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GAYE WILLIAMS

CHAFPTER NINE
Student-Created Tasks Inform Conceptual Task Design

INTRODUCTION

Over fifteen years as a teacher of secondary mathematics, I progressively
developed a teaching approach that involved students beginning a topic in groups,
and working on ‘complex tasks’ after a five to ten-minute intreduction. By
complex tasks, I mean, tasks that can be approached in many different ways, that
value mathematical exploration more than moving in a linear direction towards a
single solution, and that require students to explain and generalise. 1 developed this
approach to make mathematics accessible to a greater number of students, and to
decrease their anxiety about it. | was very surprised when I found able students
reported that they undersiood mathematics much better, and enjoyed this process of
learning,.

As a teacher, I found T could design tasks that achieved these outcomes and that
I could articulate some of the featares these tasks possessed (Williams, 1996) but, 1
did not know why they ‘worked’. Later, as a teacher-researcher, I studied student
responses to my senior secondary calculus tasks and found that students were not
so focussed on my task, as oh questions they asked themselves as they worked with
these tasks (Williams, 2000a). They were creating and exploring their own tasks!

In this chapter, I explore the types of questions students ask themselves to
achieve such decp understanding. 1 use data from my research within the Leamer’s
Perspective Study (LPS) to explore these ideas. I joined the Learner’s Perspective
Study (LPS) because I considered that classrooms of teachers who displayed ‘good
teaching practice’ should be a rich source of data about student-created tasks. I was
fascinated io find that when students did create their own tasks within the LPS (in
Australia and the USA), and develop new understandings as a result, their teachers
had not explicitly intended such activity, and were frequently not aware it had
happened.

In my study within the LPS (Williams, 2005), the thinking of eighty-six students
was studied in detail. These students came from six different classrooms in
Ausiralia (4) and the USA (2). Only eight student-created tasks were identified in
total and these tasks were created by five of the eighty-six students, and seven of
these tasks were created and solved individually. These five students varied in their
mathematical performances in class. Kerri was in a class for students identified as
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gifted, Leon, Pepe, and Eden were identified (by their teachers) as above average
performance, and Dean stated that he struggled to pass mathematics which fitted
with his teacher’s description.

These five students created their own ‘conceptual tasks’ (Williams, 2005) where
the term ‘conceptual tasks’ has previously been used to describe tasks designed by
teachers and/or researchers to support student development of new mathematical
understandings (see Lampert, 2001).

Student-created tasks from Kerri (USA) and Leon (Australia) were selected for
the focus of this chapter. More detail about these cases can be found in Williams
(2006; 2007a) respectively. Other students in my LPS study (Williams, 2005) who
created their own tasks undertook the same types of thinking as they explored their
setf-created tasks. Dean differed to the other students in that his exploration was
interrupted because he did not possess sufficient background knowledge to
complete his ‘constructing® process. Constructing is an ‘observable cognitive
element’ of the process of abstracting (Dreyfus, Hershkowitz, & Schwarz, 2001b)
where abstracting is the process of “vertically reorganiging previously constructed
mathematical knowledge into & new structure” (p. 377), and “vertical” refers to the
forming a new mathematical structure as opposed ito strengthening connections
between a mathematical structure and a context ("horizontal”, Treffers & Goffree,
1985). Thus, Dean was able to commence the developing of a new mathematical
structure and progress a considerable way towards this, but a gap in his background
knowledge meant he was unable to complete the process.

As these student-created tasks led to deep understanding, and the ways in which
these students worked with these tasks included a progressive structuring of
questions that elicited more and more complex processes of thinking, there is the
potential to learn from these students. The following inquiry is the focus of this
chapter: “How can conceptual tasks formulated by students, and their activity
associgted with them, inform the design of conceptual tasks more generally?”

PREVIQUS RESEARCH ON CONCEPTUAL TASKS

Over the past thirty years, research focused around tasks that provide opportunities
for students o develop conceptual knowledge has increased (e.g., Cobb, Wood,
Yackel, & McNeal, 1992; Krutetskii, 1976; Lampert, 2001; Tabach, Hershkowitz,
& Schwarz, 2005; Williams, 2002b).

Conceptual tasks designed by Krutetskii (1976) included the following
characteristics:
— They could not be solved using known procedures; and
— They could be solved in more than one way.

His findings about student thinking in responses to these tasks included:

— The ‘mental activities’ students emploved in processing information during
problem sclving could be categorised

— Some studenis solved these tasks without the assistance of an ‘expert other’
(they ‘spontaneously’ created their own ZPDD, Vygotsky, 1933/1966)
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— These students posed questions that structured their future exploratory activity
within the task

— Some students needed to be asked more explicit questions to focus them on
relevant task features (they required an expert other, Vygotsky, 1978)

— Highly-capable students employed some mental activities not employed by
others

— Highly-capable students curtailed solution processes and remembered in
generalities

— Other students retained specific values and procedures not general principles.

In summary, Krutetgkii found that students presented with unfamiliar problems in

interview situations and asked to think ‘out loud® about them, employed ‘mental

activities’ that led to the development of new knowledge that was sometimes

conceptual and sometimes procedural in nature. Students who developed

conceptual knowledge structured their exploration with spontansous questions.

‘Spontaneity’ (e.g., Thornton, 1999; Steffe & Thompson, 2000) involves student

activity, that is not directly caused by an expert other but that can result from

situations set up by expert others. Spontaneous questions that progressively

structure exploration have been identified during individual written responses to

unfamiliar tasks (Cifarelli, 1999), individual student responses to technology-

supported games (Kieran & Guzman, 2003), and group work (Williams, 2000a,

2002a).

LINKS BETWEEN STUDENT THINKING AND CONCEPTUAL TASKS

We know some task features can provide opportunities for students to engage in
thinking that leads to new conceptual knowledge (e.g., Hershkowitz, Schwarz, &
Dreyfus, 2001; Lampert, 2001; Williams, 2002b; Wood, Williams, & McNeal,
2006). For example, the student studied by Hershkowitz, Schwarz and Dreyfus
(2001} used multiple representations in a technological environment (including
graphs and tables) to develop an understanding of how the curve of the graph
represented the rate of change. It is time to focus in more detail on the questions
students ask themselves during these exploratory processes, and how new
vnderstandings develop as a result.

To study student thinking during the development of insight, I integrated the
observable cognitive elements of the process of ‘abstracting” (Hershkowitz,
Schwarz, & Dreyfus, 2001) with Krutetskii’s (1976) ‘mental activities’ {cognitive
activities). Hershkowitz, Schwarz and Dreyfus (2001} found the genesis of an
abstraction passes through (a) a need for a new structure; (b) the construction of a
new abstract entity; and (c) the consolidation of the abstract entity in using it in
further activities with increasing ease (Hershkowitz, Schwarz, & Dreyfus, 2001).
Dreyfus, Hershkowitz and Schwarz (200Eb) found three observable cognitive
elements within the process of abstracting: ‘recognising’ (seeing what mathematics
could be used to assist the exploration), ‘building-with’ (using this mathematics in
unfamiliar ways to progress the exploration), and constructing (the integrating of
mathematical ideas during the developing of insight). These processes are ‘nested’
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within each other. For example, when constructing new knowledge, “recognising’
the mathematics needed and ‘building-with® this mathematics are both nested
within the constructing process.

The cognitive activities associated with information processing during the
problem solving activity of high ability students were student initiated and student
controlled (Krutetskii, 1976) and fitted as sub-categories of the observable
cognitive elements identified by Hershkowitz, Schwarz and Dreyfus (2001). From
least complex to most complex, these cognitive activitics have been described as
‘analysis’, ‘synthetic-analysis’, ‘evaluative-analysis’, ‘synthesis’, and ‘evaluation’.
The hierarchical nature of these thought processes are implicit in Krutetskii’s
descriptions of them and supported by his empirical data {Williams, 2000b, p. I8).

Krutetskii (1976) described analysis as a process of examining a problem
element by element, commenting that “to generalisc mathematical relations one
must first dismember them™ (p. 228). Analysis can involve recognising or both
recognigsing and building-with (Williams, 2005). Simultaneous analysis of several
diagrams, graphs, representations, procedures, or areas of mathematics for the
purpose of making connections between them (synthetic-analysis), and making
judgements as a result (evaluative-analysis) are subcategories of building-with.
Krutetskii described synthesising as identifying “generality hidden behind various
particular details” or ““‘grasp[ing]’ what was main, basic, and general in the
externally different and distinctive [and finding] elements of the familiar in the
new” (p. 240). In other words, synthesising involves integrating what is known to
form something new. He described evaluating as considering the mathematics
gencrated in terms of its consistency with what is already known and also how
these new ideas can be used for other purposes. Both synthesising and evaluating
occur as part of the constructing process and recognising is nested within this
congtructing in various ways including recognising a new purpose for the
mathematical structure just constructed. These thought processes are illustrated
through the cases deseribed in this chapter.

This chapter examines the activity of Kerri and Leon for the purpose of
identifying the questions they formulated to structure their explorations, the
progressive complexifying of thinking that resulted, the new mathematical
structures developed, and how the types of thought processes supported this
development. By examining these processes, we should learn more about how to
design tasks to promote such activity.

RESEARCH DESIGN
Context

Of the eighty-six students whose thinking was studied in detail (Williams, 2005),
only five students spontancously created their own tasks, The two students whose
self-created tasks were selected as illustrative cases for this chapter are Kerri and
Leon who each created their own tasks on more than one occasion. These five
students who created their own tasks (Williams, 2005) were the only students
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identified developing new conceptual understandings rather than just learning new
mathematical procedures. They came from schools that differed in perceived
educational status, mathematical performances, cultural mix of the students, socio-
economic status of school community members, and also in the teaching
approaches used in their classes.

The other eighty-one students were not identified undertaking activity more
complex than analysis. In other words, they did not simultaneously consider two ot
more pathways, representations, diagrams, mathematical topics (or some
combination of these} for the purpose of making connections between them.
Instead, they used mathematics that their teachers identified as relevant (recognised
externally rather than spontaneously) to undertake procedures that the teacher had
tanght thern to use (building-with but not spontaneous building-with).

The features common to the lessons in which students created tasks are:

— Mathematical topic commenced with exploration involving hands on activity
— Time to think without interruption
— Class members had the behavioural autonomy to think alone or with others.

Further descriptions of the activities that were common to these students, and
personal factors that contributed to these activities can be found in Williams
(2007a, 2006). It should be noted that the personal characteristic ‘optimism’ was
found crucial to spontaneous thinking but is not a focus of this chapter.

The cases selected contained rich data to illuminate Kemri’s and Leon’s
questions, thought processes, and insights, because both students were particularly
reflective and articulate, These types of thought processes and structuring
questioning were evident for the other three students (Eden, Dean, Pepe) but Dean
did not progress beyond evalwative-analysis because he did not possess the
cognitive artefacts nceded to proceed further. Even so, Dean displayed thought
processes more complex than analysis which was the most complex thinking
identified in the activity of the other cighty-on¢ students; most of whom were
higher performers than Dean on their class tests.

Data Collection

The Learner’s Perspective Study (LPS) (Clarke, 2006) research design was ideal
for identifying students whe created their own tasks, the questions they asked
themselves, the thinking they undertook as they pursued their explorations, and the
insights they developed. There were features of the LPS interview probes in the
Australian interviews and some of the interviews in the USA that fitted with
Ericsscn and Simon’s (1980) findings about how to generate high quality verbal
data to study cognitive activity. These interviews: (a) stimulated student
reconstruction of their lesson activity using salient stimuli (mixed image lesson
video of the student Jcentre screen] and the teacher [in the comer]); (b) allowed the
student to focus the content of the interview; (c¢) provided a sketch pad so that
students who preferred to do so, could communicate using images and symbols to
asgist them; and (d) encouraged students to focus on lesson activity rather than on
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genetal questions that were not related to their specific activity. This guarded
against researchers asking specific questions that included constructs the subject
had not previously reported and “generating] answers without consulting memory
traces” (Ericsson & Simon, 1930, p. 217).

In their video stimulated interviews, the students identificd when new leaming
occurred during the lesson and reconstructed their thinking during that time. The
interview was my primary data source; video analysis was informed by these
students’ reconstructing their clagsroom activity and what they had attended to in
the classroom. Teacher imerviews, interviews with other students, and photocopies
of student work added detail where insufficient detail was available from the
student interview and lesson video. The conceptual understandings of other
students in the class (who had not created their own tasks but rather had focused on
the task as set by the teacher) were studied using lesson video, student interviews,
teacher interviews, and student worksheets. This was used to demonstrate the
{earning advantages of the stydent-created tasks.

Identifying Sportaneous Activity

Spontaneous thinking was considered to occur when the social elements of the
process of abstracting (Dreyfus, Hershkowitz, & Schwarz, 2001a) were internal
{Williams, 2004). In other words, when the student:

~ Controlied the recognising process

~ Controlied the mathematical directions they took

~ Explained and efaborated mathematical ideas for themselves

~ Made their own decisions about whether they agreed with or gueried
mathematics they had generated.

Thus, where social elemenis of the process of abstracting arose from an internal
rather than external source, student thinking was taken to be spontaneous. The
sixth social element of the process of abstraction (attention) was crucial to the
spontancous questions students formulated to structure their future explorations.
Students attended to complexitics that became evident during their work with the
task and spontaneons questions arose from these foci (Williams, 2000a).

ILLUSTRATIVE CASES: STUDENT-CREATED TASKS

This section describes Kerri’s self-created task about linear functions, and Leon’s
self-created task about areas of triangles, and the subsequent activity of each
student through:

— A narrative of student activity as they formulated and solved their tagk

— The types of questions they asked to structure their exploratory activity

— How these questions complexified their thinking and how this thinking
contributed to developing new mathematical structures.
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Narrative of Kerri's Linear Functions Task

Before the research period, Kerri’s class was taught to find equations of linear
graphs when two points were given by:

— Plotting two points

— Ruling a line through them ,

— Drawing a right-angled triangle with the line segment between points as

hypotenuse

Measuring the lengths of the other two sides of this triangle (‘rise’ and ‘run”)

Finding the gradient of the line (ratio of rise to run)

Finding the y-intercept of the graph by inspection

— Substituting the gradient and y-intercept into y = mx + & to find the equation of
the line.

When the students were tested on this procedure just prior to the research period,
Kerri forgot her graph paper so she found another way to proceed. The following
night while doing her homework, her understandings erystallised. The next day in
class, the teacher taught procedures that were associated with Kerri’'s new
understandings: finding the linear equation when given two points ‘without using
graph paper’.

In her interview after Lessonl, US School 3, Kerri reconstructed what she had
done in the test and the insights she had developed during her subsequent
homework. In her test, Kerri had:

— Made a sketch of the line between the two points

— *Seen’ a slope triangle “cuz you can picture a line in a little right triangle on it”

— Subtracted y values and subtracted x values of co-ordinates of the points to find
lengths

— Calculated the gradient as the ratio of these lengths

— Substituted the gradient and a set of co-ordinates into the equation to find the y-
intercept

— Found the equation by substituting the gradient and y~intercept into y = mx + .

The method Kerri developed in her test involved steps she had previously been

taught and new mathematical ideas she developed. Work she had undertaken

previously included: a) calculating the gradient as a ratio, and b) substituting the

gradient and the y-intercept into the general equation. New mathematical ideas she

developed included:

— Recognised a right-angled triangle could be drawn en sketch of a line between
the points

— Used her understanding of the Cartesian Coordinate System to find lengths a
new way

— Combined previous knowledge of substituting constants or values of variables

to find an unknown by substituting a constant and values of variables.

Kerri was pleased with what she achieved:

|
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Kerrl If you find the slope .... [uding the] difference of the
polnts and .... then we can substitute, oh perfect. So I
juet wrote the equatiom.

Key 1o symbols used in transcripts in this chapier
Omitted text that does not alier the mesning of the quote
[text] Comments and annotations, ofien descriptions of non-verbal action

By creating new ways of working mathematically, Kerri developed a procedure
that enabled her to answer the test question. At this stage, she had not fully realised
the implications: that the horizontal and vertical lengths could be found without the
need for a diagram. When doing homework after the test, she gained insight. This
homework involved plotting graphs and measuring lengths to find equations to
lines when two points were given, and in addition, measuring the length of the line
segment between the points given. Whilst doing her homework, Kerri measured the
rise and the run on the graph paper for each question as required by the teacher,
and simultaneously calculated the lengths using her own method. This thinking is
an example of synthetic-analysis because there was simultaneously focusing on
two methods; she measured and calculated at the same time, and thought about
both methods as she did so, As a result, she made a judgement (evaluative-
analysis) that each method always gave the same answer:

Karri I was doing my graph, and then I llke realised like- really
galidly, .. I got ihe sawme answer, . [by measuring as] if
you do the subtraction.

Kerri’s understanding crystallised (synthesis): she realised that she did not need a

diagram because her operations on the numerical values of the coordinates of two

points always gave the measure of the lengths of horizontal and vertical lines
separating them. She ‘saw® the equivalence of attributes (line length) in the
numerical and graphical methods and integrated the representations as a result.
QOnce, she realised that the Cartesian Axes System could be used as a tool to find
vertical and horizontal lengths, she used this new insight along with Pythagoras’

Theorem to extend the usefulness of this tool: the Cartesian Axes System could be

used as a tool to find lengths of any segments where the coordinates of the

endpoints were known. Kerri completed her homework:

Kerri And then also .. we had to find the distance between the two

plote, and it was supposed to graph them toe-. I was using
Fythagoraa’ Theorem.

What Kerri knew ‘really solidly’ about finding lengths using coordinates was
evident in class the next day when she queried whether the teacher was ‘Finding
the Equation of a Line without a Graph® as stated in the heading on the board. The
teacher had demonstrated her procedure by making a sketch and using it to find the
lengths by subtracting x values and y. Kerri queried the teacher’s procedure: “You
still graphed it”. Kerri explained that it could be done without the sketch because
the gradient could be found by operating on ¢lements of the ordered pairs
representing the points on the line:

Kerri It would just be like the differsnce in y 1a two, and the

differenre ir x 1s one. 850 that's [what you need to
calculate] your slape.
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Towards the end of this lesson, the other members of Kerri’s group plotted graphs

and measured line segments and queried the validity of Kerri’s approach to finding

the distance between the two points on the line using Pythagoras. In her interview,

Kerri described difference between what she was doing and what other students

were doing thus demonstrating her deep understanding:

Kerri [The questicons] sald graph and find the distance- and most
people would graph the line, and then do the little thing
[right-angled slope triangle]. But I would £ind what- aee
that'd be two and then one [subtracting y valuea, and then
*x values in co-ordinateal, so you do um, a squared plus b

Bgquared eduals ¢ eguared. .. 1F you make it a right
triangle- it's the hypotenuse- not just the distance

Kerri’s comments showed her generalised understanding: she could find rise and
the run by operating on the x and y values in the co-ordinates, and saw the
equivalence of the algebraic expressions for the hypotenuse (from Pythagoras’
Theorem), and the length of the line segment between the two points. In other
words, she had subsumed the line segment length into the algebraic expression for
the hypotenuse thus extending how the Cartesian Axes System could be used as a
tool for finding lengths by operating with x and y values of co-ordinates. The other
students in this class had not developed such understandings. They still needed to
plot and measure.

Types of Questions Kerri Asked

During her spontaneous explorations prior to the lesson described above, Kerri
progressively asked questions to structure her future activity. I use “future’ as used
by Cifarelli {1999} to capture the need for these questions to structure the way
forward within an exploration that had already commenced.

In the test, when she found she did not have graph paper and 30 could not
measure to find lengths, she asked herself “What can [ do instead?” Once she had
sketched the two points and the line between them, she analysed her sketch to find
mathematics relevant to the situation: “What maths can I use to help?”’ She
recognised she could use her knowledge of the Cartesian Axes System to find the
vertical and horizontal lengths and proceeded to do so (recognising, and building-
with).
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Table 1. Types of questiors Kerri posed and how they contributed to her developing imderstanding

Que.m;r;.r;; ;.; Order What Was Involved in Answering the Question? Complexity of Tﬁ%ﬁ;ﬂi&d in Answering this
“What can I do Drew a sketch and marked given information on it. Analysis: recognised the same diagram could be drawn
instead?” Recopgnised lenpths could not be measured. 23 in the graphing.method.

“What maths can I nse Recognising the difference between what was known in ~ Analysis: Considered what was known in the previcus
to help?” this imstamece and what was able to be found previously,  situation that was not known here and looking for

This time the lengths were not known., mathematics that could help find what was unknown
“Can it help me find Recognised the properties of the Coordinate Axes Building-with (synthetic-analysis) by simultaneously
those lengths that I System could be useful and used a numerical considering the sketch, the Cartesian Axes System, and
cannot find the other representation in conjunctions with the Cartesian Axes 8 numerical representation of these, a relevant
way?” System to find lengths. procedure was developed
“Do both methods give  Simultancous considering of operating with numbers in -~ Bvaluative-analysis: Synthetic-analysis for the purpose
the same answer?” the Cartegian Axes System and measuring side lengths  of making decisions about reasonableness, and
“Does it always work?”  in praphical representation. coimparability of methods.
“Is there an easier Saw the equivalence of atiributes (side lengths and Synthesis: Subsuming the side lengths into an algebraic
way?” “Can the process  operations om X and ¥ values in ¢oordinstes of poinis). formula using x valoes and y values in coordinates.
be curtailed?” Realised she no longer needed to diagram to find

lengths,
“Can this be nsed for As the length of the line segment between the two Evaluation: Using the new insight for another purpose.
anything else?” points is the hypotenuse of a right-angled triangle Subsuming the hypotenuse in Pythagoras' Theorem

where the other two side lengths can be found,
Pythagoras® Theorem can be used in conjunction with
this new insight to find the length of the line segment.

into the slope triangle by “seeing’ the equivalence of
the hypotenuse and the line segment between the two
points and extending the numerical operations used to
find line segments within the Cartesian Axes System
(synthetic-analysis and synthesis nested within

PEEEE e .
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This involved simultaneous analysis of the sketch, and its placement in the axes
system, (Synthetic-analysis as part of building-with) to answer the question “Can it
help me find those lengths 1 cannot find the other way?” Once she had recognised
the Cartesian Axes System was relevant, she formulated appropriate numerical
operations o find the lengths she could not measure, Crucial to Kerri developing
insight was her activity during her homework that night. She compared answers
she generated by the teacher’s method with answers she generated by her own
method and decided they were always the same (evaluative-analysis): “Do both
methods give the same answer™ “Does it always work?” Her thinking erystallised
at this stage (synthesis). She realised she had something that always worked that
could be expressed generally through an algebraic representation. Kerri made
judgments based on her simultancous analysis of four representations
(diagrammatic, Cartesian Axes System, numeric, and algebraic} (evaluative-
analysis) by asking questions of the nature of: “Is there an easier way?” “Can the
process be curtailed?” She subsumed the other representations into the algebraic
representation, and ‘realised really solidly’ that she did not need the diagram
(synthesis) because she recognised the equivalence of the line lengths, and the
algebraic representations derived from her knowledge of the Cartesian Axes
Sysiem.,

Kemi’s thinking was curtailed (Krutetskii, 1976) when she operaled on the
values in the coordinates without needing the diagram and was able to express this
generally (synthesis as part of constructing). Kerri continued to think further once
she had developed insight: “Can this be used for anything else?” She rapidly
developed an additional insight: she recognised the relevance of Pythagoras®
Theorem and subsumed line segment into the algebraic representation of the
hypotenuse of the right-angled slope triangle because she ‘saw’ their equivalence.

Kerri Complexifies Her Thinking through Structuring Questions

Unlike the questions that Cifarelli (1999) identified that were specific to the
problem at hand, most of the questions Kerri asked had broader applicability. They
included:

a) What can [ do instead?

b) What mathematics could help?

¢} What does this tell me?

d) Will it always work?

€} Is there a simpler way?

f) Can I use what I have found for anything else?

Questions a) and b) elicit analysis of the context, Question c) elicits evaluative-
analysis with synthetic-analysis nested within it, whilst Question ¢) elicits thinking
about the connecting of ideas that could result in synthesis, and Questicn f) elicits
evaluation. Task features that stimulated this constructing process included the
absence of a resource used previously (graph paper), and the possibility to use the
mathematical context differently by recognising other relevant mathematics (the
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Cartesian Axes System). The hands on activity prior 1o the test supported Kerri's
creative activity because she had become familiar with the mathematics involved
with the centext, and the representation she had worked in earfier provided
opportunities o consider alternative pathways.

Newrative of Leon s Area of Triangles Task

Prior 1o Australian School 1, Lesson 12 in which Leon created the task under
study, the class had found the areas of their hands by tracing them, then drawing
and counting squares. In Lesson 12, the teacher:

— Placed three large coloured triangles on the board (see Figure 1)
~ Allocated triangles to pairs of students
~ Asked pairs 1o find the area of their triangles without using a rule.

The class did not know the rule for finding areas of triangles and all students
except Leon focused on counting squares. This was probably because they had just
completed such an activity. Leon and Pepe worked on Triangle | and although
Pepe counted squares for the pair to produce their solution, Leon searched for a
faster way e proceed. Once Pepe commenced work on the task Leon did not write
or draw anything but instead focused idiosyncratically on the three triangles on the
board asking himself: *“which triangle is casicst [to find the area of . This question
elicited synthetic-analysis through simultancously considering the triangles in
Figure I, and evaluative-analysis in making the judgement that Triangle 2 was the
casiest. He then developed Method A:

— Juxtapose two right-angled wriangles to form a rectangle
— Find its arca
— Halve this 1o find the arca of the triangle.

21em

30 cm ' cm
g 2 Green 3. Black
Figure . Triamgles placed om the board in Lean's Class
Leon reconstructed his thinking about how w find the arca of a right-angled

triangle in his post-lesson interview: “Figure out what o rectangle is that has ...
[that] length and widih and ... then you can just halve it”, He did not rely solely on
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visual images to justify the shapes formed: he considered the figures® properties as
wedl.
To trv to find the area of the acuie-angled iriangle {Method B), Leon drew upon
one of the strategies he used in Method A (juxtaposing triangles). He:

Juxtaposed two acute-angled triang ks

Recopnized the shape was a parallelogram by its properiics

Sectioned the pamllelogram into four dght-angled irangles to find iis arca
(Figure 2, top lefi-hand disgram)

— Used Method A four times to find the areas of the four rectangles made by
juxtaposing right-angled triangles (see Figure 2)

Total areas and halve result,

Figure 2 shows the parallelogram sectioned into four right-angled triangles as
indicated by Leon’s statement “figure out what it would be if it was four” and the
rectangles formed by juxtaposition of another congruent righl-angled irinngle
beside each (multiple use of Method A as part of Method B) to form four
rectangles. He had not written or drawn anything whilst undertaking this activity.
He was trying to find the area through maltiple calculations of areas of rectangles,
totalling them, “and then halve it”.

Figwre 2. fmierpretarion of Leon's Meihod &

Loon expressed the fragility of his thinking about Method B in his interview: “1
understood it = | didn’t understand it then | understoed it then | didn't understand
it", The process had become difficult to retain in his head.

Before he had completed his calculations, he “looked-in' on what was happening
around him, and wondered: “Och! Maybe my methed isn't the best™. The term
‘locking-in" {Williams, 2004} was used by Leon to describe his focusing on
dynamic visual displays generated by others and extracting mathematical ideas
implicit within them. It is an idiosyncratic student activity that can occur when a
student does mot possess appropriaste ‘cognitive arfefacts’ to progress their
exploration. Leon described looking-in as a common part of his classroom activity:
Lean wWhen you lock arcund che clasacom and see how everyone

gles 1s doimg it and you are doing it a complecely

different way- . and you think oochl [sofe] maybe sy method
ign’t the best and .. you think about eéveryone's ... aad
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then you think about your own and they all sort of pisce
togather and you just sort of go coh! and it pops into your
head.

Leon described how he used dynamic visual displays visible around him in class in

conjunction with the ideas he was developing himself o *see’ something new:

Leon People wera drawing the actual rectangles around it
{triangles) - I don't know whether they knew they
(triangles) were coming from rectangles .. the way chey were

drawing it made it look like chey did .. made me think about
it

As other students drew grids across their triangles in preparation for counting
squares, they formed rectangles during this process. Leon knew they probably had
not realised what he saw when he looked-in. He was the only student identified
using methods other than counting squares for the acute-angled triangle. As Leon
‘looked-in" his goal changed from laboriously finishing the work (o wnderstanding
the work, By looking-in, he extracted a big idea that he had not previously been
aware of: “triangles come in rectangles™ and wondered how he could use this.

Leon was excited by what he had found. He might no longer need to section a
parallelogram and laboriously apply Method A four times, total areas, and halve.
There could be a more “elegant’ way. Hall way through Lesson 13, when the
teacher held a large pink rectangle behind a red acute-angled triangle, Leon softly
exclaimed “Oh!™ He reconstructed his thinking in his interview:

Lo A

!

Figure 3, Leon goplied Method A twice within his elegans Method

Lmon I sort of- port of thouaht a little bit about why it was
happening [criamgle area half rectangle areal ... if you
takz one part out like a trlamgle that’'s set at an angle LI
yOou Lake BoEh parts out and put them together it equals the
rectangle. _ I was sort of looking at them and then I just
eaalisged, like I (pause) sort of juac in my head I pulled
it apart and put l;g:ll together o that they egualled the
sana |[sas Figure 1).

Figure 3 represents the mental images Leon generated, He mentally moved the two
right-angled-triangle sections of the acute angled triangle (shaded parts) out of the
larger rectangle. The triangles congruent to each of these shaded sections were then
taken out of the initial diagram and juxiaposed with the appropriate shaded triangle
to make two smaller rectangles: “if you take one part out like a triangle that's set at
an angle il you take both parts out and put them together it equals the rectangle™,
He had simultoneously drawn upor what he knew from Method A and shifted
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pieces in his head to justify that the area of the acute angled triangle was always
half the area of the enclosing rectangle.

Like Kerri, Leon realised almost immediately that his new insight could be used
for something else. He clappex] his hand against his cheek as he realised different
shaped triangles had the same area if they were enclosed by rectangles of the same
size. The following excerpt of whole class discussion captures Leon’s justification:

Leon That's [Triangle 1] half of the rectangle as well [as
Triangle 2]

Leon That would be three hundred and thirty centimetres aquared

Teacher Three hundred and thirty. Why?

Leon It would be exactly the same as the Firsgt one [Triangle 2]

Teacher Why?

Leon Because the green one is half of the rectangle too [see
Figure 3]

Leon explained that both Triangle 1 and Triangle 2 have areas that are half of
equivalent rectangles so they must be the same size. The exercise set by the teacher
towards the end of Lesson 13 invelved finding areas of triangles in different
orientations. The teacher found that (other than Leon) the class struggled to find
areas of these triangles: “I assumed ... they knew ... base and height ... and how to
recognise it ... [it’s] very obvious ... they don’t understand”. The other students,
including those with higher mathematical performances on class tests, knew the
rule but not why it worked (Skemp, 1976) so were not able to °see’ the
perpendicular height that Leon could recognise easily.

Wertheimer {1959) identified similar problems with students not recognising
perpencicular heights in parallelograms. Leon knew more than the rule, he knew
why it worked. Leon could do examples with triangles in any orientation because
he could “see’ the perpendicular height of the triangle (even though he did not use
this terminology). Leon had subsumed the attributes of the rectangle into
equivalent attributes of triangles so he could operate with attributes of triangies
instead, and not need to draw the enclosing rectangle. The questions Leon asked
himself to structure the future parts of his exploration, and the more complex
thinking that resulted are captured in Table 2.

Types of Questions Leon Asked

Unlike Kerrt, whose synthetic-analysis involved considering the same attributes in
graphical, diagrammatic, numerical, and algebraic representations, Leon’s early
synthetic-analysis focused on more than one diagrammatic representation arising
from his question: “Which triangle is easiest?” Leon’s quest for elegance led to his
questioning whether there was an easier way (synthetic-analysis nested within
evaluative-analysis) once his calculations in Method B became too messy to easily
undertake in his head.
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Table 2, Types of questions Leon posed and how they coniribuied to his developing undersionding

Questions ir: Order

Whar Was imvobved in Answering Them?

Complexity of Thinking Involved in Answering this Cuwestion

Porsed
“Which triangle is Analysed the three triangles on the board to find which was ~ Analygis: recognising that two right-angled triangles put
easiest?” the easiest area to find. together make a rectangle {(knowing properties of rectangles).
“What maths could Recognised rule for finding areas of rectangies could he Analygis: Considering the use of previously known processes
help? used and the answer halved to find the area of the right- one after the other to find an angwer (building-with but not yet
. angled triangle. synthetic-analysis because procedures occur ong after another).
“Can ] use similar Recognised parallelogram was formed when two acute- Building-with {synthetic-analysis} by simultaneously
stralegies here?” angled triangles were juxtaposed but had not found the considering the acute angled triangles and the properties that
areas of parallelograms previously. showed a parallelogram was formed.
“What maths can 1 Recognised the previously developed process to find the Synthetic-analysis: Considered what had been previousty
use to help?” area of a right-angled triangle could be used. Made four developed thet might be useful to this new situation,
right-angled trisngles within the parallelogram (drop Andlysis nested within: Considered tha use of previously
perpendiculars from two vertices to opposite sides). Process  known process one after the other to find an answer
becarne too messy to easily complete in his head.
“Is there an easier Simultaneously considered ideas developed and diagrams Synthesis: Knew right triangles were useful to him and that
way?” praduced by others to form grids for counting squares. there was always a rectangle that could be made to enclose any
Ingight: Triangles always come in rectangles. iriangle.
Can “iriangles always  Recognised two right-angled triangles are embedded inthe  Synthesis: Insight that the rectangle is not needed to find the
come in rectangles’ diagram so knew how to find the area of sach, In addition,  area of the acute angled triangle because there are attributes of
help me to find the the triangles needed for the juxtaposing process were alse  this triangle that are equivalent to the length and width of the
arca of any rectangle?  within this rectangle. Thus, the area of this rectangle canbe  rectangle. Subsumed attributes (length, width) of one
halved to find the area of the triangle. representation into another (base, perpendicular height).
"Can this be used to Simultaneous considering ancther triangle with the same Evaluation: Using the previously developed ingight for another
save work in finding  width and height and his new insight. As the two triangles ~ purpose
the areas of the other  had the same enclosing rectangle, they should have the

triangles?”

SAMC Arch.
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Although Leon did not use algebra to express what he had found, his generalised
understanding was indicated by his insight that triangles enclosed by the same
rectangle having the same area. Task features that stimulated Leon’s creating of a
conceptual task were: the display of three very different triangles with the same
ateas, the opportunity to look-in, knowing the answer but not the reason {from
empirical explorations of others), and the teacher’s juxtaposition of an acute angled
triangle with its enclosing rectangle in sharply contrasting colours. As with Kerri,
the task set by the teacher (that was not intended to elicit creative thinking) lead to
the idiosyncratic formulating of a student-created conceptual task.

Leon Complexifies His Thinking through Structuring Questions

Tabte 2 shows the complexifying of thinking that was stimulated by the questions
Leon agked himgelf. Again, as for Kerri, Leon subsumed some representations
within others. In Leon’s case he subsumed the attributes of the rectangle into the
triangle and this occurred because the synthetic-analysis and evaluative-analysis he
undertook brought him closer and closer to a realisation of this equivalence as he
found the enclosing rectangle was useful for different types of triangles.

CONCLUSIONS

This chapter highlights student-formulated questions that elicit complex thinking
that supports the development of new mathematical structures. It suggests
pedagogical advantages to integrating these types of questions into tasks to scaffold
student entry to idiosyncratic exploration. In these cases, students exploring seli-
created tasks developed deeper understandings than these who undertook the task
as sct by the teacher, The finding (Williams, 2005) that a student who struggled in
mathematies could think creatively to develop a greater understanding than other
students with higher performances on class tests {Williams, 2005) negates
assumptions that only highly able students should be presenied with rich
explorations.

The process of evaluative-analysis appeared crucial to the process of subsuming
representations to form new mathematical structures. Questions eliciting this type
of thinking were focused around finding more elegant ways to proceed (Leon), and
checking the reasonableness of mathematics generated (Kerri). This seemed to
highlight the equivalence of attributes that was needed for the subsuming process
(synthesis). The questions these siudents asked themselves could be built in to
tasks to scaffold students who are not yet able to ask such questions for themselves.
This should increase the likelihood that students undertake synthetic-analysis and
evaluative analysis and this should support synthesis. Increasing looking-in
opportunities could be achicved by structuring reporting sessions during a task,
rather than only after the task (e.g., Williams, 2007b). Introducing these aspects
into task design should increase opportunities for students to discovering
mathematical complexities that were not evident to them at the start of the task and

181



GAYE WILLIAMS

this could provide the impetus for student-created tasks. The following section nses
these findings to suggest a possible task and the rationale for different features.

SPECULATING: A CONCEPTUAL TASK ABOUT AREAS OF TRIANGLES

A conceptual task could be built around the triangles in Figure 1 because they look
so different yet their arcas are the same so there is potential for surprise that could
create the impetus to explore. Structuring a task that requires students to predict the
areas, thus commit to a position, could create this element of surprise. For students
of differing abilities to have a chance to access the task, it should be set prior to
finding areas of:

— Irregular shapes by counting squares
— Triangles using the rule A =25&h4.

The background knowledge needed includes a conceptual rather than procedural
understanding of area as the amount of space within the boundaries of a two-
dimensional figure. The task could be undertaken with or without knowledge of
how to find areas of rectangles because it is possible for students to find these areas
without formal knowledge. Thus, the type of task suggested could be appropriate in
late elementary school or early secondary school. The type of wording in the
questions below is intentionally predominantly comrmon language and tentative,
rather than demanding and techmical. This should increase the likelihood of
informal exploration. Questions like the following could be embedded in the task
to stimulate idiosyncratic thinking:

— Predict the areas of the three triangles giving reasons for your predications

—~ Find a way to find the areas using any method that you can explain

— Find a way to quickly check that your answers are reasonable (explain how you
did this)

- Can you see any patterns? Describe them

— Can you add another triangle that fits this pattern? Explain and test

— Can you work out why this pattemn works?

— Work out how to tell a friend what you have found as simply as possible,

This task includes the ideas behind the structuring questions that Leon and Kerri
asked. The first dot point should elicit: “What can I use? The second dot point:
“What mathematics might help?” The third dot point stimulates evaluative-analysis
through comparing of two methods to make a judgment. The fourth dot point
elicits synthetic-analysis through the search for patterns by considering various
aspects simultancously. The fifth dot point involves making a judgment
(evaluative-analysis) and the sixth dot point can elicit synthesis because knowing
why involves developing a new mathematical structure. The seventh dot-point is
intended to assist students to express what they know by asking them to focus on
communicating their ideas to a friend. Some students are likely to create their own
tasks earlier than others because the mathematics needed earlier in the task will be
unfamiliar to some. Student-created tasks, elicited by this classroom task, might
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focus around topics including: constructing triangles, counting squares,
approximating when counting squares, areas of composite shapes, juxtaposing
shapes to find ways to find areas, recognising the significance of enclosing
rectangles, areas of triangles, and areas of parallelograms.

Even though the study upon which this chapter was based identified only eight
student-created tasks, the diversity of the ecducational settings, pedagogical
approaches, and student abilities adds strength to the usefulness of these student-
formulated questions for task design in mainstream classes.
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