC phosphor-
ylation. We did not detect any effect of AICAR infusion on
the phosphorylation of other known AMPK substrates, such
as AS160, GSK3«, GSK3{3 and HDACS5 (on S259 and
S498). Cuthbertson et al. [19] showed an increase in ERK1/
2 phosphorylation with AICAR infusion in humans.
However, no change was detected in the present study. As
such, our data indicate that AICAR infusion in vivo in type
2 diabetic patients only modestly activates AMPK in
skeletal muscle tissue. The impact of AICAR infusion on
AMPK activation seems to be much greater in adipose and/
or liver tissue. It should be noted that a small but significant
increase in circulating plasma insulin concentrations during
the AICAR test might have contributed to the observed
effects on hepatic glucose output and whole body lipolysis
[28]. Future studies using AICAR administration in vivo in
humans might consider the use of octreotide to suppress
insulin secretion. Furthermore, it should be mentioned that
some effects of AICAR may not be AMPK-mediated,
especially the effects on hepatic glucose output [29]. As
adipose and/or liver tissue samples were not collected, we
can only speculate on the impact of AICAR infusion on
AMPK activation in hepatic and/or adipose tissue.

In conclusion, i.v. AICAR infusion (0.75 mg kg ' min ")
in type 2 diabetic patients inhibits hepatic glucose output,
stimulates hepatic fatty acid oxidation and/or reduces whole
body lipolysis in vivo, thereby lowering plasma glucose
and NEFA concentrations.
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