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GA YE WILLIAMS 

CHAPTER NINE 

Student-Created Tasks Inform Conceptual Task Design 

INTRODUCfION 

Over fifteen years as a teacher of secondary mathematics, I progressively 
developed a teaching approach that involved students beginning a topic in groups, 
and working on ~complex tasks' after a five to ten-minute introduction. By 
complex tasks, 1 mean, tasks that can be approached in many different ways, that 
value mathematical explomtion more than moving in a linear direction towards a 
single solutio~ and that require students to explain and generalise. ] developed this 
approach to make mathematics accessible to a greater number of studentsJ and to 
decrease their anxiety about it. I was very surprised when I found able students 
reported that they unders.tood mathematics much better, and enjoyed this process of 
learning. 

AJJ a teacher, [ found I could design tasks that achieved these outcomes and that 
[could articulate some of the features these tasks possessed (Williams, 1996) but, I 
did not know why they 'worked'. Later, as a teacher-researcher, I studied student 
responses to my senior secondary calculus tasks and found that sru.dents were not 
so focussed on my ~ as on questions they asked themselves as they worked with 
these tasks (Williams, 2000a). They were creating and exploring their own tasks r 

In this chapter, I explore the types of questions students ask themselves to 
achieve such deep understanding. I use data from my research within the Leamer's 
Perspective Study (LPS) to explore these ideas. I joined the Learner's Perspective 
Study (LPS) because I considered that classrooms of teachers who displayed 'good 
teaching practice' should be a rich source of data about student-created tasks. I was 
fascinated to find that when students did create their own tasks within the LPS (in 
Australia and the USA). and develop new understandings as a result, their teachers 
had not explicitly intended such activity~ and were frequently not aware it had 
happened. 

In my study within the LPS (Williams, 2005). the thinking of eighty-six students 
was studied in detail. These students came from six different classrooms in 
Australia (4) and the USA (2). Only eight student·created tasks were identified in 
total and these tasks were created by five of the eighty·six students~ and seven of 
these tasks were created and solved individually. These five students varied in their 
mathematical performances in class. Kern was in a class for students identified as 
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gifted, Leon, Pepe, and Eden were identified (by their teachers) as above average 
performance, and Dean stated that he struggled to pass mathematics which fitted 
with his teacher'~ description. 

These five students created their ovm 'conceptual tasks' (Williams, 2005) where 
the tenn 'conceptual tasks' has previously been used to describe tasks designed by 
teachers and/or researchers to support student development of new mathematical 
understandings (see Lampert, 2001). 

Student-created tasks from Kerri (USA) and Leon (Australia) were se1ected for 
the focus of 1I1is chapter. More detail about these cases can be found in Williams 
(2006; 2007a) respectively. Other students in my LPS study (Williams, 2005) who 
created their own tasks undertook the same types of thinking as they explored their 
self-created tasks. Dean differed to the other students in that his exploration was 
interrupted because he did not possess sufficient background knowledge to 
complete his 'constructing' process. Constructing is an ~observable cognitive 
element' of the process of abstracting (Dreyfus, Hershkowitz, & Schwarz, 200Lb) 
where abstracting is the process of ~'vertically reorganising previously constructed 
mathematical knowledge into a new structure" (p. 377), and "vertical" refers to the 
forming a new mathematical structure as opposed to strengthening connections 
between a mathematical structure and a context ("horizontal", Treffers & Goffrel; 
1985). Thus~ Dean was able to commence the developing of a new mathematical 
structure and progress a considerable way towards this~ but a gap in his background 
knowledge meant he was unable to complete the process. 

As these student-created tasks led to deep understanding, and the ways in which 
1hese students worked with these tasks includc;d a progressive structuring of 
questions that elicited more and more complex processes of thinking, there is the 
potential to learn from these students. The following inquiry is the focus of this 
chapter: ''How can conceptual tasks formulated by students, and their activity 
associated with them, inform the design of conceptual tasks more generally?" 

PREVIOUS RESEARCH ON CONCEPTUAL TASKS 

Over the past thirty years~ research focused around tasks that provide opportunities 
for students to develop conceptual knowledge has increased (e.g., Cob~ Wood~ 
Yackel, & McNeal, 1992; Krutetskii, 1976; Lampert, 2001; Tabach, Hershkowitz, 
&. Schwarz, 2005; Williams, 2002b). 

Conceptual tasks designed by Krutetskii (1976) included the following 
characteristics: 

- They could not be solved using known procedures; and 
- They could be solved in more than one way. 

His findings about student thinking in responses to these tasks included: 

- The 'mental activities' students employed in processing information during 
problem solving could be categorised 

- Some students solved these tasks without the assistance of an 'expert other" 
(tltey 'spontaneously' created their own ZPD~ Vygotsky, 1933/1966) 
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- These students posed questions that structured their future exploratory activity 
within the task 

- Some students needed to be asked more explicit questions to focus them on 
relevant task features (they required an expert other, Vygotsky, 1978) 

- Highly .. capable students employed some mental activities not employed by 
others 

- High1y-capable students curtailed solution processes and remembered in 
generalities 

- Other students retained spei:ific values and procedures not general principles. 

In swmnary, Krutetskii found that students presented with unfamiliar problems in 
interview situations and asked to think 'out loud' about them, employed 'mental 
activities' that led to the development of new knowledge that was sometimes 
conceptual and sometimes procedural in nature. Students who developed 
conceptual knowledge structured their exploration with spontaneous questions. 
'Spontaneity' (e.g.!> Thornton, 1999; Steffe & Thompson, 2(00) involves student 
activity, that is not directly caused by WI expert other but that can result from 
situations set up by expert others. Spontaneous questions that progressively 
structure exploration have been identified during individual written responses to 
unfamiliar tasks (CifilreUi, 1999), individual student responses to technology
supported games (Kieran & Guznu\n. 2003). and group work (Williams~ 2~ 
2002a). 

LINKS BETWEEN STUDENT THINKING AND CONCEPTUAL TASKS 

We know some task feEltures can provide opportunities for students to engage in 
thinking that leads to new conceptual knowledge (e.g., Hershkowi~ Schwarz, & 
Dreyfus, 2001; Lampert, 2001; Williams, 2002b; Wood, Williams, & McNeal, 
2006). For example~ the student studied by Hershkowitz, Schwarz and Dreyfus 
(200 1) used multiple representations in a technological environment (including 
graphs and tables) to develop an understanding of how the curve of the graph 
represented the rate of change. It ~ time to focus in more detail on the questions 
students ask themselves during these exploratory processes, and how new 
understandings develop as a result. 

To study student thinking during the development of insight, I integrated the 
observable cognitive elements of the process of 'abstracting' (Hershkowitz, 
Schwarz, &; Dreyfus, 2001) with Krutetskii's (1976) 'mental activities; (cognitive 
activities). Hershkowi~ Schwarz and Dreyfus (2001) found the genesis of an 
abstraction passes through (a) a need for a new structure; (b) the construction of a 
new Elbstract entity; and (c) the consolidation of the abstract entity in using it in 
further activities with increasing ease (Hershkowitz, Schwarz, & Dreyfus, 2001). 
Dreyfus~ Hmhkowitz and Schwarz (2001b) found three observable cognitive 
elements within the process of abstracting! 'recognising' (seeing what mathematics 
could be used to assist the exploration), ~building-with' (using this mathematics in 
unfamiliar ways to progress the exploration), and consbucting (the integrating of 
mathematical ideas during the developing ofirulight). These processes are 'nested~ 
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within each other. For example., when constructing new knowledge, 'recognising' 
the mathematics needed and 'building-with~ this mathematics are both nested 
within the constructing process. 

The cognitive activities associated with information processing during the 
problem solving activity of high ability students were student initiated and student 
controlled (Krutetskii, 1976) and fitted as sub-categories of the observable 
cognitive elements identified by Hershkowitz, Schwarz and Dreyfus (2001). From 
least complex to most complex, these cognitive activities have been described as 
<analysis') 'synthetio-analysis', 'evaluative-analysis', 'synthesis', and 'evaluation'. 
The hierarchical nature of these thought processes are implicit in Krutetskii's 
descriptions of them and supported by his empirical data (Williams, 2000b, p. 18). 

Kmtetskii (1976) described analysis as a process of examining a problem 
element by element, commenting that ''to generalise mathematical relations one 
must ftrSt dismember them" (p. 228). Analysis can involve recognising or both 
recognising and building-with (Williams, 2005). Simultaneous analysis of several 
diagrams, graphs, representations, procedures, or areas of mathematics for the 
purpose of making connections between them (synthetic-analysis), and making 
judgement<; as a result (evaluative-analysis) are subcategories of building-with. 
K.rutetskii described synthesising as identifying ~'genemlity hidden behind various 
particular details" or "'grasp[ing]" what was main, basic~ and general in the 
externally different and distinctive [and finding] elements of the familiar in the 
new" (p. 240). In other words~ synthesising involves integrating what is known 10 
fonn something new. He described evaluating as considering the mathematics 
generated in tenns of its consistency with what is. already known and ruso how 
these new ideas can be used for other purposes. Both synthesising and evaluating 
occur as part of the constructing process and recognising is nested within this 
constructing in various ways including recognising a new purpose for the 
mathematical structure just constructed These thought processes are illustrated 
through the cases described in this chapter. 

This chapter examines the activity of Kern and Leon for the purpose of 
identifYing the questions they fonnulated to structure their explorations, the 
progressive complexifying of thinking that resulted, the new mathematical 
structures developed, and how the types of thought processes supported this 
development. By examining these processes, we should learn more about how to 
design tasks to promote such activity. 

RESEARCH DESIGN 

Comext 

Of the eighty-six students whose thinking was studied in detail (Williams, 2005), 
only five students spontaneously created their own tasks. The two students whose 
self-created tasks were selected as illustrative cases for this chapter are Kerri and 
Leon who each created their own tasks on more than. one occasion. These five 
students who created their own tasks (Wil1iams, 2005) were the only students 
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identified developing new conceptual understandings rather than just leaming new 
mathematical procedures. They came from schools that differed in perceived 
educational status, mathematical performances, cultural mix of the students~ socio
economic status of school community members, and also in the teaching 
approaches used in their classes. 

The other eighty-one students were not identified undertaking activity more 
complex than analysis. In other words, they did not simultaneously consider two or 
more pathways, representations, diagrams, mathematical topics (or some 
combination of these) for the purpose of making connections between them. 
Instead. they llsed mathematics that their teachers identified as relevant (recognised 
externally rather than spontaneously) to undertake procedures 1I1at the teacher had 
taught them to use (building-with but not spontaneous building-with). 

The features common to the lessons in -which students created tasks are: 

- Mathematical topic commenced with exploration involving hands on activity 
- Time to think without interruption 
- Class members had the behavioural autonomy to think alone or with others. 

Further descriptions of the activities that were common to these students, and 
personal factors that contributed to these activities can be found in Williams 
(2007a, 2006). It should be noted that the personal characteristic 'optimism' was 
found ClUcial to spontaneous thinking but is not a focus of this chapter. 

The cases selected contained rich data to illuminate KelTPs and Leon's 
questions, thought processes, and insights, because both students were particularly 
reflective and articulate. These types of thought processes and structuring 
questioning were evident for the other three students (Eden. Dean, Pepe) but Dean 
did not progress beyond evaluative-analysis because he did not possess the 
cognitive artefacts needed to proceed further. Even so, Dean disp1ayed thought 
processes more complex than analysis which was the most complex thinking 
identified in the activity of the other eighty-one students; most of whom were 
higher perfonners than Dean on their class tests. 

Data Collection 

The Learner's Perspective Study (LPS) (Clarke, 2006) research design was ideal 
for identifying students who created their own tasks, the questions they asked 
themselves, the thinking they undertook as they pursued their explorations, and the 
insights they developed There were features of the LPS interview probes in the 
Australian interviews and some of the interviews in the USA that fined with 
Ericsson and Simon's (1980) findings about how to generate high quality verbal 
data to study cognitive activity. These interviews: (a) stimulated student 
reconstruction of their lesson activity using salient stimuli (mixed image lesson 
video of the student [centre screen] and the teacher [in the corner]); (b) allowed the 
student to focus the content of the inten-iew; (c) provided a sketch pad so that 
students who preferred to do so, could communicate using images and symbols to 
assist them; and (d) enoouraged students to focus on lesson activity rather than on 
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general questions that were not related to their specific activity. This guarded 
against researchers asking specific questions that included constructs the subject 
had not previously reported and I'generat[ing] answers without consulting memory 
traces" (Ericsson & Simon, 1980, p. 217). 

In their video stimulated interviews! the students identified when new learning 
occurred during the lesson and reconstructed their thinking dwing that time. The 
interview was my primary data source; video analysis was iofonned by these 
students' reconstructing their classroom activity and what they had attenderl to in 
the classroom. Teacher interviews, interviews with other students, and photocopies 
of student work added detail where insufficient detaH was available from the 
student interview and Lesson video. The conceptual understandings of other 
students in the class (who had not created their own tasks but rather had focused on 
the task as set by the teacher) were studied using lesson video, student interviews, 
teacher interviews, and student worksheets. This was used to demonstrate the 
learning advantages of the student-created tasks. 

Identifying Spordtll'leOUS ActITity 

Spontaneous thinking was considered to oceur when the social elements of the 
process of abstracting (Dreyfus, Hershkowitz, & Schwarz, 2001a) were internal 
(Williams~ 2004). In other words, when the student: 

- C(Jntrolled the recognising process 
- Controlledthe mathematical directions they took 
- Explained and elaborated mathematical ideas for themselves 
- Made their own decisions about whether they agreed with or queried 

mathematics they had generated. 

Thus, where socia1 elements of the process of abstracting arose from an internal 
rather than external sourc~ student thinking was taken to be spontaneous. The 
sixth social element of the process of abstraction (attention) was crucial to the 
spontaneous questions students funnulated to structure their future explorations. 
Students attended to complexities that became evident during their work with the 
task and spontaneous questions arose from these foci (Williams, 2000a). 

ILLUSTRATIVE CASES: STUDENT -cREATED TASKS 

This section describes Kerri~s self-created Wk about linear functions, and Leonts 
self-created task about areas of triangles, and the subsequent activity of each 
student through: 

- A narrative of student activity as they fonnulaled and solved their task 
- The types of questions they asked to s1ructure their exploratory activity 
- How these questions complexified their thinking and how this thinking 

contributed to developing new mathematical structures. 
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Narrative of Kerri ~ Linear Functions Task 

Before the research period, Kerri' s class was taught to find equations of linear 
graphs when two points were given by: 

- Plotting two points 
- Ruling a line through them 
- Drawing a right-angled triangle with the line segment between points as 

hypotenuse 
- Measuring the lengths of the other two sides ofthis triangle ("rise' and 'run') 
- Finding the gradientoftbe line (ratio ofri:ie to run) 
- Finding the y-intercept of the graph by inspection 
- Substituting the gradient and y-intercept into y = mx + b to find the equation of 

the line. 

When the students were tested on this procedure just prior to the research period, 
Kerri forgot her graph paper so she found ano1her way to proceed. The following 
night while doing her homework~ her understandings crystallised. The next day in 
class, the teacher taught procedures that were associated with KerrPs new 
Wlderstandings: finding the linear equation when given two point; 'without using 
graph paper' . 

In her interview after Lessonl, US School 3, Kern reconstructed what she had 
done in the test and the insights she had developed during her subsequent 
homework. In her test, Keni had: 

- Made a sketch of the line between the two points 
- 'Seen' a slope triangle "CUZ you can picture a line in a little right triangle on it" 
- Subtracted y values and subtracted x values of co-ordinates of the points to find 

lengths 
- Calculated the gradient as the ratio of these lengths 
- Substituted the gradient and a set of co-ordinates into the equation to find the y-

intercept 
- Found the equation by substituting the gradient andy-intercept into y = mx + b. 

The method Keni developed in her test involved steps she had previously been 
taught and new mathematical ideas she developed. Work she had undertaken 
previously included: a) calculating the gradient as a ratio~ and b) substituting the 
gradient and the y-intercept into the general equation. New mathematical ideas she 
developed included~ 

- Recognised a right-angled triangle could be drawn on sketch of a line between 
the points 

- Used ber understanding of the Cartesian Coordinate System to find lengths a 
new way 

- Combined previous knowledge of substituting constants or values of variables 
to find an unknown by substituting a constant and values of vllriables. 

K.erri was pleased with what she achieved: 
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Kerri If you find the elope (using the] difference of the 
pointe and .... then we can substitute. oh perfect. So I 
just wrote the equation. 

Key to ~bols und in rranscripu in thi8 chapleT 
Omitted text that does not alter the l1lC8lring of the quote 

[text] Comment!'! and annotatiOns, often descriptions of non-verbal action 

By creating new ways of working mathematically, Kerri developed a procedure 
that enabled her to answer the test question. At this stage, she had not fully realised 
th.e implications: that the horizontal and vertical lengths cou ld be found without the 
need for a diagram. When doing homework after the test, she gained insight. This 
homework involved plotting graphs and measuring lengths to find equations to 
lines when two points were given. and in addition, measuring the length of the line 
segment between the points given. Whilst doing her homework~ Kerri measured the 
rise and the run on the graph paper for each question as required.. by the teacher, 
and simultaneously calculated the lengths using her own method. This thinking is 
an example of syntbetic-rulalysis because there was simultaneously focusing on 
two methods; she measured and calculated at the same time, and thought about 
both methods as she did so. As a result, she made a judgement (evaluative~ 
analysis) that each method always gave the same answer: 

Kerri I was doing my graph, and then I like realised like- really 
solidlYI _ I got the same answer, ~ [by measuring ~s) if 
you do the subtraction. 

Kerri's understanding crystallised (synthesis): she realised that she did not need a 
diagram because her operations on the numerical values of the coordinates of two 
points always gave the measure of the lengths· of horizontal and vertical lines 
separating them. She 'saw~ the equivalence of attributes (line length) in the 
numerical and graphical methods and integrated the representations as a result 

Once~ she realised that the Cartesian Axes System could be used as a tool to find 
vertical and horizontal lengths, she used this new insight along with Pythagoras' 
Theorem to extend the usefu1ness of this tool: the Cartesian Axes System could be 
used as a tool to find lengths of any segments where the coordinates of the 
endpoints were known. Kerri completed her homework 

Kerr! And then also ... we had to find the distance between the two 
plots, and it was !!Iuppo-eed to graph them too-._ I was using 
pythagoras' Theorem. 

What Keni knew 'really solidly' about finding lengths using coordinates was 
evident in class the next day when she queried whether the teacher was 'Finding 
the Equation of a Line without a Graph' as stated in the heading on the board. The 
teacher had demonstrated her procedure by making a sketch and using it to find the 
lengths by subtracting x values and y. Kerri queried the teacher's procedure: "You 
still graphed it". Kerri explained that it could be done without the sketch because 
the gradient could be found by operating on elements of the ordered pairs 
representing 1he points on the line: 
Kerri 
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Towards the end of this lesson, the other members of Kerri's group plotted graphs 
and measured line segments and queried the validity ofKeni~s approach to finding 
the distance between the two points on the line using Pythagoras. In her interview, 
Kern described difference between what she was doing and what other students 
were ooing thus demonstrating her deep understanding: 

Kerr! [The questions) said graph and find the distance- and most 
people would graph the line. and then do the little thing 
[right-angled Slope triangle]. But I would find what- see 
thattd be two ~ then one [subtracting y values. and then 
X values in ~o-ordinateel. 80 you do um, a Bquared plus b 
squared equals c squared .... if you make it a right 
triangle- it's the hypotenuse- not just the distance 

Kerri's connnents showed her generalised understanding: she oould find rise and 
the run by operating on the x and y values in the C<HJrdinates j and saw the 
equivalence of the algebraic expressions for the hypotenuse (from Pythagoras' 
Theorem), and the length of the line segment between the two points. In other 
words, she had subsumed the line segment length into the algebraic expression for 
the hypotenuse thus extending how the Cartesian Axes System could be used as a 
tool for finding lengths by operating with x and y values of co-ordinates. The other 
students in this class had not developed such understandings. They still needed to 
plot and measure. 

Types of Questions Kerr; Aslced 

During her spontaneous explorations prior to the lesson described above, Kerri 
progressively asked questions to structure her filtwe activity. I use 'future' as used 
by Cifarelli (1999) to capture the need for these questions to structure the way 
forward within an exploration that had already commenced. 

In the test,. when she found she did not have graph paper and so could not 
measure to find lengths, she asked herself ''What can I do instead?" Once she had 
sketched the two points and the line between th.em, she analysed her sketch to find 
mathematics relevant to the situation: "What maths can I use to help?" She 
recognised she could use her knowledge of the Cartesian Axes System to find the 
vertical and horizontal lengths and proceeded to do so (recognising, and building
with). 
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Qriutions in Order 

PO$ed 

"'What can I do 
instead'!" 
"What maths can I usc 
tohelp1'" 

Table 1. 1Y.pes 0/ questi01t8 Kuri posed and how they contributed to her developing understanding 

What W iIS' JrwohJed in An.rwmng the Question? CQmpluity otThtnkin.g l11VOlved in Answui1Jg this 
Question 

Drew a sketch and ID1Ubd given information on it. Analysis: recognised 1hc same diagram. aru1d be drawn 
Recognised lengths coo.ld not be meaJurc:d. as in the: graphing. method 
Recognising the diffcn:ru:c bctwccn what was known in Analysis: Considered what was known in the previous 
this. i.nstan.ce and what was able to be fuund previously. situation that was not known hae and looking for 
This time the Lengths were not known. mathematics that could help find what was unknown 

this time. 
"Can it help me find Recognised the properties of1he CoOl'dinale Axes Building-with (synthetic-analysis) by simultaneously 
those lengths that I System oould be useful and used a numerical considering the: sketch, the Cartesian Axes Sy!ll:cm, and 
cannot find the other- representation in conjunctions with the Cartesian /uu:;s a numerical representation. of these, a relevant 
wax!" Sxstem ro find len~. p~ure WBfJ developed 
"Do both methods give Simultaneous considering of operating with numbers in Evaluative-analysis: Synthctic-8lllIlysis for the purpose 
the same answer?" the Cartesian Axes Systent andmeasurins side lengths of making decisions aboutrellSonableness, and 
"'Does it always work?" in graphical representation. comparability of methods. 
"Is there an easier Saw the equivalencc of attributes (side Ic:ngths and Synthesis: Subsuming the side lengths into an algebraic 
way?" "Can 1he process operatioos on x and y values in coordinates of points). fonnula using x values and y values .in coord:inates. 
be curtailcd?" Realised she no longer needed to diagram to find 

lengths. 
"Can this be used for 
anything else?" 

As the length of the line segment between the two 
points is the hypotenuse of a right-angled triangle 
where the other two side lengths can be fou.n~ 
Pythagoras' Theorem can be used in conjunction with 
this new insight to find the 1engt:h of the line segm.ent. 

Evaluation: Using the new insight ror mather purpose. 
Subsuming 1he hypotenuse in Pythagoras' Theorem 
into the slope triangle by ·seeing' the equivalence of 
the hypotenuse snd the line segment between the two 
points and extending the numerical operations used to 
find line segments within 1he Cartesian Axes System 
(syn1betic-analysis and synthesis nested within 
...... r_"t-. .... ......:: __ , 

~ 
~ 
:IE 
t= 
t"" 

~ 
UJ 
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This involved simultaneous analysis of the sketch, and its placement in the axes 
system, (synthetic-analysis as part ofbui1ding~with) to answer the question "Can it 
help me find those lengths I cannot fmd the other way?H Once she had recognised 
the Cartesian Axes System was relevant, she fonnulated appropriate numerical 
operations to find the lengths she could not measure. Crucial to Kerri developing 
insight was her activity during her homework that night. She compared answers 
she generated by the teacher's method with answers she generated by her own 
method and decided they were always the same (evaluative-analysis): "Do both 
methods give the same answer?" ""Does it always work?" Her thinking crystallised 
at this stage (synthesis). She realised she had something that always worked that 
could be expressed generally through an algebraic representation. Kerri made 
judgments based on her simultaneous analysis of four representations 
(diagrammatit;, Cartesian Axes System, numeric, and algebraic) (evaluative
analysis) by asking questions of the nature of: "Is there an easier way?" "Can the 
process be curtailed?" She subsumed 1he other representations into the algebraic 
representation, and 'realised really solidly' that she did not need the diagram 
(synthesis) because she recognised the equivalence of the line lengths, and the 
algebraic representations derived from her knowledge of the CartesiWl Axes 
System. 

Kcrri's thinking was curtailed (Krutetskii, 1976) when she operated on the 
values in the coordinate& without needing the diagram and was able to express this 
generally (synthesis as part of constructing). Kerri continued to think further once 
she had developed insight: "Can this be used for anything else?" She rapidly 
developed an additional insight: she recognised the relevance of Pythagoras~ 
Theorem and subsumed Hne segment into the algebraic representation of the 
hypotenuse of the right-angled slope triangle because she isaw' their equivalence. 

Ker,i Comp/exijies Her Thinking through Structuring Questions 

Unlike the questions that Cifarelli (1999) identified that were specific 1n the 
problem at hand, most of the questions Kerri asked had broader applicability. They 
included: 

a) What can I do instead? 
b) What mathematics could help? 
c) What does this tell me? 
d) Will it always work? 
e) Is there a simpler way? 
f) Can I use what 1 have found for anything else? 

Questions a) and b) elicit analysis of the context, Question c) elicits evaluative
analysis with synthetic-ana1ysis nested within i~ whilst Question e) elicits thinking 
about the connecting of ideas that could result in synthesis~ and Question f) elicits 
evaluation. Task features that stimulated this constructing process included the 
absence of a resource used. previously (graph paper), and the possibility to use the 
mathematical context differently by recognising other relevant mathematics (the 
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STUDENT -CREATED TASKS INFORM CONCEPTUAL TASK DESIGN 

pieces in his head to justi:(y that the area of the acute angled triangle was always 
half the area of the enclosing rectangle. 

Like Kerri, Leon realised almost immediately that his new insight could be used 
for something else. He clapped his hand against his cheek as he rea1ised different 
shaped triangles had the same area if they were enclosed by rectangles of the same 
size. The following excerpt of whole class discussion captures Leon's justification: 

Leon 

Leon 
Teacher 
Leon 
Teacher 
Leon 

That's [Triangle 1] half of the rectangle as well [as 
Triangle 2] 
That would be three hundred iiDd thirty centimetres squared 
Three hundred and thi cty _ Why~ 

It would he exactly the same as the first one [Triangle 2] 
Khy? 
Because ~he green one is half of the rectangle too (see 
Figure J] 

Leon explained that both Triangle 1 and Triangle 2 have areas that are half of 
equivalent rectangles so they must be the same size. The exercise set by the teacher 
towards the end of Lesson 13 involved finding areas of triangles in different 
orientations. The teacher found that (other than Leon) the class struggled to fmd 
areas of these triangles: "I assumed ... they knew __ . base and height ... and how to 
recognise it ... [it's] very obvious ... they don't understand". The other students~ 
including those with higher mathematical performances on class tests, knew the 
rule but not why it worked (Skemp. 1976) so were not able to ;see~ the 
perpendicular height that Leon could recognise easily. 

Wertheimer {L959} identified similar problems with students not recogttising 
perpendicular heights in paraIlelograms_ Leon knew more than the rule, he knew 
why it worked_ Leon could do examples with triangles in any orientation because 
he could 'see~ the perpendicular b.eight of the triangle (even though he did not use 
this terminology). Leon had subsumed the attributes of the rectangle into 
equi valent attributes of triangles SO he could operate with attributes of triangles 
instead; and not need to draw the enclosing rectangte_ The questions Leon asked 
himself to structure the future parts of his explomtion, and the more complex 
thinking that resulted are captured in Table 2. 

Types of QuestiolllJ Leon Asked 

Unlike Kern, whose synthetic-ana1ysis involved considering the same attributes in 
graphical, diagrammatic, nurnerica1~ and algebraic representations, Leon's early 
synthetic-analysis focused on more than one diagrammatic representation arising 
from his question: "Which triangle is easiest?~~ Leon's quest for elegance led to his 
questioning whether there was an easier way (synthetic-analysis nested within 
evaluative-analysis) once his calcu1ations in Method B became too messy to easily 
undertake in his head. 
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Questions in Order 
Posed 

"'Which triangle is 
ell.! i est?"' 
"'What ma.ths could 
help?'" 

Tabu 2. 1)rH~ oj'lusstions Leon fNMed and haw they contrihuted tD his developing untkntanding 

What War lmolved in Aruwering Them? comptaity o/Thinlrl"lj IIfVOhed ,,,. Answering this QlIestion 

Analysed the Ibrce triangles on the board to find which was Analysis: recognising that twa right-angled triangles put 
the ell1ie!t area to find. together make a rectangle (knowing properties of rectangles). 
Recognised rule for finding areas of rectangles co1,Jld be AnalYlis: Considering the use of previously known processes 
used and the answer halved to find the area of the right- one after the other to fmd an answer (b"uiIdinS-with but not yet 
angled triangle. ayDthetiC:~:Y5:is becau5e procedurel oc:wr DI1C after another). 

"Can 1 U3e similar Recognised parallelogram was formed when two acute- Building-with {synthetic-analysis} by simultaneously 
strateg~ ~?" angled. triangles were juxtaposed but had not found the cOtlllidcrins the acute angled triangle.'! and the properties that 

tmaB- of parallelognuns previously. showed aparalleloJml!ll was fonned. 
''What maths can. I Recognised the previously developed process to find the Synthetic-analysis: Coruiden:d what had been previously 
use to help?" area of a. right-angled triangle could be used. Made four developed that might be useful to this new SituatiOD. 

""Is thm'e an easier 
way?" 

am "1riangles always 
come in rectangles' 
help me to find the 
area of any rectangle? 

wean tlWJ be used 10 
save \YOl'k in finding 
the areas of the other 
triangl ? .. ell. 

right-angled triangles within 'the paraJ.le1o-gram (drop Analysis nested within: Considered the use ofprev:iously 
perpendiculars from two vertices to oppo:!iite sides). Process known process one after the other to :find an answer 
becaro.e too meny to easily complete in his head. 
SimuitaneoWiIy considered ideas developed.and diagrams Synthesis: Knewriaht triangles were u.seful to him wul that 
produced by others to form grids for counting:,squares. there was always a RCtangIe that could be made to enclose any 
Insight Triangles always come in rec:tangles. _ triangle. 
Recognised two :right-~gIed triangles 3Il!I embedded in the Synthesis: Insight that the rectangle is not needed to find the 
diagram so knew how to find the area of each, In addition, area of the acute angled triangle because there are attributes of 
the triangles needed for the juxlaposing process were also 1his triangle tha.t are equivalent to the length and width oft:hc: 
within this rectangle. Thus,1hc arca.ofthis rectangle can be Rlctangle. Subsumed attributes (length. width.) of one 
halved to find the area ofthc triangle. representation :into another (base, perpendicular height). 

Simultaneous CODSLd.ering anclher triangl.e with the same 
width and height and his new insight. As the two triang1e:s 
had the same enclosing rectangle. they should ha.ve the 
same area. 

Evaluation: Using the pzeviousiy tfeve.loped insight fur another 
pwpose 

g; 
~ 
;E 
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STUDENT -CREA TED TASKS INFORM CONCEPTUAL TASK DES1GN 

Although Leon did not use algebra to express what he had fOWld, his generalised 
lDlderstanding was indicated by his insight that triangles enclosed by the same 
rectangle having the same area. Task features that stimulated Leon's creating of a 
conceptual task were: the display of three very different triangles with the same 
areas, the opportunity to look-in, knowing the answer but not the reason (from 
empirical explorations of others), and the teacher's j uxtapo sition of an acute angled 
triangle with its enclQsing rectangle in sharply contrasting colours. As with Kerri, 
the task set by the teacher (that was not intended to elicit creative thinking) lead to 
the idiosyncratic formulating of a student-created conceptual task. 

Leon Complexijies His Thinking through Structuring Questions 

Table 2 shows the complexifying of thinking that was stimulated by the questions 
Leon asked himself. Again, as for Kern, Leon subsumed some representations 
within others. In Leon's case he subsumed the attributes of the rectangle into the 
triangle and this occurml because the synthetic-analysis and evaluative-analysis he 
undertook brought him closer and closer to a realisation of this equivalence as he 
found the enclosing rectangle was useful for different types of triangles. 

CONCLUSIONS 

This chapter highlights student-formulated questions that elicit complex thinking 
that supports the development of new mathematical structures. It suggests 
pedagogical advantages to integrating these types of questions into tasks 10 scaffold 
student entry to idiosyncratic exploration. In these cases, students exploring self
created tasks developed deeper understandings than those who undertook the task 
as set by the teacher. The finding (Williams, 2(05) that a student wh.o struggled in 
mathematics could think creatively to develop a greater Wlderstanding than other 
students with higher performances on class tests (Williams~ 2005) negates 
assumptions that only highly able students should be presented with rich 
explorations. 

The process of evaluative-analysis appeared crucial to the process of subsuming 
representations to form new mathematical structures. Questions eliciting this type 
of thinking were focused around fmding more elegant ways to proceed (Leon), and 
checking the reasonableness of mathematics generated (Kern). This seemed to 
highlight the equivalence of attributes that was needed for the subsuming process 
(synthesis). The questions these students a5ked themselves could be built in to 
tasks 10 scaffold students who are not yet able to ask such questions for themselves. 
This shou1d increase the likelihood that students undertake synthetic-analysis and 
evaluative analysis and this should support synthesis. Increasing looking-in 
opportunities could be achieved by structw1ng reporting sessions during a task, 
rather than only after the task (e.g., Williams, 2007b). Introducing these aspects 
into task design should increase opportunities for students to discovering 
mathematical complexities that were not evident to them at the start of the task and 
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this could provide the impetus for student-created tasks. The following section uses 
these findings to suggest a possible task and the rationale fur different features. 

SPECULATING: A CONCEPTUAL TASK ABOUT AREAS OF1RIANGLES 

A conceptual task could be built around the triangles in Figure 1 because they look 
so different yet their areas are the same so there is potential for surprise that could 
create the impetus to explore. Structuring a task that requires students to predict the 
areas,. thus commit to a position, could create this element of surprise. For students 
of differing abilities to have a chance to access the task, it should be set prior to 
rmding areas of: 

~ Irregular shapes by counting squares 
- Triangles using the rule A = bh . 

The background knowledge needed includes a conceptual rather than procedural 
Wldemanding of area as the amOWlt of space within the boundaries of a two
dimensional figure. The task could be undertaken with or without knowledge of 
how to find areas ofrectanglcs because it is possible fur students to find these areas 
without fonna! knowledge. Thus, the type of task suggested oould be appropriate in 
late elementary school or early secondary school. The type of wording in the 
questions below is intentionally predominantly CQmmQn language and tentative, 
rather than demanding and technical. This should increase the likclih90d of 
informal exploration. Questions like the following could be embedded in the task. 
to stimulate idiosyncratic thinking: 

- Predict the areas of the three triangles giving reasons for your predications 
- Find a way to find the areas using any method that you can explain 
- Find a way to quickly check that your answers are reasonable (explain how you 

did this) 
~ Can you see any patterns? Describe them 
- Can you add another triangle that fits this pattern? Explain and test 
- Can you work out why this pattern works? 
- Work out how 10 tell a friend what you have found as simply as possible. 

This task includes the ideas behind the strucbJring questions that Leon and KelTi 
asked. The first dot point should elicit: "What can I use?" The second dot point: 
"What mathematics might help?" The third dot JXlint stimulates evaluatiYe-1U1alysis 
through comparing of two methods to make a judgment The fourth dot point 
elicits synthetic-enalysis through the search for patterns by considering various 
aspects simultaneously. The fifth dot point involves making a judgment 
(eva1uative .. ana1ysis) and the sixth dot point can elicit synthesis because knowing 
why involves developing a new mathematical structure. The seventh dot-point is 
intended to assist students to express what they know by asking them to focus on 
communicating their ideas to a friend. Some students are likely to create their o\w 
tasks earlier than others because the mathematics needed earlier in the task wil~ be 
WlfamiJiar to some. Student-created tasks, elicited by this classroom task, might 
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focus around topics including: constructing triangles, counting squares~ 
approximating when counting squares, areas of composite shapes, juxtaposing 
shapes to find ways to find areas, recognising the significance of enclosing 
rectangles, areas of triangles, and areas of parallelograms. 

Even though the study upon which this chapter was: based identified only eight 
student-created tasks, the diversity of the educational settings, pedagogical 
approaches, and student abilities adds strength to the usefulness of these student
fonnulated questions for task design in mainstream classes. 
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