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Preface 

I have written this thesis with the intention of publishing all of the data-based 

chapters.  Consequently, each chapter includes an abstract, introduction, methods, 

results and discussion section.  As each chapter is written to be a self contained 

publication there is necessarily some overlap between them, particularly regarding 

the description of the study site and survey design.  However, I have chosen to 

present all chapters in full so that the reader does not need to refer back to previous 

sections as they read each chapter. 

 

The work contained in this thesis was conducted as part of The Mallee Fire and 

Biodiversity Project; a large collaborative project between Deakin University and La 

Trobe University.  The project began in 2006 with the objective of investigating the 

influence of the spatial and temporal properties of fire on a range of taxa; birds, 

reptiles, mammals, invertebrates and plants.  The core project team included two 

principal researchers (Prof. Andrew Bennett and Assoc. Prof. Mike Clarke), a project 

leader (Dr. Kate Callister) and seven PhD students (Dale Nimmo, Lisa Spence-

Bailey, Luke Kelly, Sally Kenny, Rick Taylor, Sarah Avitabile and I).  

 

Due to the large scale of this project, a number of aspects were carried out 

collaboratively by the team.  These included the design of the investigation, selection 

of the 28 study landscapes, mapping of the fire history and vegetation types of the 

region and field work to assess site habitat characteristics. I was involved in each of 

these aspects of the projects along with other members of the team.  
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The influence of fire on avifauna within The Mallee Fire and Biodiversity Project 

was investigated by Rick Taylor at La Trobe University and myself.  Rick and I 

collaboratively designed survey methods for birds, undertook bird surveys, collated 

bird data and conducted species detectability analyses. 

 

The data presented in this thesis only represents a portion of that collected by Rick 

and I throughout this project.  Data was collected using two different methods: point-

counts and 500m transects between point-counts. In this thesis the point-count data 

were used for all analysis because a) points were separated by relatively large 

distances, providing greater statistical independence and b) point-counts represented 

smaller areas and thus could be related directly to specific environmental attributes, 

whereas transects encompassed extensive environmental variation.  However, 

transect data remains as a source of baseline data for future studies. 

 

At the beginning of this project, Rick and I delineated separate themes for our theses 

to provide complementary information regarding separate questions about the bird 

community of this region.  Rick‟s thesis centred on modelling habitat requirements 

of species and in determining changes to the diversity of avifauna and individual 

species in relation to the properties of landscape mosaics.  In contrast, my thesis 

centres around the influence of fire on succession patterns at sites, the influence of 

spatial properties of fire on colonisation of burnt vegetation and the influence of 

landscape properties of fire mosaics on the composition of the avifauna.   

 

In addition to my contribution to the collaborative aspects of the investigations (i.e. 

design of the study, preparatory work, field surveys, data collation and detectability 
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analysis), I personally reviewed all the literature, undertook all statistical analyses, 

prepared all figures and tables and wrote and revised all chapters in this thesis.   

 

Due to the broadly collaborative nature of this project, several people were involved 

in discussions surrounding different chapters.  Thus, each data chapter refers to “we” 

rather than “I” in recognition of the contributions of future co-authors (when this 

work is published).  All chapters were discussed with my supervisor, Prof. Andrew 

Bennett, who has made comments on earlier drafts of each.  Rick Taylor was 

involved in discussions of the research in all chapters; Dale Nimmo, Luke Kelly and 

Angie Haslem were involved in discussions of analysis techniques and research in 

Chapters 2 and 5. 

 

During my PhD studies I also co-authored three published articles and a fourth 

manuscript currently in review (below).  These contributions are directly relevant to 

the work contained herein and are appended to this thesis. 

 

All photos within this thesis were taken by me, unless otherwise acknowledged. 
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Abstract 

Fire is an important disturbance process in many ecosystems around the world.  Fire-

prone ecosystems account for greater than 40% of Earth‟s land surface. A key 

challenge for ecology and conservation is to develop an understanding of the 

influence of fire on biotic communities. Fire affects the biota through both temporal 

and spatial processes.  Temporal effects of fire, particularly post-fire succession (i.e. 

the changes to species and communities through time), form the foundation of much 

of the knowledge of how fire influences ecosystems.  The spatial properties of fire 

events (e.g. size, patchiness), and the spatial arrangement of patches of different fire 

history in a landscape (fire mosaics) also may influence biodiversity. However, there 

has been limited empirical research on the effects of the spatial properties of fires on 

biota.  Knowledge of the influence of both spatial and temporal patterns on fauna 

will be critical to enact fire management strategies that will be effective for 

conservation of biodiversity, particularly birds.  Inappropriate fire regimes are a 

threat to bird species around the world.  In Australia alone, more than 50 bird species 

are threatened by fire related processes.  

 

A large scale natural experiment was undertaken to investigate the influence of fire 

on birds.  The study encompassed a 104,000 km
2
 region of eucalyptus „mallee‟ 

shrublands in the Murray Mallee region of inland south-eastern Australia.  Twenty-

eight study landscapes, each ~1256 ha (circular areas with diameter 4 km), were 

carefully selected to represent different fire mosaics by stratifying by two properties: 

1) heterogeneity of post-fire age-classes; and 2) a gradient in the proportional extent 

of mature vegetation.  The avifauna were surveyed at 20 point-counts in each 



xxii 

 

landscape, resulting in a total of 560 sites surveyed across the region.  These sites 

formed a century long chronosequence. 

 

To investigate the temporal responses of individual species of birds to fire, the 

influence of time-since-fire on the occurrence of 30 species was modelled, for sites 

spanning a 100 year post-fire chronosequence.  The shape and timing of species 

responses were examined.  Time-since-fire significantly affected the occurrence of 

16 of the 30 species.  The responses of these species represented a limited number of 

shapes: incline, decline, bell-shaped, irruptive, and plateau.  One species was 

associated with early successional vegetation, five species peaked in occurrence 

between 20 and 50 years-since-fire and declined thereafter, and 10 species displayed 

their highest frequency of occurrence in vegetation >50 years since fire.  Models of 

post-fire responses had only moderate predictive capacity. 

 

Building on the knowledge of individual species responses, successional patterns 

through time were investigated at the level of the avifaunal community.  The 

composition of bird communities became increasingly dissimilar between sites with 

increasing contrast between those sites in time-since-fire, up to at least 100 years.  

The rate of change in composition of the bird community slowed with increasing 

time-since-fire, resulting in communities occupying increasingly longer time-spans 

through the succession.  There were three main successional stages defined by 

composition of avifaunal communities: <10, 20-40 and >50 years-since-fire.  Older 

successional stages tended to support more species, but this was due to greater β 

diversity for sites in these seral stages, rather than an increase in α diversity in the 

oldest age classes. Species richness at sites is lowest directly after fire and increases 

up to ~10 years-since-fire, after which it plateaus.    
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Time-since-fire also influenced the richness of particular species guilds.  

Nectarivore-insectivore and insectivore guilds each displayed low species richness in 

younger vegetation, increasing to a plateau at ~10 years-since-fire.  The species 

richness of birds that forage in canopy foliage increased in older vegetation, while 

species richness of birds that forage on trunks and branches decreased in older 

vegetation. 

 

To examine the influence of the spatial properties of fires on post-fire colonisation of 

sites by bird communities, the avifauna was investigated at recently burnt sites which 

varied in proximity to unburnt vegetation and in presence or absence of small 

unburnt patches of vegetation (biological legacies).  Species richness, and the 

occurrence of some individual species, declined with increasing distance from 

unburnt vegetation. Sites that contained small unburnt patches displayed higher 

species richness and higher frequency of occurrence of one particular species 

(Chestnut-Quail-thrush).  Patterns of decline with distance from unburnt vegetation 

had dissipated by 10 years post-fire. In the mallee ecosystem, most post-fire 

colonisation of recently burnt vegetation occurs from populations situated in 

vegetation outside the burnt area, rather than „nucleated‟ recovery from individuals 

surviving within the burnt area.   

 

The spatial patterns of individual fires (e.g. size and patchiness) and of multiple fires 

through time generate heterogeneous mosaics comprising patches of differing fire 

history (i.e. a fire mosaic).  Spatial properties of fire mosaics significantly influenced 

the avifaunal composition in the landscape.  The composition of communities 

changed along a gradient representing the proportional extent of recently burnt 
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versus older vegetation in a landscape.  Additionally, the composition was influenced 

by the position of the landscape along a geographic gradient of increasing aridity, 

and by the composition of vegetation types in the landscape.  The spatial features of 

landscape mosaics also appeared to influence the incidence of primary nectarivores, 

which were not affected by time-since-fire at the site level. The diversity of different 

post-fire age-classes did not influence the avifaunal community at the landscape 

scale. 

 

In general, bird communities displayed a directional succession pattern, likely to be 

related to changes in vegetation structure.  However, there was substantial variation 

in successional patterns, and fire management based on temporal patterns alone may 

not be sufficient to conserve the avifauna.  Older vegetation tended to be important 

for a greater number of species than younger vegetation and fire management may 

need to focus more on preserving this seral stage than on creating younger fire ages.  

The size and patchiness of fires significantly affects the time-taken for burnt areas to 

be colonised by birds, with smaller and patchier area being colonised more quickly 

than those burnt by larger and uniform fires.  Because birds appear to colonise burnt 

areas mostly from vegetation outside the fire event or from large patches of unburnt 

vegetation, the context of a fire is an important feature (e.g. the amount and quality 

of vegetation surrounding the fire or remaining as large patches).   The total extent of 

different seral stages, the temporal contrast of different seral stages and the scale at 

which landscapes are managed all need to be considered when managing fire to 

deliver heterogeneous mosaics.  Fire management for the conservation of bird 

species in the Murray Mallee region may gain more predictable outcomes by 

primarily focusing on the required extent of particular seral stages, rather than 

focusing on creating diversity of fire seral stages. 
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“In the whole country I scarcely saw a place without the marks of a fire…”  

A comment by Charles Darwin about Australia, recorded in his diary while on the 

historic voyage of The Beagle, 1836.  

Sunrise silhouettes the branches of burnt mallee eucalypts 
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1.1 Fire and conservation in ecological systems: a global perspective 

Fire is a major agent of disturbance which significantly affects biodiversity, human 

society and climate patterns in ecosystems throughout the world (Bowman et al., 

2009).  Fire has been present in ecosystems worldwide for hundreds of millennia 

(Bowman et al., 2009), shaping historic and current distributions of biomes (Bond & 

Keeley, 2005; Bond et al., 2005).  Sixty-nine percent of the ecosystems on earth are 

considered fire prone (Krawchuck et al., 2009).  Fire has been identified as an 

important driver of ecosystem processes in a range of different vegetation 

communities including grasslands (Fuhlendorf et al., 2006), savannah (Sankaran et 

al., 2008), heathlands (Bullock & Webb, 1995), shrubland (Keeley & Fotheringham, 

2001), woodlands (Hobbs, 2002), boreal forests (Angelstam, 1998), temperate forests 

(Burrows, 2008), tropical forests (Adeney et al., 2006) and arid environments (Letnic 

& Dickman, 2005).  

 

Fire influences the distribution and abundance of biota, both directly and indirectly, 

through a range of processes at different spatial and temporal scales.  Primary 

(direct) effects of fire on biota are a consequence of the actual fire event.  For 

example, direct mortality of plants and the combustion of vegetative matter alters the 

composition and structure of vegetation communities (Bond & Keeley, 2005; 

Midgley et al., 2010); and the mortality and forced emigration of animals influences 

the composition of animal communities (Barlow & Peres, 2004b).  Additionally, 

fires also have direct effects on abiotic components of the ecosystem, such as soil 

nutrients and soil water availability (Certini, 2005).  The primary effects of fire can 

then have cascading secondary (indirect) effects on biota which may continue for 

many years after the fire event.  Changes in resource availability (e.g. soil nutrients 

and soil moisture) can result in differential growth of different plant life-forms 
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(Keeley et al., 2005), resulting in ongoing changes to the structure and composition 

of vegetation communities.  Mortality and combustion of vegetative matter can result 

in competitive advantages to some plant species, affecting changes in the structure 

and composition of plant communities through interacting processes of 

inhibition/competition and facilitation (Callaway & Walker, 1997).   

 

Secondary (indirect) effects of fire on faunal communities can come about through 

changes in structural resources (Jacquet & Prodon, 2009) and the availability of food 

resources (Barlow & Peres, 2004a), and through altered competitive interactions 

between species relating to these changes  (Fox, 1982).  At larger scales, such as 

landscapes, fire may affect the diversity of organisms and the distributional patterns 

of communities by promoting greater heterogeneity of habitats (Parr & Andersen, 

2006; Klop & Prins, 2008).  At even larger global scales, fire affects the biota 

through altered nutrient cycling (Smithwick et al., 2009), by influencing the spatial 

extent and pattern of biomes (Bond et al., 2005) and by affecting global climate 

patterns (Bowman et al., 2009). 

 

The processes by which fire affects biota relate to the properties of both individual 

fires and sequences of fires.  Fire can be described by a few major properties which 

are outlined by the concept of the ‘fire regime’ (Gill, 1975), the description and 

history of fire events at a site or a region. The concept of the fire regime originally 

included three main components: the intensity of fire, the frequency of fire/inter-fire 

interval (Gill & Allan, 2008) and season of fire (Gill, 1975).  Recently, spatial 

properties of fire also have been discussed as being a component of the fire regime 

(Bond & Keeley, 2005; Gill & Allan, 2008).  Bond and Keeley (2005) 

conceptualised a modified fire regime which included five components: fuel 
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consumption and spread patterns, intensity, severity, frequency and seasonality.  

Components of the fire regime represent two facets: first, those which describe 

patterns amongst different fire events (frequency and inter-fire interval); and second, 

those which describe, and can differ between, individual fire events (fuel 

consumption and spread patterns, intensity, severity and season).  The fire regime is 

a useful conceptual model for investigating the particular elements of fire that 

influence the biota. 

 

A commonly investigated effect of fire on biota is the post-fire succession, 

representing the changes to the biota with time-since-fire.  Understanding patterns of 

change in the biota over time has drawn the attention of ecologists for a long period 

(Cooper, 1913; Clements, 1916; Gleason, 1927; Odum, 1969).  Many biotic changes 

in ecosystems occur with time-since-fire; for instance, changes in species richness 

(Keeley et al., 2005), changes in the occurrence and abundance of individual species 

(Haney et al., 2008) and changes in community composition and functional changes 

(Moretti et al., 2009).  However, detailed knowledge of processes causing these 

changes, and the generality (or lack thereof) amongst systems is less well 

understood, particularly for faunal communities (Whelan et al., 2001).  

 

Successional patterns for fauna are influenced by several ecological aspects, notably 

the ability of species to survive the disturbance event, the size of the post-disturbance 

population (Turner et al., 1998; Franklin et al., 2000), and the changes that occur in 

vegetation attributes, which affect the availability of resources for species (Fox, 

1982; Jacquet & Prodon, 2009).  The types of responses that species display to time-

since-fire are highly varied (Woinarski & Recher, 1997); for example, some species 

are more abundant or occur more frequently in recently burnt vegetation (Hutto, 
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2008), some in temporally transient, ‘mid-aged’ vegetation (Brown et al., 2009) and 

some in long-unburnt vegetation (Clarke et al., 2005).  The fidelity of species to 

particular post-fire age-classes also varies: while some species may be found almost 

exclusively in a particular successional stage, other species may simply occur in 

greater abundance in a particular stage but also be present in other stages (Hutto, 

1995).  Fidelity of species to particular fire-ages suggests that the presence of such 

age-classes through time will be important for maintaining and maximising 

populations of those species.  However, solid understanding of changes in the 

abundance or occurrence of species is known only for a small number of well-studied 

species. 

 

Inappropriate fire regimes, including both too-infrequent fire (Noss et al., 2006) and 

too-frequent fire (Lindenmayer et al., 2008), have been identified as threats to biota 

in ecosystems around the world.  Consequently there has been increasing attention 

given to the implications of fire regimes for conservation management (Driscoll et 

al., 2010b).  Using fire as a tool for land management (e.g. prescribed burning) is 

widely employed in many countries, and is predicted to become increasingly 

prevalent in the future (Gill & Allan, 2008).  Prescribed burning is used mainly to 

achieve two major goals: to protect human life and property (asset protection) and for 

ecological purposes to enhance biodiversity.  These separate objectives may conflict 

(e.g. Driscoll et al., 2010a).  Management of fire is made more difficult by 

inadequate knowledge of the impacts of fire management scenarios on biodiversity 

(Driscoll et al., 2010a).   

 

Different species may respond in markedly different ways to a single fire event 

(Letnic, 2003), and the same species can respond differently to fires that occur in 
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different regions or years (Bain et al., 2008; Lindenmayer et al., 2009).  An inability 

to reliably predict the impacts of different fire scenarios on biodiversity limits the 

ability of land managers to undertake appropriate management for conservation 

(Clarke, 2008).  Understanding how different aspects of the fire regime affect 

populations and communities is critical to developing appropriate fire management 

for conservation (Gill et al., 1999).  Furthermore, anthropogenic burning can have 

long-lasting impacts on the biota.  Indigenous Australian cultures have used fire as a 

tool to increase food availability throughout many areas of Australia (Bowman, 

1998; Bliege Bird et al., 2008), and likewise Native American cultures conducted 

traditional burning, such as in Californian chaparral ecosystems (Keeley, 2002).  In 

each case, long-term changes to biota were brought about by these practices 

(Bowman, 1998; Keeley, 2002). 

 

1.2 Landscapes and fire: a spatial perspective of fire 

While much research in fire ecology has focussed on the impact of temporal patterns 

on the biota, there has been increasing interest in how spatial patterns of fire affect 

the biota (Bradstock et al., 2005; Parr & Andersen, 2006; Gill & Allan, 2008).  All 

components of the fire regime, their interactions and their variation in space and time 

generate heterogeneous landscapes, consisting of patches with different fire histories: 

such landscapes are often referred to as ‘fire mosaics’ (Bradstock et al., 2005).  

Landscape ecology is a discipline that studies the properties of heterogeneous 

landscapes, with the explicit aim of ascertaining how landscape patterns influence 

ecological processes at broad spatial scales (Turner, 1989). Thus, investigation of the 

impact of the spatial aspects of fire mosaics is strongly aligned with landscape 

ecology principles, yet few studies have used landscape ecology as a basis for 

investigating the impact of fire on biota. 
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Fire-induced heterogeneity of landscapes can be generated through two different 

processes. First, individual fires generate heterogeneity through variation in the rate 

of fire spread and fuel consumption, creating patches of burnt and unburnt vegetation 

and patches of differing fire severity (Turner et al., 1994) (Fig. 1.1a).  Second, 

multiple fires through time generate heterogeneity of different vegetation ages (Fig 

1.1b), and different fire histories where fires overlay each other (the ‘invisible’ 

mosaic) (Bradstock et al., 2005).  

 

 

        

Figure 1.1 Fire generated heterogeneity of landscapes, created through two 

processes: a) a mallee landscape in Murray-Sunset National Park, Victoria, 

Australia, containing burnt and unburnt vegetation elements, showing a local 

perspective of fine-scale heterogeneity created by an individual fire event, and 

b) a satellite image of a mallee landscape in Murray Sunset National Park, 

Victoria, Australia, showing different post-fire ages created by multiple fire 

events through time. 

 

 

Spatial patterns of fire may affect biota at a local scale by influencing the context of 

sites or patches in relation to other post-fire ages.  The importance of context (the 

a b 



Chapter 1 – Introduction and thesis overview 

 

8 
 

location of a patch or site in relation to its surroundings) is a core principle in 

landscape ecology; that is, ‘context matters’ (Wiens, 2009).  Fire often removes 

species from a site, either through mortality or emigration (Barlow & Peres, 2004b).  

The spatial characteristics of an individual fire event, small or large, patchy or 

uniform, determine the proximity of recently burnt sites to refuges or source 

populations. In turn, this may influence the recolonisation process as isolation is a 

fundamental factor affecting colonisation (MacArthur & Wilson, 1967).   

 

Further, unburnt patches represent ‘biological legacies’; that is, organisms and 

organic material that persist through a disturbance event (Turner et al., 1998; 

Franklin et al., 2000).  Biological legacies may be a critical influence on the 

succession of biota after the most recent disturbance event.  Unburnt patches may act 

as refuges within the boundary of a fire, within which organisms survive and from 

which they recolonise burned areas (Turner et al., 1998).  The degree to which 

organisms can survive and repopulate from within a fire boundary, versus 

recolonising from habitats outside a fire boundary, may be an important factor in 

determining the time taken for faunal populations to recover from fire-induced 

declines (Bain et al., 2008; Banks et al., 2011).  Even in situations where unburnt 

patches do not represent refuges within which species survive fire events, they may 

still be important habitats which provide food and structural resources (e.g. shelter, 

nesting locations), which may assist species to recolonise burned areas. 

 

The spatial properties of fire mosaics may have further implications for biota when 

investigated at the scale of whole landscapes.  Ecological studies often investigate 

the effect of spatial variables on biota at the scale of an individual patch or site: 

however, there has been increased interest in the impact of landscape processes on 
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the biota of ‘whole landscapes’ (Bennett et al., 2006; Haslem & Bennett, 2008; 

Mortelliti et al., 2010b).  While site level studies can reveal important information 

about the impacts of different fire processes, inference about those processes must 

necessarily be at the scale of the unit of study, the site (Bennett et al., 2006).  Fire 

mosaics, however, comprise multiple elements representing different fire histories.  

To empirically investigate and understand how the properties of a fire mosaic affect 

the biota, both the response and predictor variables must be measured at the scale of 

the ‘whole mosaic’, or landscape (Bennett et al., 2006).   

 

Landscapes have emergent properties that are different to those of a patch or a site.  

Such properties include the total extent of a particular habitat type in the landscape, 

the composition of the landscape comprising different elements, and the spatial 

configuration of elements (Fahrig, 2003; Bennett et al., 2006).  By comparing whole 

landscapes as the unit of study, inferences can be made about the relative effects of 

different mosaic patterns and different landscape properties on the biota (e.g. 

Radford & Bennett, 2007; Haslem & Bennett, 2008).  Undertaking studies of whole 

fire mosaics represents a significant challenge as there are few studies which have 

investigated the biota of whole mosaics, or which have investigated multiple patch 

types.  Most such landscape-level studies have been carried out in agricultural 

landscapes (Radford & Bennett, 2007; Mortelliti et al., 2010b), where habitats have 

been classified in a binary manner as ‘habitat’ and ‘non-habitat’ matrix, and have 

sampled the patches of habitat (Bennett et al., 2006; Fahrig et al., 2011).  In contrast 

to such agricultural landscapes, few landscape studies have been undertaken in 

naturally heterogeneous systems such as that created by fire.  
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Understanding fire ecology at the landscape scale is important because conservation 

management strategies often aim to maintain a ‘mosaic’ of patches with different fire 

histories (eg. Brockett et al., 2001; Fire Ecology Working Group, 2004; Willson, 

2006).  However, any fire or sequence of fires will result in a mosaic; thus, the more 

important question is which mosaic is most appropriate for the target biota 

(Bradstock et al., 2005)?  In order to determine which mosaic is most appropriate (or 

not appropriate), the relative impacts of the different properties of fire mosaics on 

biota needs to be explicitly tested.   

 

This question is particularly important in light of the increasing prevalence of ‘patch 

mosaic burning’ (PMB) for conservation management (Parr & Andersen, 2006), 

proposed in ecosystems around the world (Brockett et al., 2001; Wilgers & Horne, 

2006; Cochrane et al., 2009).  Patch mosaic burning is a management approach 

whereby fire is manipulated to maintain or increase the heterogeneity of patches with 

differing fire histories in a landscape (Parr & Andersen, 2006).  The rationale is that 

a greater diversity of fire histories will provide for a greater diversity of organisms 

(Tews et al., 2004; Parr & Andersen, 2006; Faivre et al., 2011).  This approach, 

while intuitively appealing, remains untested at the landscape scale.  The rationale is 

largely based on inference from studies at the site scale, and does not account for the 

influence of spatial parameters of fire or the properties of whole landscapes (Bennett 

et al., 2006).  

 

A major issue with the patch mosaic burning paradigm is that it does not account for 

the extent (total amount) of a particular habitat element.  The total extent of habitat in 

a landscape has commonly been identified as an important predictor of the status of 

the biota in human-modified landscapes (Bennett et al., 2006; Radford & Bennett, 
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2007; Mortelliti et al., 2010a) and may be an important factor influencing the 

persistence or localised extinctions of species (Radford et al., 2005).  The total extent 

of a particular post-fire age-class in a fire mosaic could have an equally important 

effect for faunal species.  For a species that requires a particular post-fire seral stage, 

the extent of vegetation in the landscape with that history is likely to influence the 

size and sustainability of the population in the landscape, the total food resources 

available and the permeability of the landscape for dispersal.  

 

Landscape ecology also recognises the importance of heterogeneity of patch types 

(composition) on diversity in ecological systems (Brennan et al., 2002).  In fire 

mosaics this can be represented by the heterogeneity of patches of differing fire 

history, which is the foundation of the patch mosaic burning paradigm in fire ecology 

and conservation management (Parr & Andersen, 2006).  As discussed, heterogeneity 

generated by the patchiness of an individual fire may affect an organism’s survival in 

that fire event, and also represent a ‘biological legacy’ which influences patterns of 

recovery (Franklin et al., 2000).  Heterogeneity generated by multiple fires through 

time may influence the composition of the community through other processes.  For 

example, species may benefit from complementary resources from different fire age-

classes.  Some bird species are known to forage in early seral stages but require long-

unburnt vegetation for nesting (Benshemesh, 1990).  However, it is difficult to assess 

if species require diverse fire ages or simply use alternative fire ages adjacent to a 

population (Burbidge et al., 2007). 

 

1.3 The effect of fire on birds 

Ecological studies investigating the effects of fire on birds have commonly focussed 

on investigating post-fire successional patterns.  Following fire, burned areas are 



Chapter 1 – Introduction and thesis overview 

 

12 
 

often quickly colonised by some bird species (Reilly, 1991; Hutto, 1995; Fuhlendorf 

et al., 2006; Lindenmayer et al., 2008).  Following initial colonisation, changes in 

species composition and turnover of species with time-since-fire are often observed, 

with selected species being associated with ‘early’ (Probst & Weinrich, 1993; Hutto, 

1995), ‘mid’ (Brown et al., 2009) or ‘late’ (Fontaine et al., 2009; Hingston & Grove, 

2010) succession vegetation, respectively.  The timing of ‘early’, ‘mid’ and ‘late’ 

succession categories, however, can vary substantially between ecosystems.  In 

grasslands, some species occurring at ~4 years post-fire are considered to be late 

succession species (Brawn et al., 2001), whereas in forest ecosystems late succession 

species may be those that favour forest stands at hundreds of years since disturbance 

(Hobson & Bayne, 2000).  Within any ecosystem, the times at which species enter or 

exit the succession represent critically important information for fire management for 

conservation, in order to maintain or provide an age-class structure of the vegetation 

that will provide for particular species of concern. 

 

Detailed knowledge of the processes causing patterns of species change through time 

can be difficult to determine.  Patterns of change are often associated with changes in 

resources such as food types, with change in structural features, or with interactions 

of both.  For example, the Black-backed Woodpecker Picoides arcticus has been 

associated with early succession vegetation in forests of North America  (Murphy & 

Lehnhausen, 1998; Hutto, 2008), where larvae of wood-boring beetles 

(Cerambycidae) are in high abundance (Murphy & Lehnhausen, 1998).   In 

Australian savannas, early successional vegetation often supports higher densities of 

ground-foraging raptors, carrion feeders, and granivores, because fire clears dense 

grassy vegetation and provides access to food resources on the ground (Woinarski, 

1990; Woinarski et al., 1999).  In North-American prairies, fire influences the 
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abundance of grass litter and the amount of bare-ground, which subsequently 

influences the presence of particular bird species, such as Henslow’s Sparrow 

Ammodramus henslowii, Upland Sandpiper Bartramia longicauda and Killdeer 

Charadrius vociferus (Fuhlendorf et al., 2006).  Cavity nesting and canopy nesting 

species have often been associated with later succession vegetation, likely due to the 

time required for these structural properties to develop (Hobson & Bayne, 2000; 

Saunders et al., 2003);  larger older trees tend to have a greater abundance of cavities 

(Gibbons et al., 2000). 

 

There have been relatively few empirical investigations of the direct impact of fire on 

birds.  There are conflicting reports on the level of mortality of birds caused by fire, 

with suggestions both of very high levels of mortality and of most birds escaping 

fires (Woinarski, 1999).  Birds may be susceptible to mortality from fire events for 

two morphological reasons.  First, birds have highly efficient gas transfer membranes 

in their respiratory systems (West et al., 2006), making them potentially susceptible 

to death via smoke inhalation.  However, several species are known to be attracted to 

fire fronts, taking insects flushed by the flames (Woinarski, 1999).  Presumably these 

species at least must be able to either avoid the smoke column or have some level of 

tolerance. Second, many bird species are susceptible to thermal stress (Marder, 1983) 

and high temperatures reached in fire events could lead to direct mortality.   

 

Contrasting views, pointing to the capacity of birds to avoid mortality from fire, also 

exist.  Foremost is the relatively high mobility of birds and thus an ability to flee fire 

events.  It has been noted that many species can survive the initial conflagration, but 

decline in abundance in the aftermath (Rowley & Brooker, 1987; Wooller & Calver, 

1988; Benshemesh, 1990); the speed and intensity of the fire will play a significant 
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role in this.  Determining the impacts of fire events on mortality is inherently 

difficult, and it is likely that variation between fires (e.g. in intensity, patchiness) will 

result in different levels of mortality of birds (Whelan et al., 2001), thus leading to 

the contrasting observed responses.   

 

The spatial aspects of fire regimes may influence bird communities in a variety of 

ways.  The spatial continuity of fires, represented by the level of patchiness, can vary 

substantially (Turner et al., 1998) and the presence of unburnt patches of vegetation, 

representing ‘biological legacies’, can act as refuges which influence the survival of 

bird species during the fire event (Rowley & Brooker, 1987; Benshemesh, 1990) and 

provide shelter after fires (Benshemesh, 1990).  The scale of fires may also be an 

important factor for bird communities; the extent of burned areas (e.g. size of a fire) 

can influence the species richness of birds that are prefer early succession stages 

because larger fire create more habitat for these species (Pons & Bas, 2005).  

 

The context of a fire also may affect post-fire bird assemblages.  Where fires occur in 

habitats in which species are isolated from other populations, the dispersal abilities of 

different species may dictate the post-fire assemblage (Brotons et al., 2005).  

Similarly, the context of a fire relative to the different types of vegetation which 

surround the burnt area, may also affect the types of species available to recolonise 

(Moreira et al., 2003).  A further consideration is the context of a site within a fire; 

its position relative to unburnt vegetation can affect recolonisation of sites (Bain et 

al., 2008; Lindenmayer et al., 2009).  In agricultural landscapes, habitat 

fragmentation (Fischer & Lindenmayer, 2007) is known to affect the richness and 

composition of bird assemblages which require wooded or forest vegetation.  Thus it 

may be possible that where fire turns extensive wooded regions into fragments of 
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wooded vegetation in an open or shrubby matrix, bird species may be negatively 

affected by habitat fragmentation processes, however this hypothesis has not been 

supported by empirical research (Herrando & Brotons, 2002). 

 

1.4 Mallee ecosystems 

‘Mallee’ is a colloquial term that refers to the growth form of a tree (multiple stems 

arising from an underground lignotuber), and more generally to the vegetation and 

the region in which such trees occur.  ‘Mallee’ vegetation occurs widely in the semi-

arid rainfall zone (200-500 mm) of southern Australia (Bradstock & Cohn, 2002), 

and encompasses an area of approximately 250,000 km
2
 across the south of the 

continent (Cofinas & Creighton, 2001) (Fig. 1.2).  Mallee ecosystems are 

characterised by a hot dry climate, with mean maximum temperatures in summer 

>30° C, and temperatures regularly exceeding 40° C (Australian Bureau of 

Meteorology, 2010).   

 

This investigation took place in the Murray Mallee region of south-eastern Australia, 

encompassing an area of ~104,000 km
2 

(Fig. 1.2).  Hereafter, discussions of mallee 

vegetation and the mallee avifauna refer to this area.  The Murray Mallee region has 

undergone extensive changes through land clearing since European settlement (c. 

35% since 1850), although much of the Eucalyptus dominated mallee shrubland 

vegetation has remained, largely due to the poor productivity of these soils for 

agriculture (Bradstock & Cohn, 2002).  The region is highly fire prone: small fires 

occur irregularly throughout the region, and large fires (10,000 - 100,000 ha) occur 

on an approximately decadal basis (Bradstock & Cohn, 2002; Avitabile et al., 2011).  

However, the spatial distribution of fires is such that typically there are long intervals 

between fires at most sites.  From 1972 to 2007, despite 40% of the area covered by 
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mallee vegetation being burnt, only 3% was burned more than once (Avitabile et al., 

2011).  Most fires are ignited through lightning strikes (Bradstock & Cohn, 2002). 

 

 

 

Figure 1.2 Map of the Murray Mallee study region showing fires from 1972-

present, mapped using satellite imagery.  State and reserve boundaries are also 

shown.  Reserves are numbered: 1) Danggali Conservation Park, 2) Gluepot Reserve, 

3) Billiatt Conservation Park, 4) Murray-Sunset National Park, 5) Hattah National 

Park, 6) Mallee-Cliffs National Park, 7) Petro Reserve, 8) Lethero Reserve, 9) 

Tarawi National Park, 10) Scotia Sanctuary.  Inset shows the extent of mallee 

vegetation across southern Australia and the location of the Murray Mallee study 

region. 
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The importance of mallee vegetation for many species of plants and animals has 

resulted in the creation of an extensive reserve system.  This investigation was 

conducted across ten reserves in the region (Fig. 1.2).  These extensive reserves 

coupled with a pattern of both historic and recent fires make mallee an excellent 

ecosystem in which to investigate the impacts of fire on biota.   

 

1.4.1 Vegetation of the Mallee 

‘Mallee’ vegetation communities generally consist of a low canopy (<10 m) formed 

by multi-stemmed ‘mallee’ Eucalyptus species which dominate the vegetation, and 

an understorey of shrubs and perennial and ephemeral grasses (Bradstock & Cohn, 

2002).  These communities usually exist on dry sandy soils without any natural 

permanent surface water and intergrade into tall woodland vegetation types near the 

major watercourses of the region.  These woodlands of Black Box E. largiflorens and 

River Red Gum E. camaldulensis generally form a narrow zone between mallee 

vegetation and permanent water.   

 

Three broad vegetation categories, Triodia Mallee, Chenopod Mallee and Heathy 

Mallee, can be recognised on the basis of the composition of plant species (Fig. 1.3) 

(Haslem et al., 2010).  Although more detailed vegetation communities have been 

described for parts of the region (e.g. Hill, 1989; White, 2006), such finer 

classification has not been done systematically across the entire region.  Triodia 

Mallee vegetation occurs on sandy soils, has an understorey of the hummock grass 

Triodia scariosa, an overstorey dominated by Eucalyptus dumosa and E. socialis, 

and commonly also contains shrubs such as Acacia rigens, A. wilhelmiana and 

Beyeria opaca.  In contrast, Chenopod Mallee occurs on soils with higher clay 

content, has a sparse understorey of shrubs such as Olearia spp., Zygophyllum spp. 
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and chenopod species including Maireana pentatropis, Enchylaena tomentosa var. 

tomentosa and M. pyramidata, and an overstorey typically including E. oleosa subsp. 

oleosa and E. gracilis.  Heathy Mallee is restricted mainly to southern parts of the 

study area, occurring primarily on deep siliceous Lowan Sands.  It has a diverse 

shrubby understorey of ‘heath-like’ plants (e.g. Callitris verrucosa, Leptospermum 

coriaceum, Phebalium bullatum, Babbingtonia behrii, Hakea leucoptera) (Haslem et 

al., 2010).  

 

      

 

Figure 1.3 Three broad categories of mallee vegetation encountered in the 

Murray Mallee region: a) Triodia Mallee, b) Chenopod Mallee, c) Heathy 

Mallee. Note the dense understorey of Triodia scariosa hummock grass in Triodia 

Mallee, the sparse understorey of chenopod shrubs in Chenopod Mallee and the 

dense understorey of shrubs in Heathy Mallee. Photos: Mallee Fire and Biodiversity 

Project. 

 

 

a b 
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Mallee vegetation is highly flammable and many plant species have life-history 

attributes related to recurrent disturbance (Pausas & Bradstock, 2007).  When fire 

occurs it typically removes both the understorey and canopy vegetation (Noble & 

Vines, 1993) (Fig. 1.4), effectively returning vegetation to a structurally similar state 

after each fire (i.e. setting succession to year zero).  Fuel continuity plays an 

important part in determining fire spread (Noble & Vines, 1993; O’Donnell et al., 

2010) and patches of vegetation may remain unburnt where fuel is discontinuous.  

The dominant features of fire in mallee vegetation are the death of the above ground 

biomass of mallee eucalypts and combustion of the grass and shrubs (Fig 1.4).  

Regeneration of vegetation post-fire is dominated by resprouting of the mallee 

Eucalyptus sp from underground lignotubers, and regeneration of understorey plants 

from both rootstock (resprouting) and recruitment from seed (Parsons, 1968; Cheal et 

al., 1979). 

 

In addition to differences in species composition, these broad vegetation types also 

vary in vegetation structure and fuel loads (Haslem et al., 2011), resulting in  

different fire behaviours.   Different patterns in the position and continuity of fuels in 

mallee vegetation result in different fire behaviours and fire sizes (Noble & Vines, 

1993).  Large fires can occur in years that are preceded by either dry or wet 

conditions (Cheal et al., 1979; Avitabile et al., 2011).  In years preceded by dry or 

average conditions, fires tend to carry through mallee shrublands based on fuel loads 

of perennial Triodia grasses and litter, (Fig. 1.5).  In years preceded by wet 

conditions, large fuel loads caused by hyper-abundant ephemeral grasses (eg. Stipa 

sp.) can result in very extensive wildfires (>1,500,000 ha) (Noble & Vines, 1993).  
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Figure 1.4 Triodia Mallee vegetation at different stages of time-since-fire: a) <1 

year, b) 2 years, c) 10 years, d) 22 years, e) 52 years and f) 94 years. Note the 

resprouting of Eucalyptus sp. from underground lignotubers and regeneration of 

understorey grasses and shrubs, particularly Triodia scariosa hummock grasses. 

Photos: Mallee Fire and Biodiversity Project. 
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Figure 1.5 Fire burning in different vegetation types and carried through 

different fuels: a) Triodia Mallee, high flames carried through combustion of 

perennial Triodia scariosa hummock grasses with high continuity of fuel; and b) 

Chenopod Mallee, flames carried largely through leaf litter and small debris.  

Photos: Lauren Brown. 

 

 

1.4.2 The avifauna of the Murray Mallee 

The Murray Mallee region supports a unique avifauna that has attracted 

ornithologists for >100 years (Mattingley, 1909; Wilson, 1912; Chandler, 1913; 

Howe & Tregellas, 1914).  Approximately 240 species of birds have been recorded 

from this region in south-eastern Australia (HANZAB, 2006); but only ~100 species 

are regularly encountered in mallee vegetation.  Other species are vagrants or species 

associated with other ecosystems (e.g. waterbirds associated with the wetland and 

riverine ecosystems).  The investigations and discussion in this thesis refer only to 

species which regularly use mallee vegetation.  These species represent 11 orders and 

30 families.  Some of the avifaunal families characteristic of mallee vegetation are 

described below (section 1.4.3).  Taxonomy for all species in this thesis follows 

Christidis & Boles (2008). 

 

a b 
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Twenty-three species of birds which commonly use mallee vegetation are identified 

in threatened species legislation in at least one of the three states (Victoria, New 

South Wales and South Australia), or federally.  Many of these threatened species 

have undergone severe population declines and have become locally extinct in other 

parts of their range, with their known distribution contracting towards mallee 

environments (Garnett & Crowley, 2000).  Additionally, many species not listed as 

threatened, such as the Red-capped Robin Petroica goodenovii have also undergone 

significant declines in parts of their geographic range (Ford et al., 2001; Mac Nally 

et al., 2009).  Large reserves may be important refuges for maintaining populations 

that cannot persist in more fragmented systems within their range.  

 

The mallee avifauna may be strongly affected by different fire regimes.  The 

occurrence of eleven threatened species has been positively associated with 

vegetation >20 years since-fire and several species with vegetation >40 years since-

fire (Clarke, 2005).  To date, most studies investigating the response of the mallee 

avifauna to fire have been of threatened species; to my knowledge this is the first 

study to investigate the response to fire of the overall avifaunal community across the 

entire region.  Three species studied in greater detail are the Black-eared Miner 

Manorina melanocephala (Clarke et al., 2005), Mallee Emu-wren Stipiturus mallee 

(Brown et al., 2009) and the Malleefowl Leipoa ocellata (Benshemesh, 1990).  Each 

of these species has a low frequency of occurrence in recently burnt vegetation.  

Black-eared Miners and Malleefowl display a preference for older vegetation >40 

years since-fire (Benshemesh, 1990; Clarke, 2005; Clarke et al., 2005), whereas the 

Mallee Emu-wren has its highest frequency of occurrence in vegetation 16-29 years 

since-fire and, although present, is less common in vegetation >29 years since-fire 

(Brown et al., 2009).   
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These data support the contention that fire may locally restrict species populations 

(Clarke, 2005).  Most investigations of birds and fire have not considered the 

response of species to fire over long time-frames, and consequently the length of 

time that species remain at their highest abundance is unknown (Clarke, 2005).  

Further, the few studies of the responses of species to fire in mallee ecosystems 

generally have not distinguished between the more southerly heathlands and mallee-

heath and the more northerly tree-mallee vegetation of the Murray Mallee.  These 

ecosystems have different vegetation characteristics and changes in vegetation post-

fire (Cheal et al., 1979; Pausas & Bradstock, 2007; Haslem et al., 2011).  
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1.4.3 Examples of characteristic avifaunal families of the Murray Mallee region 

 

 

   
 

 

 

 

 

 

 

  

 

PSITTACIDAE and CACATUIDAE: 

Parrots 

Number of Species: 8  

Primary Diet: Seeds 

Nesting: Tree hollows 

Threatened Species: 3 

Major Mitchell’s Cockatoo, Lophochroa 

leadbeateri  

Scarlet-chested Parrot Neophema splendida 

Regent Parrot Polytelis anthopeplus 

 

Parrots in mallee vegetation are highly 

mobile and require large hollows; a habitat 

attribute that is influenced by fire (Haslem et 

al., 2011). 

MEGAPODIDAE: Malleefowl 

Number of Species: 1  

Primary Diet: Seeds and vegetative matter 

Nesting: Eggs are laid in a large mound 

(c. 5 m diameter, 1 m high) built from soil 

and organic matter 

Threatened Species: 1 

Malleefowl Leipoa ocellata  

 

This species is nationally vulnerable and 

exceedingly rare.  It requires long unburnt 

habitat. Fire is a key threatening process 

(Benshemesh, 1990; Garnett & Crowley, 

2000). 

MALURIDAE: Malurid Wrens 

Number of Species: 4 

Primary diet: Arthropods 

Nesting: Built nest 

Threatened Species: 2 

Mallee Emu-wren Stipiturus mallee 

Striated Grasswren Amytornis striatus 

 

Malurid wrens are small birds (adult weight 

= 5.5 – 21g), thus are likely to display 

relatively poor mobility. Mallee Emu-wren 

and Striated Grass-wren are strongly 

associated with Triodia hummock grasses 

(HANZAB, 2006), which is highly 

flammable and the cover of which is affected 

by fire (Haslem et al., 2011). 

Malleefowl 

Leipoa ocellata 

Malleefowl mound partially 

filled with organic material 

Australian Ringneck Parrot 

Barnardius zonarius 

Major Mitchell’s Cockatoo 

Lophochroa leadbeateri 

Striated Grasswren 

Amytornis striatus 

Mallee Emu-wren 

Stipiturus mallee 
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Brown Headed Honeyeater  

Melithreptus brevirostris 

PARDALOTIDAE: Pardalotes 

Number of Species: 2 

Primary diet: Arthropods 

Nesting: Tree hollow / burrow 

Threatened Species: 0 

 

Spotted Pardalotes almost solely use 

burrows, whereas Striated Pardalotes more 

commonly use tree hollows, although both 

species have been recorded using each 

nesting arrangement (HANZAB, 2006). 

MELIPHAGIDAE: Honeyeaters and 

Wattlebirds 

Number of Species: 13 

Primary diet: Nectar / Invertebrates 

Nesting: Built nest 

Threatened Species: 1 

Black-eared Miner Manorina melanotis 

 

This family is the most diverse of mallee 

birds.  Diets of these species are variable.  

Most species are somewhat nectarivorous 

although there are varying amounts 

ofinsectivory. The Black-eared Miner is 

critically endangered and requires vegetation 

>40 years since-fire (Clarke et al., 2005); 

thus fire is a key threatening process. 

Grey-fronted honeyeater 

Lichenostomus plumulus 

Spotted Pardalote 

Pardalotus punctatus 

Striated Pardalote 

Pardalotus striatus 

ACANTHIZIDAE: Australian Warblers 

Number of Species: 4 

Primary diet: Arthropods 

Nesting: Nest / Tree hollow 

Threatened Species: 1 

Shy Heathwren Calamanthus cautus 

 

Studies have linked Shy Heathwren to both 

young (Woinarski, 1999) and older 

vegetation (Clarke, 2005).  One species, 

Chestnut-rumped Thornbill Acanthiza 

uropygialis, uses hollows for nesting. 

Shy Heathwren 

Calamanthus cautus 

Weebill 

Smicrornis brevirostris 
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POMATOSTOMIDAE: Babblers 

Number of Species: 2 

Primary diet: Arthropods 

Nesting: Built nests 

Threatened Species: 0 

 

Babblers forage mostly on the ground or the 

lower trunk and branches of trees, are 

gregarious and display complex social 

structures.  Individuals often build several 

nests, although only use one and the nest is 

often attended by helpers (HANZAB, 2006).   

PSOPHODIDAE: Quail-thrush and 

Whipbird 

Number of Species: 2 

Primary diet: Arthropods 

Nesting: Built nests 

Threatened Species: 2 

Chestnut Quail-thrush Cinclosoma castanotus 

Western Whipbird Psophodes nigrogularis 

 

Chestnut Quail-thrush is relatively common in 

mallee habitats, but has undergone severe 

declines in parts of their range. 

The mallee form of the Western Whipbird is 

critically endangered; fire is thought to be a 

primary cause of its decline (Clarke, 2005). 

PACHYCEPHALIDAE: Whistlers, 

Shrike-thrush and Crested Bellbird 

Number of Species: 5 

Primary diet: Arthropods 

Nesting: Built nests 

Threatened Species: 3 

Gilbert’s Whistler Pachycephala inornata 

Red-lored Whistler Pachycephala rufogularis 

Crested Bellbird Oreoica gutturalis 

 

Crested Bellbirds are relatively common in 

mallee environments but have undergone 

severe declines in parts of their range. 

Red-lored Whistlers can be locally common, 

but are regionally rare (Clarke, 2005). 

Chestnut-crowned Babbler 

Pomatostomus ruficeps 

White-browed Babbler 

Pomatostomus superciliosus 

Chestnut Quail-thrush 

Cinclosoma castanotus 

Red-lored Whistler 

Pachycephala rufogularis 

Golden Whistler 

Pachycephala pectoralis 
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1.5 Overview of thesis objectives and structure 

This thesis investigates the ecological influence of fire in shaping avifaunal 

communities of mallee vegetation in the Murray Mallee region.  The avifauna of this 

region represents a diverse, unique and potentially fragile assemblage, with a long 

held fascination for many people, both scientist and enthusiast.  The interest in the 

avifauna of this region has the potential to increase awareness of the conservation of 

other mallee taxa.  Furthermore, birds represent a useful taxon for managers as they 

are conspicuous and feasible to monitor.  The dataset amassed through this 

investigation represents the largest that has been systematically collected on the 

ARTAMIDAE: Butcherbirds, Cuckoo-

Shrikes, Currawong and Woodswallows 

Number of Species: 8 

Primary diet: Arthropods 

Nesting: Built nests & Hollows 

Threatened Species: 0 

 

A diverse family, species in this group range 

in size and foraging strategies, with larger 

species being predatory on several small 

vertebrates.  Although most Artamidae are 

resident in mallee, Woodswallows are 

summer migrants.  

PETROICIDAE: Robins 

Species: 4 

Primary diet: Arthropods 

Nesting: Built nests 

Threatened Species: 2 

Southern Scrub-robin Drymodes 

brunneopygia 

Hooded Robin Melanodryas cucullata 

 

Jacky Winter Microeca fascinans and  Red-

capped Robin Petroica goodenovii, 

although not threatened species, also have 

declined in other parts of their range (Ford 

et al., 2001). 

Masked Woodswallow 

Artamus personatus 

Grey Butcherbird 

Cracticus torquatus 

Red-capped Robin 

Petroica goodenovi 
Southern Scrub-robin 

Drymodes brunneopygia 
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entire mallee avifaunal assemblage across this entire region.  This dataset has the 

potential to make an important contribution to scientific knowledge and ecological 

management in this region.   

 

The concept of providing useful and useable information to guide conservation and 

management of the avifauna with regard to fire in this region is a consistent theme 

throughout the chapters.  My primary objective was to investigate the effects of two 

different, yet intricately related aspects of fire on birds: first, the relationship between 

temporal processes of fire and bird communities; and second the relationship 

between spatial properties of fire and bird communities.  These two facets form 

complementary themes throughout the thesis.   

 

Each data chapter focuses primarily on one or other of the major themes.  Chapters 2 

and 3 examine the influence of temporal parameters of fire on avifauna, whereas 

chapters 4 and 5 investigate the influence of different spatial properties of fire on 

avifauna. A brief summary of each of the chapters is given below.   

 

Chapter 2 investigates the temporal effects of fire on the distributions of individual 

species.  This chapter has four main objectives: 1) to investigate the influence of fire 

history on species occurrences; 2) to determine the different types of temporal 

responses displayed by species of birds to fire, and the generality of these responses 

amongst species; 3) to investigate the importance of different post-fire ages for the 

occurrence of different species; and 4) to investigate the usefulness of this type of 

information for predicting species distributions and thus management. 
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Chapter 3 aims to build on knowledge gained in Chapter 2 about individual species.  

This chapter investigates the temporal effects of fire at the level of the community, 

focussing on the patterns in the avifauna caused by succession processes.  The 

objectives of this chapter are to investigate the effect of time-since-fire on the species 

richness and composition of avifaunal communities at survey sites; to examine the 

rate of change in species assemblages with time-since-fire and the impact this has on 

community distinctiveness; and to investigate potential processes influencing 

patterns of avifaunal succession and their impact on the richness of different guilds. 

 

Chapter 4 navigates the importance of two spatial aspects of fire on post-fire 

colonisation of sites: 1) proximity to unburnt vegetation; and 2) patchiness of a fire.   

In this chapter, the influence of these spatial aspects on species richness and the 

occurrence of individuals at recently burnt sites are investigated with the objective of 

gaining insights into the different colonisation strategies of birds, the importance of 

biological legacies to site colonisation, and the time taken for colonisation to occur. 

 

Chapter 5 uses a whole-of-landscape design to investigate the importance of the 

spatial properties of the fire mosaic on the composition of the avifaunal assemblage 

in the whole landscape.  This chapter also aims to determine the processes by which 

landscape properties may influence species composition and affect the functional 

composition of the avifauna of landscapes.   

 

Finally, in Chapter 6 I present a summary and synthesis of the key findings of the 

study and discuss their implications for conservation and management of the 

avifauna of mallee ecosystems.  
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Figure 1.6 Outline of the structure of this thesis  
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2.1 Abstract 

Fire is a widespread disturbance process that affects the distribution of faunal 

species.  An important issue for conservation management in fire-prone 

environments is to understand changes in the occurrence of species after fire, and 

whether such post-fire responses represent a small set of generalised species‟ 

responses to fire.  We analysed the response of 30 species of birds to time-since-fire 

at 499 sites distributed over a 104,000 km
2
 region of semi-arid shrubland in south-

eastern Australia.  We used non-linear regression to model patterns in species 

occurrence with time-since-fire in two vegetation types and compared them with 

generalised response shapes from the literature. We then tested the ability of the 

models to predict species distributions using seven-fold cross-validation.  The 

occurrence of 16 species was significantly affected by time-since-fire, and they 

displayed a limited number of response shapes.  Early succession specialists appear 

to be uncommon in mallee ecosystems, with the frequency of occurrence of 14 of the 

16 species being highest in mid or older successional vegetation (>30 years-since-

fire), and only one species in early successional vegetation (<5 years-since-fire).  

However, the occurrence of a further five species declined between 50 – 100 years-

since-fire.  Model predictive ability was reasonable for eight species, low for seven 

species, and little better than chance for one species.  In mallee ecosystems, periodic 

fire is a critical influence on the habitats used by bird species.  Mid and older-aged 

vegetation are disproportionately important, and too-frequent fire could have severe 

effects on species populations.  Relying on time-since-fire as a surrogate for species 

occupancy, however, may be ineffective in light of the limited predictive ability of 

time-since-fire models for the distribution of species over broad spatial scales and 

their varied responses in different vegetation types.    
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2.2 Introduction 

Fire is a natural disturbance process that influences the structure of ecological 

communities throughout the world (Bowman et al., 2009).  Fire can also be used as a 

tool for land management and conservation, being widely employed for managing 

fuel loads to control unplanned fires (Gill & Allan, 2008), and to provide particular 

fire age-classes of vegetation to promote faunal populations (Parr & Andersen, 

2006).  Further, it has been predicted that fire will increasingly be employed as a 

management tool in the future (Gill & Allan, 2008).  Nevertheless, the response of 

many species to fire is poorly understood, and inappropriate fire regimes are a 

threatening process for many species and communities worldwide (e.g. Woinarski, 

1999; Covert-Bratland et al., 2006; Fuhlendorf et al., 2006; Sara et al., 2006; Slik & 

Balen, 2006).  Birds may be particularly vulnerable to inappropriate fire regimes. In 

Australia alone, inappropriate fire regimes are associated with five extinct species or 

sub-species of birds, and are recognised as a threatening process for more than 50 

species (Woinarski, 1999).  

 

Knowledge of the pattern of occurrence or abundance of species with time since fire 

(„fire-response-curves‟) is valuable for fire management (Driscoll et al., 2010).  Fire-

response-curves indicate the extent to which species depend on particular post-fire 

ages and may also identify critical thresholds in time-since-fire necessary to provide 

required habitat resources (Keith et al., 2001; Driscoll et al., 2010).  If there are 

„generalised‟ fire-response-curves, such that a limited number of patterns represent 

the responses of many species (see Fig. 2.1), this may offer important insights for the 

conservation management of species.  Generalised fire-response-curves are an 

attractive prospect for wildlife managers, as they suggest that management to attain a 

limited number of fire regimes will provide for many species. However, knowledge 
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of temporal responses to fire is scarce for many species, even in fire-prone 

environments.  Furthermore, there have been few empirical investigations to test 

whether patterns of species‟ responses to fire are useful in predicting their 

geographic occurrence at broad spatial scales. 

 

Many studies of faunal populations and fire have focussed on the responses of just 

one or a few species (e.g. Breininger & Oddy, 2004; Hutto, 2008; Brown et al., 

2009).  They have documented a diverse range of responses to time-since-fire 

(Whelan et al., 2001): some species favour recently burnt vegetation (Hutto, 2008) 

while others occur in long-unburnt vegetation (Clarke et al., 2005). However, 

comparison of responses among multiple species may provide insights into the 

relative importance of fire in structuring faunal assemblages and the generality of 

responses amongst species. 

 

Studies that examine the responses of fauna to particular fire treatments, to single fire 

events, or to a few fire events are often conducted over short time-frames (eg. 

Smucker et al., 2005; Adeney et al., 2006; Covert-Bratland et al., 2006; Fuhlendorf 

et al., 2006).  These provide important knowledge, but an understanding of species‟ 

responses over long time-frames, commensurate with the duration of successional 

processes, remains scarce in many ecosystems.  While techniques such as 

dendrochronology have been used to assess patterns of succession in attributes such 

as vegetation biomass over hundreds of years (Pare & Bergeron, 1995), few 

investigations of faunal responses have extended over periods of a century or more.  

Additionally, studies that do investigate long time-frames seldom do so across broad 

geographic scales, which may result in localised patterns obscuring successional 

patterns (Johnson & Miyanishi, 2008).  Investigations of long-term trends at spatial 
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and temporal scales commensurate with that at which ecosystems operate are an 

important complement to detailed short-term and manipulative studies.  The former 

may reveal patterns not apparent at short time-scales, allowing for more informed 

management decisions (Clarke et al., 2010). 

 

In this study, we test the influence of fire on the occurrence of avifaunal species in a 

regional assemblage, and the shape of fire response curves displayed over an 

extended time-frame.  We investigate whether fire response curves display generality 

amongst species in an assemblage, whether they conform to a priori patterns 

proposed in the literature (Whelan et al., 2001) (Fig. 2.1), and we examine the role of 

different successional stages in supporting bird species.  Finally, we test how 

informative post-fire response patterns are in determining species distributions across 

broad spatial extents?   We use data from avifaunal surveys at 499 sites representing 

a 100-year chronosequence of time-since-fire in semi-arid Eucalyptus shrublands of 

south-eastern Australia.  
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Figure 2.1 Generalised post-fire response curves for species, adapted from 

Whelan et al. (2001).  These curves show eight possible relationships between the 

frequency of occurrence of bird species and time-since-fire:  a) solid line = incline 

(occurrence lowest in young vegetation, increases monotonically to be highest in 

oldest vegetation), dashed line = decline (occurrence highest in young vegetation, 

decreases monotonically to be lowest in oldest vegetation); b) solid line =  bell 

(defined peak in occurrence in mid-aged vegetation), dashed line = plateau  

(occurrence lowest in young vegetation, peaks mid-age vegetation, maintained in 

older vegetation); c) irruptive responses, solid line = irruptive 1 (occurrence 

increases and peaks in young vegetation, rapidly declines, lowest in mid-aged and 

older vegetation), dashed line = irruptive 2 (occurrence peaks in youngest vegetation, 

rapidly declines, lowest in mid-aged and older vegetation); d) solid line = delayed 

incline (low occurrence until mid or old aged vegetation before increasing in 

occurrence), dashed line = null  (occurrence not influenced by post-fire-age). 
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2.3 Methods 

2.3.1 Study area 

The study area encompassed approximately 104,000 km
2 

in the Murray Mallee 

region of Australia, centred on the intersection of the states of Victoria, New South 

Wales and South Australia.  The region has a semi-arid climate with hot dry 

summers and mild winters.  Climatic variation across the region forms a south to 

north gradient of increasing aridity (Pausas & Bradstock, 2007) with mean annual 

rainfall declining from 350 - 200 mm per annum across this gradient.  Mean 

maximum and minimum temperatures in the warmest month range from 32° – 33° C 

and 14° – 18° C, respectively; whereas in the coolest they range from 15° – 16° C 

and 4° – 6° C, respectively (Australian Bureau of Meteorology, 2010).     

 

The study was conducted within the dominant „mallee‟ vegetation type in the region.  

Mallee consists of open vegetation with a low canopy (<10 m tall) of multi-stemmed 

Eucalyptus species, and an understorey of shrubs and perennial and ephemeral 

grasses (Bradstock & Cohn, 2002).  We categorised and mapped vegetation into 

three broad categories, Triodia Mallee, Chenopod Mallee and Heathy Mallee, on the 

basis of floristic surveys at each site (Haslem et al., 2011).  Triodia Mallee 

vegetation occurs on sandy soils, has an understorey of the hummock grass Triodia 

scariosa, an overstorey dominated by Eucalyptus dumosa and E. socialis, and 

commonly also contains shrubs such as Acacia rigens, A. wilhelmiana and Beyeria 

opaca.  Chenopod Mallee occurs on soils with higher clay content, typically in 

swales between dunes, has a sparse understorey of shrubs such as Olearia spp., 

Zygophyllum spp. and chenopod species including Maireana pentatropis, 

Enchylaena tomentosa var. tomentosa and M. pyramidata, and an overstorey of E. 
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oleosa subsp. oleosa and E. gracilis (Haslem et al., 2011). Sites in Heathy Mallee 

were excluded from this analysis (see study design).   

 

Mallee vegetation is highly flammable and many plant species have life-history 

attributes related to recurrent disturbance by fire (Bradstock & Cohn, 2002).  Fires 

occur regularly in this extensive region and they typically remove both understorey 

and canopy vegetation (Noble & Vines, 1993).  Mallee eucalypts resprout from 

underground lignotubers following fire, whereas understorey plants regenerate from 

both roots (resprouters) and seed (Parsons, 1968; Cheal et al., 1979).  This post-fire 

regeneration produces a relatively dense vegetation layer below 2 m until ~15 years 

post-fire, after which there is a gradual reduction in vegetation cover within the mid 

stratum (0.5 m – 2 m) as shrub species become sparser and Eucalyptus spp. begin to 

develop a canopy above this height.  Canopy height increases, reaching a mean 

height of ~5 – 8 m at approximately 60 years post-fire; from this point the growth in 

canopy height slows considerably (Haslem et al., 2011). 

 

2.3.2 Study design and data collection  

We surveyed birds at sites representing a chronosequence from <1 year – 164 years 

post-fire.  The post-fire age of the vegetation at each site was ascertained by using 

one of two methods.  For sites burnt post-1972, the year of burning was determined 

from maps of fire history based on 15 individual years of satellite imagery combined 

with local knowledge of exact fire dates (Avitabile et al., 2011).  For sites burnt prior 

to 1972, fire age was estimated using regression models of the relationship between 

the diameter of eucalypt stems and years since fire, which were validated with 

independent data (Clarke et al., 2010).   

  



    Chapter 2 – Effects of time-since-fire on bird species 
 

39 
 

This investigation was part of a larger study examining the influence of the 

properties of fire mosaics on flora and fauna, and consequently study sites were 

arranged in 28 clusters (landscape units), each encompassing 20 sites.  We excluded 

from analysis 17 sites predicted to be >100 years since-fire (i.e. 101 – 164 years) as 

there were too few sites for adequate replication over this range. We also excluded 

all sites in Heathy Mallee vegetation (n=44) due to inadequate representation across 

age-classes: only one site was <19 years since-fire.  Due to the spatial and temporal 

distribution of fires throughout the region and the landscape scale study design, there 

were few data points located in vegetation 11-20 years since-fire. The resulting 

dataset consisted of 499 sites representing post-fire ages between 1 and 100 years: 

176 sites in Chenopod Mallee and 223 in Triodia Mallee (Table 2.1). 

 

 

 

Table 2.1 The distribution of survey sites in relation to time-since-fire in Triodia 

Mallee and Chenopod Mallee vegetation. Sites are categorized in 10-year intervals. 

Time-since-fire Triodia Mallee Chenopod Mallee Total 
0-10 89 21 110 

11-20 1 0 1 

21-30 56 14 70 

31-40 106 53 159 

41-50 13 21 34 

51-60 17 23 40 

61-70 16 22 38 

71-80 10 10 20 

81-90 10 6 16 

91-100 5 6 11 

Total 323 176 499 

 

Within each landscape, sites generally were separated by 500 m to maximise 

independence.  Surveys were conducted on four survey rounds, once each in the 
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Austral spring and autumn of 2006/2007 and 2007/2008.  All sites were surveyed 

twice each by two observers (Simon Watson, Rick Taylor).  At each site, all 

individuals were counted and recorded within a 60 m radius during a 5 min period.  

Surveys commenced within 15 min of sunrise, during the time of greatest vocal 

activity for birds and were generally completed before 12:00 PM.  The distance from 

the centre of the point count to the location of the first detection of individual birds 

was recorded to permit analysis of detectability.  For visual detections, distance was 

measured using an OPTi-LOGIC
TM

 800LH laser range finder. For aural detections 

distance was estimated by the observer.  Observers had initial training together to 

ensure comparability of procedures. 

 

2.3.3 Statistical analysis 

Variation in detectability of different species, or of the same species in different 

habitats, is a potential source of variation in ecological studies (Buckland et al., 

2001).  To ascertain whether detectability was likely to be a problem in interpreting 

our data, we undertook multiple covariate distance sampling (MCDS) (Buckland et 

al., 2004; Marques et al., 2007) using the program Distance 5.0 release 2 (Thomas et 

al., 2006).  We modelled variation in detectability of individual species with 

increasing distance from the observer, also incorporating vegetation density as a 

covariate in the model.  Species recorded too infrequently to model individually were 

grouped with more common species that displayed similar detection characteristics, 

following Aldredge et al. (2007).  All species were successfully detected at the 

furthest extremities of the point-count.  The lowest probability of detection for a 

point was for the combined taxa, Mallee Emu-wren Stipiturus mallee and Striated 

Grasswren Amytornis striatus (probability of detection = 0.45, 95% CI 0.31 - 0.65, N 

= 75).  Vegetation density did not significantly reduce the detectability of any 
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species.  Considering these results, modelling presence-absence is an appropriate 

approach. 

 

We used generalised additive mixed models (GAMMs) (Wood, 2006) to model the 

change in species occurrence with time-since-fire.  Generalised additive models 

(GAMs) are a non-parametric form of regression modelling that use smoothing 

functions to model non-linear relationships (Wood, 2006; Wood, 2008).  As many of 

the response shapes we selected a priori are non-linear (Fig. 2.1), GAMs presented 

an appropriate method.  Models were fitted using presence-absence data to model the 

probability of occurrence of species, where presence represents the detected 

occurrence of a species at a site in any of the four survey rounds.   

 

We developed the GAMs in a mixed modelling framework (GAMMs) to account for 

the potential for systematic variation in the influence of the predictor variables 

caused by the spatial clustering of study sites in landscapes.  Mixed models reduce 

the potentially confounding problems of spatial autocorrelation and are 

recommended where systematic structuring is present in the data (Zuur et al., 2009). 

Thus, landscape unit was included as a random factor in each species‟ model.  To 

ascertain whether species‟ response shapes varied between vegetation types (Triodia 

Mallee, Chenopod Mallee), we fitted models allowing a separate smoothed term for 

time-since-fire to be fitted for each level of this categorical variable (Wood, 2006).  

We also included vegetation type as a separate factor variable, and an additional 

variable, „northing‟, was included to allow for a site‟s location along the gradient of 

aridity in the study region.   
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The amount of smoothing used to model the response to time-since-fire was 

automatically selected in the model-fitting process (Wood, 2008).  Species were 

deemed to show a response to time-since-fire if the P-value for the smoothed time-

since-fire term was <0.05.  Wood (2006) warns that P-values for smoothed terms are 

approximated, and consequently we approach P-values near 0.05 with caution 

following Zuur et al. (2009).  The modelled response of the probability of occurrence 

of each species to time-since-fire was plotted, and species were then allocated to a 

response shape based on its similarity to a priori response shapes adapted from 

Whelan et al. (2001) (Fig. 2.1).   

 

We evaluated the GAMMs using deviance explained (D
2
) as a measure of model fit, 

and seven-fold cross-validation to test predictive accuracy (Pearce & Ferrier, 2000).  

This procedure involved splitting the data into seven groups („folds‟), fitting the 

GAMMs to data from six folds and predicting the occurrence of species to sites in 

the seventh fold, which is independent of the data used to generate the model.  These 

predictions for sites in the seventh fold were compared with observed responses to 

test the predictive accuracy of the model.  This process was continued iteratively 

until predictions had been made for all sites.  Evaluation of the predictive 

performance of models was based on the mean discrimination (and standard error) 

across all folds. Model discrimination was ascertained by building a relative 

operating characteristic (ROC) curve, which compares the relative proportions of 

correctly and incorrectly classified presence and absence predictions (or true positive 

versus false positive responses) of the model over a continuous range of thresholds 

(Pearce & Ferrier, 2000).  The area under the curve (AUC) gives a measure of the 

usefulness of the model in predicting species occurrence. Scores from 0.5 – 0.7 are 
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considered to have some discrimination, 0.7 – 0.9 = reasonable discrimination and 

0.9 – 1 = very-good discrimination (Pearce & Ferrier, 2000).     

 

All GAMM‟s were built in the R statistical environment (R Development Core 

Team, 2009), using the “mgcv” package (Wood, 2004; Wood, 2006).  Cross 

validation methods and source scripts were adapted from Elith et al. (2008). 

 

 

2.4 Results 

We detected 70 species of birds from 28 families during point-counts.  We modelled 

species that occurred at >20 sites and which occurred across the entire region, 

resulting in models for 30 of the 69 species.  One species (Grey-fronted Honeyeater 

Lichenostomus plumulus) was recorded only north of the Murray River, a 

biogeographic boundary, and two species (Mallee Emu-wren Stipiturus mallee and 

Purple-gaped Honeyeater Lichenostomus cratitius) only south of the river.   

 

2.4.1 Response of species to time-since-fire 

Sixteen of the 30 species modelled showed significant variation in probability of 

occurrence with time-since fire (Table 2.2). All 16 responded to time-since-fire in 

Triodia Mallee vegetation, but only four species displayed a significant response in 

Chenopod Mallee (Table 2.2).



 

 
 

Table 2.2 Relationship between species occurrence and time-since-fire for 30 bird species in the Murray Mallee region, derived from 

generalised additive mixed models.  The number of sites recorded (N), the assigned response shape with time-since-fire in Triodia Mallee 

and Chenopod Mallee, and the statistical significance of the relationship (F, P) in each vegetation type are presented for each species. 

Species N 
Triodia Mallee 

 
Chenopod Mallee 

Shape F P 
 

Shape F P 

Australian Ringneck Barnardius zonarius 54 Null 0.11 0.745 
 

nd 2.96 0.086 

Mulga Parrot Psephotus varius 36 Null 1.25 0.264 
 

Null 1.95 0.163 

Variegated Fairy-wren Malurus lamberti 23 Null 1.13 0.312 
 

Null 1.6 0.207 

Striated Grasswren Amytornis striatus 37 Bell 6.84 <0.001 
 

Null 2.09 0.149 

Spotted Pardalote Pardalotus punctatus 225 Bell 4.19 0.013 
 

nd 1.71 0.183 

Striated Pardalote Pardalotus striatus 153 Incline 9.62 <0.001 
 

nd 2.42 0.12 

Shy Heathwren Calamanthus cautus 69 Null 0.16 0.692 
 

Null 0.1 0.757 

Weebill Smicrornis brevirostris 324 Plateau 5.52 <0.001 
 

Null 0.02 0.9 

Chestnut-rumped Thornbill Acanthiza uropygialis 114 Irruptive 4.2 0.017 
 

Decline 6.47 0.011 

Inland Thornbill Acanthiza apicalis 61 Null 2.13 0.145 
 

Null 0.39 0.535 

White-eared Honeyeater Lichenostomus leucotis 219 Bell 3.9 0.018 
 

Null 0.17 0.679 

Yellow-plumed Honeyeater Lichenostomus ornatus 286 Plateau 21 <0.001 
 

Plateau 11.59 <0.001 

White-fronted Honeyeater Purnella albifrons 113 Null 0.9 0.343 
 

Null 0.18 0.674 

Spiny-cheeked Honeyeater Acanthagenys rufogularis 147 Incline 5.42 0.021 
 

Incline 5.23 0.022 



 

 
 

Species N 
Triodia Mallee 

 
Chenopod Mallee 

Shape F P 
 

Shape F P 

Red Wattlebird Anthochaera carunculata 28 Null 1.03 0.352 
 

Null 1.66 0.199 

Brown-headed Honeyeater Melithreptus brevirostris 46 nd 2.88 0.056 
 

Null 0 0.971 

Striped Honeyeater Plectorhyncha lanceolata 20 Incline 8.04 0.005 
 

nd 2.67 0.065 

White-browed Babbler Pomatostomus superciliosus 39 Bell 3.3 0.018 
 

Incline 5.9 0.016 

Chestnut Quail-thrush Cinclosoma castanotus 148 Null 0.42 0.598 
 

nd 3.03 0.083 

Gilbert's Whistler Pachycephala inornata 23 Incline 11.7 <0.001 
 

Null 0.16 0.694 

Golden Whistler Pachycephala pectoralis 21 Bell 4.88 <0.001 
 

Null 0.01 0.924 

Rufous Whistler Pachycephala rufiventris 38 Incline 14.4 <0.001 
 

Null 0.05 0.819 

Grey Shrike-thrush Colluricincla harmonica 165 Incline 6.21 0.013 
 

Null 1.79 0.17 

Crested Bellbird Oreoica gutturalis 101 Null 1.5 0.226 
 

Null 0.18 0.674 

Grey Butcherbird Cracticus torquatus 132 Null 1.11 0.292 
 

Null 1.07 0.301 

Grey Currawong Strepera versicolor 21 Null 1.41 0.236 
 

Null 2.44 0.119 

Willie Wagtail Rhipidura leucophrys 45 Incline 6.48 0.011 
 

Null 0.19 0.667 

Jacky Winter Microeca fascinans 117 Null 0.28 0.599 
 

Null 1.06 0.304 

Red-capped Robin Petroica goodenovii 21 Null 0.07 0.796 
 

Null 1.87 0.159 

Southern Scrub-robin Drymodes brunneopygia 53 Incline 15.6 <0.001 
 

nd 2.34 0.072 

nd = A non-significant trend was present such that a null response is not appropriate. 
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We assigned each significant time-since-fire response to one of the a priori response 

shapes (Table 2.3 & Fig. 2.2). There was uncertainty for some species in distinguishing 

between an inability to detect a significant response and a null response to time-since-

fire.  This was particularly a problem in the less fire-prone Chenopod Mallee for which 

there was a lower sample size, particularly in younger vegetation (Table 2.1).  

Accordingly we assigned a category of “non-detection” to species that displayed non-

significant trends, for which a null response may not be appropriate (e.g. where P-values 

were close to alpha, 0.05 < P < 0.1). 

 

 

Table 2.3 Summary of species response types and the number of bird species that 

displayed each response in Chenopod Mallee and Triodia Mallee. 

Shape 
Triodia 

Mallee 

Chenopod 

Mallee 

Incline 8 2 

Decline 0 1 

Bell 5 0 

Plateau 2 1 

Irruptive 1 0 0 

Irruptive 2 1 0 

Delayed 0 0 

Null 13 20 

Not Detected 1 6 
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Figure 2.2 Examples of modelled post-fire response curves for bird species ± 1 SE, 

demonstrating the similarity of observed and hypothetical response shapes (Fig. 1); 

a) incline response of Grey Shrike-thrush in Triodia Mallee; b) decline response of 

Chestnut-rumped Thornbill in Chenopod Mallee; c) bell response of White-eared 

Honeyeater in Triodia Mallee; d) plateau response of Yellow-plumed Honeyeater in 

Triodia Mallee; e) irruptive 2 response of Chestnut-rumped Thornbill in Triodia Mallee; 

f) null response of Weebill in Chenopod Mallee. 
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There was little concordance between responses of species in the two vegetation types 

(Table 2.2). Of the species that displayed a significant response to time-since-fire, only 

two (Yellow-plumed Honeyeater, Spiny-cheeked Honeyeater) had the same response 

shape in both vegetation types.  Two species (Chestnut-rumped Thornbill, White-

browed Babbler) displayed different response shapes in each vegetation type, and eight 

species showed a significant response in one vegetation type and a null response in the 

other (Fig. 2.3) A further four species responded in one vegetation type and displayed a 

non-significant trend (non-detection) in the other. 

 

 

             

    

 

Figure 2.3 Response shapes for species that had different responses to time-since-

fire in different vegetation types (± 1 SE). Black line = Triodia Mallee, grey line= 

Chenopod Mallee; a) Chestnut-rumped Thornbill (irruptive and decline), b) White-

browed Babbler (bell and incline), c) White-eared Honeyeater (bell and null). 
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Sixteen species displayed significant responses to time-since-fire in Triodia Mallee.  Of 

these, eight displayed an incline, five a bell-shape, two a plateau and one an irruptive 

response shape (Table 2.3).  In Chenopod Mallee, four species displayed significant 

time-since-fire responses; of these two species displayed an incline, one species a 

decline and one species a plateau (Table 2.3).  Overall, the null response was the most 

frequently encountered in both vegetation types (Table 2.3). 

 

2.4.2 Evaluation of time-since-fire models 

The deviance explained by models ranged from 0.04 to 0.34 (Table 2.4), suggesting a 

high level of variability in the explanatory power of time-since-fire, together with 

vegetation type and northing, on species occurrence. Note that the probability of 

occurrence of several species was also significantly related to the non-fire variables, 

northing and vegetation type (Table 2.4; Table 2.5). 

 

The ability of time-since-fire models to predict species‟ responses across landscapes and 

regions is a key issue in determining the usefulness of such post-fire response curves for 

management purposes.  The models of the 16 species that showed a significant response 

to time-since-fire had AUC values that ranged between 0.54 and 0.86 (Table 2.4).  

Models displayed reasonable predictive discrimination for 8 species (AUC>0.7), some 

predictive discrimination for 7 species (0.6<AUC<0.7), and predictive discrimination 

little better than chance for one species AUC = 0.54 (Table 2.4). 
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Table 2.4 Measures of model performance for models of the relationship between 

frequency of occurrence of species and time since fire.  Values presented are the 

deviance explained (D
2
) and mean area under the curve from seven-fold cross validation 

(AUC) (SE in parentheses), for species that display a significant response to time since 

fire.  Models also account for variation related to geographic location and vegetation 

type. 

Species D
2
 Mean AUC (SE) 

Striated Grasswren 
a b

 0.22 0.81 (0.046) 

Spotted Pardalote 
b
 0.19 0.72 (0.044) 

Striated Pardalote 
a b

 0.14 0.73 (0.026) 

Weebill 0.05 0.54 (0.051) 

Chestnut-rumped Thornbill 
a
 0.06 0.64 (0.060) 

White-eared Honeyeater 0.07 0.67 (0.045) 

Yellow-plumed Honeyeater 0.24 0.76 (0.043) 

Spiny-cheeked Honeyeater 0.05 0.61 (0.043) 

Striped Honeyeater  
b
 0.17 0.77 (0.033) 

White-browed Babbler 0.09 0.66 (0.049) 

Gilbert's Whistler 
a b

 0.13 0.72 (0.079) 

Golden Whistler 
b
 0.34 0.86 (0.060) 

Rufous Whistler 0.04 0.60 (0.080) 

Grey Shrike-thrush 
a
 0.06 0.65 (0.037) 

Willie Wagtail 
a
 0.07 0.69 (0.050) 

Southern Scrub-robin 
b
 0.16 0.75 (0.052) 

a
 Significant response to vegetation type 

b
 Significant response to geographic position (northing) 

Details of 
a
 and 

b
  (Table 2.5) 
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Table 2.5. Relationships of the frequency of occurrence of species with the 

parametric variables vegetation type and northing, and tests of significance for 

these variables obtained from the full species models (GAMMs). Chenopod Mallee is 

used as the reference variable in the model, such that coefficients for vegetation refer to 

species responses to the Triodia Mallee vegetation in comparison with the reference 

variable.  Significant responses (P<0.05) are shown in bold type 

Species 
Vegetation Northing 

Coef. SE P Coef. SE P 

Australian Ringneck -0.577 0.296 0.052 1.61E-06 2.73E-06 0.557 

Mulga Parrot -0.828 0.346 0.017 2.01E-06 2.60E-06 0.440 

Variegated Fairy-wren -0.960 0.432 0.027 1.95E-06 3.40E-06 0.567 

Striated Grasswren 2.600 0.565 <0.001 1.76E-05 5.85E-06 0.003 

Spotted Pardalote 0.087 0.235 0.711 -1.64E-05 2.29E-06 <0.001 

Striated Pardalote -1.200 0.232 <0.001 -6.54E-06 2.46E-06 0.008 

Shy Heathwren -0.663 0.280 0.018 -6.40E-06 3.56E-06 0.073 

Weebill -0.289 0.229 0.207 1.07E-06 2.16E-06 0.620 

Chestnut-rumped Thornbill -0.835 0.247 <0.001 3.99E-06 2.37E-06 0.093 

Inland Thornbill 0.348 0.313 0.266 -3.98E-06 3.03E-06 0.190 

White-eared Honeyeater 0.422 0.250 0.093 -6.50E-06 3.92E-06 0.098 

Yellow-plumed Honeyeater 0.230 0.308 0.456 -9.97E-07 4.07E-06 0.806 

White-fronted Honeyeater 0.072 0.262 0.784 3.43E-06 3.19E-06 0.283 

Spiny-cheeked Honeyeater -0.047 0.245 0.848 -1.78E-06 2.46E-06 0.469 

Red Wattlebird -0.343 0.345 0.320 -2.07E-05 6.43E-06 0.001 

Brown-headed Honeyeater -0.874 0.311 0.005 -3.10E-06 2.91E-06 0.287 

Striped Honeyeater -0.471 0.703 0.503 -8.56E-06 3.93E-06 0.030 

White-browed Babbler -0.366 0.382 0.338 -3.39E-07 2.58E-06 0.895 

Chestnut Quail-thrush -1.030 0.214 <0.001 1.68E-07 1.67E-06 0.920 

Gilbert's Whistler -1.290 0.391 0.001 1.46E-05 4.64E-06 0.002 

Golden Whistler -0.098 0.495 0.843 -8.77E-05 2.86E-05 0.002 

Rufous Whistler -0.654 0.358 0.068 5.36E-06 3.71E-06 0.150 
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Species 
Vegetation Northing 

Coef. SE P Coef. SE P 

Grey Shrike-thrush -0.779 0.225 <0.001 7.30E-07 2.32E-06 0.753 

Crested Bellbird -0.214 0.246 0.385 3.89E-06 1.87E-06 0.038 

Grey Butcherbird -0.457 0.229 0.047 -4.76E-06 2.14E-06 0.027 

Grey Currawong 0.356 0.608 0.559 -4.94E-06 3.58E-06 0.168 

Willie Wagtail -1.210 0.341 <0.001 2.43E-06 2.68E-06 0.365 

Jacky Winter -1.250 0.232 <0.001 4.90E-06 2.00E-06 0.014 

Red-capped Robin -0.102 0.469 0.828 -2.05E-06 3.35E-06 0.540 

Southern Scrub-robin -0.594 0.438 0.176 9.60E-06 4.15E-06 0.021 

 

 

 

 

2.5 Discussion 

Fire significantly influenced the frequency of occurrence of 16 of the 30 species 

investigated, highlighting the role of fire in structuring avifaunal assemblages over long 

time frames (up to 100 years since fire).  Shapes of species response curves to time-

since-fire generally corresponded with a priori hypothetical response curves, suggesting 

there is a relatively small number of „generalised‟ responses within an assemblage.  

Species responses often differed between two major vegetation types, Triodia Mallee 

and Chenopod Mallee, or were significant only in one type.  Despite many species 

having clear responses to time-since-fire, model fit was generally low and had only 

moderate predictive capacity across the region.   

 

2.5.1 Influence of time-since-fire on the occurrence of birds 

This research is consistent with the view that fire is an important disturbance process 

that influences avifaunal communities (Brawn et al., 2001).  Importantly, the frequency 
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of occurrence of species can continue to change over extended time-periods, in this 

system for up to at least 100 years-since-fire.  This finding emphasizes the importance of 

interpreting time-since-fire response curves on a temporal scale corresponding with that 

of the disturbance process and its successional trajectory. 

 

In this project many sites of similar time-since-fire were products of different fire events 

spread across a vast spatial area.  Consequently, the significant responses identified here 

indicate that some species have responded in a similar way to similar post-fire ages 

generated from multiple fire events.  This result is notable given the effects that the 

complexity of individual fire events (Whelan et al., 2001; Bain et al., 2008; 

Lindenmayer et al., 2009) and other factors such as rainfall (Monamy & Fox, 2000; 

Letnic, 2003), can have on species succession patterns.  The moderate outcomes for 

model fit indicate that factors additional to time-since-fire are also important.   

 

It is important to recognise a dichotomy in the descriptions of species‟ responses to fire.  

First, there are general responses of species to fire events, represented by the overall 

frequency of occurrence (or abundance) of a species in particular post-fire age-class.  

Second, there is the response of a species to a particular fire event, which may vary 

depending on a range of factors.  For example, the Eastern Bristlebird Dasyornis 

brachypterus, considered to prefer older vegetation and to take many years for 

populations to recover from fire due to a preference for dense vegetation (Baker, 2000), 

was found to quickly colonise recently burnt sites after a fire which burnt patchily (e.g. 

Bain et al., 2008; Lindenmayer et al., 2009).   In cases such as this, we may conclude 

that although the species generally shows a slow response to fire events and increases 
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slowly, under a specific fire scenario it may respond very differently.  Thus, fire 

response curves, when investigated with large sample sizes and over broad spatial 

scales, can inform management about general responses to fire and preferred seral 

stages, but may not necessarily be able to predict responses to particular fire events. 

 

2.5.2 Shapes of species’ responses to time-since-fire 

Modelling results for 30 species of bird revealed six generalised response shapes that 

resembled those identified a priori in the literature.  Similar responses have also been 

described for birds in mountain rangeland systems in Europe (Pons & Clavero, 2010), 

suggesting that these patterns may occur in diverse ecosystems.  Fire as a disturbance 

process has a strong filtering effect on the occupancy of sites by different types of 

species (Moretti & Legg, 2009): different post-fire responses result from interactions of 

species traits with aspects of the environment influenced by fire (Whelan et al., 2001).  

In the case of generalised fire response curves, incline responses, plateau responses and 

bell responses indicate that fire events initially have a negative effect on species, and 

species subsequently recolonise over time.  In contrast, irruptive and decline responses 

indicate that fire events facilitate the occurrence of a species.  Null responses indicate 

that species are little affected by most fire events. 

 

The shape of a species response to fire is likely to be influenced by a number of factors: 

these include the dependence of a species on resources which are themselves affected by 

time since fire, such as food (Murphy & Lehnhausen, 1998; Barlow & Peres, 2004) and 

the structural complexity of vegetation (Skowno & Bond, 2003); and also the ecological 
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traits of the species such as fecundity (Friend, 1993), dispersal capability (Brotons et al., 

2005) and competitive ability (Fox, 1982). 

 

In mallee ecosystems, the shapes of species‟ responses to fire tend to correlate with post-

fire changes in attributes of vegetation on which the species are known to rely.  This 

pattern indicates that post-fire responses are influenced by the effects of fire on 

vegetation structure.  For instance, the Striated Pardalote, which requires hollows for 

nesting (HANZAB, 2006), displays an incline response.  The proportion of hollow-

bearing stems also increases with time since fire (Haslem et al., 2011).  The White-

browed Babbler, which forages under bark on the lower branches of trees and amongst 

litter and debris on the ground, also displays an incline response.  The amount of 

decorticating bark and litter also are higher in older vegetation (Haslem et al., 2011).  

The Striated Grasswren, which is closely associated with Triodia hummock grasses that 

it uses for refuge and nesting (HANZAB, 2006), displays a bell shaped response. 

Hummock grass peaks in cover at ~20-40 years post-fire (Haslem et al., 2011) 

corresponding with the occurrence of the Striated Grasswren.  The Chestnut-rumped 

Thornbill, which occurs more frequently in Mulga Acacia aneura shrubland (HANZAB, 

2006), displays an irruptive response.  Fire creates a vegetation type that is transiently 

more similar to Mulga shrubland, in terms of low shrubby foliage cover, but becomes 

less so with time since fire (Haslem et al., 2011).   

 

Interspecific competition may contribute to declines in species‟ occurrences (Fox, 1982).  

Of the five species that displayed a bell-shaped response, three (Spotted Pardalote, 

Golden Whistler and White-eared Honeyeater) have closely related species (i.e. Striated 
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Pardalote, Gilbert‟s Whistler and Rufous Whistler, Yellow-plumed Honeyeater) of 

similar body-size that display incline or plateau responses and which are most prevalent 

in older vegetation.  They may represent potential competitors which drive declines in 

occurrence (i.e. the downward phase of the bell-shape) in older age-classes.  It is not 

possible to directly determine the contribution of competition to species‟ distributions 

with this data set, but it represents a potentially important factor for faunal succession 

processes in this system. 

 

Thus, the shape of species responses to fire may provide insights into whether species 

are generally facilitated or inhibited by fire events, and comparisons with temporal 

changes in resources can help to interpret these response shapes.  However, having the 

same generalised fire response shape does not necessarily imply that the same processes 

are affecting species in the same way, because similar response shapes may arise 

through multiple processes. 

 

2.5.3 Importance of particular seral stages 

Of the 16 species that had a significant response to time-since-fire, only one (Chestnut-

rumped Thornbill) appeared to have population growth facilitated by short-term, post-

fire changes in habitat structure.  All other species displayed their highest frequency of 

occurrence in mid or later successional vegetation (>20 years since-fire). This suggests 

that for most species in this ecosystem, fire causes displacement from sites and they 

subsequently take varying times to recolonise.  Consequently, in the event that large 

wildfires occur, there must either be refuges where species can survive fire or source 

populations nearby from which they can recolonise sites post-fire.  While the influence 
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of any given wildfire event on the degree of mortality or emigration from sites is not 

clear (Whelan et al., 2001), in mallee ecosystems large wildfires dramatically alter the 

vegetation structure and result in severe reductions in the frequency of occurrence of a 

substantial proportion of the assemblage for decades.  Vegetation of >30 years-since-fire 

supports a higher occupancy of 14 of the 16 species modelled, suggesting that older 

vegetation is disproportionately important for many species.  However, the frequency of 

occurrence of six of these species declines between 50 and 100 years since fire, and it is 

likely that there are further reductions at >100 years since-fire.  Thus, fires are an 

important influence on the suitability of habitats for bird species.  

 

2.5.4 Influence of vegetation type on post-fire response patterns 

Little is known about the interaction of fire with other ecological processes (Driscoll et 

al., 2010).  In this study, species‟ post-fire response patterns differed between vegetation 

associations and three times as many species showed a significant response in Triodia 

Mallee than Chenopod Mallee.  We had less power to detect responses with Chenopod 

Mallee due to having fewer sites, particularly <30 years since-fire (N = 35), and 

consequently responses in that vegetation type must be interpreted with caution.  

Nevertheless the threefold difference in significant responses warrants further 

investigation.   

 

Fire behaviour varies between different vegetation associations in this region.  Mallee 

vegetation with Triodia grass fuels (i.e. Triodia Mallee) carries fire more readily than 

other vegetation associations under typical climatic conditions due to the flammable 

nature of Triodia hummocks (Noble & Vines, 1993).  Furthermore, several habitat 
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attributes (e.g. understorey and midstorey vegetation density) differ between Triodia 

Mallee and Chenopod Mallee in their patterns of change with time-since-fire (Haslem et 

al., 2011).  Triodia Mallee tends to have a clearer successional pattern in vegetation 

structure, evidenced by the greater number of significant post-fire responses of 

vegetation (Haslem et al., 2011).  The more uniform nature and consistency of habitat 

changes with time-since-fire in Triodia Mallee are likely to be the main factors that 

contribute to the variation in time-since-fire response curves of avifauna.   

 

Particular post-fire seral stages are often identified as important for the persistence of 

particular species (eg. Hutto, 1995; Clarke et al., 2005).  This investigation reveals that 

seral stage preferences of a species may differ between different vegetation associations.  

Thus, conservation strategies that aim to benefit species through provision of particular 

seral stages will be most effective where they incorporate post-fire succession 

differences amongst vegetation types.  

 

2.5.5 Interpreting fire responses: the importance of the spatial and temporal scale of 

studies 

Species responses must be interpreted within the bounds of the temporal scale of the 

study.  Incline responses, for instance, must eventually resemble plateau or bell shaped 

responses: that is, the frequency of occurrence of a species (eg. Grey Shrike-thrush, Fig. 

2.2a) must eventually stabilize or decline at sites >100 years since fire.  As sites >100 

years since fire are rare, it may be that stabilization or decline will seldom occur before 

another fire event.  However, this is a problem of interpretation with many studies (eg. 

Brown et al., 2009), in which older age-classes are grouped due to lack of accurate 
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ageing methods.  For example, in an older age-class in which sites may span 50 years in 

age, a species may be at its maximum frequency for 30 years and at low occurrence for 

20 years. Lack of detailed knowledge of age-classes may result in misleading response 

shapes. 

 

A further consideration in interpreting post-fire responses of species relates to the 

influence of the broader context of sites.  This investigation was undertaken in large 

expanses of continuous vegetation, which is likely to represent an environment 

conducive to dispersal.  In contrast, in situations where habitat is fragmented, patches 

are small and the surrounding environment is more hostile to dispersal (e.g. agricultural 

land), post-fire patterns of occurrence may be influenced more by individual fire events 

and the local population dynamics and dispersal capabilities of species (Brotons et al., 

2005).   

  

2.5.6 The predictive capacity of time since fire response curves for distribution of 

species across broad spatial scales: implications for conservation and management 

Although approximately half of the 30 species modelled showed significant responses to 

time-since-fire, model fit (proportion of deviance explained) varied greatly and was 

relatively modest, and the predictive capacity of these significant relationships was 

considered reasonable only for approximately half of the species.  This suggests caution 

is required in using a time-since-fire model as a key method for understanding the 

geographic distributions of species in landscapes.   
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Using time-since-fire as a metric to determine the amount of vegetation that requires 

burning or protection to improve diversity (Richards et al., 1999), or alternatively to 

create mosaics of age-classes (Parr & Andersen, 2006), may be ineffective if other 

factors that also influence species‟ occurrence are not incorporated.  Thus, generalised 

response curves, although useful for determining the general response to fire events and 

identifying important seral stages for species, may not be adequate as a surrogate to 

highlight species occupancy.  Additional influences on the responses of species to 

particular fire events (e.g. post-fire rainfall, grazing pressure) may also strongly 

influence successional outcomes. 

 



Chapter 3 

 

Changes to avifaunal community composition over a 

100-year post-fire chronosequence: insights into 

patterns and processes of community succession 

 

 

  

Spiny-cheeked Honeyeater Acanthagenys rufogularis 
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3.1 Abstract 

Post-fire successional changes influence the temporal occurrence and abundance of 

faunal species in many ecosystems around the world. Understanding how temporal 

heterogeneity in community structure influences the overall faunal assemblage of a 

landscape or region is critical for managing fire to conserve biodiversity.  We 

investigated the effect of fire on the structure of avifaunal communities in a 104,000 

km
2
 region of semi-arid shrubland in south-eastern Australia.  Here, we focus on 

temporal changes in community structure following fire using data from avifaunal 

surveys at 462 sites representing a chronosequence from <1 – 100 years-since-fire.  

Species richness changed substantially between 1 – 10 years-since-fire, increasing 

and plateauing at sites >10 years-since-fire.  However, community composition 

changed throughout the 100 year period.  The difference in community composition 

between sites increased with increasing temporal difference between sites.  The rate 

of change in communities slowed with time-since-fire, resulting in longer periods of 

time occupied by similar assemblages in later stages of succession. Three main 

successional stages were recognised (<10 years, 20-40 years and >50 years).  Beta 

(β) diversity within post-fire age-classes (based on species accumulation curves 

across multiple sites) increased with time-since-fire.  Species richness of two dietary 

guilds (insectivores, nectarivore-insectivore) and two foraging-zone guilds (foliage, 

‘trunk and branch’) changed significantly with time-since-fire.  These patterns 

correlated with changes in availability of food (nectar and possibly insects) and 

vegetation structural complexity. Management of fire needs to consider successional 

patterns and the level of temporal heterogeneity of fauna.  Here, we show that fires 

can influence the structure of avifaunal assemblages for at least a century, probably 

related to its effects on food resources and the structural complexity of vegetation.  

Older vegetation is disproportionately important for the broader assemblage.  
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Management planning for fire should explicitly consider the effects of management 

actions on the mechanisms which drive community responses, such as changes to 

vegetation structure and availability of food resources. 

  



Chapter 3 – The influence of time-since-fire on the composition of avifauna 

 

64 

 

3.2 Introduction 

Fire significantly affects the structure of faunal communities in ecosystems around 

the world (Gill et al., 1999; Brawn et al., 2001).  The occurrence and abundance of 

many faunal species change with time-since-fire (Fox, 1982; Hobson & Schieck, 

1999; Smucker et al., 2005; see also Chapter 2) and some species are closely 

associated with particular seral stages (e.g. Hutto, 2008; Brown et al., 2009).  The 

importance of fire as an influence on faunal communities means that land managers 

are increasingly seeking to manage fire to benefit biodiversity (Backer et al., 2004; 

Driscoll et al., 2010a), often through prescribed burning to promote diverse seral 

stages (Parr & Brockett, 1999).  Specifying the importance of different temporal 

stages to the broader diversity of assemblages (cf. individual species) presents a 

significant challenge for fire ecology and conservation management (Bradstock et 

al., 2005; Driscoll et al., 2010b). Often, there is inadequate knowledge of community 

change through the full post-fire succession as few studies have investigated the 

effects of fire over long time-frames of decades and centuries (Clarke, 2008).  

 

Community level approaches may be particularly useful for examining the 

importance of seral stages to faunal assemblages.  They provide a method for 

identifying the contribution of different sites (or seral stages) to the composition of 

the overall landscape assemblage (Tuomisto & Ruokolainen, 2006; Anderson et al., 

2011), and to assessing the distinctiveness of communities of contrasting fire ages.  

An important aspect of succession is the rate of change in community composition 

with increasing time since disturbance.  That is, how do differences in faunal 

composition at sites of a given time contrast (e.g. 10 years difference in successional 

stage) change with the overall time since the disturbance event (Helle & Monkkonen, 

1985)?  For example how much does the composition of fauna change between 10 
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years and 20 years since a disturbance event, compared to how much the 

composition changes between 50 and 60 years since the disturbance event.  And 

additionally, what effect does variation in the rate of community change have on the 

temporal duration of a particular community during succession?  

 

A further approach which may deliver insights into the contribution of different seral 

stages to the overall assemblage is the investigation of changes in β diversity 

(between-site diversity) with increasing time since fire.  The β diversity within a 

post-fire age-class can provide information about the relative contribution of 

different seral stages to the diversity of the overall assemblage. Some seral stages 

may contribute a greater number of species to the overall assemblage than others.  

When viewed together with the effect of time since fire on α diversity (diversity at a 

site), the variation in community composition that can be attributed to temporal 

succession patterns, versus alternative processes that may influence avifaunal 

composition, can be directly investigated. 

 

Understanding the effects of fire on patterns of faunal composition provides insights 

for conservation management of the fauna, but it is also important to understand the 

processes by which fire drives temporal changes in faunal composition (Whelan et 

al., 2001; Driscoll et al., 2010b).  Post-fire patterns of community succession vary 

for many reasons, for example variation in fire intensity and severity (Smucker et al., 

2005; Kotliar et al., 2007) and effects of post-fire rainfall on food resources (Letnic 

& Dickman, 2005) and vegetation structure (Monamy & Fox, 2000).  Consequently, 

it is important to supplement knowledge about patterns of fire-induced succession, 

with knowledge of processes that drive such changes through time, so that managers 

can ensure their actions target the appropriate drivers of community change.   
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Comparison of changes within guilds during post-fire succession may provide 

insights into processes driving overall community change, and the effects of these 

changes on the functional composition of the community (Moretti & Legg, 2009).  

Bottom-up processes (i.e. the availability of resources) are important in determining 

species distributions in ecology (Gripenberg & Roslin, 2007).  The effects of fire on 

resource availability can influence the composition and function of faunal 

communities (Moretti et al., 2010).  As such, investigating changes in species guilds 

may indicate the processes by which fire structures communities.  Further insights 

may be gained by comparing changes in species guilds, with changes in relevant 

resources; for example nectarivores with nectar and foliage foraging birds with 

canopy density. 

 

In this study, we investigate changes in the composition of avifaunal communities 

over a successional sequence of up to 100 years post-fire in the fire-prone Murray 

Mallee region of south-eastern Australia. We examine four aspects of fire-induced 

change in the avifaunal community.  First, to investigate the influence of time-since-

fire on avifaunal communities, we analyse the relationship between species richness 

and time-since-fire and compare the dissimilarity in community composition 

between sites with their dissimilarity in time-since-fire. Second, to determine how 

distinct assemblages are in different post-fire successional stages, we contrast 

community composition between sets of sites assigned to sequential post-fire age-

classes.  Third, to ascertain the relative contribution of different successional stages 

to the regional species assemblage, we compare the β diversity amongst sites within 

different post-fire age-classes.  Last, to determine how fire may influence bottom-up 

processes that structure the avifaunal community, we investigate the relationship 
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between time-since-fire and the richness of species guilds at sites and compare this 

with changes in total species richness at a site and changes in vegetation 

characteristics.  

 

 

3.3 Methods 

3.3.1 Study area 

The study area encompassed 104,000 km
2
 in the Murray Mallee region of south 

eastern Australia (Fig. 3.1).  The climate is semi-arid, with a gradient of increasing 

aridity from south (mean annual rainfall 350 mm) to north (mean annual rainfall 200 

mm) (Pausas & Bradstock, 2007).  Temperatures in the study area range from mean 

daily maxima of 32°C - 33°C in the warmest month (Feb) to 15°C - 16°C in the 

coolest month (July), while mean daily minima range from 14°C-18°C and 4°C-6°C 

in the warmest and coolest months, respectively (Australian Bureau of Meteorology). 

 

‘Mallee’ eucalypt shrubland is the dominant vegetation type of the region.  Mallee 

consists of open vegetation dominated by a canopy of multi-stemmed Eucalyptus 

species and an understorey of shrubs and perennial and ephemeral grasses (Bradstock 

& Cohn, 2002).  This vegetation is highly flammable and fires are a common feature, 

generally resulting in removal of both understorey and canopy (Noble & Vines, 

1993). Many plant species display life-history attributes adapted to recurrent fire 

disturbance (Pausas & Bradstock, 2007).   

 

Study sites were located in conservation reserves. Three reserve complexes were 

recognised, each encompassing several reserves in a similar geographic area within 

continuous tracts of mallee vegetation; 1) Hattah National Park, Murray–Sunset 
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National Park and Billiatt Conservation Reserve (South Mallee Block); 2) Gluepot 

Reserve, Danggali Conservation Park, Scotia Sanctuary and Tarawi Nature Reserve 

(North West Mallee Block); and 3) Petro Conservation Reserve, Lethero 

Conservation Reserve and Mallee Cliffs National Park (East Mallee Block) (Fig. 

3.1).  The reserve complexes are divided by two rivers which form geographic 

boundaries: the southerly flowing Darling River (and associated Great Darling 

Anabranch) which confluences with the westerly flowing Murray River (Fig. 3.1). 

 

3.3.2 Study design 

This investigation forms part of a broader study on the relationship between spatial 

and temporal features of fire mosaics and avifaunal communities.  Due to this, the 

560 study sites were clustered in 28 landscapes, each landscape containing 20 sites.  

Sites generally were separated by a minimum of 500 m. 

 

3.3.3 Post-fire age of study sites 

We ascertained the post-fire age of vegetation at each site through one of two 

methods. First, for sites burnt after 1972, we determined the year of burning by 

mapping fire history.  We generated maps of fire history by overlaying 15 individual 

years of satellite imagery between 1972 and 2007.  The exact year of each fire was 

determined through analysis of land management agency records (Avitabile et al., 

2011).  For sites burnt prior to 1972, we determined fire age by using validated 

regression models of the relationship between stem diameter of Eucalyptus trees and 

years since fire (Clarke et al., 2010).  



 

 

 

Figure 3.1 The study area and the location of study landscapes (open circles) in extant mallee vegetation (dark grey).  Each study landscape 

included 20 survey points.  Reserve complexes are denoted by rectangles; a) Gluepot, Danggali, Scotia, Tarawi (North West Mallee Block); b) Hattah, 

Murray-sunset, Billiatt (South Mallee Block); c) Petro, Lethero, Mallee-Cliffs (East Mallee Block). Light grey depicts vegetation other than mallee 

eucalypt scrubland, most of which is cleared farmland for cropping and grazing. 
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3.3.4 Vegetation type at study sites 

We recognised three broad associations of mallee vegetation based on plant species 

composition; Triodia Mallee, Chenopod Mallee and Heathy Mallee (Haslem et al., 

2010).  These varied in the composition of overstorey Eucalyptus species and mid 

and understorey shrubs. Triodia Mallee occurs on sandy soils and typically has an 

understorey of hummock grass (Triodia scariosa).  Chenopod Mallee occurs on soils 

with higher clay content and has a sparse understorey of shrubs (e.g. Maireana sp., 

Scleroleana sp., Olearia sp., Zygophyllum sp.).  Heathy Mallee is mainly restricted to 

southern parts of the study area, where it occurs primarily on deep siliceous Lowan 

Sands and has a diverse shrubby understorey of ‘heath-like’ plants (e.g. Callitris 

verrucosa, Leptospermum coriaceum, Phebalium bullatum, Babbingtonia behrii, 

Hakea leucoptera). 

 

Ninety-eight sites were excluded from the analysis for several reasons: 1) sites 

known to have burnt patchily (n = 37) were excluded to allow interpretation of 

avifaunal communities to single seral stages; 2) sites estimated to be >100 years 

since-fire were excluded due to insufficient sample sizes (only 17 sites between 101 

years and 164 years); 3) sites in Heathy Mallee were excluded due to their limited 

geographic distribution and small sample size (only one site <19 years since-fire, and 

44 in total).  This resulted in 462 sites for analysis, ranging from 1 to 100 years post-

fire, located in Triodia Mallee and Chenopod Mallee vegetation. 

 

3.3.5 Field survey techniques 

We conducted surveys of birds on four survey rounds, once each in the Austral 

spring and autumn of 2006/2007 and 2007/2008.  Two observers (Rick Taylor and 

Simon Watson) both surveyed each site twice. We counted all individuals in a 60 m 
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radius of a central survey point over a 5 min period during each survey.  Bird density 

generally is low in mallee vegetation (Emison & Bren, 1989; Menkhorst & Bennett, 

1990).  As such, we increased the number of sites surveyed as a trade-off for time 

spent surveying each site.  This approach allowed inference about factors shaping 

avifaunal communities across a large spatial area.  Surveys commenced within 15 

mins of sunrise and continued through the morning, the time of greatest vocal 

activity for birds.  We recorded the distance from the centre of the survey point to the 

location of the first detection of each individual to permit analyses of detectability.  

For visual detections, we measured distance using an OPTi-LOGIC
TM

 800LH laser 

range finder. Aural detections were estimated by the observer.  Observers initially 

trained together to ensure consistency. 

 

At each survey site we measured the density of vegetation in four vertical strata (<0.5 

m, 0.5 m to 1 m, 1 to 2 m and >2 m) by recording the number of contacts of 

vegetation (in each stratum) with a structure pole, placed vertically at 50 x 1 m 

intervals along a transect.  We measured canopy height by using an OPTi-LOGIC
TM

 

800LH laser range finder. At each site we also recorded the presence or absence of 

Eucalyptus species that were reproductively active (i.e. presence of flowers, buds or 

fruits). 

 

3.3.6 Statistical analysis 

Detectability of species is a potential source of variation in ecological studies 

(Buckland et al., 2001).  We undertook multiple covariate distance sampling 

(MCDS) (Marques et al., 2007) by using the program Distance 5.0 release 2 

(Thomas et al., 2006).  We modelled the probability of detection of individual 

species with distance from the survey point and included vegetation density as a 
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covariate in the model.  Species recorded too infrequently to model individually were 

grouped with more common species that displayed similar detection characteristics, 

following Alldredge et al. (2007).  All species could be readily detected at the 

furthest extremity of the point-count (60 m). However, some species displayed a 

decline in detection probability with distance from the observer, particularly for 

relatively cryptic species (the lowest detection probability was for the combined 

Mallee Emu-wren Stipiturus mallee and Striated Grasswren Amytornis striatus, with 

probability of detection = 0.45 (95% CI 0.31 - 0.65, N = 75).  Consequently, we 

estimated the density (number/ha) of each species by adjusting counts of individuals 

to incorporate differences in probability of detection, following Buckland et al. 

(2001).  Vegetation density did not significantly reduce the detectability of any 

species.  

 

To investigate how temporal fire patterns (time-since-fire) affected the general 

structure of avifaunal communities we used two approaches.  First, we used 

generalized additive mixed models (GAMM’s) (Wood, 2006) to model the effect of 

time-since-fire on species richness of the avifauna at sites. Second, we used Mantel 

tests (Legendre & Legendre, 1998) to examine the relationship between time-since-

fire and species composition.   

 

Generalized additive mixed models were used for three reasons.  First, generalized 

additive models (GAM) are a non-parametric form of regression modelling which 

use smoothing functions to fit non-linear relationships (Wood, 2006).  This allows an 

investigation of non-linear responses to time-since-fire.  Second, a mixed model 

approach was used (i.e. Generalised additive mixed model, GAMMs) because they 

are useful when the data are structured by a factor that may systematically influence 
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the relationship between the response and predictor variables (Zuur et al., 2009). 

Here, we included landscape unit as a random effect to account for the clustering of 

sites within landscapes. Third, GAMMs allow a separate smoothing function to be 

fitted to each level of a categorical variable (Wood, 2006; Zuur et al., 2009).  We 

fitted a separate smoothing function to time-since-fire for each of the two vegetation 

types.  We also included an additional variable, ‘northing’, in each model to 

represent the geographic position of each site along the south-north gradient in 

aridity.  Models were built using the mgcv package (Wood, 2006) in the R statistical 

program (R Development Core Team, 2009).  The proportion of the null deviance 

explained by the model (D
2
) was used as a measure of model fit. 

 

Mantel tests were used to examine the influence of time-since-fire on the 

composition of the community, by examining the correlation between matrices of 

dissimilarity in species composition (Bray-Curtis measure) and dissimilarity in time-

since-fire (Euclidean distance), for sites in each reserve complex separately.  We 

visually portrayed these dissimilarities using scatterplots. 

 

To examine the distinctiveness of the community in different seral stages we used a 

two-way analysis of similarity (ANOSIM) (Clarke & Gorley, 2006).  We grouped 

the data into time-since-fire categories, each spanning 10 years, and used the two-

way ANOSIM to compare the similarity in community composition (Bray-Curtis 

measure) between sites in different time-since-fire categories grouped by reserve 

complex (i.e. geographic area).  Thus, we were able to determine the degree to which 

community composition differed between time-since-fire categories, while 

accounting for differences in species composition between different reserves (Clarke 

& Gorley, 2006).   
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ANOSIM calculates the difference in composition between sites in different 

categories by calculating an R-statistic.  The R-statistic compares the dissimilarity of 

sites within a category and the dissimilarity of sites between categories.  Higher 

values of R represent greater distinctiveness of communities in each category.  This 

statistic can then be tested for significance using permutation tests, although the level 

of significance is sensitive to sample size: when there are large sample sizes, 

categories may be significantly different even though compositional differences are 

relatively small.  With small sample sizes, categories may have relatively different 

communities but be non-significant.  Consequently, it is recommended that attention 

be given more to the value of the R-statistic than statistical significance (Clarke & 

Gorley, 2006). 

 

We developed species accumulation curves to visualise how the rate of increase in 

new species detected with each additional site (β diversity) varied with increasing 

time-since fire.  Accumulation curves were developed separately for each time-since-

fire category by permutation of different combinations of sites (up to 999 

permutations) to estimate the mean rate of increase in number of species with each 

additional site (Clarke & Gorley, 2006).  

 

For Mantel tests and ANOSIM, we excluded sites with less than three bird species 

and species recorded at less than five sites, to remove ‘noise’ in the data because 

dissimilarity metrics can be sensitive to sites with very few species.  This left 49 

species in the dataset for analysis.  For Mantel tests, where data were analysed 

separately for each reserve complex, we repeated this process for the subsample data. 
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Mantel tests were conducted in R (Wood, 2006; R Development Core Team, 2009) 

using the package ‘vegan’ (Oksanen et al., 2009), and ANOSIM and species 

accumulation curves in PRIMER v6.1.10 (Clarke & Gorley, 2006). 

 

To investigate the effects of time-since-fire on the species richness of avifaunal 

guilds, vegetation structure, and reproduction of eucalypts, we used GAMMs (see 

Table 3.1 for descriptions of response variables).  Species guilds were defined by the 

diet and foraging zones of birds (Table 3.2) based on data presented in Schodde 

(1981) and the Handbook of Australian, New Zealand and Antarctic birds 

(HANZAB, 2006).  These traits have been identified as important axes of resource 

partitioning among birds in mallee environments (Ford & Paton, 1976a; Schodde, 

1981). 

 

 

Table 3.1 Description of response variables used in regression models and the 

distribution used in each model. 

Variable Description Distribution 

Total species 

richness 

 

Total number of species detected at a site 

combining all four visits 

Poisson 

Guild species 

richness 

 

Total number of species detected within a 

guild (Table 2) 

Poisson 

Vegetation 

structure 

Total number of contacts with a structure pole 

within each height stratum  <0.5 m, 0.5-1 m, 

1-2 m, >2 m 

 

Poisson 

Eucalyptus 

reproduction 

Presence or absence of evidence of 

reproductively active species of Eucalyptus 

Binomial 
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Table 3.2 Dietary and foraging zone guilds for bird species. 

Species Dietary guild Foraging zone guild 

Common Bronzewing Phaps chalcoptera Granivore Ground 

Galah Eolophus roseicapillus Granivore Ground 

Australian Ringneck Barnardius zonarius Granivore Ground 

Mulga Parrot Psephotus varius Granivore Ground 

Rainbow Bee-eater Merops ornatus Insectivore Above-canopy space 

Brown Treecreeper Climacteris picumnus Insectivore Trunk and branch 

Splendid Fairy-wren Malurus splendens Insectivore Ground 

Variegated Fairy-wren Malurus lamberti Insectivore Shrub 

Mallee Emu-wren Stipiturus mallee Insectivore Shrub 

Striated Grasswren Amytornis striatus Insectivore Ground 

Spotted Pardalote Pardalotus punctatus Insectivore Foliage 

Striated Pardalote Pardalotus striatus Insectivore Foliage 

Shy Heathwren Calamanthus cautus Insectivore Ground 

Weebill Smicrornis brevirostris Insectivore Foliage 

Chestnut-rumped Thornbill Acanthiza uropygialis Insectivore Trunk and branch 

Inland Thornbill Acanthiza apicalis Insectivore Foliage 

White-eared Honeyeater Lichenostomus leucotis Nectarivore-insectivore Trunk and branch 

Purple-gaped Honeyeater Lichenostomus cratitius Nectarivore-insectivore Foliage 

Yellow-plumed Honeyeater Lichenostomus ornatus Nectarivore-insectivore Foliage 

Grey-fronted Honeyeater Lichenostomus plumulus Nectarivore-insectivore Foliage 

White-fronted Honeyeater Purnella albifrons Nectarivore Foliage 

Black-eared Miner Manorina melanotis Nectarivore-insectivore Foliage 

Spiny-cheeked Honeyeater Acanthagenys rufogularis Nectarivore-insectivore Foliage 

Red Wattlebird Anthochaera carunculata Nectarivore Generalist 

Brown-headed Honeyeater Melithreptus brevirostris Nectarivore-insectivore Trunk and branch 

Striped Honeyeater Plectorhyncha lanceolata Nectarivore-insectivore Foliage 

White-browed Babbler Pomatostomus superciliosus Insectivore Trunk and branch 

Chestnut-crowned Babbler Pomatostomus ruficeps Insectivore Ground 

Chestnut Quail-thrush Cinclosoma castanotus Insectivore Ground 

Black-faced Cuckoo-shrike Coracina novaehollandiae Insectivore Trunk and branch 

Red-lored Whistler Pachycephala rufogularis Insectivore Shrub 

Gilbert's Whistler Pachycephala inornata Insectivore Shrub 

Golden Whistler Pachycephala pectoralis Insectivore Trunk and branch 

Rufous Whistler Pachycephala rufiventris Insectivore Foliage 

Grey Shrike-thrush Colluricincla harmonica  Insectivore Trunk and branch 

Crested Bellbird Oreoica gutturalis Insectivore Ground 

Masked Woodswallow Artamus personatus Insectivore Above canopy space 

White-browed Woodswallow Artamus superciliosus Insectivore Above canopy space 
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Species Dietary guild Foraging zone guild 

Dusky Woodswallow Artamus cyanopterus Insectivore Above canopy space 

Grey Butcherbird Cracticus torquatus Insectivore Ground 

Australian Magpie Cracticus tibicen Insectivore Ground 

Grey Currawong  Strepera versicolor Insectivore Trunk and branch 

Willie Wagtail Rhipidura leucophrys Insectivore Sub-canopy space 

Australian Raven Corvus coronoides Insectivore Ground 

Restless Flycatcher Myiagra inquieta Insectivore Trunk and branch 

Jacky Winter Microeca fascinans Insectivore Sub-canopy space 

Red-capped Robin Petroica goodenovii Insectivore Ground 

Hooded Robin Melanodryas cucullata Insectivore Ground 

Southern Scrub-robin Drymodes brunneopygia Insectivore Ground 

 

 

 

3.4 Results 

We detected a total of 6390 individual birds from 68 species, from repeated point-

count surveys at 462 sites examined in this study.  Nineteen species were detected at 

fewer than five sites, 37 species at between five and 99 sites and 12 species at greater 

than 100 sites.  Species richness at sites varied between 0 and 13 species.  The 

Weebill Smicrornis brevirostris was the most commonly detected species (297 sites). 

One species (Grey-fronted Honeyeater Lichenostomus plumulus was recorded only to 

the north of the Murray River, and two species (Mallee Emu-wren Stipiturus mallee 

and Purple-gaped Honeyeater Lichenostomus cratitius) were restricted to south of the 

Murray River.  

 

3.4.1 Influence of time-since-fire on the structure of avifaunal assemblages   

Species richness displayed a strong relationship with time-since-fire in Triodia 

Mallee (estimated df= 7.25, F=12.51, P<0.001). We did not detect a significant 

response for sites in Chenopod Mallee but there was a positive trend (estimated 
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df=2.18, F=2.66, P=0.066).  In Triodia Mallee, species richness was lowest at sites 

directly after fire, but then increased sharply until 10-20 years post-fire, after which it 

reached an asymptote (Fig. 3.2).  The position of sites along the gradient of aridity 

did not influence species richness (coefficient=-3.25×10
-07

t=-0.774, P=0.44); 

however, richness differed between vegetation types and was significantly higher in 

Chenopod Mallee than Triodia Mallee (coefficient=-0.26 , t=-5.635, P<0.001). The 

model explained a substantial proportion of the variation in species richness (D
2
 = 

0.30). 

 

 

 

Figure 3.2 Relationship between time-since-fire and species richness of birds at 

sites in Triodia Mallee, points = raw data, solid line = modelled richness ± 1 SE 

(dashed lines). 
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Dissimilarity in the composition of bird species between sites (Bray-Curtis 

dissimilarity measure) was positively correlated with dissimilarity in time-since-fire 

(years) between sites (Table 3.3).  This was true for sites in both Chenopod Mallee 

and Triodia Mallee in each reserve complex, except for Chenopod Mallee sites in the 

East Mallee Block reserve complex (Table 3.3) where the sample size was low.  The 

mean dissimilarity in composition between sites increased with dissimilarity in time-

since-fire between sites, in a positive linear relationship (Fig. 3.3a, b). However, sites 

with complete dissimilarity (i.e. value of 1.0) were apparent for almost all time-

contrasts (Fig. 3.3c, d).  Examination of pairs of sites with the most similar avifaunal 

composition at each time-since-fire contrast (i.e. the lower bound points in Fig. 3.3c 

and d), presents a non-linear pattern; sites that differ by up to 40-50 years in post-fire 

age can display similar species composition, but beyond this time difference the 

composition of the avifauna at pairs of sites with the most similar composition 

become increasingly divergent. 

 

 

Table 3.3 Mantel tests of the relationship between species composition 

dissimilarity (Bray-Curtis) and time-since-fire dissimilarity (years) for sites in 

each reserve complex.  Sample sizes (N) are based on sites with >2 species. Species 

included were those recorded at >4 sites in each reserve complex. P-value is based 

on 9999 permutations. 

Reserve Complex Triodia Mallee Chenopod Mallee 

N Mantel r P N Mantel r P 

North West Mallee Block 73 0.1627 0.0063 71 0.2352 <0.0001 

South Mallee Block 126 0.2128 <0.0001 71 0.1305 0.0108 

East Mallee Block 53 0.2243 0.0026 14 -0.0907 0.6869 
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Figure 3.3 Changes in the dissimilarity of species composition (Bray-Curtis 

measure) with dissimilarity in time-since-fire (Euclidean distance) for pairs of 

sites.  This example is for sites from the Gluepot, Danggali, Scotia, Tarawi reserve 

complex.  The plots (upper) show the mean Bray-Curtis dissimilarity for each time-

since-fire contrast in a) Triodia Mallee and b) Chenopod Mallee; and (lower) all 

dissimilarities between pairs of sites in c) Triodia Mallee and d) Chenopod Mallee, 

respectively. 
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3.4.2 Distinctiveness of communities in different post-fire successional stages 

Mantel tests and scatterplots can identify trends in compositional dissimilarity of the 

avifauna attributable to differences in time-since-fire (years) between sites.  They do 

not, however, provide information on the timing of changes in composition, and the 

relative distinctiveness of communities in different post-fire successional stages.  By 

grouping data into 10-year time-since-fire categories and using ANOSIM, a direct 

comparison is possible of the difference in species composition between particular 

stages during succession (Fig. 3.4).  Only one site fell between 11 and 20 years post-

fire, and thus did not allow comparisons of this time-period with other time-periods 

in the temporal succession. 

 

In Triodia Mallee, increasingly distinct avifaunal assemblages occurred between 

post-fire ages at opposite ends of the time-since-fire (succession) gradient (Fig. 3.4a).  

Also, Fig. 3.4a shows evidence of non-linearity in rates of change in composition.  

That is, the composition of communities changes faster with time-since-fire in early 

succession vegetation, such that the differences between communities separated by a 

given time difference become less distinct with increasing time-since-fire age.  This 

pattern translates to increased temporal spans occupied by communities of similar 

species composition.  Although the community composition changes continuously 

along the time-since-fire gradient, the patterns displayed in Fig. 3.4a suggest three 

major successional stages; communities <10 years since-fire, 21-40 years since-fire 

and >50 years.  The community at 41-50 years since fire represents a transition stage 

with little distinction from communities of either 21-40 or >50 years since-fire.  Note 

that although sites 91-100 years old show minimal distinction from those 21-30 years 

old (Fig. 3.4a), this is based on few sites (N=9) and must be interpreted with caution. 
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Similar patterns were evidenced in Chenopod Mallee (Fig. 3.4b); however, these 

patterns are more difficult to interpret due to small sample sizes in the <10 years 

since-fire and 81-90 and 91-100 year categories (N=6 in each), giving the appearance 

of a lack of distinctiveness of communities between these categories.  Chenopod 

Mallee does display evidence of subtly different successional patterns, with the 

transition between younger and older successional stages appearing to relate more to 

sites 31-40 years since fire (cf 41-50 years for Triodia Mallee). 

  

3.4.3 β-diversity amongst sites within different successional stages 

Species accumulation curves (Fig. 3.5) showed that in both Triodia Mallee and 

Chenopod Mallee vegetation, the mean rate of increase in species richness with 

increasing numbers of sites surveyed (β diversity) is lowest for sites <10 years since 

fire, and generally becomes greater for older age-classes.  That is, for a given number 

of sites surveyed, a larger number of species is likely to be recorded in older post-fire 

age-classes due to greater between-site diversity.  In Chenopod Mallee, the rate of 

accumulation of additional species differs less where sites are >60 years old.   

 

Of the 49 species detected at >5 sites, 47 species were detected in both Triodia 

Mallee and Chenopod Mallee.  None of the 10-year time-since-fire categories 

supported all species (Fig. 3.5). 

 

 



 

 

 

 

 

 

Figure 3.4 The relative level of distinction (R-statistic from ANOSIM) between sites within a particular age category compared with sites in 

each alternative category for; a) Triodia Mallee and b) Chenopod Mallee.  For example, the first part of the diagram (top left) shows the 

distinction in avifaunal composition between sites 0-10 years post fire and sites 21-30 years, 31-40 years, 41-50 years, 51-60 years etc.  Negative R-

statistics are not shown. Values of R-statistics and significance between categories are shown in the appendix (Table A3.1 and A3.2).  
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Figure 3.5 Species accumulation curves showing the average number of species 

detected with increasing numbers of sites surveyed, for sites assigned to 10 year 

time-since-fire categories.  Curves are shown for up to 25 sites, or the maximum 

number of sites surveyed, within the category for a) Triodia Mallee and b) Chenopod 

Mallee. 
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3.4.4 Influence of time-since-fire on the species richness of dietary and foraging zone 

guilds 

Most bird species in mallee ecosystems are insectivorous: of 49 species found at >5 

sites, 35 species were insectivores, eight species nectarivore-insectivores (i.e. their 

diet consists of insects and nectar depending on availability), four species were 

granivores and two species nectarivores (diet primarily nectar) (Table 3.2). 

 

Species richness of insectivores and nectarivore-insectivores both displayed 

significant changes with time-since-fire in Triodia Mallee, whereas only nectarivore-

insectivores showed a significant response in Chenopod Mallee (Table 3.4).  We did 

not detect any significant response for species richness of granivores and nectarivore 

guilds, although fewer species in these guilds found at fewer sites meant that there 

was less power to detect responses.  None of the dietary guilds showed a significant 

change in richness along the aridity gradient (northing), but insectivore and granivore 

richness was significantly higher at sites in Chenopod Mallee than Triodia Mallee 

(Table 3.5).  Species richness of both insectivores and nectarivore-insectivores 

increased rapidly in the first 10 years post-fire, then reached a plateau after 10-20 

years (Fig. 3.6).  These two dietary groups comprised the majority of species 

recorded and dominate the patterns displayed for overall species richness.  

 

There was a more even distribution of species amongst foraging zone guilds than 

dietary guilds (Table 3.4).  The relationship between species richness of foraging 

zone guilds and time-since-fire revealed more subtle longer-term trends than for 

dietary guilds.  In Triodia Mallee vegetation, all except sub-canopy foraging species 

displayed a significant response to time-since-fire (Table 3.4).  In Chenopod Mallee, 

only foliage foragers showed a significant response.  Each foraging zone guild with a 
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significant response to time-since-fire displayed the lowest species richness directly 

after fire (Fig. 3.7).  Species richness of each foraging zone guild was higher in 

Chenopod Mallee than Triodia Mallee (Table 3.5).  Species richness of foliage 

foraging species tended to be higher in southerly sites, whereas the richness of sub-

canopy space foragers was higher in northerly sites (Table 3.5).  Species richness of 

trunk foraging and foliage foraging species both displayed a sharp increase up to 10-

20 years post-fire: in older age-classes the richness of foliage foraging species tended 

to continue to increase (Triodia Mallee, Fig. 3.7a) or plateau (Chenopod Mallee, Fig. 

3.7 d), whereas the richness of trunk-foraging species reached a peak and then 

declined in the oldest vegetation (Fig. 3.7b).   Richness of shrub foraging species 

showed a significant response in Triodia Mallee, however, the actual values only 

exceeded one species at a given site on three occasions.  Consequently this response 

is not considered a robust representation of the changes in species richness of this 

group. 

 



 

 

 

Table 3.4 Results of regression models (GAMMs) of the relationship between species richness of birds in each dietary and foraging zone guild 

and the time-since-fire.  The statistical values (F, P values) are for the smoothed time-since-fire term for each level of vegetation type (Chenopod 

Mallee and Triodia Mallee). The proportion of total deviance explained (D
2
) by each model is used as a measure of model fit. The estimated degrees of 

freedom (edf) provide a measure of the amount of smoothing in the model.  Significant responses are shown in bold type. 

 
 

  

Triodia Mallee  Chenopod Mallee 

 
 

Number of 

species 
D

2
 edf F P 

 
edf F P 

Dietary guild 

  

    

   

 

Insectivore 35 0.24 5.75 10.75 <0.001  1.79 1.56 0.196 

Nectarivore-insectivore 8 0.22 7.54 10.55 <0.001  2.6 3.64 0.017 

Granivore 4 0.05 1.68 2.03 0.140  1.00 2.58 0.109 

Nectarivore 2 0.01 1.00 2.19 0.140  1.00 0.14 0.712 

 
 

  
    

   Foraging-zone guild 

  

    

   

 

Foliage 12 0.29 7.02 14.39 <0.001  2.45 3.27 0.030 

Sub-canopy space 2 0.10 1.00 2.7 0.100  1.00 0.45 0.500 

Trunk and branch 10 0.08 4.764 3.835 0.002  1.00 3.80 0.540 

Shrub 4 0.03 1.89 3.54 0.032  1.00 0.12 0.730 

Ground 16 0.07 1.96 4.24 0.016  1.00 1.33 0.250 

 



 

 

 

Table 3.5 Coefficients and significance values for linear terms (vegetation type and northing) in Generalized Additive Mixed Models of the 

relationship between species richness in dietary and foraging zone guilds and time since fire.  Note that vegetation type is a categorical variable 

with two levels (Chenopod Mallee and Triodia Mallee).  The statistics shown here are for Triodia Mallee with Chenopod Mallee as the reference 

category.  Significant responses are shown in bold type. 

 

 

Vegetation type  Northing 

 

 

Coefficient t-value P  Coefficient t-value P 

Dietary guild 

   

 

    Insectivore -0.349 -7.01 <0.001  -7.03×10
-07

 -1.41 0.159 

 Nectarivore-insectivore 0.011 0.17 0.864  -8.69×10
-07

 -1.53 0.126 

 Granivore -0.611 -3.27 0.001  6.68×10
-07

 0.39 0.699 

 Nectarivore -0.034 -0.20 0.842  -4.35×10
-07

 -0.24 0.814 

 
    

 
   Foraging-zone guild 

   

 

    Foliage -0.106 -2.07 0.039  -1.35×10
-06

 -2.41 0.016 

 Sub-canopy space -0.928 -6.03 <0.001  3.11×10
-06

 2.45 0.015 

 Trunk and branch -0.261 -3.60 <0.001  -1.35×10
-06

 -1.55 0.122 

 Ground -0.419 -5.62 <0.001  4.20×10
-07

 0.68 0.495 

 Shrub -0.541 -2.11 0.035  1.02×10
-06

 0.40 0.686 
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Figure 3.6 Relationship between time-since-fire and species richness of different 

dietary guilds; a) insectivores and b) nectarivore-insectivores in Triodia Mallee; c) 

nectarivore-insectivores in Chenopod Mallee. Points = raw data, solid line = 

modelled richness (GAMM) ± 1 SE (dashed lines). 
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Figure 3.7 Relationship between time-since-fire and species richness of different 

foraging zone guilds; a) foliage foraging species, b) trunk and branch foraging 

species and c) ground foraging species in Triodia Mallee, and d) foliage foraging 

species in Chenopod Mallee. Points = raw data, solid line = modelled species 

richness (GAMM) ± 1 SE (dashed lines). 
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significant change with time-since-fire in Triodia Mallee, whereas only the 0.5 – 1 m 

and the > 2 m height strata showed a significant change with time-since-fire in 
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across the four height strata in Triodia Mallee occurs at 10 to 30 years post-fire, 

when there is a relatively even density in the different strata, after which the mid-

story structure begins to decline and the canopy vegetation (>2 m) continues to 

become more dense (Fig. 3.8).  In contrast to Triodia Mallee, Chenopod Mallee 

shows little change in understorey and mid-storey structure with time-since-fire, but 

there is a consistent increase in the canopy density (greater than 2 m) until ~60 years 

when the canopy density begins to decline (Fig. 3.8).  Vegetation density <0.5 m was 

greater in Triodia Mallee, whereas density of vegetation >2 m was greater in 

Chenopod Mallee (Table 3.7).  Density of vegetation 1-2 m was greater in more 

southerly sites (Table 3.7)   

 

 

Table 3.6 Results of regression models (GAMMs) of the relationship of 

vegetation structure and presence of reproductive eucalypts with time since fire.  

Statistical values (F, P) are for the smoothed time-since-fire term for each level of 

vegetation type (Chenopod Mallee and Triodia Mallee).  Amount of smoothing is 

delineated by the estimated degrees of freedom (edf). Significant responses are 

shown in bold type. 

 
 

Time-since-fire 

(Triodia Mallee) 

Time-since-fire 

(Chenopod Mallee) 

 

 edf F P edf F P 

Height strata    
   

 
< 0.5 m 3.56 4.37 0.003 1.00 1.59 0.208 

 
0.5 – 1 m 6.67 6.92 <0.001 1.00 4.18 0.041 

 
1 – 2 m 5.17 11.39 <0.001 1.00 1.84 0.176 

 
> 2 m 4.59 30.58 <0.001 2.49 4.15 0.010 

 
       

Eucalyptus 

reproduction 
1.00 65.74 <0.001 1.00 15.60 <0.001 
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Table 3.7 Results for the linear terms (vegetation type, northing) in generalized 

additive mixed models (GAMMs) of the relationship of vegetation structure and 

presence of reproduction in eucalypts with time since fire.  Vegetation type is a 

categorical variable with two levels (Chenopod Mallee and Triodia Mallee).  The 

statistics shown are for Triodia Mallee with Chenopod Mallee as the reference 

category.  Significant responses are shown in bold type. 

 
 Vegetation type Northing 

 

 Coefficient t-value P Coefficient t-value P 

Height strata    
   

 
< 0.5 m 0.6 9.95 <0.001 1.67 × 10

-07
 0.306 0.760 

 
0.5 – 1 m 0.16 1.53 0.128 2.78 × 10

-07
 0.231 0.818 

 
1 – 2 m 0.15 2.00 0.046 -3.32 × 10

-06
 -5.031 <0.001 

 
> 2 m -0.38 -6.30 <0.001 -6.55 × 10

-07
 -1.185 0.237 

 
    

   
Eucalyptus 

reproduction 
2.14 2.35 0.019 -4.28 × 10

-06
 -0.546 0.585 

 

 

 

3.4.6 Influence of time-since-fire on reproduction of Eucalyptus species 

Reproduction of Eucalyptus sp. was strongly influenced by time since fire in both 

Chenopod Mallee and Triodia Mallee (Table 3.6).  Little evidence of reproductive 

eucalypts (i.e. flowers, buds, fruit) was detected at sites <10 years since fire, whereas 

sites >20 years since fire almost always contained reproductive Eucalyptus sp (Fig. 

3.9).   
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Figure 3.8 Modelled response of vegetation density (number of contacts) with 

time-since-fire in each of four height strata.  Models and predictions were 

generated for each strata separately and are presented here as the cumulative number 

of predicted contacts in a) Triodia Mallee and b) Chenopod Mallee.  Note the higher 

density in Triodia Mallee in almost all strata between 10 and 40 years since fire. 

 

 

 

Figure 3.9 Relationship between the occurrence of reproductively active 

Eucalyptus species at sites and time-since-fire (± 1 SE) in Chenopod Mallee 

(black line) and Triodia Mallee (grey line). 
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3.5 Discussion 

This study examined temporal changes in the structure of avifaunal communities 

along a 100-year, post-fire chronosequence in mallee ecosystems of south-eastern 

Australia.  We found that the structure of communities was strongly affected by fire, 

a finding consistent with observations of the influence of fire on individual species 

of birds in this system (Benshemesh, 1990; Clarke, 2005; Clarke et al., 2005; Brown 

et al., 2009; see also Chapter 2).  Both species richness and the composition of 

communities varied with time-since-fire.  The dissimilarity in species composition 

between sites was correlated with the dissimilarity in post-fire age, and the 

distinctiveness of species assemblages was greatest at opposite ends of the 

succession gradient.  The change in species composition slowed with increasing 

time-since-fire, resulting in greater temporal breadth of similar species assemblages 

at older post-fire ages.  Communities in older post-fire ages displayed higher β 

diversity than those in recent post-fire ages.  Patterns of change in guild structure in 

communities appear to be related to available food resources such as nectar and 

invertebrates and to changing vegetation structure over longer time-frames. 

 

3.5.1 Influence of time-since-fire on the structure of avifaunal communities 

Time-since-fire strongly affected species richness of communities in Triodia Mallee, 

but was not clearly detected in Chenopod Mallee, likely to be a result of small 

sample sizes in this vegetation (particularly in the younger age-classes) rather than 

there being no effect.  Species richness was relatively low directly after fire and took 

10 years to reach an asymptote.  This suggests that fire events cause either 

substantial mortality or force emigration of species, and that sites are subsequently 

colonised by some species over a ~10 year period.  Over a time-span of 100 years, 
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species richness did not begin to decline at sites, in contrast with predictions of the 

intermediate disturbance hypothesis of highest species richness in mid-succession 

due to the presence of both early and late succession species (Loucks, 1970; Connell, 

1978).  Although species richness plateaus ~10 years, this is not necessarily an 

indication of assemblage ‘recovery’ from fire (Jacquet & Prodon, 2009); changes in 

species composition continued to occur for decades.  

 

The significant relationship between time-since-fire dissimilarity and the 

dissimilarity of avifaunal communities shows that community composition continues 

to change for up to a century post-fire, supporting the notion of the importance of 

disturbance processes in structuring bird communities (Brawn et al., 2001).  The 

level of dissimilarity between sites was frequently high (i.e. sites sharing no species) 

and this difference was detected for some sites at almost all time-since-fire contrasts.  

This pattern is influenced by the sampling intensity of the study (only four visits to 

each site), and sampling grain of sites (~1.13 ha), but suggests also that factors other 

than time-since-fire have important effects on species composition.  For instance, 

post-fire successional patterns of fauna often are related to vegetation structural 

changes (Monamy & Fox, 2000).  While many vegetation attributes in mallee 

systems generally change in a consistent way with time-since-fire, large confidence 

intervals (particularly amongst older sites) show that structural attributes vary 

substantially amongst sites of similar post-fire age (Haslem et al., 2011).  

Consequently, these sites may contain different bird communities.  Additionally, site 

context factors, such as proximity to other fire-age classes (Chapter 4) may 

contribute to variation in communities at sites of similar time-since-fire. 
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Minimum compositional dissimilarity (i.e. sites with the most similar assemblage) 

changed non-linearly with time contrasts between sites.  For time contrasts of up to 

50 years, the most similar pairs of sites tended to have equal levels of compositional 

similarity; but for time contrasts of >50 years the composition of the assemblage 

became increasingly dissimilar.  This pattern indicates that for time contrasts 

between sites of around 50 years or more, the differences in vegetation structure and 

resources will be such that assemblages will inevitably be different.    

 

3.5.2 Distinctiveness of assemblages in different post-fire successional stages 

Species composition at sites in adjacent time-since-fire categories (10-year intervals) 

became more similar with time-since-fire, consistent with the broader understanding 

that rates of change in assemblages slow with increasing time since a disturbance 

event (Helle & Monkkonen, 1985).  This pattern results in an increased temporal 

breadth of similar communities as succession proceeds.  In Triodia Mallee, there was 

a distinction between communities occupying sites <10 years, those in sites 20-40 

years and those in sites >50 years, while sites 41-50 years represented a transitional 

stage.  These seral stages in community composition correspond with the peak 

occurrences (or rarity) of individual species.  For example, sites with vegetation < 10 

years-since-fire are associated with peak occurrence of Chestnut-rumped Thornbills 

and the rarity of otherwise ubiquitous species such as the Weebill. Mid-successional 

communities, 20-40 years-since-fire, correspond with the peak frequency of 

occurrence of the White-eared Honeyeater, Spotted Pardalote, and the Triodia 

dependant Striated Grasswren; and later successional vegetation, > 50 years-since-

fire, is associated with the highest occurrences of the Yellow-plumed Honeyeater, 

Striated Pardalote and Spiny-cheeked Honeyeater.   
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These bird assemblages correspond generally with seral changes in vegetation 

structure in Triodia Mallee.  Vegetation <10 years since fire represents a period of 

regrowth of mallee eucalypts and substantial bare ground and open areas, 20-40 

years since fire represents a peak in cover of Triodia hummock grasses and the 

greatest complexity of vertical vegetation structure; and >50 years-since-fire 

incorporates a decline in the vertical structural complexity of vegetation and a 

plateau in both the height and the cover of canopy (Fig. 3.8; Haslem et al., 2011). 

 

3.5.3 Contribution of different post-fire ages to species in the regional assemblage 

The β diversity (between site diversity) of bird species, tended to be higher in older 

post-fire age categories, as demonstrated by sharper rates of increase in species 

accumulation curves.  This pattern was displayed most clearly in Triodia Mallee.  In 

Chenopod Mallee, β diversity peaked earlier, at 51-60 years since-fire, and declined 

in older fire ages; although this must be interpreted with caution due to the inequality 

of sampling points along the time-since-fire gradient.  Sites in older vegetation tend 

to represent greater variation in vegetation structure (Haslem et al., 2011), and thus 

are likely to represent a greater heterogeneity of habitats, a principle driver of β 

diversity in birds (Boecklen, 1986). 

 

3.5.4 Processes influencing post-fire successional patterns of the avifauna 

Although temporal patterns in post-fire succession are recognised to influence bird 

assemblages around the world (Brawn et al., 2001), the processes by which fire 

causes compositional changes remain poorly understood in many systems.  In this 

ecosystem, species richness patterns in Triodia Mallee indicate that fire initially 

causes either significant mortality or emigration from sites, followed by a relatively 
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slow (~10 years) process for species richness to reach levels seen in older vegetation.  

The precise timing at which this level of richness is achieved is difficult to determine 

as we had limited sampling in sites 10-20 years-since-fire.  Unlike ecosystems such 

as boreal forest communities, where many species rapidly colonise burnt sites in the 

1-3 years following fire (Hutto, 1995; Smucker et al., 2005; Haney et al., 2008), the 

mallee bird assemblage does not appear to have a large suite of early successional 

specialists (Chapter 2).  However, some other assemblages without recognised early 

succession specialists also display rapid recovery in species richness; for example 2 

years in heathlands and forests of south-eastern Australia (Reilly, 1991; 

Lindenmayer et al., 2008).  We identify two factors that may affect temporal patterns 

in species richness and changes in species composition: 1) the amount of available 

energy defined by food resources, the productivity hypothesis (Wright, 1983); and 2) 

vegetation structural attributes (MacArthur & MacArthur, 1961; Tews et al., 2004).  

Evidence for the importance of these processes is indicated through changes in 

particular species guilds with time-since-fire.   

 

Species richness of insectivores and nectarivore-insectivores both displayed similar 

significant responses to time-since-fire, while nectarivores and granivores showed no 

relationship with time-since-fire.  Species richness of insectivores and nectarivore-

insectivores mirrored the overall species richness pattern, low directly after fire and 

plateauing at ~10 years-since-fire.  Availability of food resources may be an 

important factor influencing temporal responses of communities post-fire. 

Reproduction of Eucalyptus species was largely absent from sites <10 years since 

fire, and present at almost all sites >20 years since fire.  Nectar from the flowers of 

Eucalyptus species is a key energy source for birds (Ford & Paton, 1976b; Bond & 
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Brown, 1979) that occur in mallee environments and the lack of reproduction of 

regenerating mallee Eucalyptus species is likely to represent a massive reduction in 

the availability of nectar.  Moreover, many species of invertebrates also use 

Eucalyptus nectar in mallee environments (Horskins & Turner, 1999) and so lack of 

flowering and nectar would influence their availability for insectivores or 

nectarivore-insectivores.  There is little known about the effects of fire on 

invertebrates (New et al., 2010).  Studies of invertebrates in mallee ecosystems 

suggest responses may vary between taxa; ants were found to be half as abundant 

(although with twice as many species) in recently burnt vegetation (Andersen & 

Yen, 1985), while abundance of beetles showed no pattern with time-since-fire 

(Schlesinger et al., 1997).   However, most investigations have used pitfall trapping, 

and this information may be useful only for estimating food loads for ground-

foraging birds and not for species which forage on above-ground substrates. 

 

Given that nectar production from Eucalyptus species is limited in recently burnt 

vegetation, it initially is surprising that primary nectarivores did not respond to time-

since-fire.  However, there are several possible explanations for this.  First, only two 

species occur in this category (Red Wattlebird and White-fronted Honeyeater), thus 

the power to detect trends is limited. Second, nectarivores in Australia are highly 

nomadic (Woinarski, 2006), and may transiently inhabit different fire ages (Cheal et 

al., 1979), whereas nectarivore-insectivore species may be more reliant on consistent 

nectar resources. Third, the species in this category take nectar from a variety of 

sources other than Eucalyptus sp. (e.g. Eremophila spp., Prostanthera spp.), in 

which case they may not necessarily be limited by this reduction in nectar from 

Eucalyptus sp. (HANZAB, 2006). 
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Granivores also did not display a significant response to fire and species in this 

guild, such as Australian Ringneck and Mulga Parrot, were detected across all fire 

ages (Chapter 2).  Granivores may not be strongly limited by fire in mallee 

ecosystems because these species are large, highly mobile birds which can move 

amongst different seral stages.  Recently burnt vegetation supports a range of short-

lived obligate-seeding herbs which set seed in the first 10 years-since-fire (Cohn et 

al., 2002), thus  providing food resources for granivorous species. 

 

Many structural attributes of mallee vegetation change with time-since-fire, such as 

stem density, canopy height, shrub cover and cover of Triodia hummocks (Haslem et 

al., 2011).  Structural complexity at sites, a characteristic long recognised as 

important in structuring bird communities (MacArthur & MacArthur, 1961),  

increases rapidly from very simple (few contacts) directly after fire, to peak at ~20 

years after fire in Triodia Mallee (Fig. 3.8; Haslem et al., 2011).  Thus, while 

patterns of community change are likely to be partially related to food resource 

availability, they also may be related to the structural complexity of vegetation, 

which rapidly increases in the immediate 10-20 years post-fire.  Over longer time-

frames, species compositional changes may be associated with vegetation structural 

changes.  For example, models of changes in species richness of foliage foragers 

correspond with patterns of change in the density of canopy vegetation >2 m; 

increasing with time-since-fire in Triodia Mallee and more subtle changes in 

Chenopod Mallee.  Temporal changes of species richness of trunk and branch 

foragers compare with those of mid-storey structure, each showing a decline in older 

Triodia Mallee.  Thus, post-fire changes in vegetation structure appear to be a 



Chapter 3 – The influence of time-since-fire on the composition of avifauna 

 

101 

 

mechanism which may influence ongoing changes in bird assemblages through the 

fire succession, consistent with the habitat accommodation model of post-fire 

succession (Fox, 1982). 

 

3.5.5 Implications for conservation and management  

In this investigation we have shown that fire plays a significant role in structuring 

the richness and composition of avifaunal communities, and consequently it is 

important that the temporal patterns of succession are explicitly considered in 

conservation and management for birds in fire-prone environments. The long time-

frame over which communities changed (e.g. up to 100 years) has important 

implications for conservation.  Management actions such as prescribed burning, 

which typically set the vegetation back to year zero in the succession, may have 

long-lasting implications for the avifaunal assemblage. 

 

Community-level approaches present a useful way of identifying the importance of 

different post-fire ages to the overall avifaunal assemblage. Using these approaches, 

we showed that a slowing rate of compositional change through time translates to 

communities occupying a greater temporal span in older vegetation age-classes. In 

Triodia Mallee, some major successional stages in avifaunal composition (<10 years, 

21-40 years, >50 years) correspond with vegetation structural changes. Furthermore, 

the communities associated with older sites display greater β diversity, such that 

older post-fire age-classes appear to be disproportionately important for community 

diversity in this ecosystem.   
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Both availability of food resources and vegetation structural complexity appear to be 

important processes influencing post-fire species richness and long-term changes in 

community composition.  Management actions, such as prescribed burning, aimed at 

influencing succession should explicitly consider how these actions will affect the 

factors likely to determine community responses.  Future research specifically 

investigating factors such as post-fire grazing (Cohn & Bradstock, 2000) , which 

interact with fire to effect changes in vegetation structure and food resources, will be 

critical in understanding how burning operations can be used to influence faunal 

communities. 
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3.6 Appendix 

 

Table A3.1 Results of analysis of similarity (ANOSIM) tests on the comparisons 

of the composition of avifauna at sites in different 10 year post-fire age-classes 

in Triodia Mallee. Values shown are the R-statistic, with significance values in 

parentheses.  Significance value is based on 999 permutations. 

time-

since-fire 

categories 

(years) 

0 - 10 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 

0 - 10 
        

21 - 30 
0.20 

(0.001)        

31 - 40 
0.33 

(0.001) 

0.05 

(0.012)       

41 - 50 
0.32 

(0.002) 

0.08 

(0.139) 

-0.02 

(0.533)      

51 - 60 
0.42 

(0.001) 

0.22 

(0.001) 

0.14 

(0.057) 

-0.04 

(0.678)     

61 - 70 
0.35 

(0.001) 

0.17 

(0.010) 

0.15 

(0.027) 

0.01 

(0.412) 

-0.06 

(0.795)    

71 - 80 
0.55 

(0.001) 

0.28 

(0.003) 

0.17 

(0.046) 

-0.08 

(0.771) 

-0.08 

(0.751) 

-0.03 

(0.564)   

81 - 90 
0.59 

(0.001) 

0.45 

(0.001) 

0.23 

(0.006) 

0.03 

(0.252) 

-0.06 

(0.832) 

-0.01 

(0.460) 

0.00 

(0.441)  

91 - 100 
0.47 

(0.003) 

0.24 

(0.018) 

0.05 

(0.328) 

-0.15 

(0.896) 

-0.18 

(0.932) 

-0.14 

(0.944) 

-0.08 

(0.775) 

-0.08 

(0.730) 
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Table A3.2 Results of analysis of similarity (ANOSIM) tests on the comparisons 

of the composition of avifauna at sites in different 10 year post-fire age-classes 

in Chenopod Mallee. Values shown are the R-statistic, with significance values in 

parentheses.  Significance value is based on 999 permutations. 

time-

since-fire 

categories 

(years) 

0 - 10 21 - 30 31 - 40 41 - 50 51 - 60 61 - 70 71 - 80 81 - 90 

0 - 10 
        

21 - 30 
0.19 

(0.115)        

31 - 40 
0.33 

(0.011) 

0.15 

(0.053)       

41 - 50 
0.72 

(0.001) 

0.24 

(0.020) 

-0.04 

(0.718)      

51 - 60 
0.74 

(0.001) 

0.30 

(0.002) 

-0.08 

(0.888) 

-0.04 

(0.781)     

61 - 70 
0.60 

(0.001) 

0.26 

(0.010) 

0.02 

(0.342) 

-0.02 

(0.582) 

0.08 

(0.059)    

71 - 80 
0.63 

(0.004) 

0.16 

(0.059) 

0.01 

(0.423) 

0.16 

(0.067) 

0.09 

(0.193) 

-0.05 

(0.687)   

81 - 90 
0.67 

(0.080) 

0.20 

(0.124) 

-0.01 

(0.505) 

0.10 

(0.257) 

0.09 

(0.265) 

0.05 

(0.342) 

0.06 

(0.372)  

91 - 100 
-0.08 

(0.600) 

0.02 

(0.463) 

0.23 

(0.076) 

0.42 

(0.010) 

0.32 

(0.044) 

0.28 

(0.040) 

0.01 

(0.429) 

-0.05 

(0.629) 

 

 



 
 

Chapter 4  

 

The influence of fine-scale spatial patterns of fire on 

post-fire colonisation and species richness of birds 

 

 

  

Patches of unburnt vegetation after a fire in Murray-Sunset National Park 

Red-capped Robin Petroica goodenovii 
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4.1 Abstract 

Predicting the response of faunal communities to fire presents a major challenge for 

land managers because the post-fire responses of species populations can vary 

between locations and fire events.  Furthermore, post-fire recovery of fauna may 

occur in different ways; for example, as nucleated recovery from in-situ surviving 

populations, or by colonisation from ex-situ populations. Fine-scale spatial patterns 

in the patchiness of fires and the proximity of burnt sites to source populations may 

contribute to both the variability in post-fire responses and the processes by which 

populations recover.  We examined the avifauna at recently burnt sites within 

extensive semi-arid shrublands of south-eastern Australia, including 72 sites <5 

years-since-fire and 26 sites 10 years-since-fire. Study sites represented a gradient of 

increasing proximity from unburnt vegetation (i.e. >27 years since fire) and varied in 

the presence or absence of small (25 m
2
 – 900 m

2
) unburnt patches of vegetation.  

For sites <5 years since fire, species richness was higher in closer proximity to 

unburnt vegetation and at sites containing unburnt patches.  Patterns were no longer 

evident at sites of 10 years-since-fire.  The occurrence of three of seven bird species 

modelled, decreased with increasing distance to unburnt vegetation, but the pattern 

was evident only at sites burnt uniformly.  One species was found almost exclusively 

at patchily burnt sites.  These results are consistent with the hypothesis that 

proximity to unburnt vegetation enhances post-fire occupancy, and that colonisation 

from ex-situ populations is an important aspect for post-fire recovery of avifauna 

over the first 10 years-since-fire.  Additionally, small unburnt patches, acting as 

„biological legacies‟, enhance the rapid recovery of assemblages post-fire.  These 

patterns are important for understanding the dynamics of post-fire population 

recovery.  Effective management of fire for ecological purposes needs to explicitly 

consider the spatial attributes of fires.  
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4.2 Introduction 

Fire ecology has often focussed on the effect of components of the fire regime on 

biota: these include the history of fire events at a site (Gill, 1975), predominantly 

considered as time-since-fire (Fox, 1982); the frequency (or inter-fire interval) of 

fires (Bradstock et al., 1997); the intensity (or severity) of a fire (Smucker et al., 

2005); and the season of burning (Woinarski, 1990).  Consequently, much emphasis 

in fire management for biodiversity is based around the temporal aspects of fire 

(Clarke, 2008), particularly the idea of repeatable patterns of succession following 

fire events.  However, spatial patterns of fire also may play an important role in 

patterns of faunal occupancy post-fire, and the processes by which populations 

recover after fire.  

 

Fires often cause local loss of faunal species, either through mortality or emigration 

(Barlow & Peres, 2004).  Commonly, there are relatively predictable patterns of 

colonisation after fire, and ongoing changes in species‟ occurrences and abundances 

with time since fire (eg. Fox, 1982; Hobson & Schieck, 1999; Haney et al., 2008).  

However, ecologists have noted that recovery of faunal communities from different 

fire events can differ from predictions made by general succession patterns.  For 

example, the Eastern Bristlebird Dasyornis brachypterus, believed to prefer older 

vegetation and to be sensitive to fire (Baker, 2000), quickly colonised recently burnt 

vegetation after a recent fire event (eg. Bain et al., 2008; Lindenmayer et al., 2009). 

Populations of the Mallee Emu-wren Stipiturus mallee, formerly found in several 

areas in Billiatt Conservation Park (Carpenter & Matthew, 1986), have not recovered 

from large fires in the late 1980s (Clarke, 2005), despite vegetation of an appropriate 

post-fire age for this species (16-29 years-since-fire) (Clarke, 2005; Brown et al., 

2009) becoming abundant. 
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The spatial pattern of a fire and the context of burned sites may affect the variability 

of species‟ responses to fire, and provide insights into patterns of species‟ recovery 

post-fire (Keith et al., 2001; Whelan et al., 2001).  The size, shape and patchiness of 

a fire will affect the context of a burned site by determining the distance that animals 

must travel to escape fire, or to colonise sites from external source populations after 

fire (Brotons et al., 2005; Knight & Holt, 2005).  The patchiness of a fire also may 

affect how a species responds to that fire event.  Unburnt patches of vegetation 

within the fire boundary are examples of „biological legacies‟; that is, organisms and 

organic material that persist through a disturbance event (Turner et al., 1998; 

Franklin et al., 2000).  These biological legacies may act as refuges, where 

organisms can escape a fire event.   

 

Little is known about the importance of biological legacies, or what constitutes a 

refuge for many organisms.  However, the degree to which recently burnt vegetation 

is repopulated by species surviving in-situ in a refuge (i.e. nucleated recovery), as 

opposed to being recolonised from ex-situ populations may play an important role in 

post-fire succession patterns and in species responses to fire (Banks et al., 2011).  

Also, biological legacies may assist post-fire colonisation by providing habitat 

structure and resources.  The complexity of fire environments and fire events can 

result in a multitude of different post-fire recovery scenarios (Whelan et al., 2001).  

Understanding how spatial patterns of fire influence post-fire recovery processes 

may shed light on this complexity.       

 

To investigate post-fire colonisation and the importance of unburnt refuges for fauna, 

we examined four aspects of the relationship between the spatial properties of fires 

and post-fire bird assemblages in semi-arid shrublands in south-eastern Australia.  
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First, to assess whether species recolonise from populations external to the fire, we 

examined the effect of proximity to unburnt vegetation (>27 years since fire) on: a) 

bird species richness and b) the occurrence of individual species.  Second, to 

investigate whether biological legacies, represented by small patches of unburnt 

vegetation (25 – 900 m
2
), affect the post-fire community, we compared species 

richness and the occurrence of individual species at sites containing unburnt patches 

and those burnt uniformly.  Third, to investigate the importance of small unburnt 

patches either as refuges (where species survive the fire and persist) or as habitats 

which also are colonised from ex-situ populations, we compared the influence of 

proximity to unburnt vegetation on birds at sites that contained unburnt patches and 

those burnt uniformly.  Finally, to examine the time over which colonisation from 

ex-situ populations occurs, we tested whether proximity had an influence on species 

richness and species occurrence at different ages post-fire.   

 

We made three predictions.  First, if species recolonise burnt sites from nearby 

unburnt vegetation, then we expect decreasing species richness and frequency of 

occurrence of individual species with increasing distance from unburnt vegetation.  

Second, if fire patchiness assists species to recolonise sites or provides refuges for 

species, then species richness and occurrence of individual species will be greater at 

patchy sites than uniformly burned sites.  Third, if patchily burnt sites represent 

refuges where species survive in-situ during fire events, then proximity to unburnt 

vegetation should have less influence on species richness or occurrence of species at 

patchy sites. On the other hand, if patchy sites are colonised from nearby unburnt 

vegetation, then a relationship with proximity should be equally evident for patchy 

sites.  
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4.3 Methods 

4.3.1 Study area 

The study was conducted in the Murray Mallee region of south-eastern Australia, 

situated between 33 – 35°S and 140 – 142°E.  The climate is semi-arid, with a 

gradient of increasing aridity from south to north (Pausas & Bradstock, 2007).  Mean 

annual rainfall ranges from approximately 200 – 350 mm across the region. 

Temperatures across the study area range from mean daily maxima of 32 – 33° C in 

summer months and 15 – 16° C in winter months; to mean daily minima from 14 – 

18°C and 4 – 6° C, respectively (Australian Bureau of Meteorology).  The region is 

mostly flat, with local topographic variation provided by low dune-swale systems 

(Wasson, 1989).   

 

“Mallee” eucalypt shrubland is the major vegetation type, consisting of open 

vegetation dominated by multi-stemmed species of Eucalyptus and an understorey of 

shrubs and grasses (Bradstock & Cohn, 2002).  Two major vegetation associations, 

Triodia Mallee and Chenopod Mallee, have been identified and mapped in the 

region, differing on the basis of floristic composition of the overstorey Eucalyptus 

spp. and understorey species (Haslem et al., 2010).  Mallee vegetation is highly 

flammable and large fires (>10 000 ha) occur regularly, generally resulting in 

removal of both understorey and canopy. Fuel continuity is important in determining 

the size of fires (Noble & Vines, 1993) and discontinuous fuels can result in unburnt 

patches (O‟Donnell et al., 2010). Many plant species display life-history attributes 

adapted to recurrent fire disturbance (Pausas & Bradstock, 2007).  One conspicuous 

adaptation is the coppicing of mallee Eucalptus spp. from underground lignotubers 

following fire. 
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4.3.2 Study design and data collection 

This investigation forms part of a broader study exploring the influence of the 

properties of fire mosaics on biota in the Murray Mallee region of south-eastern 

Australia.  For this broader study we sampled birds at 560 sites, with 20 survey sites 

clustered in each of 28 landscapes.  Landscapes were selected to represent mosaics of 

different spatial fire-history patterns.  The 20 survey sites in each landscape were 

located such that they sampled each post-fire age-class in proportion to its extent in 

the landscape.  The potential locations of sites were determined by using maps of fire 

footprints and were recorded as geographic coordinates prior to going into the field, 

and then checked for suitability. Generally, sites were 500 m apart.   

 

We determined the post-fire age of vegetation by using maps of fire-footprints, 

developed by analysing 15 individual years of LandsatTM satellite imagery (1975-

2007) and mapping the extent of each fire in the region (Avitabile et al., 2011).  The 

resolution of the satellite imagery was of individual pixels measuring 30 × 30 m.   

 

For this investigation, we selected two subsets of sites.  The first consisted of all sites 

of <5 years since fire, as at 2007 (fire years 2003-2006) (n=74), separated into two 

categories: those burnt <2 years prior (i.e. fire years 2005 and 2006) (n=25) and 

those burnt 3 – 4 years prior (i.e. fire years 2003-2004) (n=49).  The second subset 

consisted of all sites that were 10 years since fire (i.e. burnt in 1997) and which had 

been burnt uniformly (n=26). 

 

For each site we analysed the proximity to the nearest large patch of unburnt 

vegetation ( ≥27 years since fire) that was readily detectable with satellite imagery 

using ArcGIS software (ESRI, 2009).  In each case these large patches were >5 ha, 



Chapter 4 – Influence of fine-scale spatial patterns of fire on birds 
 

112 
 

although in most cases it represented the vegetation external to the fire boundary.  

Two outlier sites, located >700 m from unburnt vegetation (842 m and 1062 m) were 

excluded from the analysis.  From field visits, we identified whether a site was 

uniformly or patchily burned at a scale smaller than could be detected by satellite 

imagery.  A site was denoted as being burnt patchily where an area of >25 m
2
 

remained unburnt within 60 m of the survey point; it was otherwise denoted as being 

burnt uniformly. 

 

We conducted four rounds of bird surveys, one in each of the Austral spring and 

summer of 2006 – 2007 and 2007 – 2008.  Each survey consisted of a 5 min point 

count, for which an observer stood at a specified survey point and counted all species 

seen or heard within a 60 m radius, and recorded the distance of each bird detected 

from the observer.  For visual records, the distance was measured using an OPTi-

LOGIC
TM

 800LH laser range finder: for aural detections the distance was estimated 

by the observer. We then combined all surveys to document the species present at 

each site. We analysed the distances of species‟ detections using multiple covariate 

distance sampling (Buckland et al., 2004; Marques et al., 2007), using the program 

Distance 5.0 release 2 (Thomas et al., 2006) to investigate changes in detectability of 

species with increasing distance from the observer and with increasing vegetation 

density.  All species were detectable at the extremities (60 m) of the point count and 

vegetation density did not significantly reduce the detectability of any species, thus 

presence or absence and species richness of sites are unlikely to be biased by false 

absences due to differential detectability of species. 
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4.3.3 Statistical analysis 

We used a regression approach to investigate the relationship between species 

richness, and the occurrence of individual species, with the proximity to unburnt 

vegetation and the presence or absence of small unburnt patches at the site 

(patchiness).  We chose to use generalised additive mixed models (GAMMs) as the 

regression framework (Wood, 2006; Zuur et al., 2009).  These models use smoothing 

terms to fit non-linear responses to continuous gradients (Wood, 2006); preliminary 

examination of the data indicated that bird species may show non-linear responses to 

proximity to unburnt vegetation. Additionally, a smoothing term can be fitted to the 

continuous variable at multiple levels of a categorical variable (Wood, 2006).  This 

feature allowed us to fit a separate smoothing term to each level of the categorical 

variable „patchiness‟ (i.e patchy or uniform).  Thus, we could concurrently test the 

influence of proximity on species richness and species occurrence at sites that were 

burnt either patchily or uniformly.  We undertook the modelling in a mixed-model 

framework because the data were necessarily clustered due to the landscape design 

incorporated in the broader investigation.  Mixed models are appropriate where there 

is the potential for systematic variation in the response variable caused by structuring 

in the data (Zuur et al., 2009). 

 

We fitted GAMMs for species richness detected at a site (species richness) and the 

presence or absence of individual species at a site (species occurrence), as Poisson 

and binomial models, respectively.  The modelling process was undertaken in two 

stages.  First, models were fitted to the subset of sites that were <5 years since fire.  

These models tested the effect of proximity to unburnt vegetation (≥27 years since 

fire) and patchiness on species richness and species occurrences after fire.  A 
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smoothing term was used for proximity to unburnt vegetation (continuous variable), 

fitted to each level of the patchiness variable, and patchiness was included as a 

categorical variable also. Additionally, time-since-fire was included as a categorical 

variable (i.e. 1 – 2 years since fire, or 3 – 4 years since fire) to test for patterns in 

occurrence of species at sites with increasing age.  A variable representing the 

position of sites along the gradient of aridity, denoted by the geographic northing 

unit (World Grid System 1984), was also included to account for possible changes in 

occurrence of species due to broad-scale biogeographic factors.  Second, to ascertain 

the time-frame over which colonisation from unburnt vegetation may occur, we 

investigated the relationship of species richness and occurrence with proximity to 

unburnt vegetation at sites that were 10 years since fire.  This was conducted using 

only uniformly burnt sites.  Consequently, only the proximity of vegetation and 

position along the gradient of aridity were included in this analysis.  Model 

definitions are shown Table 4.1.  Responses were considered significant where 

p<0.05 for the proximity term (which used a smoothing function) and, for linear 

terms, where the coefficient ± 2SE did not overlap with zero.  Model fit was 

interpreted as the proportion of the total deviance explained (D
2
). 
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Table 4.1 Definitions of models of the relationship between species richness and 

occurrence of individual species (presence-absence) with proximity of unburnt 

vegetation (proximity) and patchiness of sites (patchiness).  Also included are 

linear predictors northing and time-since-fire (1-2 or 3-4 years-since-fire).  Model 

definitions include terms fit with a smoothing function (s) and the categorical 

variables at which the continuous variable is fitted to each level (by). 

Dataset N Response Variable Model Definition Distribution 

<5 years-since-fire 74 Species richness s(proximity, by patchiness) + patchiness 

+time-since-fire + northing 

Poisson 

     
<5 years-since-fire 74 Individual species s(proximity, by patchiness) + patchiness  

+ time-since-fire + northing 

Binomial 

     
10 years-since-fire 26 Species richness s(proximity) + northing Poisson 

     
10 years-since-fire 26 Individual species s(proximity) + northing Binomial 

 

 

4.4 Results 

The four surveys, at each of the 100 survey sites included in this study, detected 44 

species of birds with most being recorded infrequently.  Twenty-seven species were 

recorded at 10 or fewer sites, 12 species were detected at between 10 and 30 sites and 

five species between 30 and 55 sites.  

 

4.4.1 Response of species richness to fine-scale spatial patterns of fire 

Species richness of birds generally was low in recently burnt vegetation (<5 years-

since-fire) (mean = 4.12, range 0 - 14 species).  Species richness was influenced by 

both proximity to unburnt vegetation (≥27 years-since-fire) and presence of unburnt 

patches of vegetation at the site, which together explained a large proportion of the 

variance in the data (Table 4.2).   Species richness declined with increasing distance 

to unburnt vegetation (Fig. 4.1).  This pattern was exhibited in both patchy and 
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uniformly burnt sites, although patchily burnt sites showed consistently higher 

species richness across the entire gradient in proximity (Fig. 4.1).  Species richness 

was higher in sites 3 – 4 years-since-fire than sites <2 years-since-fire (Fig. 4.1). At 

sites of 10 years-since-fire, there was no significant relationship between species 

richness and proximity of unburnt vegetation (Table 4.2 & Fig. 4.2). We did not 

detect any relationship between species richness and position along the north-south 

gradient of aridity, consequently values are not reported.   

 

 

Table 4.2 Parameters for models of the relationship of species richness with 

fine-scale spatial properties of fire. Two data sets are presented; a) Sites <5 years-

since-fire, model defined by a smoothed term for proximity to unburnt vegetation 

fitted to both patchy and uniform sites, with patchiness and time-since-fire included 

as linear terms; b) 10 years-since-fire, uniformly burnt sites, smoothed term fitted to 

proximity to unburnt vegetation. The degree of smoothing is denoted by the 

estimated degrees of freedom (edf). Significant responses are shown in bold type. 

Model N D
2
 

Patchiness 

category 

Proximity Patchiness 

coefficient 

(SE) 

Time-since-fire 

coefficient 

(SE) 
edf F P 

a)  <5 years-since-fire 72 0.60 
Patchy 

Uniform 

1 

1 

7.03 

15.81 

0.010 

<0.001 
0.41 (0.16) 0.48 (0.23) 

         b)  10 years-since-fire 26 0.06 Uniform 1 1.48 0.237 
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Figure 4.1 Relationship between species richness of birds and proximity of a site 

to unburnt vegetation (>27 years-since-fire) for sites <5 years-since-fire.   Lines 

represent the modelled response and points show raw data for each level of the 

model: black dashed line and crosses = 3 – 4 years-since-fire and patchily burnt, 

black solid line and black circle points = 3 – 4 years-since-fire and uniformly burned, 

grey solid line and grey circle points =  <2 years since fire and uniformly burned. 

 

 

 
Figure 4.2 Relationship between species richness of birds and proximity of a site 

to unburnt vegetation (> 27 years-since-fire) for sites 10 years-since-fire and 

uniformly burned. 
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4.4.2 Responses of individual species to fine-scale spatial patterns of fire 

Models of the relationship between the occurrence of individual species and fine-

scale spatial patterns of fire were built for species that were encountered at ≥20% of 

sites in vegetation <5 years-since-fire (i.e. ≥15 sites).  This resulted in models for six 

species.  There was substantial variation in the deviance explained by each model 

(Table 4.3).  Probability of occurrence decreased with increasing distance from 

unburnt vegetation for three species, the Jacky Winter, Spotted Pardalote and the 

White-eared Honeyeater (Fig 4.3).  This pattern was evident only at sites burnt 

uniformly, not at sites containing unburnt patches (Table 4.3).  Species which 

displayed a significant response to proximity of unburnt vegetation in sites <5 years-

since-fire, were also modelled for vegetation 10 years-since-fire.  In this age-class, 

there was no evidence for a pattern of reduced occurrence with proximity from 

unburnt vegetation for either the Spotted Pardalote or the White-eared Honeyeater 

(there were insufficient records (N=2) for the Jacky Winter to be modelled) (Table 

4.3).   

 

The ground-dwelling Chestnut Quail-thrush was strongly influenced by the presence 

of unburnt patches at recently burnt sites, but did not display a significant response to 

proximity (Table 4.3). Seventeen of the 19 records for this species were at sites that 

were patchily burned.  This species was recorded more frequently in sites of 3-4 

years-since-fire than <2 years since fire (Table 4.3).   

 

We detected significant variation along the north-south aridity gradient for two 

species, the White-eared Honeyeater (coefficient = -2.69 x 10
-5

, SE = 1.14 x 10
-5

) 

and Chestnut Quail-thrush (coefficient = 1.17 x 10
-5

, SE=5.27 x 10
-6

), which were 

recorded more commonly in southern sites and northern sites, respectively.  
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Table 4.3 Parameters for models of the relationship between the frequency of 

occurrence of species and fine-scale spatial properties of sites. Two data sets and 

model definitions are presented: a) sites <5 years-since-fire, with models defined by 

a smoothed term for proximity to unburnt vegetation fitted to both patchy and 

uniform sites, with patchiness and time-since-fire included as linear terms; b) 10 

years-since-fire, uniformly burnt sites, with a smoothed term fitted to proximity to 

unburnt vegetation. Model fit is the proportion of the total deviance explained by the 

model.  Coefficients for linear responses to patchiness and time-since-fire are 

measured against the reference variables of „patchy‟ and „3-4 years old‟ respectively. 

Amount of smoothing is indicated by the estimated degrees of freedom (edf) for 

smoothing term. Significant responses are shown in bold type. 

Model N D
2
 

Patchiness 

category 

Proximity Patchiness 

coefficient 

(SE) 

Time-since-fire 

coefficient (SE) edf F P 

a)  <5 years-since-fire  

Chestnut Quail-thrush 

Cinclosoma castanotus 
19 0.48 

Patchy 1 0.45 0.505 
-52.36 (4.68) -42.75 (4.31) 

Uniform 1 3.52 0.072 

Chestnut-rumped Thornbill 

Acanthiza uropygialis 
28 0.08 

Patchy 1 0.11 0.741 
-0.32 (0.72) 0.84 (0.86) 

Uniform 1 0.20 0.654 

Grey Butcherbird 

Cracticus torquatus 
20 0.18 

Patchy 1 2.99 0.088 
0.02 (1.07) 0.32 (0.85) 

Uniform 1 1.20 0.277 

Jacky Winter 

Microeca fascinans 
15 0.05 

Patchy 1 0.37 0.546 
-0.63 (0.76) 1.08 (1.38) 

Uniform 1 4.96 0.029 

Spotted Pardalote 

Pardalotus punctatus 
22 0.46 

Patchy 1 0.58 0.451 
0.09 (0.73) -0.5 (1.84) 

Uniform 1 4.17 0.045 

Weebill 

Smicrornis brevirostris 
31 0.32 

Patchy 1 0.16 0.687 
-2.31 (1.37) -0.02 (0.9) 

Uniform 1 1.02 0.317 

White-eared Honeyeater 

Lichenostomus leucotis 
27 0.57 

Patchy 1 1.08 0.302 
-0.71 (0.86) 0.93 (1.41) 

Uniform 1 5.56 0.021 

         
b)  10 years-since-fire  

Spotted Pardalote 

Pardalotus punctatus 
12 0.09 Uniform 1 0.01 0.925 

  

White-eared Honeyeater 

Lichenostomus leucotis 
21 0.07 Uniform 1 0.46 0.507 
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Figure 4.3 The relationship between occurrence of species at sites <5 years-

since-fire with proximity of a site to unburnt vegetation (>27 years-since-fire).  

Plots are for three species of birds that displayed a significant response; a) Jacky 

Winter, b) Spotted Pardalote, and c) White-eared Honeyeater.  Modelled relationship 

(±SE) and raw data are shown. Plots represent only uniform sites, where species 

displayed a significant relationship.  
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4. 5 Discussion 

We made three predictions about patterns in species richness and occurrence of 

individual species of birds expected under different post-fire scenarios.  First, under a 

scenario of species colonising recently burnt sites from nearby unburnt vegetation, 

we predicted that species richness and occurrence would decline with distance from 

unburnt vegetation.  This pattern was evident for species richness and for three of the 

seven species modelled. Second, we predicted that in a scenario where small unburnt 

patches act as refuges, or are preferentially colonised, species richness and 

occurrence would be greater at sites burnt patchily.  This pattern too was evident for 

species richness and for one species. Third, we predicted that if small unburnt 

patches primarily represent refuges, rather than colonised sites, then sites that contain 

small unburnt patches should display lesser declines in species richness and 

occurrence of species with proximity from unburnt vegetation.  The results for 

individual species and species richness varied in relation to this prediction.  Species 

richness did decline with distance from unburnt vegetation, regardless of whether 

sites were burnt patchily or uniformly; however, individual species displayed a 

significant decline with distance from unburnt vegetation only where sites were burnt 

uniformly.  Thus, while small unburnt patches may act as refuges for some individual 

species, richness patterns suggest that these sites are also colonised by species from 

larger patches of unburnt vegetation. 

 

4.5.1 The effect of proximity to large patches of unburnt vegetation on post-fire 

occupancy of species and species richness  

Our data indicate that in mallee ecosystems recently burnt vegetation is commonly 

colonised by birds located in unburnt vegetation ex-situ.  These patterns are 

consistent with those documented for species of Orthoptera in sandhill ecosystems of 
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North America (Knight & Holt, 2005), and suggested for birds in Mediterranean 

ecosystems of Europe (Brotons et al., 2005).  On the other hand, the patterns seen 

here contrast with patterns identified in a study of small mammals, which suggested 

that post-fire population recovery was driven by in-situ survival of individuals, rather 

than ex-situ colonisation (Banks et al., 2011).  Different patterns across taxa indicate 

that multiple strategies and processes contribute to post-fire successional patterns.  

The relationship with proximity to unburnt vegetation disappeared by 10 years post-

fire in this ecosystem, suggesting that the first 10 years are an important period of 

initial colonisation, a pattern consistent with increases in species richness up to 10 

years post-fire, after which richness plateaus (see Chapter 2).   

 

Patterns of colonisation from unburnt areas indicate the importance of the faunal 

assemblages surrounding recently burnt areas.  In large conservation reserves, such 

as those where this investigation took place, patterns of succession may be more 

consistent because unburned vegetation outside the fire boundary can support large 

populations of many species.  In fragmented systems, however, where fires can burn 

a substantial proportion (or the entire area) of a habitat patch in a hostile matrix 

(Menkhorst & Bennett, 1990), the full suite of species may not be present in 

remaining unburnt vegetation.  In this scenario, post-fire successional patterns will be 

influenced by the availability of nearby source populations of species and the 

dispersal capacities of species that may allow them to recolonise the burnt area from 

outside the fragment (Brotons et al., 2005).  This situation is similar to that 

experienced by the Mallee Emu-wren in Billiatt Conservation Park (Clarke, 2005; 

Brown et al., 2009), where almost the entire reserve was burned.   
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4.5.2 Influence of unburnt patches (‘biological legacies’) on the post-fire occupancy 

of species and species richness 

Patchily burnt sites supported more species than uniformly burnt sites.  Two 

mechanisms potentially play a role in determining these observed patterns.  First, 

individual birds may survive at a site due to the patchy nature of the fire, with 

unburnt patches acting as refuges.  In this case, the greater number of species at these 

sites may represent individuals which have persisted from before the fire, and are 

biological legacies themselves.  Second, after fire, species may preferentially 

colonise sites burnt patchily as they represent increased vegetation structure or food 

resources.   

 

Our data indicates that each of these mechanisms may be important.  The clear 

pattern of decreasing species richness with distance from unburnt vegetation, 

suggests that patchy sites are being colonised from ex-situ populations in unburnt 

vegetation.  On the other hand, the occurrence of individual species at patchily burnt 

sites did not show a decline in occurrence with increasing distance.  The Chestnut 

Quail-thrush, a ground dwelling species, was found almost entirely at patchily burnt 

sites, regardless of their proximity to unburnt vegetation.  These patterns lend 

support to the potential for unburnt patches to function as refuges, although neither 

of these patterns precludes the possibility of the species seeking out and travelling 

farther to colonise, patchily burnt sites in a landscape.   

 

Regardless of the mechanism, these data are consistent with the hypothesis that 

biological legacies are an important factor to be considered when interpreting the 

effects of fire on biota (Turner et al., 1998; Franklin et al., 2000), with small patches 

of unburnt vegetation an important determinant of the occurrence of species post-
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fire.  Consequently, patchiness of fires should be recognised in fire management 

strategies.  Patchy fires may result in faster recovery of avifaunal communities and 

potentially provide habitat for some species that may be eliminated in large uniform 

fires.  In this investigation, the Chestnut Quail-thrush appears to be a species unable 

to use uniformly burnt vegetation, but it was reasonably common where vegetation 

was burnt patchily.   

 

4.5.3 Conclusions and management implications 

The strong influence of the proximity to unburnt habitat and the patchiness of a fire, 

have important management implications for species conservation.  In mallee 

ecosystems, fires dramatically alter the vegetation structure and many bird species 

are lost from sites during fire events.  Species primarily recolonise burnt areas from 

vegetation outside the fire event, and may take longer to colonise more-isolated 

uniformly burnt sites.  Larger fires result in broader scale removal of species and 

consequently recolonisation is likely to take longer over greater distances.  In this 

investigation, recovery in species richness took between 5 – 10 years over a distance 

of <1 km.  Colonisation of recently burnt sites depends on populations surrounding 

the burnt area, and the dispersal ability of species.   

 

The relative importance of small patchy fires versus large uniform fires will relate to 

the objectives of fire managers (Driscoll et al., 2010).  In ecosystems where early 

successional specialists are not a major part of the assemblage, such as mallee 

vegetation (see also Lindenmayer et al., 2008), small patchy burns will likely be the 

quickest to be recolonised and have higher species richness.  In other ecosystems, 

however,  where early successional specialists are of key conservation concern and 

require severe fires (Smucker et al., 2005; Hutto, 2008), small patchy burns may be 
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detrimental to species populations, insomuch as they may provide only a limited 

resource for many species.  The fine-scale spatial attributes of fire are a key influence 

on the post-fire occurrence of avifauna, and require careful consideration in planning 

for conservation and fire management scenarios. 

 

For fire sensitive species that are dependent on fire-prone habitats, such as the 

Mallee Emu-wren (Brown et al., 2009) and Eastern Bristlebird (Baker, 2000), and 

here the Chestnut Quail-thrush, employing patchy fire to avoid uniform burning of 

key habitat for the species, but providing protection from large-scale fires that can 

cause severe population declines, may be a useful approach.  However, this type of 

preventative approach may only maintain species in the short term.  The importance 

of the spatial scale of habitat required to support viable populations of a species 

while burnt areas recover to a suitable seral stage is a key area requiring further 

research. 



Chapter 5   

 

Determining the influence of landscape properties of 

fire mosaics on the composition of avifaunal 

communities 

 

 

  

Satellite image of mallee vegetation in Murray Sunset 

National Park, showing multiple fire footprints 

Gilbert‟s Whistler Pachycephala inornata 
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5.1 Abstract 

At landscape scales, multiple fires and the patchiness of individual fires create 

heterogeneous mosaics comprised of different fire-history elements (fire mosaics).  

Despite the well recognised influence of fire on ecosystems, there has been little 

investigation of the effect of the spatial properties of fire mosaics on fauna.  This has 

created an important knowledge-gap because there is a propensity for fire 

management to promote mosaics comprising diverse patches of different fire 

histories.  We examined the relationship between the landscape properties of fire 

mosaics and the composition of avifaunal assemblages in 26 landscapes (each ~12.6 

km
2
) in semi-arid shrublands in south-eastern Australia.  These landscapes 

represented fire-mosaics stratified to vary in the composition and spatial extent of 

fire-history elements.  Using ordination and regression, we investigated the influence 

of five specific properties on the composition of avifaunal assemblages: 1) the 

proportional extent of vegetation >35 years-since-fire; 2) the proportional extent of 

vegetation ≤10 years-since-fire; 3) the diversity of post-fire age-classes; 4) the 

composition of vegetation types; and 5) the geographic location of the landscape.  

Assemblages were strongly affected by a compositional gradient, from landscapes 

dominated by vegetation >35 years-since-fire to those with large proportional extent 

of vegetation ≤10 years-since-fire.  Assemblages were also strongly influenced by a 

geographic gradient in aridity from south to north and, to a lesser amount, by the 

proportional extent of the dominant vegetation type.  These properties together 

explained 31% of the variation in the composition of avifaunal assemblages. The 

composition of the avifauna was not affected by the diversity of post-fire age 

patches.  The relative incidences of birds in nectarivore-insectivore and nectarivore 

dietary guilds declined as the proportional extent of vegetation ≤10 years-since-fire 

increased, creating functionally dissimilar assemblages.  These results suggest that 
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the spatial properties of fire in a landscape should be explicitly considered in 

ecological fire management, with a focus on the proportional extent of particular 

seral stages rather than primarily managing for diversity of seral stages.  
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5.2 Introduction 

Fires create complex heterogeneous mosaics of vegetation (Turner et al., 2001; 

Lloret et al., 2002; Gill et al., 2003).  These arise from burnt and unburnt patches 

created in individual fire events (Turner et al., 1994) and from sequences of fire 

events.  These processes cause spatial variation in the post-fire age and sequential 

fire history of different patches across a landscape (Bradstock et al., 2005). The 

spatial aspects of fire mosaics may significantly influence biotic assemblages (Gill et 

al., 2003; Bradstock et al., 2005; Parr & Andersen, 2006), but there has been little 

empirical research to test this.  Most research in fire ecology has focused on the 

temporal aspects of fire regimes.  Indeed, the spatial properties of fires were not 

recognised in the initial concept of a fire regime (Gill, 1975), although they are now 

considered to be an important component (Bond & Keeley, 2005; Gill & Allan, 

2008). 

 

Different fire histories favour different species and communities (Fox, 1982; Brawn 

et al., 2001; Keeley et al., 2005; Chapter 2; Chapter 3).  This has led to the paradigm 

that a fire mosaic which consists of multiple patches representing different fire 

histories will provide for the requirements of many species/communities and 

promote greater diversity of organisms (Weir et al., 2000; Parr & Andersen, 2006; 

Willson, 2006).  Thus, the diversity of post-fire age-classes has been given 

prominence as a desirable property of fire mosaics.  However, there has been little 

empirical investigation of how fire-induced diversity may affect the composition of 

faunal assemblages, or on the potential influence of other properties of fire mosaics 

on fauna. 
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To investigate the influence of different properties of fire mosaics on the 

composition of faunal communities, it is necessary to take a landscape-level 

approach in which „landscapes‟, which represent different mosaics, are compared 

directly as the unit of investigation.  This contrasts with many studies of the role of 

fire for structuring faunal communities (e.g. Fox, 1982; Hutto, 1995; Barlow & 

Peres, 2004a; Pons & Clavero, 2010; Chapter2; Chapter 3) in which sites or patches 

are the unit of investigation.  The properties of fire mosaics (e.g. proportional extent 

of a fire age-class and the diversity of fire age-classes) are landscape properties that 

are not apparent at sites or patches.  Such an approach, comparing „whole 

landscapes‟, is becoming more common in agricultural systems (e.g. Bennett et al., 

2006; Mortelliti et al., 2010), but to our knowledge has not previously been applied 

in studies of fire ecology. 

 

There are several properties of fire mosaics that may affect the composition of faunal 

assemblages: these include the spatial extent (amount) of particular elements; the 

spatial arrangement (or configuration) of elements; and the composition and diversity 

of elements (Wiens, 1995; Bennett et al., 2006; Fahrig et al., 2011).  These different 

properties may influence the composition of landscape assemblages via several 

mechanisms. For example, the suitability of habitat for many faunal species, and 

communities, varies with time-since-fire (Fox, 1982; Hutto, 1995; Brawn et al., 

2001; Chapter 2; Chapter 3).  The proportional extent of vegetation of different seral 

stages in a landscape may affect the abundance of habitat that supports particular 

species or communities, subsequently resulting in assemblages at the landscape level 

that are dominated by those species/communities (Pons & Bas, 2005). 
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Some additional mechanisms that may influence the composition of species in 

landscapes include: the negative consequences of fragmentation of habitat caused by 

fire; the improved persistence of species afforded by refuges during fire events; and 

the requirement of multiple seral stages by a species.  For example, in human 

modified landscapes, avifaunal communities can be strongly affected by habitat 

fragmentation and habitat loss (Fahrig, 2003).  Fires can turn extensive areas of 

vegetation (e.g. woodland) into fragmented patches in a matrix of different 

vegetation (e.g. shrubland) (Herrando & Brotons, 2002).  For species that require a 

particular seral stage, landscapes that have experienced multiple fires could be 

perceived as fragmented, and have communities with fewer seral stage specialists.  

Refuges in which organisms can survive fire events, and from which they can 

recolonise, may be important for many species (Bradstock et al., 2005; Firth et al., 

2010; Chapter 4).  Heterogeneous landscapes that have not experienced severe 

homogenising fires may support more refuges and thus more refuge-dependant 

species.  Some faunal species have been associated with using multiple seral stages; 

for example, sheltering in one seral stage and feeding in another (Hayward et al., 

2005; Körtner et al., 2007).  Consequently, diverse landscapes containing contrasting 

seral stages may support more of these species.  

 

Fires may also affect the guild structure of communities through changes in 

resources.  For example, loss of fruiting trees is implicated in declines of large-

bodied frugivorous birds in early seral stages of tropical forests in South America 

(Barlow & Peres, 2004b).  Landscape properties, such as the extent of particular seral 

stages, may influence the spatial availability of resources (e.g. nectar, arthropods) 

and total abundance of resources in landscapes, and thus affect those guilds reliant on 

those resources.  These changes in species guilds can provide insights into 
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deterministic processes that affect the composition and functional relationships of 

communities (Simberloff & Dayan, 1991; Suding et al., 2008), and help to develop a 

process-based understanding of the effects of spatial properties of fire on faunal 

assemblages (Whelan et al., 2001). 

 

In this study, we employed a whole-of-landscape design to investigate the influence 

of the properties of fire-induced mosaics on the composition of avifaunal 

assemblages in semi-arid landscapes in southern Australia.  Specifically, we 

investigated the relative influence of the proportional extent of particular fire age-

classes, the diversity of different fire age-classes, the composition of the vegetation 

(represented by the proportional extent of the dominant vegetation type), and the 

position of the study landscape along the main climatic gradient in the region.  

Further, we investigated variation among landscapes in guild structure in the 

avifauna to gain insights into changes in guild structure of assemblages and how 

landscape properties may influence the processes driving these changes. 

 

 

5.3 Methods 

5.3.1 Study Area 

The study area, of 104,000 km
2
, is in the Murray Mallee region of inland south-

eastern Australia (Fig. 5.1).  The region experiences regular fires, with ~ 40% of 

mallee vegetation in the study area being burnt since 1972 (Avitabile et al., 2011).  

The region has local topographic variation mainly arising from a dune-swale system 

(Wasson, 1989).  The region has a semi-arid climate, with a strong south-north 

gradient of increasing aridity represented by many highly correlated climatic 

variables such as rainfall, temperature and evaporation (Pausas & Bradstock, 2007).  
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Mean annual rainfall varies from ~260 – 390 mm across this gradient.  Temperatures 

are high in summer and mild in winter.  In the hottest month (February) the mean 

daily maxima is 33° C and in the coolest month (July) 16° C (Australian Bureau of 

Meteorology, 2010).  

 

5.3.2 Vegetation 

Mallee vegetation has a low canopy (<10 m high) formed by multi-stemmed „mallee‟ 

Eucalyptus species and an understorey of shrubs and grasses (Lunt & Morgan, 2002).  

The vegetation of the region has been classified and mapped into three broad sub-

categories on the basis of detailed floristic analysis; Chenopod Mallee, Triodia 

Mallee and Heathy Mallee, (Haslem et al., 2010).  Here, we examine the avifaunal 

community of mosaics comprising the two dominant vegetation associations Triodia 

Mallee and Chenopod Mallee.  These vegetation types vary in their soil associations 

and their floristic composition.  Triodia Mallee occurs on sandier soils and supports 

an overstorey Eucalyptus dumosa and E. socialis and an understorey dominated by 

Triodia scariosa hummock grasses. Chenopod Mallee supports an overstorey of E. 

oleosa (subsp. oleosa) and E. gracilis and a sparse understorey of diverse shrubs in 

low abundances, such as Olearia spp., Zygophyllum spp. and chenopod species such 

as Maireana spp. and Enchylaena spp. (Haslem et al., 2010). 

 

5.3.3 Study Design 

We employed a whole-of-landscape design, incorporating 28 landscapes, each 4 km 

in diameter (~12.6 km
2
) and selected to represent different fire mosaics (Fig 5.1).  

Landscapes were selected to represent a gradient in two major properties: 1) the 

diversity of time-since-fire age-classes (ranging from 1 – 6 post-fire age-classes) and 

2) a gradient in the proportional extent of vegetation >35 years since-fire (ranging 
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from 0 – 100%).  The spatial distribution of post-fire age-classes was examined by 

digitally mapping the fire history of the entire region, on the basis of 15 overlaying 

individual years of satellite imagery (1972 to 2007) (Avitabile et al., 2011).  The year 

of each fire was determined through consultation with land management agencies 

and by examining land management records (Avitabile et al., 2011).  Two landscapes 

were excluded from the analysis here, as they contained greater than 99% Heathy 

Mallee and were thereby not comparable with other mosaics dominated by Triodia 

Mallee and Chenopod Mallee.  This resulted in a data set containing 26 landscapes. 

 

The avifauna was surveyed by point-counts at 20 sites in each landscape.  Each 

point-count had a 60 m radius.  Point-counts were stratified in proportion to the 

extent of each post-fire age-class present in a landscape (Fig. 5.1), such that for every 

5% of the landscape comprised of a particular post-fire age-class, one site was 

allocated to that age-class. Survey rounds were conducted on four separate occasions, 

once each in the Austral spring 2006, autumn 2007, spring 2007 and autumn 2008.  

All landscapes were surveyed in each survey round, one landscape per day.   

 

In each landscape, 10 point-counts were each surveyed by Rick Taylor and Simon 

Watson, who alternated point-counts between each survey period.  Each point-count 

was surveyed for 5 mins. Surveys commenced within 15 mins of sunrise, the time of 

highest vocal activity for birds.  All detected individuals of each species were 

counted and recorded.  The distance from the centre of the point-count to the location 

of the first detection of each individual was recorded.  Where species were detected 

visually, distance to the individual was measured using an OPTi-LOGIC
TM

 800LH 

laser range finder; for aural detections distance was estimated by the observer.  

Observers had initial training together to ensure comparability of procedures. 
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Figure 5.1 The location of the study region in SE Australia (inset top right 

corner), with the location of landscape mosaic study units shown as circles.  

Dark grey represents extant mallee vegetation in the region.  Two examples of 

different landscape mosaics showing different levels of fire heterogeneity are outset 

below: one consists of a single post-fire age-class and the other contains multiple 

post-fire ages.  These landscapes also depict point-count locations (dots) stratified in 

relation to the proportional extent of fire ages in a landscape. 

 

5.3.4 Detectability of species 

Because variation in detectability amongst species, or of the same species in different 

habitats can introduce variation in ecological studies (Buckland et al., 2001), we 

modelled the detectability of species using distance sampling (Buckland et al., 2001).  

Species too rare to model individually were grouped with more common species that 

display similar detection characteristics following Aldredge et al. (2007).  Because 
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distance is unlikely to be the only parameter influencing detectability, we also tested 

for the effects of vegetation density.  Vegetation density was measured at each site 

using the number of contacts of vegetation with 2 m structure pole, placed at 1 m 

intervals along a 50 m transect.  This measure was used as a covariate in multiple-

covariate distance sampling (Marques et al., 2007).   

 

Density of vegetation did not significantly reduce the detectability of any species. 

The lowest probability of detection at a pointcount was for the combined group 

Mallee emu-wren Stipiturus mallee and Striated Grasswren Amytornis striatus 

(probability of detection = 0.45, 95% CI 0.31 - 0.65, N = 75).  Distance sampling 

analysis was conducted in Distance 5.0 release 2 (Thomas et al., 2006). 

 

 

5.3.5 Properties of mosaics 

Five variables, which represented four properties of fire mosaics, were investigated 

in this study: 1) the spatial pattern of fire history elements; 2) the composition of fire 

history elements; 3) the vegetation composition; and 4) the geographic location of 

the landscape (Table 5.1).  Of many possible variables, we selected a subset for 

which all correlations amongst variables were <0.6 (Spearman rank correlation 

measure).  Of the final subset of variables, two represented the spatial pattern of fire 

history elements; the proportional extent of vegetation ≤10 years since-fire, and the 

proportional extent of vegetation >35 years since-fire.  One variable represented the 

composition of fire history elements; the diversity of time-since-fire patches 

(Shannon‟s diversity index, see Table 5.1).   
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Additional to variables explaining fire history elements, we investigated the extent of 

Triodia Mallee vegetation.  Triodia Mallee and Chenopod Mallee together 

represented >99% cover of the 26 mosaics and consequently the extent of Triodia 

mallee was inversely correlated with Chenopod Mallee (rs = -0.99).  Thus, this 

variable is a measure of the composition of the native vegetation in each landscape. 

Lastly a geographic variable was included to represent the position of the landscape 

in relation to the main environmental gradient across the large study area (~220 km 

north-south).  We chose to use a geographic variable (northing) (Table 5.1) to 

represent this gradient, as ecological variables (e.g. rainfall, temperature) were highly 

correlated, and selecting one of them could present an unsubstantiated impression of 

causality.  Employing northing as a variable allowed examination of the influence of 

spatial properties of the study landscapes in the context of broad-scale biogeographic 

trends. Variables to represent the configuration of particular fire history elements 

(e.g. average patch size, connectivity of patches) were assessed but they were 

correlated too highly (rs >0.6) with other variables. 
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Table 5.1 The names and descriptions of variables selected to represent the 

properties of the study landscapes 

Variable Description 

Spatial patterns of fire history elements  

Extent of vegetation >35 

years since-fire 

Proportion of the landscape comprised of vegetation >35 

years-since-fire 

  
Extent of vegetation ≤ 10 

years since-fire 

Proportion of the landscape comprised of vegetation ≤10 years-

since-fire  

  
Composition of fire history elements  

Diversity of  

time-since-fire patches 

Shannon‟s diversity index for landscapes (McGarigal et al., 

2002): based on the number of age classes in the study 

landscape and proportional extent of each age-class. 

  
Vegetation Composition  

Extent of Triodia Mallee Proportion of the landscape comprised of Triodia Mallee  

  
Environmental Gradient  

Northing Universal Transverse Mercator (UTM) northing unit (World 

Grid System 84 “WGS84”) 

 

 

5.3.6 Statistical analysis 

The avifaunal data was collated to represent the incidence of each species in each 

landscape.  Incidence was defined as the total number of sites (out of 20) at which a 

species was recorded in each landscape.  A species was considered present at a site if 

it was detected at that site during any one of the four survey rounds.  Only species 

that were detected in > 4 study landscapes and which were present in both southern 

and northern parts of the region were included in the analysis.  This resulted in a 

dataset of the incidence of 46 species in each of 26 landscapes.   
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We used principal coordinates of neighbour matrices (PCNM) (Borcard & Legendre, 

2002) to first search for spatial patterning in bird assemblages due to geographic 

location of study mosaics, before considering environmental (e.g. fire, vegetation) 

influences.  In this procedure, the geographic distances between landscapes are 

decomposed into eigenvectors that explain the spatial relationships amongst study 

landscapes.  These eigenvectors are then used as variables to which the response 

variable (i.e. the bird assemblage) is compared through canonical analysis.  If 

patterns in bird assemblages are explained by the spatial PCNM variables, these 

variables can be explicitly tested in concert with environmental variables in a 

modelling framework.  We conducted PCNM on detrended data, by which variables 

were computed only after significant linear trends were removed from the data, as 

these latter trends can be accounted for using simple linear variables (i.e. northing), 

rather than complex PCNM variables. 

 

We used redundancy analysis (RDA) and variation partitioning (Legendre & 

Legendre, 1998) to assess the patterns, and relative influence, of the properties of fire 

mosaics on the composition of avifaunal assemblages among the 26 study 

landscapes.  Redundancy analysis is a linear ordination method analogous to 

principal components analysis (PCA) whereby ordination is conducted on a 

multivariate response table (i.e. species × sites).  However, where PCA extracts all 

variation in the response table (explained and unexplained), redundancy analysis 

constrains the responses to linear combinations of a separate data set (i.e. 

environmental variables), as multiple regression does on a single response variable.  

In this way, the variation in the multivariate response table (all species at sites) can 

be attributed directly to environmental variables. This is contrasting to approaches 

which correlate of gradients in community composition from ordination (i.e. PCA) 
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with environmental variables, which does not clearly represent the variation 

attributable to the environmental variable. 

   

Redundancy analysis employs Euclidean distance as a measure of dissimilarity in the 

species composition data, but this measure has been criticised due to the influence 

zero values have on interpreting ordination data (Legendre & Legendre, 1998).  To 

circumvent these problems, the species data matrix was transformed using the 

methods described in Legendre and Gallagher (2001) to visualise chord distances 

instead of Euclidean distances, which are robust to zero values.  The measure 

commonly employed in redundancy analysis to explain variation (canonical R
2
) can 

be biased by the number of predictors in a model and the sample size; consequently, 

we used an adjusted form ( ) for all measures of variation, which is unbiased by 

these factors (Peres-Neto et al., 2006).  We used forward selection to identify 

variables included in the redundancy analysis model and employed double stopping 

criteria to avoid inflated type I error rates (Blanchet et al., 2008).  Double stopping 

criteria test the influence of each additional variable on the  in addition to the 

usual alpha value, to determine whether additional variables should be included in 

the model.  If an additional variable inflates the  of the reduced model, to more 

than the  of the global model (including all variables and penalised accordingly), 

then variable selection is stopped.  This method provides good discrimination of type 

1 error rates and reduces over-fitting (Blanchet et al., 2008).  We used an alpha value 

of 0.1 as we had limited power to test significance with only 26 landscapes.   

 

We used variation partitioning to calculate the independent and shared contribution 

of variables to the redundancy analysis model.  In this process, variation explained 
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by an individual component of a model (variable or group of variables) is compared 

to: a) variation explained by other components in the model; and b) variation 

explained by the full model (containing all components), and subsequently the 

independent and shared components of variation are then calculated (Legendre & 

Legendre, 1998).    

 

In addition to redundancy analysis, we also carried out a separate analysis of 

avifaunal foraging guilds to gain insights into processes affecting the composition of 

avifaunal assemblages and the functional changes related to different landscape 

properties.  We initially identified guilds based on primary food type, but as 

insectivores make up a disproportionately large portion of the avifaunal assemblage 

(33 of 46 species), they were further divided by their primary foraging zones.  This 

resulted in eight guilds: nectarivores, granivores, nectarivore/insectivores (diets 

include varying levels of nectarivory and insectivory) and insectivores that forage 

primarily in the air, foliage, trunk, shrubs and ground (Table 5.2).  Data on food type 

and foraging zones were obtained from Schodde (1981), checked and adjusted using 

the Handbook of Australian, New Zealand and Antarctic Birds (HANZAB, 2006). A 

complete list of species in each guild is presented in Table 5.2.  

 

We used generalized linear models (GLM) to determine the influence of landscape 

properties on variation in guild structure between landscapes. Response variables 

were the summed incidence of all species within each guild.  This variable was used 

to provide a measure of the abundance of individuals in each guild in each landscape, 

and thus also indicates the amount of resources required by those guilds.   
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Table 5.2 Bird species assigned to each foraging guild and the number of species 

(N) in each guild 

Guild N Species 

Nectarivores 
 

2 Red Wattlebird 

Anthochaera carunculata 
White-fronted Honeyeater 

Purnella albifrons 

 

 

Granivores 5 Australian Ringneck Parrot 

Barnardius zonarius 

Galah 

Eolophus roseicapillus 

 

Regent Parrot 

Polytelis anthopeplus 

Common Bronzewing 

Phaps chalcoptera 

 

Mulga Parrot 

Psephotus varius 

Nectarivore-

insectivores 
6 Black-eared Miner 

Manorina melanotis 

Spiny-cheeked Honeyeater 

Acanthagenys rufogularis 

 

White-eared Honeyeater 

Lichenostomus leucotis 

Brown-headed Honeyeater 

Melithreptus brevirostris 

 

Striped Honeyeater 

Plectorhyncha lanceolata 

Yellow-plumed Honeyeater 

Lichenostomus ornatus 

 

Aerial-

foraging 

insectivore 

6 Dusky Woodswallow 

Artamus cyanopterus 

Masked Woodswallow 

Artamus personatus 

 

White-browed Woodswallow 

Artamus superciliosus 

Jacky Winter 

Microeca fascinans 

 

Rainbow Bee-eater 

Merops ornatus 

Willie Wagtail 

Rhipidura leucophrys 

Foliage-

foraging 

insectivores 

5 Inland Thornbill 

Acanthiza apicalis 

Spotted Pardalote 

Pardalotus punctatus 

 

Weebill 

Smicrornis brevirostris 

Rufous Whistler 

Pachycephala rufiventris 

 

Striated Pardalote 

Pardalotus striatus 

Ground-

foraging 

insectivores 

12 Australian Magpie 

Cracticus tibicen 

Chestnut Quail-thrush 

Cinclosoma castanotus 
Crested Bellbird 

Oreoica gutturalis 
Hooded Robin 

Melanodryas cucullata 

 

Shy Heathwren 

Calamanthus cautus 

Splendid Fairy-wren 

Malurus splendens 
Australian Raven 

Corvus coronoides 
Chestnut-crowned Babbler 

Pomatostomus ruficeps 

 

Grey Butcherbird 

Cracticus torquatus 

Red-capped Robin 

Petroica goodenovii 
Southern Scrub-robin 

Drymodes brunneopygia 
Striated Grasswren 

Amytornis striatus 

Shrub-

foraging 

insectivores 
 

2 Gilbert's Whistler 

Pachycephala inornata 
 

Variegated Fairy-wren 

Malurus lamberti 

 

Trunk & 

branch-

foraging 

insectivores 

8 Black-faced Cuckoo-shrike 

Coracina novaehollandiae 

Chestnut-rumped Thornbill 

Acanthiza uropygialis 

Grey Shrike-thrush 

Colluricincla harmonica 
 

White-browed Babbler 

Pomatostomus superciliosus 

Golden Whistler 

Pachycephala pectoralis 

 

Grey Currawong 

Strepera versicolour 

Varied Sittella 

Daphoenositta chrysoptera 
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Properties of fire-mosaics were standardized to mean 0 and unit variation 1 to allow 

easy interpretation and comparability of regression coefficients (Schielzeth, 2010).  

We used an information theoretic approach and model averaging (Burnham & 

Anderson, 2002) for this analysis.  The modelling was conducted in two steps.  First, 

each landscape variable was tested for non-linearity of responses by fitting two 

univariate models, one with the variable as a linear term and one as a second order 

polynomial term.  Variables were included as a second order polynomial term in 

models where they presented a better fit to the data (ΔAICc >2). Second, we 

conducted model averaging across models representing all combinations of variables 

(32 models).  Model averaging was conducted using the relative weights of evidence 

for each variable on the basis of Akaike‟s information criterion (AIC) adjusted for 

small sample size (AICc), or QuasiAIC adjusted for small sample sizes (QAICc) if 

the data were overdispersed.  The relative weight of evidence (wm) for each variable 

was computed by summing Akaike weights across all models in which that variable 

occurred (Burnham & Anderson, 2002).  Where coefficients ± 2SE did not overlap 

with 0, the variable was considered a useful predictor. 

 

All statistical analyses were conducted in the R statistical environment (R 

Development Core Team, 2009).  The package PCNM was used to conduct principal 

coordinates of neighbour matrices analysis (Legendre et al., 2009). We performed 

redundancy analysis and variation partitioning in the “vegan” community ecology 

package (Oksanen et al., 2009) and forward selection of variables using the 

“packfor” package (Dray et al., 2009).  Generalised linear models and model 

averaging for analyses of guild structure were undertaken using the R base package, 

and code developed by Michael Scroggie (Department of Sustainability and 
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Environment) on the basis of the methodology described in Burnham and Anderson 

(2002). 

 

 

5.4 Results  

A total of 70 species of birds representing 28 families were detected from 560 sites 

across the entire 28 landscapes.  Four species, Chestnut-rumped Thornbill Acanthiza 

urophygialis, Grey Shrike-thrush Colluricincla harmonica, Weebill Smicrornis 

brevirostris and White-eared Honeyeater Lichenostomus leucotis, were recorded in 

all study landscapes.  In contrast, 19 uncommon species were each recorded at sites 

in fewer than four study landscapes (e.g. Crimson Chat Epthianura tricolor, White-

winged Chough Corcorax melanorhamphos, Pied Butcherbird Cracticus 

nigrogularis).  Two species, the Mallee Emu-wren Stipiturus mallee and Purple-

gaped Honeyeater Lichenostomus cratitius were recorded only in study landscapes 

south of the Murray River and one species, the Grey-fronted Honeyeater 

Lichenostomus plumulus was recorded only in study landscapes north of the river.  

After excluding two landscapes that contained almost entirely Heathy Mallee 

vegetation, and species that were uncommon or geographically restricted (as well as 

raptors and night birds for which the sampling design was inappropriate), the dataset 

for analysis consisted of 46 species across 26 landscapes. 

 

5.4.1 Spatial patterning in bird assemblages 

The principal coordinates of neighbour matrices (PCNM) analysis did not reveal any 

significant spatial relationships after the data was detrended of simple linear 

relationships (p=0.73), and consequently no PCNM variables were included in the 
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analysis.  The simple linear relationship in the data was best interpreted through the 

use of the northing variable. 

 

5.4.2 The effect of landscapes properties on species composition 

Using redundancy analysis, four variables were selected in a model relating the 

composition of the avifauna with properties of fire mosaics.  These were northing, 

extent of vegetation >35 years since-fire, extent of vegetation ≤10 years since-fire 

and extent of Triodia Mallee (global model  = 0.31).  The remaining variable, the 

diversity of fire age-classes was not included on the basis of the stopping rule.  The 

composition of species assemblages varied strongly along a gradient from south to 

north, and from landscapes with a proportionally large extent of recently burnt 

vegetation to those with a proportionally large extent of mature vegetation.  To a 

lesser extent, the avifauna also varied along a gradient of the proportional extent of 

vegetation types (Fig 5.2).   

 

The Spotted Pardalote Pardalotus punctatus, Golden Whistler Pachycephala 

pectoralis, and Red Wattlebird Anthochaera carunculata are examples of species 

correlated with southerly landscapes, whereas Gilbert‟s Whistler Pachycephala 

inornata, Southern Scrub-robin Drymodes brunneopygia, and Striated Grasswren 

Amytornis striatus are examples of species correlated with northerly landscapes.  The 

proportional extent of mature vegetation and of recently burnt vegetation (≤10 years 

since-fire) formed a single strong gradient (Fig 5.2).  The Yellow-plumed 

Honeyeater Lichenostomus ornatus, Spiny-cheeked Honeyeater Acanthagenys 

rufogularis, and Striped Honeyeater Plectoryncha lanceolata, are examples of 

species associated with landscapes having a large proportional extent of vegetation 
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>35 years since-fire.  Few species were associated with landscapes having increased 

extent of recently burnt vegetation.  The White-eared Honeyeater Lichenostomus 

leucotis, was correlated with the proportional extent of Triodia Mallee. 

 

The landscape properties of fire mosaics explained a substantial proportion of the 

total variation in the composition of avifaunal assemblages ( =0.31). The greatest 

amount of independent variation (i.e. excluding components shared with other 

variables) was explained by the environmental gradient (northing) (  = 0.154), 

followed by the extent of vegetation >35 years-since-fire (  = 0.073), extent of 

Triodia Mallee vegetation (  = 0.049) and extent of vegetation ≤10 years-since-fire 

(  = 0.023) (Table 5.3).  The variables representing time-since-fire displayed 

substantial shared variation with the other variables in the model (  = 0.037 and  

= 0.042 for the proportional extent of vegetation >35, and ≤10 years-since-fire, 

respectively) (Table 5.3).  This suggests that these variables produced patterns in the 

composition of the avifauna also described by other variables in the model.  In 

contrast, the geographic position of landscapes (northing) and the extent of Triodia 

Mallee, displayed negative portions of shared variation.  This pattern indicates that 

when these variables are considered in the full model (i.e. when variables are 

considered with other variables) they explain a greater amount of variation than the 

summed variation explained by these variables when considered alone (i.e. not with 

the other variables) (Legendre & Legendre, 1998).   
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Figure 5.2 Redundancy analysis triplot displaying the relationship of the species 

composition of landscapes (weighted sums of species scores = solid circles) with 

landscape properties (constraining variables = vectors), and the relationship of 

species (species scores = open circles) with landscape properties.  Only species 

with larger scores are labelled. Species and sites are scaled on the primary x and y 

axes, and environmental vectors are scaled on the secondary x and y axes. Length of 

environmental vectors indicates the strength of its relationship with the composition 

of the avifauna.  
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Considering that the proportional extent of >35 years-since-fire and of  ≤10 years-

since-fire largely represented a single gradient in the composition of the assemblage 

(Fig. 5.2), we investigated the component of variation explained when these two 

variables are considered in combination.  In this instance, the variation explained by 

this gradient includes a large portion of the overall variation (  = 0.144) (Table 

5.2). 

 

 

Table 5.3 The proportion of total variation in composition of the avifaunal 

assemblage explained by different landscape properties obtained through 

variation partitioning. Results represent the variation explained independently, and 

shared with other variables (  ), in the full RDA model.  Full model  = 0.31 (NB: 

shared variation takes on a negative value where a variable's independent 

contribution to the full model is greater than its variation explained in a univariate 

model; Legendre & Legendre, 1998). 

Variable 

Independent 

component of 

variation 

Shared 

component of 

variation 

Individual Variables 
  

 Northing 0.154 -0.036 

 Extent of vegetation >35 years since-fire 0.073 0.037 

 Extent of vegetation ≤10 years since-fire 0.023 0.042 

 Extent of Triodia Mallee 0.049 -0.007 

   Combined Variables 
  

 Extent of vegetation >35 years since-fire 

 Extent of vegetation ≤10 years since-fire  
0.144 -0.025 

 



Chapter 5 - Fire mosaics and avifaunal composition 

 

 

149 

 

 5.4.3 The effect of landscape properties on species foraging guilds 

The combined incidence of bird species in five of the eight foraging guilds was 

significantly influenced by at least one of the landscape properties; however, the 

degree of influence varied amongst guilds (D
2
 = 0.11 – 0.66) (Table 5.4).  The 

incidence of nectarivore-insectivores declined with increasing extent of vegetation 

≤10 years-since-fire, and there was also a trend for a similar decline in incidences of 

nectarivores (Table 5.4, Fig. 5.3 a & b).  There was a lower incidence of granivores, 

and trunk and branch foraging insectivores, in landscapes with large proportional 

extent of Triodia Mallee vegetation, although these patterns were heavily influenced 

by a few points (Table 5.4, Fig 5.3 b & c). The incidence of aerial-foraging 

insectivores and ground-foraging insectivore were not influenced by landscape 

properties.   

 



 

 

 

 

Table 5.4 Results from generalized linear models of the relationship between landscape properties and the summed incidence 

of species in each foraging guild. For each foraging guild, results presented include the model-averaged coefficient (SE), the relative 

weight of influence (summed Akaike weights of evidence = ∑wm) and proportion of total deviance explained (D
2
 calculated from the 

global model). Values shown in bold are those for which the coefficient ± 2SE does not overlap with zero.  A 2
nd

 coefficient is shown 

for second order polynomial terms where the variable was better represented by that shape than a linear response (Δ AICc > 2). 

Guild 
 

Northing 
Extent of Triodia 

Mallee 

Extent of ≤10 

years-since-fire 

Extent of >35 

years-since-fire 

Diversity of time-

since-fire patches 
D

2
 

Nectarivores 

Coeff. (SE) 0.00 (0.05) 0.11 (0.19) -0.29 (0.15) 0.01 (0.07) 0.15 (0.13) 

0.46 2
nd

 Coeff. (SE) 
 

0.08 (0.15) 
   

∑wm 0.18 0.33 0.86 0.20 0.63 

        

Granivores 

Coeff. (SE) 0.01 (0.05) 0.13 (0.16) -0.03 (0.08) 0.01 (0.05) 0 (0.06) 

0.51 2
nd

 Coeff. (SE) 
 

0.29 (0.1) 
   

∑wm 0.18 0.99 0.24 0.18 0.17 

        

Nectarivore- 

insectivores 

Coeff. (SE) -0.1 (0.04) 0.02 (0.06) -0.18 (0.05) 0.01 (0.03) 0.00 (0.01) 

0.60 2
nd

 Coeff. (SE) 
 

0.01 (0.02) 
  

0.00 (0.01) 

∑wm 0.87 0.19 0.99 0.22 0.04 

        

Ground-foraging 

insectivores 

Coeff. (SE) 0.01 (0.03) -0.01 (0.03) 0.02 (0.04) -0.02 (0.04) 0.01 (0.03) 

0.11 2
nd

 Coeff. (SE) 
     

∑wm 0.29 0.29 0.35 0.37 0.28 



 

 

 

 

Guild 
 

Northing 
Extent of Triodia 

Mallee 

Extent of ≤10 

years-since-fire 

Extent of >35 

years-since-fire 

Diversity of time-

since-fire patches 
D

2
 

Shrub-foraging 

insectivores 

Coeff. (SE) 0.84 (0.21) -0.03 (0.1) 0.01 (0.08) 0.06 (0.12) 0.01 (0.09) 

0.59 2
nd

 Coeff. (SE) -0.84 (0.24) 
    

∑wm >0.99 0.24 0.19 0.32 0.20 

        
Trunk & branch-

foraging 

insectivores 

Coeff. (SE) 0.00 (0.03) -0.14 (0.06) -0.01 (0.06) 0.00 (0.02) -0.04 (0.07) 

0.39 2
nd

 Coeff. (SE) 
  

0.01 (0.05) 0.01 (0.05) 
 

∑wm 0.19 0.86 0.08 0.10 0.36 

        

Foliage-foraging 

insectivores 

Coeff. (SE) -0.2 (0.06) 0.01 (0.04) -0.02 (0.06) -0.04 (0.04) 0.00 (0.03) 

0.47 2
nd

 Coeff. (SE) 
 

0.01 (0.04) 
   

∑wm >0.99 0.10 0.32 0.23 0.19 

        

Aerial-foraging 

insectivores 

Coeff. (SE) 0.03 (0.07) 0.04 (0.11) -0.38 (0.28) 0.17 (0.12) -0.02 (0.07) 

0.66 2
nd

 Coeff. (SE) 
 

0.05 (0.1) 0.26 (0.21) 
 

0.03 (0.08) 

∑wm 0.29 0.26 0.63 0.73 0.21 
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Figure 5.3 The relationship between the summed incidences for species assigned 

to a foraging guild and landscape properties, for different foraging guilds; a) 

nectarivore-insectivores and extent of vegetation ≤10 years-since-fire; b) 

nectarivores and extent of vegetation ≤10 years-since-fire (trend), c) granivores and 

extent of Triodia Mallee d) trunk and branch foragers and extent of Triodia Mallee. 

Extent represents the proportion of the landscape comprising each landscape 

element. Points = raw data, lines = modelled response. 
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5.5 Discussion 

Understanding the impact of the spatial properties of fire on biota is a key challenge 

for fire ecology and conservation management (Bradstock et al., 2005; Driscoll et 

al., 2010).  To investigate the spatial properties of fire, we conducted a large-scale 

natural experiment, whereby we studied fire mosaics at the level of whole-landscapes 

(1256 ha) and related this to avifaunal composition measured at the same scale.  This 

approach offered insights into the influence of the spatial properties of fire mosaics 

on biota at a scale which is commensurate with that at which land managers operate. 

 

The spatial properties of fire mosaics were an important factor affecting the 

composition of the avifaunal assemblage; warranting their importance in fire 

management for biodiversity conservation (Driscoll et al., 2010).  The composition 

of avifaunal assemblages changed along a gradient in the proportional extent of 

vegetation ≤10 years-since-fire to vegetation >35 years-since-fire; with contrasting 

assemblages at each end of the gradient.  Interestingly, the diversity of different time-

since-fire ages did not affect avifaunal composition, questioning the degree to which 

heterogeneity should be a primary focus for management (Parr & Andersen, 2006).  

The proportional extent of Triodia Mallee and the biogeographic position of study 

landscapes influenced the assemblage, indicating the importance of also considering 

the interaction of non-fire related influences when determining the response of 

species to fire (Driscoll et al., 2010).  The relative incidence of nectarivore-

insectivores was lower in landscapes with greater extent of young post-fire 

vegetation (≤10 years since-fire) and a similar response was detected for 

nectarivores; patterns likely to be driven by the availability of nectar.  These changes 
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highlight that mosaic properties can affect not only species composition but also the 

functional composition of assemblages.   

 

5.5.1 The effect of landscape properties of fire on the composition of avifaunal 

assemblages 

The extent of „habitat‟ is an important element affecting richness and composition of 

faunal assemblages in landscapes (Turner et al., 2001; Bennett et al., 2006; Haslem 

& Bennett, 2008).  Post-fire seral stage is an important factor determining habitat 

suitability for many faunal species (Fox, 1982; Brawn et al., 2001; Jacquet & 

Prodon, 2009; Chapter 2) and faunal communities (Hutto, 1995; Chapter 3).  It 

follows then, that spatial parameters of seral stages (i.e. their proportional extent) 

will affect the spatial availability of suitable habitat for species and assemblages 

which depend on them.   

 

We identified an important influence of a gradient in the proportional extent of fire 

age-classes, from older (>35 years-since-fire) to younger (≤10 years-since-fire) on 

the composition of avifauna in a landscape.  Many bird species displayed their 

highest frequency of occurrences in vegetation >35 years since-fire (e.g. Yellow-

plumed Honeyeater, Striated Pardalote, Spiny-cheeked Honeyeater; Chapter 2)  and 

lowest occurrences in vegetation ≤10 years-since-fire, with few species showing the 

opposite pattern (e.g. Chestnut-rumped Thornbill; Chapter 2).  Consequently, the 

uniform nature of this gradient means that the response of species to increasing the 

proportional extent of older vegetation (>35 year-since-fire) will result in a similar 

directional change to that of decreasing extent of younger vegetation (<10 years-

since-fire).  Although, several species also display bell-shaped responses, such that 
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the frequency of occurrence declines in older vegetation (e.g. White-eared 

Honeyeater and Spotted Pardalote; Chapter 2); these declines usually occurred in 

vegetation <35 years-since-fire. 

 

The proportional extent of Triodia Mallee, independent of fire age, also affected the 

composition of the avifauna.  Many species (13 out of 30 in Chapter 2) occurred 

more commonly in one or other of the major vegetation associations (e.g. Grey 

Shrike-thrush in Chenopod Mallee and Striated Grasswren in Triodia Mallee).  The 

different vegetation types offer different resources for bird species; for example, the 

Striated Grasswren is associated with Triodia hummock grasses which it uses for 

refuge and nesting (HANZAB, 2006).  Consequently, landscapes with a greater 

proportional extent of a particular vegetation type provide an increased amount of 

particular resources for a subset of species, thus supporting different assemblages. 

 

A higher level of biodiversity delivered through a greater diversity of patches of 

different fire history is a common paradigm in fire ecology (Gill et al., 2003; 

Fuhlendorf et al., 2006; Burrows, 2008), but empirical research into its relationship 

with the composition of faunal assemblages is limited.  A diversity of time-since-fire 

ages may influence the composition of assemblages in several ways, for example 

through reduced habitat or fragmentation of habitat for seral stage specialists, by 

improved persistence of species that are protected by unburnt refuges during fire 

events (Bradstock et al., 2005; Firth et al., 2010) and by provision of multiple seral 

stages for species that move among habitats for different resources (e.g. forage in one 

habitat and nest in another) (Woinarski, 1999; Hayward et al., 2005; Körtner et al., 

2007).  We did not detect an effect of fire age-class diversity on bird species 
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composition in these study landscapes.  In large reserve systems, such as those 

investigated here, increased diversity of fire age-classes may be less likely to cause 

fragmentation or habitat reduction effects as species are likely to be able to persist in 

other parts of the reserve.  Likewise, persistence of species in a large reserve may not 

be as dependant on local patchiness of fires to provide refuge or protection, as it 

would be in smaller and more isolated habitat patches.  An important issue is that the 

diversity metric does not account for what types of post-fire age-classes contribute to 

the diversity.  Landscapes with equivalent numbers of different age-classes and 

comprising proportionally equivalent areas can have the same „diversity‟ regardless 

of the fire history.  For example, three age-classes might be 2, 5 and 10 years; or 2, 

15, and >35 years-since-fire, which would offer quite different habitats for the 

avifauna.  Thus, while diversity per se may not strongly influence avifaunal 

composition, it is possible that particular aspects of diversity may do so: for instance, 

the presence of two particular time-since-fire ages (e.g. for parrot species, older 

vegetation that provides large hollows and younger vegetation with diverse herbage 

and seed production). 

 

Studies in which „landscapes‟ are the unit of investigation often are conducted over 

large geographic areas, and it is common that biogeographic variables are also 

important predictors of species assemblages (Bennett et al., 2006).  In this study, we 

detected variation in avifaunal assemblages along the south-north environmental 

gradient (i.e. northing).  This pattern is likely to be the product of several factors, 

including the strong aridity gradient, which is correlated with changes in the species 

composition of the flora (Pausas & Bradstock, 2007).  There is also a biogeographic 

gradient, with intergradation of species evolved in the Bassian biogeographic region 



 

 

157 

 

to the south-east, and the Eyrean region to the north-west (Schodde, 1981).  For 

example, there were higher incidences of the Eyrean-associated Gilbert‟s Whistler 

Pachycephala inornata and the Basssian associated Golden Whistler Pachycephala 

pectoralis in northerly and southerly mosaics, respectively.  While in this 

investigation we do not aim to untangle these patterns, it highlights the importance of 

interpreting effects of fire-induced changes to assemblages in the light of other 

broad-scale processes.   

 

Recently, Gilbert and Bennett (2010) identified some shortfalls in variation 

partitioning approaches, with the potential for the variation attributed to particular 

variables being under-represented. In light of the potential biases of variation 

partitioning approaches (Gilbert and Bennett, 2010), we suggest that further research 

will be required to untangle the relative influence of different spatial and 

environmental processes on faunal community composition in landscapes, ideally 

using manipulative experiments.   

 

5.5.2 The influence of landscape properties on species guilds; insights into functional 

changes in avifaunal assemblages and processes driving changes 

Understanding the processes by which changes in ecosystems are effected is a major 

focus of ecology (Suding et al., 2008).  Process-based understanding of the effects of 

fire on biota is critical for conservation to allow prediction of changes to species 

under different fire scenarios (Whelan et al., 2001; Driscoll et al., 2010).  Fire can 

alter the availability of resources for different types of species.  Here, the incidence 

of nectarivore-insectivores declined with proportional extent of younger vegetation 

(≤10 years-since-fire), and nectarivores responded similarly.  Thus, landscapes with 
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greater extent of recent post-fire vegetation resulted in functionally different 

avifaunal assemblages, deficient in nectar-feeding species.  

 

Eucalyptus flowering, and hence nectar production, is much reduced in vegetation 

≤10 years-since-fire (Chapter 3).  This reduction will be magnified by the spatial 

extent of such younger vegetation, such that reduced nectar availability, an important 

food for honeyeaters (Ford & Paton, 1976a; Ford & Paton, 1976b), occurs over large 

parts of the landscape.  In mallee vegetation, large fires occur regularly.  From 1972 

– 2007, 16 fires >10 000 ha occurred in the Murray Mallee region, with three fires 

>100 000 ha.  These fire areas represent large areas which will essentially be devoid 

of eucalypt nectar for up to 10 years.  At the site scale, the richness of nectarivore-

insectivores increased from very low levels directly after fire to an asymptote 

reached at ~10 years-since-fire (Chapter 3).  However, nectarivores did not display a 

relationship with time-since-fire at the site scale (Chapter 3), and thus a landscape-

scale response suggests that the spatial component of nectar resource reductions is 

important.  

 

At the scale of individual sites, relationships of nectarivores with time-since-fire may 

be masked by alternative processes, such as nomadic movements (Woinarski, 2006). 

However, when fires occur across large areas (e.g. >10 000 ha), as regularly occurs 

in the Murray Mallee, resources are restricted across broad areas.  Species 

occurrences may be more limited by this because the total amount of the available 

resource within the species sphere of movement suffers greater depletion.  The 

incidence of nectarivores typically was low in landscapes dominated by younger 

vegetation, but it also was low in some landscapes which had only small proportional 
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extent of younger vegetation; thus contributing to the marginal significance of this 

relationship. This relationship requires further research as nectarivores are 

represented by two species only in this system.  Nevertheless, coupled with the 

decline in nectarivore-insectivores, the spatial availability of nectar resources appears 

likely to be an important factor affecting species distributions at broader scales of 

landscapes and regions. 

 

Incidences of granivores, and trunk and branch foragers, declined with the 

proportional extent of Triodia Mallee vegetation (and increased with proportional 

extent of Chenopod Mallee).  The relationship for granivores should be interpreted 

with caution as it was heavily influenced by two landscapes.  More-open Chenopod 

Mallee vegetation associations support a range of low shrubs (Haslem et al., 2010), 

increased ephemeral grasses (Noble & Vines, 1993), and greater number of tree 

hollows (Haslem, A. unpublished data).  Thus, the extent of Chenopod Mallee may 

affect the abundance of seed resources and nesting resources.  With the exception of 

the Common Bronzewing, all granivores were hollow-nesting parrots.  Declining 

incidences of trunk and branch foragers with increasing proportional extent of 

Triodia Mallee may be indicative of differences in mid-storey structure between the 

two vegetation types (Haslem et al., 2011), which may influence the availability of 

foraging resources. 

 

5.5.3 Conclusions and management considerations 

A current propensity to focus on heterogeneity of seral stages to create complex 

mosaics (e.g. Burrows, 2008), has resulted in questions regarding the relative 

benefits of different mosaic structures for fauna (Bradstock et al., 2005; Parr & 
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Andersen, 2006).  By using a whole-of-landscape approach, we show that the spatial 

properties of fire mosaics have an important influence on the composition of 

avifaunal assemblages.  In particular, the proportional extent of age-classes along a 

gradient from younger to older vegetation is an important property, which causes 

changes in the species composition and can alter resource availability and functional 

composition of assemblages.  Diversity per se of different fire-ages was not found to 

influence the composition of avifaunal assemblages. This finding suggests that 

management based on manipulating the extent of specific seral stages will deliver 

more predictable outcomes for fauna.  However, further research is required to 

investigate how specific types of diversity may influence biota (e.g. specific 

combinations or contrasts of multiple fire ages).  Whole-of-landscape approaches are 

a novel and useful method for examining these questions.  Furthermore, all fire 

management must take into account other factors, such as the extent of non-fire 

induced habitat elements, and broader environmental geographic gradients.   
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6.1 Overview 

Fire is widely recognised as an important natural disturbance that structures 

ecosystems and affects biotic and abiotic processes worldwide (Bond et al., 2005; 

Bowman et al., 2009).  From a theoretical ecology perspective, the ubiquity of fire in 

many ecosystems stimulates an inherent curiosity into its effects on ecological 

communities.  From a conservation perspective, understanding the effects of fire on 

fauna is of fundamental importance, because different patterns of fire in ecosystems 

may preserve or threaten ecological communities (Gill et al., 1999; Noss et al., 

2006).    

 

Fire can have a major influence on avifaunal assemblages (Brawn et al., 2001) and 

several bird species may be dependent on, or threatened by, particular fire regimes 

(Hutto, 1995; Woinarski, 1999), such that management of fire is a key conservation 

issue for avifaunal conservation (Brawn et al., 2001; Skowno & Bond, 2003; Ukmar 

et al., 2007).  Yet, even in fire-prone ecosystems, there still remain substantial 

knowledge gaps concerning the effects that fire has on many avifaunal communities, 

or the processes by which fire brings about changes in avifaunal assemblages.  

 

Although there has been extensive clearing of native vegetation in the Mallee region 

of southern Australia, large swathes of mallee vegetation and an extensive reserve 

system remain.  Despite this, many bird species continue to decline in this ecosystem 

(Garnett & Crowley, 2000).  Considering the importance of fire in structuring 

avifaunal communities in mallee ecosystems, appropriate management of fire is a 

critical component of the conservation of birds in mallee. 
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Temporal changes in species‟ occurrence, distribution and abundance post-fire forms 

the foundation of much of fire ecology (Fox, 1982; Brawn et al., 2001; Keeley et al., 

2005) and knowledge of these patterns is critical to manage fire to benefit 

biodiversity (Driscoll et al., 2010).  The temporal pattern of change in the mallee 

avifauna was the key theme of Chapters 2 and 3 of this thesis.  In these chapters, I 

explored the effects of temporal patterns of fire on the occurrence of individual 

species and on the succession of whole communities over a century-long 

chronosequence.  This represents important information as few studies have 

examined the responses of avifauna to fire at temporal scales of up to a century and 

across large regions greater than 100 000 km
2
 (Clarke, 2008).       

 

While the influence of the temporal aspects of fire on changes in bird communities is 

recognised (albeit not well understood) in many systems, little is known about the 

importance of spatial aspects of fires on fauna.  This represents an important 

knowledge gap for fire ecology and conservation (Driscoll et al., 2010), particularly 

as fire is becomingly increasingly used as a management tool (Gill & Allan, 2008).  

Moreover, there is a growing propensity to manage fire to promote heterogeneous 

mosaics of differing spatial arrangement of fire-history elements (Bradstock et al., 

2005; Parr & Andersen, 2006; Willson, 2006).  In Chapters 4 and 5 of this thesis, the 

influence of the spatial properties of fire on the avifauna was investigated.  Chapter 4 

examined the effect of spatial properties of fire on the post-fire colonisation of sites 

and Chapter 5 examined the influence of fire mosaics on the composition of the 

avifauna at the landscape level.   

 

This research has provided many insights into patterns and processes of post-fire 

succession in bird communities and the influence of spatial properties of fire on 
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avifaunal assemblages.  Furthermore, detailed knowledge of the effects of fire on the 

avifauna of the Murray Mallee region provides important information for the 

conservation and management of birds in this system.  In this chapter, I summarise 

key findings under the major themes of the effects of temporal and spatial properties 

of fire on avifauna (Table 6.1).  I also provide a synthesis of the key results, interpret 

their importance for conservation and management of avifaunal communities, and 

identify areas that require further research. 

 



 

 

 

Table 6.1 Findings of this thesis in relation to key objectives and their implications for conservation and management of birds. Objectives are 

divided into two themes: the effects of temporal aspects of fire, and the effects of spatial aspects of fire. 

     Objectives Key Findings 

 

Effects of temporal aspects of fire on avifauna 

 

How does temporal fire history influence species occurrences?  Time-since-fire influenced the occurrence of 16 of 30 species investigated.  

 

What types of responses to time-since-fire do bird species display?  Species responses to time-since-fire corresponded with six response shapes: incline, decline, bell-

shaped, plateau, irruptive and null. 

 

How important are different post-fire ages for supporting species? 

 

 The frequency of occurrence of 10 species was highest in vegetation >50 years-since-fire. 

 The frequency of occurrence of five species peaked 20-50 years-since-fire and declined thereafter. 

 The frequency of occurrence of one species was highest in vegetation <5 years-since-fire. 

 

How useful are generalised fire response curves for predicting 

species distributions over broad regions? 

 

 Models of species occurrence with time-since-fire provided moderate predictive accuracy across the 

region. 

 

How important is time-since-fire for structuring the richness and 

composition of avifaunal communities? 

 

 Species richness was lowest directly after fire, and reached a plateau at ~10 years-since-fire. 

 Community composition varied with time-since-fire up to at least 100 years post-fire. 

 

In what ways did community composition change with time-since-

fire? 

 

 The rate of change in community composition slowed with increasing time-since-fire. 

 Similar assemblages occupied longer time-frames with increasing time-since-fire. 

 Distinct avifaunal communities occurred in vegetation <10, 21-40 and >50 years-since-fire. 

 β diversity was higher in older vegetation. 



 

 

 

     Objectives Key Findings 

What effect did time-since-fire have on the richness of species 

guilds? What processes does this indicate may be important in 

influencing successional patterns of the avifauna? 

 

 Species richness of nectarivore-insectivores and insectivores was influenced by time-since-fire. It 

was low directly after fire and increased to a plateau at ~10 years-since-fire.  

 Species richness of foliage foragers increased with time-since-fire, and richness of trunk and branch 

foragers initially increased but declined in older vegetation. 

 Responses of species guilds to time-since-fire corresponded generally with temporal changes in 

resources on which the guild depends (e.g. nectar, vegetation structure). 

 

Conservation and management implications of the effects of 

temporal patterns of fire. 

 Mallee birds and communities can be influenced by fire for up to 100 years. 

 Fire is a critical component for regeneration of mallee habitat to support some species of birds. 

 Older seral stages are particularly important. 

 Provision of post-fire age-classes may not guarantee the occurrence of species. 

 To ensure an assemblage which includes all species across a region, the distinctiveness of post-fire 

age-classes and influence of fire on β diversity needs to be considered. 

 

Effects of spatial aspects of fire on the avifauna 

 

 

What influence does the proximity of a site to unburnt vegetation 

and the presence of small patches of unburnt vegetation at a site 

have on the assemblage of birds in recently burnt vegetation (<5 

years-since-fire)?   

 

 Species richness and occurrence of individual species declined with distance to unburnt vegetation. 

 Species richness and occurrence of individual species was higher at sites that contained small patches 

of unburnt vegetation, “biological legacies”. 

 

Are burnt areas colonised post-fire from birds located  external to 

the burnt areas or from internal nucleated recovery? 

 

 Generally sites appeared to be colonised from large patches of unburnt vegetation. 



 

 

 

     Objectives Key Findings 

What influence do the properties of fire mosaics have on the 

composition of avifaunal communities at the landscape scale? 

 

 Fire mosaic properties explained ~31% of the variation in the composition of the avifauna. 

 Composition of the avifauna at the landscape level was influenced by: 

a)  a gradient in the proportional extent of vegetation <10 years-since-fire vs  >35 years-since-fire. 

b) the location of the landscape along a geographic gradient of aridity. 

c) a gradient in the composition of the dominant vegetation types in the landscape. 

 Community composition did not vary with diversity of different fire age-classes. 

 

How do the properties of fire mosaics influence the incidence of 

different guilds in the landscape? Does this indicate processes that 

may influence the composition of the avifauna at the landscape 

level? 

 

 Fire mosaic properties may influence the guild structure of a community through changes in spatial 

availability of resources.  For example, a decreased incidence of nectarivores and nectarivore-

insectivores was associated with increasing proportional extent of vegetation <10 years-since-fire.  

 

Conservation and management implications of the effects of 

spatial properties of fire on the avifauna. 

 Large uniform fires will take longer for birds to colonise than small patchy fires. 

 Small unburnt patches may assist the survival and post-fire recovery of fire sensitive species. 

 The habitat remaining unburnt after fire is important for the colonisation of burnt areas. 

 A primary focus of fire management should be on the total amount of post-fire age-classes in a 

landscape, not only on the diversity of post-fire ages. 

 Management of fire needs to consider large spatial scales, and the influence of fire on the total 

availability of resources across a landscape and region. 
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6.2 Temporal patterns of fire and avifaunal assemblages 

Patterns of succession, represented as changes in biota over time, have played a 

major role in ecology (Clements, 1916; Gleason, 1927; Connell, 1978).  Much of the 

understanding of biotic changes to fire revolve around succession theory (Noble & 

Slatyer, 1980; Fox, 1982; Brawn et al., 2001), and consequently patterns of post-fire 

change in biota form the backbone of fire management for conservation (Driscoll et 

al., 2010).  In this thesis, I investigated temporal variation of: a) individual species 

(Chapter 2) and b) the composition of the bird communities (Chapter 3), to gain 

insights into successional patterns of the mallee avifauna, and to examine processes 

that might influence these patterns.  

 

Many species of birds displayed significant changes in occurrence with time-since-

fire (Chapter 2).  Responses to fire tended to represent a limited number of different 

response shapes: incline, decline, bell-shaped, irruptive and plateau.  Only one 

species displayed peak occurrence in early successional vegetation (<10 years-since-

fire), five species in mid-successional vegetation (20 – 50 years-since-fire), and 10 

species reached their peak occurrence between 50 – 100 years-since-fire (Chapter 2).  

These changes formed the underpinnings of three main successional stages in the 

composition of bird communities: <10, 20 – 40 and >50 years-since-fire (Chapter 3).  

 

The successional stages identified in this study increased in temporal breadth with 

increasing time-since-fire, such that each successive community occupied a greater 

time span. This pattern comes about because the rate of ecological change tends to 

slow with increasing time since a disturbance event (Helle & Monkkonen, 1985). 

Such that for any given time contrast (e.g. 10 years time difference between the post-

fire age of two sites), the degree of distinction between bird communities of that 
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contrast decreases with increasing time since the disturbance (in this case fire).  In 

plant communities and for sessile animals, these patterns of temporal change in 

community structure are often related to available energy and competitive 

interactions (Odum, 1969; Connell & Slatyer, 1977); however, the theory of why 

these patterns are seen in vagile organisms is less well understood. However, faunal 

succession patterns are often linked to vegetation changes (Fox, 1982; Haney et al., 

2008), and thus the rapidity of plant succession may influence the rate of faunal 

succession.   

 

Successional patterns in the avifauna of mallee ecosystems do appear to be 

associated with patterns of vegetation succession, particularly vegetation structural 

changes (Chapter 2; Chapter 3).  This suggests that mallee avifaunal succession may 

follow the „habitat accommodation‟ model of post-fire-succession (Fox, 1982).  In 

this model, species respond to local habitat conditions, which are altered by external 

factors (e.g. fire).  A species enters the succession as vegetation change results in 

habitat becoming suitable for it and leaves, or decreases in abundance, when the 

habitat becomes unsuitable.  Declines in occurrence may relate to an inability of 

species to obtain enough resources due to having reduced competitive ability in 

lower „quality‟ habitat (Fox, 1982).  Evidence for a habitat accommodation model of 

succession comes from a number of sources. First, the shape of the responses of 

species to time-since-fire often corresponds with changes in vegetation structural 

characteristics that those species require (e.g. abundance of hollows, Triodia cover, 

or density of particular vertical strata of vegetation) (Chapter 2).  Second, the main 

successional stages in bird communities correspond with vegetation structural 

changes: for example, regrowth of mallee eucalypts occurs in the period <10 years-

since-fire; the cover of Triodia hummock grasses and the complexity of vertical 
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vegetation structure are at peak levels at 20 – 40 years-since-fire; and from > 50 

years post-fire there is a general decline in vertical structural complexity of 

vegetation and a plateau in the height and the cover of the canopy (Haslem et al., 

2011). Finally, the species richness of some foraging zone guilds corresponded with 

changes in resources on which those guilds might be expected to rely; for example, 

species richness of foliage foragers varied in a manner consistent with canopy cover, 

and trunk and branch foragers with mid-storey structure (Chapter 3).  

 

The habitat accommodation model also proposes that interspecific competition may 

influence successional patterns (Fox, 1981; Fox, 1982).  Where species are suited to 

habitat of a particular seral stage, they may out-compete species that are less suited, 

and lead to the exclusion of those species from a location.  There is some 

observational evidence that this may be an important factor for avifaunal succession 

in mallee vegetation.  A decline in occurrence of several species with time-since-fire 

corresponded with inclines in potential competitors (Chapter 2).   

Competition/inhibition forms a key part of many succession theories (Connell & 

Slatyer, 1977) and is likely to be important in bird communities of mallee vegetation. 

 

The successional patterns seen in bird communities in mallee are consistent with the 

habitat accommodation model on the basis of vegetation structural changes. 

However, patterns seen in dietary guilds indicate that food resources also may be an 

important component.  Species richness of nectarivore-insectivores and insectivores 

was low directly after fire, increasing until ~10 years post-fire, where the species 

richness of these guilds reached a plateau.  As patterns of change in guilds that use 

particular resources may indicate the importance of that resource (Simberloff & 

Dayan, 1991), these patterns indicate that food availability may also influence 
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patterns of succession.  Patterns shown by these guilds correspond with the 

occurrence of Eucalyptus reproduction, and thus the availability of nectar.  The 

availability of nectar from Eucalyptus sp. is likely to be of major importance to the 

nectarivore-insectivore guild, as it is a primary food source for these species (Ford & 

Paton, 1976a; Ford & Paton, 1976b).  Nectar of Eucalyptus sp. also is an important 

resource for many invertebrates (Horskins & Turner, 1999), and reduced abundance 

of nectar could result in significant reductions in the biomass of these species.  

Alternative studies have shown that the total abundance of ants (Hymenoptera) can 

be negatively affected by fire in mallee (Andersen & Yen, 1985). 

 

If succession of the mallee avifauna is linked to vegetation structure and food 

resources, as in a habitat accommodation model, then succession patterns of the 

avifauna will be affected by processes that alter these attributes of habitat (Monamy 

& Fox, 2000).  In mallee ecosystems, particular events which effect vegetation 

structure, for example the amount of rainfall and grazing intensity post-fire (Cohn & 

Bradstock, 2000) could thus result in changes to avifaunal succession, in a manner 

somewhat analogous to state-and-transition models proposed for rangeland and arid 

environments (Westoby et al., 1989; Letnic & Dickman, 2010).  Under state-and-

transition models, vegetation communities exist in a range of „persistent‟ states (e.g. 

shrubland or grassland) and ecological events (e.g. fire, grazing, rainfall and drought) 

can affect transitions between these states.   

 

In mallee ecosystems, there are some clear directional successional patterns in both 

vegetation attributes (Haslem et al., 2011) and bird communities (Chapter 2; Chapter 

3), and thus state-and-transition models are unlikely to explain responses on their 

own.  However, variation in the fit of models of both birds and habitat attributes 
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suggest that particular events may affect changes to successional patterns, although 

not to entirely different states.  For example, in mallee ecosystems, below average 

monthly rainfall and intensity of grazing by mammalian herbivores (particularly 

introduced rabbits and goats) can reduce germination and establishment of 

understorey plants, including Triodia scariosa hummock grasses (Cohn & Bradstock, 

2000), which is an important feature of vegetation communities in this ecosystem 

(Haslem et al., 2010).  Thus, rainfall and grazing processes will influence succession 

patterns in vegetation structure, and consequently bird communities.   

 

The effect of post-fire grazing intensity and rainfall on differences in structure of 

vegetation between sites may be magnified by time-since-fire, and hence bird 

community differences may also be magnified. Vegetation in the younger 

successional stages is structurally simpler than later successional vegetation (Haslem 

et al., 2011; Chapter 3).  Thus, bird communities that prefer younger seral stages, 

may be more likely to be responding to more simple structural features (e.g. foliage 

cover from the resprouting of the dominant Eucalyptus species) and be less affected 

by differences among sites related to rainfall and grazing, which affects small 

regenerating understorey plants.  On the other hand, species that prefer older seral 

stages may respond to a range of mature structural attributes (e.g. midstorey shrub 

density, Triodia cover), which will be more contrasting as mature vegetation than as 

recently regenerating plants and seedlings.  This premise is supported by vegetation 

succession data, which shows that sites in older vegetation display greater 

heterogeneity of vegetation structural attributes (Haslem et al., 2011).  There was 

also higher β diversity (between-site diversity) of birds in older sites; evidenced by 

faster rates of increase of new species with additional sites in older seral stages 

(Chapter 3).   
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The higher β diversity at older sites is an important feature, because this pattern 

means that species richness at a site (α diversity) in older vegetation is lower than 

that expected on the basis of individual species responses (Chapter 2).  Because most 

species peak in occurrence in older vegetation it might be expected that species 

richness would increase with time-since-fire.  Instead, species richness increased 

only until ~10 years-since-fire, where it reached a plateau (Chapter 3), because 

species associated with older fire ages occupy different sites and hence there is 

greater β diversity (and not higher α diversity).  

 

A further consideration for interpreting patterns of avifaunal succession is the 

influence of non-fire related variables, such as vegetation type (Triodia Mallee or 

Chenopod Mallee) and geographic location of sites. There were differing patterns of 

avifaunal succession and differences in the way some vegetation attributes changed 

with time-since-fire in different vegetation types (Haslem et al., 2011; Chapter 2; 

Chapter 3).  In this investigation, six bird species were more common south of the 

Murray River and six species north of the Murray River.  Thus responses of 

individual species to fire need to be interpreted in light of the local abundance of the 

species based on broader biogeographic patterns and on their habitat requirements. 

 

6.3 The influence of spatial patterns of fire on avifaunal assemblages 

The influence of spatial properties of fire on fauna has received comparatively little 

attention in fire ecology; instead, most investigations have focused on temporal 

influences of fire.  Indeed spatial properties of fire events (e.g. the size and 

configuration of fires) have only recently been discussed as a part of the fire regime 

(Gill & Allan, 2008); the history of fire events in an area or region (Gill, 1975).  In 

this thesis, I investigated two facets of the effect of spatial patterns of fire on 
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avifaunal assemblages.  First, I investigated the impact of the spatial pattern of fire 

on colonisation of recently burnt vegetation at the site level (Chapter 4).  Second, I 

examined the broader impact of the properties of fire mosaics on the composition of 

the avifauna at the landscape level (Chapter 5).  In both of these chapters, I 

discovered that spatial properties of fires can have wide-ranging impacts on the bird 

community at sites through its effect on the colonisation process, and on the broader 

assemblage of a landscape. 

 

6.3.1 The influence of spatial properties of fire on post-fire colonisation by birds 

Spatial properties of fire influence the colonisation of burnt vegetation by fauna 

(Bain et al., 2008; Lindenmayer et al., 2009; Chapter 4).  Although temporal patterns 

of change provide important insights into the effects of fire on avifaunal species and 

assemblages (Brawn et al., 2001), a species response to a particular fire event may be 

different to that expected on the basis of succession patterns (Lindenmayer et al., 

2009), and models of species‟ responses to time-since-fire had only moderate 

predictive accuracy over broad spatial scales (Chapter 2).   

 

Fine-scale variation in the spatial pattern of fires represents one factor that 

contributes to the occurrence of species at a site.  Species richness and the occurrence 

of individual species at sites in recently burnt vegetation were higher at sites close to 

unburnt vegetation (Chapter 4).  Sites that contained small unburnt patches of 

vegetation supported more species, either through enhancing colonisation from ex-

situ populations, or through their role as refuges in which species have persisted 

through the fire event ('biological legacies'; Turner et al., 1998; Franklin et al., 

2000).  Consequently the configuration of fire events (level of patchiness) represents 

an important factor in determining patterns of post-fire colonisation by avifauna.   
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Although biological legacies appeared to be an important feature influencing the 

post-fire bird community at a site, colonisation appeared to come mostly from larger 

areas of unburnt vegetation, regardless of if the site contained small biological 

legacies or not.  This process is evidenced by sites close to large areas of unburnt 

vegetation having higher species richness than sites farther from fire edges of the 

same post-fire age.  This suggests that burnt areas are colonised from reservoir 

populations in large patches of unburnt vegetation, which may or may not contain 

individuals that were evicted from the fire area during the fire event.  Thus, the size 

and composition of unburnt vegetation that contains the reservoir of species will 

strongly influence the species that colonise the burnt area, and the subsequent 

successional patterns. 

 

In this investigation, the patterns of succession observed (Chapters 2; Chapter 3), 

indicated that much post-fire colonisation occurs in a relatively predictable manner, 

with species‟ occurrences generally increasing and decreasing at predictable post-fire 

ages. However, this study was conducted in large areas of continuous mallee 

vegetation, where fires generally are surrounded by an extensive reservoir of 

vegetation containing a diverse assemblage of birds. In small reserves (or non-

reserve habitat) that occur as patches of habitat within a hostile matrix, a single fire 

may burn a large percentage (or all) of the available habitat, as has occurred in 

isolated mallee reserves (Menkhorst & Bennett, 1990; Silveira, 2008).  In this case, 

nearby reservoir populations may be scarce or absent, and colonisation of the burnt 

area will be strongly influenced the ability of species to disperse through the matrix.  

This can potentially result in very different communities colonising burnt areas 

(Brotons et al., 2005). 
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6.3.2 Influence of the spatial properties of fire mosaics on avifauna 

The way in which fire mosaics influence faunal assemblages is gaining increasing 

attention due to the prevalence of the patch mosaic burning paradigm (Parr & 

Andersen, 2006).  This paradigm is based around two central themes.  First, that 

different post-fire age-classes support different species and communities (Chapter 2 

and Chapter 3), and thus increased heterogeneity will increase biodiversity.  The 

second theme is that increased fire heterogeneity may improve the persistence of 

species by affording protection from large intense fires (Bradstock et al., 2005).  

Although fire management is increasingly aimed at managing fire to create 

heterogeneous mosaics (Fire Ecology Working Group, 2004; Willson, 2006), there 

remains little empirical investigation of how the spatial properties of fire mosaics 

may influence biota at the landscape level. 

 

The spatial extent of post-fire age-classes in a landscape can influence the 

composition of the bird community by increasing the dominance of those species for 

which that seral stage represents favourable habitat (Chapter 5).  This mechanism is 

similar to that in human modified systems such as agricultural environments, where 

for example, the total extent of wooded vegetation in a landscape influences the 

richness and abundance of woodland-dependent birds (Radford et al., 2005; Haslem 

& Bennett, 2008).   

 

Variation in the proportional extent of different seral stages can also influence the 

spatial availability of resources (e.g. nectar), which in turn can influence the 

assemblage of species at the landscape level in ways not predictable from individual 

sites.  For example, the incidence of nectarivores in the study landscapes appeared to 
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be limited by the proportional extent of recently burnt vegetation, which represents 

reduced nectar availability, especially from mallee eucalypts (Chapter 5).  However, 

at the site scale the occurrence of nectarivores was not clearly influenced by younger 

age-class, associated with reduction of nectar.  Local reduction of nectar may be 

offset by strategies such as nomadism (Woinarski, 2006), or the local availability of 

nectar resources from plants other than mallee eucalypts that reach reproductive 

status more quickly (Ford & Paton, 1976a; Ford & Paton, 1976b).  However, when 

nectar availability decreases at the landscape scale, due to extensive areas recently 

burnt, nectarivores are negatively affected.  

 

Thus, the spatial extent of the landscape over which fire occurs may cause population 

changes (booms or crashes) for species or guilds that rely on resources affected by 

fire.  In mallee ecosystems, fires regularly burn large areas: for example, 16 fires of 

>10 000 ha have occurred over the 35 year period 1972-2007 across the 104 000 km
2
 

Murray Mallee study area (Avitabile et al., 2011).  Fires of this magnitude represent 

substantial reductions in temporally varying resources over broad spatial scales. 

While such resources are absent, species must maintain and grow populations in the 

remaining areas of suitable habitat, while these resources re-establish in the burnt 

areas.  In systems where early successional specialists rely on resources produced by 

fires (Murphy & Lehnhausen, 1998; Hutto, 2008), a lack of large fires could likewise 

represent a dearth of resources. The magnifying influence of the spatial extent of 

fires is particularly important considering the potential for the extent of burnt areas to 

vary under climate change scenarios (Cary, 2002).   

 

The spatial extent of particular post-fire age-classes in a landscape can also influence 

the diversity of organisms in the landscape.  Here, β diversity (as species 
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accumulation curves) was greater in older vegetation (Chapter 3).  Consequently, an 

increasing proportional extent of older vegetation can be expected to result in greater 

richness of bird species, which was the observed pattern (Rick Taylor, unpublished 

data).  Increased heterogeneity in structural attributes in older vegetation is proposed 

as a reason for the increased β diversity with time-since-fire (Chapter 3).  Landscapes 

with a greater proportional extent of older vegetation may represent greater diversity 

of habitats, or increased landscape texture (Fischer et al., 2008), reported as 

predictors of faunal diversity in agricultural environments (Bennett et al., 2006; 

Fischer et al., 2008; Haslem & Bennett, 2008; Fahrig et al., 2011). 

 

At the scale of the landscapes in this study in mallee ecosystems (2 km radius), 

species richness of birds did not increase with the diversity of fire age-classes in the 

landscape (Rick Taylor, unpublished data).  This lack of a relationship is difficult to 

reconcile with knowledge of changes to species communities with time-since-fire.  

However, the results from species accumulation curves with time-since-fire may 

provide an explanation for this pattern.  The rate of increase in the species 

accumulation curve in older vegetation is greater than that in younger vegetation, and 

so the addition of younger vegetation (and hence age-class heterogeneity) will not 

increase diversity as rapidly as having further older vegetation.  Where the species 

accumulation relationship of older vegetation begins to plateau, the addition of 

different post-fire ages may increase the diversity of species, particularly if species 

are strongly differentiated between the different fire age-classes.  However, in this 

ecosystem, many species occur in multiple age-classes, albeit in different 

abundances.  
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If species accumulation curves are taken to represent species area curves, then the 

scale of the study landscapes may also influence the observed pattern.  At a scale of 2 

km radius, the species-area curve for older vegetation may be increasing at a rate 

faster than is achieved through the addition of new fire ages.  However, for larger 

landscapes, which can contain a greater area of older age-class and thus a more 

complete suite of species which respond to older vegetation, then diversity of post-

fire age-classes may become more important.  Thus the scale at which the influence 

of diversity of fire age classes is measured may result in different interpretations of 

its importance. 

 

In this study, there was no evidence that species composition was strongly influenced 

by processes related to diversity of post-fire ages (Chapter 5).  The importance of 

having multiple habitat elements for fauna has been suggested for a number of 

ecosystems (Law & Dickman, 1998), for instance for species that require different 

vegetation for nesting and feeding.  Additionally a diverse history of fires has been 

suggested as an important factor to improve persistence of species by affording 

protection from large intense fires that cause large-scale mortality and homogenise 

the landscape (Bradstock et al., 2005). 

 

The relationship between attributes of bird communities and the diversity of post-fire 

age-classes may also be influenced by the measure of diversity employed in this 

study (Chapter 5). This measure (Shannon-Wiener diversity index) represented the 

diversity of post-fire age-classes regardless of the age of those patches.  For example, 

a hypothetical landscape containing three post-fire age-classes of 5 years, 7 years and 

10 years-since-fire would have a similar diversity index to one that contains post-fire 

age-classes of similar area of 5 years, 20 years and 40 years-since-fire.  
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Consequently, the response of species or communities to the presence of particular 

contrasting fire ages may not be detected by this measure. 

 

6.4 The implications for conservation and land management of birds in fire-

prone environments. 

Fire is increasingly recognised as an important ecological disturbance, the 

management of which is critical to conservation of biota.  Consequently, fire is 

becoming increasingly prevalent as a management tool (Gill & Allan, 2008; Driscoll 

et al., 2010b).  Findings in this thesis support the contention that fire is a critical 

component of mallee ecosystem, with far reaching implications for the conservation 

and management of many bird species (Clarke, 2005; Clarke et al., 2005; Brown et 

al., 2009).  

 

In many ecosystems around the world, the occurrence of species and the composition 

of communities vary in relation to post-fire seral stages (Fox, 1982; Schieck & Song, 

2006; Pons & Clavero, 2010; Chapter 2; Chapter 3), and species may decline in late 

succession vegetation and in the absence of fire (Fuhlendorf et al., 2006; Hutto, 

2008; Brown et al., 2009; Chapter 2). Thus, in fire-prone ecosystems, fire is an 

important process that can develop and regenerate habitats, and management aimed 

at protection of biodiversity needs to allow for, or promote fire (Noss et al., 2006).  

The dilemma for management of birds in mallee ecosystems is that many species are 

negatively affected by fire, at least in the short term, and older vegetation is 

disproportionately important for the avifaunal assemblage as a whole (Chapters 2 and 

3).  Thus, on the one hand fire management needs to protect vegetation from burning, 

while on the other hand allowing fire to burn habitats.  In each case, too much young 

vegetation or too much old vegetation may potentially threaten biodiversity.  The 
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challenge is to define an appropriate age-class structure, at a regional scale, that will 

ensure the ongoing provision through time of suitable amounts of required habitat for 

all bird species. 

 

As young, mid and old vegetation are unable to exist in the same space at the same 

time, a mosaic of different fire age-classes is an intuitive management option.  

However, defining the spatial and temporal scale of such a mosaic is difficult.  

Through this thesis I have shown that avifaunal assemblages can be influenced by 

fire in a variety of ways.  Fire management for biodiversity will need to consider all 

of these factors if it is to achieve successful outcomes.  It seems unlikely that a one-

size-fits-all approach across ecosystems will be appropriate, particularly considering 

the inherently unpredictable nature of complexities of wildfire (Whelan et al., 2001). 

 

An important factor for fire management aimed at biodiversity conservation is the 

degree to which (unplanned) wildfire will occur in the system, and its consequences 

for the distribution of fire age-classes in the region.  This will dictate the degree to 

which anthropogenic introduction of fire, or prevention of fire may be required to 

achieve a desired age-class structure.  In some ecosystems, a focus on prevention of 

fire has negatively affected biota (Noss et al., 2006), and anthropogenic management 

of fire may be required to introduce heterogeneity and restore habitats (Davis et al., 

2000; Gill & Allan, 2008; Beghin et al., 2010).  In the Murray Mallee region, over 

the past 35 years (1972-2007), there have been 16 fires of >10 000 ha (Avitabile et 

al., 2011), which have burnt >40% of all mallee vegetation.  Considering that 

successional patterns continue for at least 100 years, and >40% of vegetation is <35 

years-since-fire, protection of older fire age-classes may be more important in 
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achieving a balanced age-class structure than the introduction of fire across much of 

this region. 

 

When planned burning is considered, the influence of the properties of fires on 

recovery of populations, mortality or removal of species, and the colonisation 

strategies those species employ must be considered.  Patchy fires can enhance 

recovery of populations through acting as refuges, or assisting colonisation of burnt 

areas (Rowley & Brooker, 1987; Smith, 1989; Chapter 4).  Thus, in ecosystems 

where prescribed burning is employed (Willson, 2006), increasing the patchiness of 

fires may assist recovery of fire sensitive species (i.e. those species removed by fire 

or require vegetation attributes that take a long time to regenerate) (Bain et al., 2008; 

Lindenmayer et al., 2009).  However patchy burns may not promote extensive 

enough resources required for those species which require fire to promote or 

regenerate resources that they require (Smucker et al., 2005; Hutto, 2008; Brown et 

al., 2009). 

 

Because most bird species in mallee colonise burnt areas from large areas of unburnt 

vegetation (Chapter 4), management strategies that promote fires need to carefully 

consider not only the area being burnt but the context of the fire (i.e. the amount and 

type of vegetation that remains unburnt adjoining unburnt areas).  Large areas of 

unburnt vegetation appear to be where most species recolonise from (Chapter 4).  

Such „reservoirs‟ may need to support populations for many years before burnt 

habitat is suitable to recolonise.  For example, the Striated Grasswren, which prefers 

Triodia hummock grasses of 15-40 years-since-fire, will need to survive in ex-situ 

vegetation while Triodia regenerates in the burnt area to a suitable size (i.e. 15 
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years).  In the event that suitable habitat is not present in nearby surrounding areas, 

this species may suffer long-term exclusion from an area.   

 

In small reserves (or non-reserve habitat) that occur as patches of mallee within a 

highly modified environment (e.g. croplands) (Menkhorst & Bennett, 1990; Silveira, 

2008), management may need to be scaled to ensure reservoir populations are 

maintained within the reserve. Large fires that homogenise areas and leave little 

„reservoir‟ vegetation need to be avoided.  As the ratio of burnt to unburnt vegetation 

(or vice versa) increases in a landscape, there is a greater influence on the overall 

community composition in the landscape (Chapter 5).  Furthermore, large fires can 

potentially result in severe temporal reduction of some resources such as eucalypt 

nectar (Chapter 5) or Triodia hummocks (Haslem et al., 2011). In events where large 

fires have occurred and largely homogenised suitable habitat for species, populations 

of those species have been severely depleted, for example Mallee Emu-wren in 

Billiatt Conservation Park, South Australia (Clarke, 2005). 

 

If the goal is to promote heterogeneity, it is important to define the components of 

heterogeneity, because diversity of post-fire age-classes per se did not influence the 

composition of the avifaunal community in a predictable way (Chapter 5).  In this 

system, avifaunal communities appear to respond to three main seral stages, <10, 20-

40 and >50 years-since-fire (Chapter 3).  Thus long-term management may aim to 

ensure that representative areas of each of these seral stages always exist (Chapter 3).  

However, each seral stage does not contribute equally to the overall assemblage.  

Older seral stages supported more species spread across a greater number of sites 

(Chapter 3) and consequently may need to have greater representation in the age 

class structure of the landscape. 
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In managing the age-class structure and geographic distribution of seral stages, the 

total amount of a particular seral stage is important as it tends to have the strongest 

influence on the composition of avifauna.  Rather than simply managing for a 

diversity of post-fire age-classes, management may be more effective if it focuses 

primarily on the requisite amount of particular seral stages required to support 

species of concern or communities.  In this ecosystem, vegetation >30 years-since-

fire needs to be well represented due to the increased number of species that are 

supported by vegetation of this age (Chapters 2 and 3).  Managing for a greater 

proportional amount of older vegetation may be an appropriate precautionary 

management strategy because many species use long unburnt vegetation.  This will 

allow for unplanned fires (i.e. wildfires), which will inevitably occur, and may 

reduce risk of creating an overabundance of younger vegetation.   

 

Fire management needs to be conceptualised at broad scales that encompass the 

whole assemblage being managed.  In the Murray Mallee region, fire management is 

conducted by three separate states, Victoria, New South Wales and South Australia.  

However, avifaunal assemblages overlap amongst reserves in different states and 

management should likewise occur across state boundaries (Saunders & Briggs, 

2002).  It is also important to recognise that there are strong natural gradients in the 

occurrence of species with geographic position in the region.  Thus, managing fire to 

promote the Golden Whistler in far northern parts of this study area may not be 

effective as this species is naturally rare in this part of the region.  Likewise, it is 

important to manage fire in the context of other habitat requirements of species.  For 

example, provision of the suitable fire age-classes for Striated Grasswren in 

Chenopod Mallee vegetation will be ineffective because this species depends on 
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Triodia hummock grass, which is all but absent in this vegetation type (Haslem et al., 

2010). 

 

6.5 Future directions for research into the influence of fire on avifauna 

In this investigation a number of variables were associated with successional patterns 

of the bird community (e.g. vegetation structure, food resource availability).  Further 

research is required into the deterministic processes that influence the patterns of 

avifaunal succession.  For instance, manipulative experiments to alter the vegetation 

structure and food resources in different seral stages could be used to test the relative 

importance of different processes in influencing long-term succession patterns.  

Moreover, understanding the way that fire patterns (e.g. patchiness) and species 

ecological attributes (e.g. mobility) interact will assist managers to predict the 

influence of fire on the mortality of individuals. 

 

I investigated the implications of spatial patterns of fire for bird assemblages at both 

the site level and the whole-of-landscape level.  The whole-of-landscape design has 

many advantages, particularly to study the composition of fire age classes (e.g. 

diversity in this thesis) because composition is a property of whole landscapes: 

investigations at a patch or site level can infer processes only at the level of the 

investigation (Bennett et al., 2006).  However, whole of landscape designs require 

the size of the landscape to be set, and inference is restricted to that scale.  A critical 

area for future research is to investigate the responses of biota to mosaics of fire 

patches at different spatial scales, to provide improved knowledge about the scales at 

which management needs to operate. 
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There is a need for a greater understanding of the importance of the configuration 

and connectivity of vegetation of different seral stages through time.  These are 

attributes of the „invisible mosaic‟; the spatial distribution of fires historically 

(Bradstock et al., 2005).  In this study, the spatial parameters of fires generally 

represented only the most recent fires, because over the period of available satellite 

imagery (1972-2007) less than 4% of mallee vegetation burnt more than once 

(Avitabile et al., 2011).  However, the avifaunal assemblages may also be related to 

the historic availability of seral stages (Lindenmayer et al., 2008).  Past events, such 

as the recurrences of large fires that homogenise fire-age across large areas, or the 

exclusion of fire from large areas, may influence the availability of source 

populations to recolonise after a fire event. Ecosystems such as grasslands, where 

successional patterns are much shorter (Fuhlendorf et al., 2006) may provide model 

systems to investigate the influence of the „invisible mosaic‟. 

 

Throughout this thesis, I have reiterated that fire is an important process influencing 

bird communities and that the birds of mallee ecosystems display general succession 

patterns.  Some level of ongoing fire will be needed in mallee vegetation.  In the 

event that wildfires do not occur, prescribed burning may be used to regenerate 

particular succession stages (Davis et al., 2000).  Other factors such as post-fire 

grazing by herbivores and rainfall may influence establishment of plant species 

(Cohn & Bradstock, 2000), including key species such as Triodia scariosa.  Simply 

burning mallee vegetation may not result in the vegetation structure on which target 

species rely, and further management such as control of grazing animals may be 

required.  Furthermore, management burns are often small and may consequently be 

susceptible to higher rates of herbivory on regenerating plants (Knight & Holt, 

2005). Given the increasing prevalence of the use of planned fire for management of 
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biodiversity (Gill, 1975; Parr & Andersen, 2006; Driscoll et al., 2010), knowledge of 

the capacity of this burning to deliver the intended outcomes is of paramount 

importance (Miller & Hobbs, 2007). 
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Abstract 

Fire is a natural disturbance process that shapes ecosystems world-wide and which operates at a scale 

that crosses jurisdictional boundaries. However, in many fire-prone areas accurate fire records and 

systematic fire maps are lacking. We used Landsat imagery to map the fire history of the Murray 

Mallee region of south-eastern Australia from 1972 to 2007.  This semi-arid, fire-prone ecosystem 

encompasses a region of 104,000 km
2
. An area equivalent to 40% of the tree-mallee vegetation was 

burnt during the 35-year period, but less than 5% of this vegetation experienced more than one fire in 

this time. Large fires (>10,000 ha) accounted for 89% of the area burnt and were the main influence 

on the distribution of fire age-classes in conservation reserves. Different vegetation types burned 

disproportionately, illustrating the value of combining region-wide vegetation mapping with fire 

history mapping. Although the perception is that large fires occur on a roughly decadal cycle 

following years of above-average rainfall, spatially-explicit analyses revealed that large fires are not 

tightly associated with years of above-average rainfall. The distribution of fire age-classes differed 

profoundly between reserves and across states, highlighting the need to manage fire-prone landscapes 

at ecologically-meaningful regional-scales that cross jurisdictional boundaries.  
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Introduction 

Fire is a fundamental process in ecosystems throughout the world (Bowman et al. 2009), shaping 

vegetation structure and composition (Cleary and Gennert 2004; Bond and Keeley 2005). Fire is a 

landscape-scale, natural disturbance with spatial and temporal characteristics to which biota in fire-

prone ecosystems demonstrate many adaptations (van Wilgen et al. 2007; Kelly et al. 2010). 

Anthropogenic changes to fire regimes affect biodiversity (Keeley and Fotheringham 2001) and 

inappropriate fire regimes have been identified as a threatening process for species in fire-affected 

systems (Woinarski and Fisher 2003; Letnic and Dickman 2006;  Hutto 2008). However, there is 

limited information on the requirements of many animal and plant species with regards to both the 

temporal and spatial characteristics of fire regimes (Parr and Andersen 2006; Clarke 2008; Driscoll et 

al. 2010) and, despite recognition of the importance of fire, the fire history of many ecosystems is 

poorly known (Whelan 2009; Wittkuhn et al. 2009).  

 

Accurate fire histories are required for both ecological research and land management (Whelan 2009). 

Although land managers may lack detailed information, they are required to make decisions about 

issues such as fire suppression and prescribed burning, and resulting fire management strategies have 

the potential to alter fire regimes in ways that advantage, or disadvantage, the biota (Stephens and 

Ruth 2005). Production of accurate fire history maps has been aided by the use of satellite imagery to 

remotely sense fire scars (e.g. Russell-Smith et al. 1997; Hudak and Brockett 2004; Roder et al. 2008; 

Gill et al. 2000; Greenville et al. 2009). The utility of fire maps depends on the scale of the imagery 

used to map the fires and the scale at which these data are subsequently mapped and analysed 

(Morgan et al. 2001). Spatial resolution of maps is important to detect patchiness of fires (Gill et al. 

2000; Hudak and Brockett 2004; Yates et al. 2008).  

 

Accurate mapping of the fire history of a region has many benefits.  The resulting maps provide data 

on important spatial characteristics of fire, such as their size and spatial configuration (Minnich 1983; 

Keeley et al. 1999; Haydon et al. 2000; Díaz-Delgado et al. 2004). They can also be used to determine 

fire frequency, to link fire to environmental variables, and to determine the susceptibility of different 

vegetation types to fire and therefore, identify fire-prone areas (Lloret et al. 2002; Morgan et al. 2001; 

Díaz-Delgado et al. 2004).  

 

Such knowledge can then guide fuel management (Morgan et al. 2001; Bowman et al. 2003) and the 

planning of appropriate burning regimes (Haydon et al. 2000; Morgan et al. 2001). Accurate fire maps 

can also be used to evaluate the success of fire suppression and fuel management activities and their 

impact on the overall fire regime of an area (Minnich 1983; Keeley et al. 1999; Díaz-Delgado et al. 

2004), as well as identifying gaps in knowledge of fire regimes for further study (Morgan et al. 2001).  

 

Our focus was on the fire history of the semi-arid Murray Mallee region of south-eastern Australia, a 

highly fire-prone region (Bradstock and Cohn 2002).  The region is typical of many regions where 

knowledge of fire history is essential for sound land management and conservation of biodiversity.  In 

this region, inappropriate fire regimes have been identified as a key threatening process for several 

taxa (e.g. Black-eared Miner Manorina melanotis, Mallee Emu-wren Stipiturus mallee). Because this 
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region spans several states (Victoria, New South Wales, South Australia), there is a need for 

coordinated fire planning across jurisdictional boundaries. Mapping of fire history had been 

undertaken in each state but not in a consistent manner, or at a consistent scale, leading to limitations 

in the capacity to interpret fire history across the region. For example, such inconsistencies have 

prevented region-wide evaluation of the extent and location of unburnt islands, which may be 

important sources for recolonisation by fauna.  

 

The aim of this study was to produce a consistent fire-history map for the Murray Mallee region, 

spanning jurisdictional boundaries, as a basis for an analysis of the fire history of the area.  The aims 

of our analysis were to: 1) determine changes in fire characteristics such as size, frequency and 

vegetation types burnt over the last three decades, 1972-2007; 2) examine the relationship between the 

occurrence of large fires and rainfall patterns; 3) calculate fire intervals typical of mallee vegetation in 

this ecosystem; and 4) determine the age-class distribution of mallee vegetation across jurisdictional 

boundaries. 

 

Methods 

Study area 

The Murray Mallee region of Victoria, New South Wales and South Australia, is an area of some 

104,000 km
2
. The word ‘mallee’ describes the multiple aerial stems that emerge from a lignotuberous 

rootstock of eucalypts, as well as being a general term for areas that are dominated by eucalypts of 

this form (Noble 1984). The climate is semi-arid with mean annual rainfall between 220-330 mm (raw 

data supplied by the Australian Bureau of Meteorology), high summer temperatures (mean daily 

maxima ≥32°C) and mild winters (mean daily maxima 16°C) (Land Conservation Council 1987). The 

broad characterisation of the mallee landforms is one of dune-swale geomorphology with variable soil 

types underlying different areas (Noble 1984; Bradstock and Cohn 2002). 

 

Vegetation communities in the Murray Mallee vary with both climate and soil type (Noble 1984). On 

sandy soils, the vegetation typically comprises an overstorey of mallee eucalypts and an understorey 

of hummock grasses (Triodia and Austrostipa species) or sclerophyllous shrubs (Melaleuca spp., 

Leptospermum spp. and Acacia spp.) (Parsons 1994). On heavier clay or loamy soils, mallee eucalypts 

occur over an understorey of chenopod or succulent shrubs (Parsons 1994). Mallee vegetation had not 

previously been described or mapped consistently across all three states in the study region.  We used 

cluster analysis of floristic data from 713 sites to identify four broad vegetation types that occur in tree 

mallee, three of which were able to be mapped reliably across the region; Triodia Mallee, Chenopod 

Mallee and Heathy Mallee (Haslem et al. 2010). Triodia Mallee is dominated by Eucalyptus dumosa 

and E. socialis with an understorey of the hummock grass Triodia scariosa. Chenopod Mallee is 

characterised by an overstorey of E. oleosa subsp. oleosa and E. gracilis and a range of low shrubs in 

the lower strata, including Olearia spp., Zygophyllum spp. and chenopod species such as Maireana 

pentatropis, Enchylaena tomentosa var. tomentosa and M. pyramidata.  Heathy Mallee is 

characterised by E. costata subsp. murrayana and Callitris verrucosa with ground strata commonly 

dominated by a diverse range of small woody shrubs, including heathy species such as Phebalium 

bullatum, Cryptandra tomentosa and Spyridium subochreatum var. subochreatum. Other (non-mallee) 
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vegetation types that occur in the region include heathlands, Melaleuca uncinata dominated shrubland, 

and woodlands dominated by Callitris columellaris, Allocasuarina luehmanni and Allocasuarina 

cristata (Land Conservation Council 1987). 

 

Fire mapping 

Satellite imagery was acquired from Landsat Multispectral Scanner (MSS) (prior to 1989) and 

Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) (1989-2005) images. 

These data were available for the entire study area for 14 epochs (1972, 1977, 1980, 1985, 1988, 1989, 

1991, 1992, 1995, 1998, 2000, 2002, 2004, 2005 and 2007). Therefore, the total dataset of 15 images 

from 1972-2007 allowed the fire history of the 35 year period from 1972-2007 to be investigated. The 

time interval between consecutive images ranged from 1-5 years. Pre-processing of the satellite data 

was completed by the Department of Climate Change (see Furby 2002 for detailed methods). Pixel 

size was re-sampled at 50 x 50 m for Landsat MSS and 25 x 25 m for Landsat TM and ETM+.  

 

We used ENVI 4.2 geographic information system (GIS) software (ITT VIS 2005) to create false 

colour composite images from three consecutive Landsat images. We used band 4 (far infrared) of 

Landsat MSS images and band 7 (middle infrared) of Landsat TM and ETM+ images (Haydon et al. 

2000). The resulting chronosequence depicted major disturbances to vegetation (fire or extensive 

clearing) in a consistent and unique colour for each of the two time periods in the chronosequence. 

Generally, fire scars were easily distinguished from vegetation clearance by the distinctive pattern of a 

fire, compared with clearing which is commonly performed in a geometric pattern. Additionally, 

vegetation clearance was usually a permanent change, as opposed to fire scars which showed signs of 

recovery in subsequent images. 

 

Fire boundaries were digitised on-screen, and by linking the chronosequence to images of pre-and 

post fire it was possible to confirm the fire scar and time-period in which it occurred. The minimum 

patch size recorded was four pixels, for both fires and unburnt islands within fires. The image 

interpretation process aimed to smooth edges around pixel boundaries and fire boundaries are 

estimated to be accurate to within 1 pixel. Due to the size of the study area, images were mapped by 

multiple experts. All data layers were checked by one data manager. 

 

The resulting polygons of fire scars were exported to ArcView 9.2 (ESRI 2007) for checking and to 

add attribute data. Fire patches initially were dated to the satellite images between which the fire 

occurred (e.g. 1972-1977, 1992-1995). To obtain a more precise date and other details of the fire, all 

fires were compared with existing spatial data from state agencies in Victoria (DSE) and South 

Australia (DEH), and fire history information was sourced from relevant government reports (Cheal et 

al. 1979) and people with local knowledge. A precise fire year was able to be assigned to 270 (25%) 

of the total 1060 fires mapped across the study area. This represents 95% of the total area burnt in the 

region between 1972 and 2007, as large fires were more likely than small fires to be recorded by state 

agencies or mentioned in published literature.  
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Often a single fire event was represented by multiple polygons, due to minor discontinuities in fuels or 

fire spotting close to the fire front.  State agency data assisted in grouping many fire polygons into 

single fire events. Where a fire was not mapped by the state agency, all polygons mapped between the 

same image start and end date, and within 500 m of each other, were considered to belong to the same 

fire event. For fires over 1,000 ha, polygons within 3 km were considered part of the same fire event, 

as spotting from larger fires can occur within such distances (Sandell et al. 2006).  

 

Area calculations 

Using the region-wide vegetation map (Haslem et al. 2010), the areas burnt in Triodia Mallee, Heathy 

Mallee and Chenopod Mallee were calculated for each epoch interval. From this, we determined the 

overall area burnt in each vegetation type, the area of each vegetation type burnt in large fires and the 

area of each vegetation type burnt more than once. 

 

Fire intervals 

The area of tree-mallee vegetation that experienced more than one fire during the 35 year period of the 

study was calculated by investigating the area of overlap of fire polygons between epoch intervals. 

Fire intervals were calculated using the midpoint of the epoch between consecutive satellite images, as 

many fires were not able to be attributed an exact date of occurrence. Many areas of overlapping fire 

scars were very small (<5 ha) and may have been due to slight inconsistencies between image layers, 

so for the analysis of fire intervals, only areas of overlap (or patches) greater than 5 ha were included.  

 

Large fires  

Large fires (>10,000 ha) were analysed in more detail as these accounted for 89% of the area of tree-

mallee vegetation burnt during the study period. Exact dates and the source of ignition were attributed 

to each large fire using existing agency fire maps, published literature and information from land 

managers and local residents. To investigate the relationship between these large fires and rainfall 

patterns, long-term rainfall data were sourced from the Mildura Airport weather station (Lat 34.24°S, 

Long 142.09°E; Bureau of Meteorology data). For each large fire, associated rainfall was quantified in 

a number of ways: yearly rainfall total, cumulative monthly rainfall (12 month moving total of 

monthly rainfall), residual yearly rainfall (actual yearly rainfall taken from the mean) and cumulative 

residual monthly rainfall. The data were explored with scatterplots using three response variables: 

presence/absence of large fires per year, number of large fires per year, and total area burnt by large 

fires each year. Exploratory analysis of the data indicated that statistical models of the relationship 

between large fires and rainfall would be strongly influenced by one or two data points, and so a 

descriptive approach was used.  

 

Results 

A total of 1,060 separate fires were mapped in the study region for the period 1972-2007 (Fig 1). 

Sixteen fires were greater than 10,000 ha and three burnt over 100,000 ha. However, fires were 

generally relatively small, with the vast majority less than 100 ha (Fig. 2). The result of these fires was 

that during this period, 14% of the total study area experienced at least one fire (Fig. 1). Most fires 

occurred in tree-mallee vegetation (89%) (cf non-mallee vegetation) and they burned an area 
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equivalent to 40% of the total amount of such vegetation in the region, i.e. an average of 1.14% of the 

area per annum. 

 

The largest fires occurred during the decade of the 1970s (Fig. 1). The overall area burned has been 

less in later decades, but the number of fires per year has increased (Figs. 3a, b). 

 

Fig. 1. here 

 

Fig. 2 here 

 

Fig. 3 here 

 

Large fires 

Sixteen large fires of >10,000 ha occurred between 1972-2007 (Table 1) and accounted for 89% of the 

total area of tree-mallee burnt during the study period. Eight occurred in the 1970s, with the largest 

fire (>650,000 ha) occurring in New South Wales. Six of the large fires occurred in Murray-Sunset 

National Park, Victoria. With one exception, all the large fires were during late spring or summer and 

were ignited by lightning strikes. The exception began as a prescribed fire during September in 2006, 

but escaped control and burnt approximately 25,000 ha.  

 

While large fires often occurred during extreme weather, there is some evidence to suggest that they 

did not necessarily result in a homogenous landscape and may leave unburnt areas as the result of 

changing weather conditions and spotting ahead of the fire front.  In an on-ground assessment of 835 

sites across the study area, 30% of sites had been patchily burnt at a scale that was not possible to 

detect using satellite imagery (with 25 x 25 m pixels) but was evident on the ground. 

 

There was no obvious relationship between large fires and rainfall (Fig. 4). Large fires have occurred 

in years following increased rainfall. However, not all years of high rainfall were followed by fire (e.g. 

1993, Fig. 4). Furthermore, large fires also occurred during drought years (e.g. Nov 2006) and so were 

not restricted only to years immediately following wet periods. Thus, the relationship between large 

fires and increased rainfall was variable, precluding identification of strong trends. 

 

Table 1 here 

 

Fig. 4 here 

 

Fire intervals 

Very little tree-mallee vegetation (2.3% of the total area of tree-mallee vegetation) had been burnt 

more than once since 1972 (Fig. 5), although this is equivalent to a total area of 74,598 ha. 

 

Fig. 5 here 
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Of the small area that experienced more than one fire, the average inter-fire interval (+ sd) for patches 

burnt twice was 21+ 8 years in Triodia Mallee and 18 + 8 years in both Heathy and Chenopod Mallee, 

although there was less re-burnt area in the latter two vegetation types than Triodia Mallee. Most areas 

of Triodia and Chenopod Mallee that experienced two fires had intervals of 20-32 years (Fig. 6). 

Heathy Mallee areas had a more even spread of interfire intervals across a greater range of years post-

fire (10-32 years).  

  

Fig. 6 here 

 

Comparison between vegetation types 

Triodia Mallee had the greatest proportion of area burnt during 1972-1980 (Fig. 7). The largest area of 

Triodia Mallee was burnt in 1972-1977, with relatively small areas burnt since then. The largest area 

of Heathy Mallee was burnt in 1985-1988 and this also represented the vegetation type with the 

greatest proportion burnt during 1980-1989 (Fig. 7), although Heathy Mallee covers considerably less 

area than the other two vegetation types. Chenopod Mallee was the least burnt vegetation type in any 

decade. Over the entire period 1972-2007, only 21% of the total area of Chenopod Mallee burnt, 

whereas 50% of Triodia Mallee and 51% of Heathy Mallee vegetation were burnt.  

 

Fig. 7 here 

 

Fire age-class distribution  

The distribution of fire age-classes in tree-mallee was examined at the scale of individual conservation 

reserves, jurisdictional areas (states) and areas of continuous mallee vegetation, which may occur 

across reserve and state boundaries. At the reserve scale, there were marked differences in fire age-

class structures (Fig. 8). While many reserves are dominated by the 35+ years fire age-class (e.g. 

Hattah-Kulkyne National Park, Calperum Station and Tarawi Nature Reserve), some reserves 

experienced large fires that resulted in markedly different age-class distributions (e.g. greatest area in 

18-27 year fire age-class, Billiat Conservation Park; 0-7 year fire age-class, Taylorville Station). 

Murray-Sunset National Park (Victoria) had the most even age-class distribution.  

 

A comparison between states revealed differences in the distribution of fire age-classes, with Victoria 

having a broader spread across all mappable fire age-classes than the other states (Fig. 9). South 

Australia had the largest percentage area of long unburnt (>35 years) mallee. Not only did South 

Australia have more than twice the area of long unburnt mallee than Victoria (894,342 ha v. 346,312 

ha), the spatial aggregation of this fire age-class was quite different (Fig. 1). The long unburnt mallee 

in Victoria was distributed as small patches between the multiple fire scars across Murray-Sunset NP, 

whereas in South Australia there were very large patches of long unburnt mallee. The distribution of 

mallee vegetation in New South Wales is more dissected by other vegetation types and cleared land 

than in South Australia and Victoria. Consequently, patches of mallee in NSW were more likely to be 

of a single age-class than in the other states (Fig 1). 
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If one adopts a landscape-scale approach, ignoring reserve and state boundaries, and examines the 

age-class distribution of tree-mallee in areas that form continuous blocks (e.g. Fig. 9), a quite different 

picture of the available age-classes emerges from that gained by viewing reserves or states in isolation. 

There are two large continuous blocks of tree-mallee vegetation protected within reserves, one north 

and one south of the Murray River. These blocks account for 22% and 17%, respectively, of the entire 

area of tree-mallee in the region and have different fire age-class distributions (Fig. 9). The northern 

block has experienced less fire (23% of tree-mallee burnt) than the southern block (57% of tree-mallee 

burnt) in the last 35 years.  

 

Fig. 8 here 

 

Fig. 9 here 

 

Discussion 

Fire patterns in the mallee 

The pattern of fire in the Murray Mallee region over the past 35 years has been dominated by 

infrequent large fires ignited by lightning in late spring or summer. Despite our study encompassing 

an area equivalent to the entire nation of Iceland, there were insufficient data to directly determine an 

unbiased estimate of the average fire interval in mallee, since such a small percentage of the study 

area (<3%) experienced two or more fires during the study period.  This suggests the average inter-fire 

interval is well beyond 35 years and that a site being burned more than once within such a period is 

the exception, rather than the rule. This finding contrasts with a perception of more frequent burning 

arising from observations that large fires occur every 10-20 years in this landscape (Noble and Vines 

1993; Morelli and Forward 1996; Bradstock and Cohn 2002; Willson 1999). However, although there 

may well be a large fire somewhere in the region on a roughly decadal basis, our data indicate it is 

extremely rare for any particular site to be burnt more than once in a 35 year period. Indeed, 

examination of the post-fire ages of specific sites showed that some remained unburnt for well over 

100 years (Clarke et al. 2010). This finding highlights the value of spatially explicit examination of 

the occurrence of fire, rather than just focussing on simple temporal patterns of conspicuous events. 

 

Fires in the Murray Mallee region became more frequent, but burnt less area, between 1972 and 2007, 

reflecting an increase in the number of small fires and a decrease in the number, and area, burnt by 

large fires. This result contrasts with findings in many Mediterranean systems worldwide where large 

fires have increased in frequency (e.g. California: Keeley et al. 1999, Minnich 1983, Spain: Díaz-

Degaldo et al. 2004, Pausas 2004). Nevertheless, infrequent large fires still accounted for the majority 

of area burnt in the mallee, as well as elsewhere in Australia (Haydon et al. 2000, Yates et al. 2008), 

California (Keeley et al. 1999, Moritz 1997), South Africa (Van Wilgen 1987) and Spain (Díaz-

Delgado et al. 2004, Röder et al. 2008).  

 

The decline in the area burnt by large fires in the Murray Mallee in recent years could be explained in 

several ways. The apparent trend might be an illusory consequence of a sample period of an 

inadequate length (only 35 years). It may reflect low fuel production due to a combination of few 



Appendices 

255 

 

years of above average rainfall and many years of drought during the latter half of the study period. 

Increased rainfall during the preceding seasons has been positively correlated with increased area 

burnt in arid areas of Israel (Levin and Saaroni 1999), Spain (Littell et al. 2009) and Australia 

(Greenville et al. 2009). In Mediterranean systems, fire activity and area burnt have been positively 

associated with periods of drought (Keeley and Zedler 2009, Röder et al. 2008). The extensive fires in 

the Murray Mallee in 1974/75 were associated with above average rainfall during 1973 and 1974 

which led to widespread growth of speargrass (Austrostipa spp.) (Noble et al.1980). The resulting 

continuity of fuel was considered a key factor in the large fires that subsequently occurred across New 

South Wales (Noble et al. 1980). However, these 1970s fires are the only clear occurrence of a link 

between increased rainfall and large fires. The large fire in South Australia in 2006 was during a 

period of severe drought. That mallee occurs in the semi-arid climatic zone (250-400 mm pa) may 

account for it exhibiting a fire history pattern intermediate between arid and Mediterranean systems, at 

least during the 35 year history used in this study.  

 

It is possible that the decline in the area burnt by large fires in the Murray Mallee in recent years is a 

consequence of successful preventative measures (prescribed burning) and active suppression during 

this period. However, there appears to have been no published quantitative examination of the degree 

to which different prevention or suppression methods have worked under particular fire conditions. 

Such analyses are inhibited by limited records of the location, extent and nature of past prevention and 

suppression methods during much of the study period. It was not possible to determine whether there 

was correlation between the extent and incidence of large fires and extent of prescribed burning in the 

region, as the latter was not consistently documented in any state. This inability to examine the 

effectiveness of prevention and suppression methods due to a lack of baseline data undermines the 

capacity of agencies to engage in truly adaptive management of fire for either asset protection or 

ecological management (Holling 1978, Gill 2008). 

 

Vegetation communities 

This study highlights the value of combining fire history mapping with regional vegetation mapping 

to identify the different propensities of different vegetation types to ignite and carry fire.  For example, 

the fact that Chenopod Mallee is less flammable and less likely to re-burn in a given period than 

Triodia Mallee can be used when considering the strategic placement of prescribed burns whose aim 

is to halt the run of large fires. This approach would capitalise on the inhibitory effect of some 

vegetation types on fire spread. Prior to this study, a lack of consistent region-wide vegetation and fire 

history mapping impeded the application of such basic information in fire planning and management.   

 

Fire age class distribution 

This study highlights the need to consider the management of fire-prone landscapes at ecologically-

meaningful regional scales that cross jurisdictional boundaries, rather than at the reserve or state scale; 

which is currently the common practice world-wide (e.g. Willson 1999; USDI-NPS 2004, 2009; Biggs 

et al. 2006; Department of Sustainability and Environment 2008). The temporal and spatial 

distribution of fire age-classes differed between reserves, states and major blocks of mallee. This is 

likely to be a consequence both of differences in fire management between jurisdictions, and variation 
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in the fire regime along a north-south latitudinal gradient in this region.  Pausas and Bradstock (2007) 

showed that there was a pattern of decreasing fire frequency associated with increasing aridity from 

south to north.  They proposed that with increasing aridity there is a decrease in productivity, such that 

the amount and connectivity of fire fuels are reduced and fires become less frequent.  

 

If the distribution of the fire age-classes in each reserve in a region is managed in isolation, then 

undesirable ecological outcomes could inadvertently arise. For example, the nationally endangered 

Black-eared Miner (Manorina melanotis) requires large continuous areas of long-unburnt mallee 

(Clarke et al. 2005; Taylor et al. unpublished data).  Perhaps not surprisingly, given the fire history of 

the region, it maintains a stronghold in the large blocks of long unburnt mallee in South Australia 

(Clarke et al. 2005), and is now rarely recorded in Murray-Sunset National Park, where patches of 

long unburnt mallee are more fragmented. If managers of the South Australian reserves did not 

appreciate the regional scarcity of large blocks of long unburnt mallee, local planning decisions could 

be made to the detriment of regionally endemic endangered fauna, like the Black-eared Miner. It is 

important that the management of ecological assets, like stands of long-unburned vegetation, are 

considered across ecologically-meaningful landscape management units; not just according to 

jurisdictional boundaries. 

 

The presence and connectivity of potential source populations able to re-colonise habitats and 

conservation reserves following fire is a critical issue.  It is likely to result in quite different 

perceptions of what constitutes a desirable age-class distribution for a particular reserve, depending on 

the size of the reserve (relative to the size of fires) and its spatial context: that is, whether it is 

surrounded by extensive vegetation or whether it is isolated from similar vegetation.  While many 

plants and animals may have adaptations to cope with the ‘typical’ past pattern of infrequent large 

fires, they now face a different situation where habitats have become fragmented and isolated.  The 

isolated nature of some conservation reserves make it undesirable for large proportions of the reserve 

to burn in a single event, because sources of re-colonists following fire may be lacking.  

 

A precautionary approach to fire management in isolated reserves would be to reduce the risk of a 

large fire burning the majority of the reserve in a single fire event. To evaluate alternative means of 

achieving this aim will require detailed information on: i) the effectiveness of various prevention and 

suppression methods when faced with typical fire conditions; ii) the inherent risk of prevention or 

suppression methods escaping control lines and burning the very asset one is trying to conserve; and 

iii) anticipated changes in the likelihood of large wildfires with global warming (e.g. Bradstock 2008, 

Driscoll et al. 2010). 
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Figure captions 

Fig. 1. Fire history map of the entire Murray Mallee region, south-eastern Australia, from 1972-2007. 

Fire scars are grouped into decades. Unburnt mallee vegetation is shown in light green, and white 

areas are non-mallee vegetation, cleared or agricultural land.  Reserves outlined are 1 Danggali 

Conservation Park, 2 Calperum Station (Bookmark Biosphere), 3 Gluepot Reserve, 4 Taylorville 

Station (Bookmark Biosphere), 5 Billiat Conservation Park, 6 Murray-Sunset National Park, 7 Hattah-

Kulkyne National Park, 8 Mallee Cliffs National Park, 9 Petro Reserve, 10 Lethro Reserve, 11 Tarawi 

Nature Reserve, and 12 Scotia Sanctuary. 

 

Fig. 2. The relative occurrence of fire size-classes mapped for the entire Murray Mallee region, 1972-

2007. 

 

Fig. 3. a) Area (ha) burnt in each decade since 1972, b) number of fires in the region in each decade 

from 1972 to 2007.  As decadal intervals are not even, annual averages in each decade are also shown. 

 

Fig. 4. Relationship between large fires in the study region between 1972-2007, the area of tree-

mallee vegetation burnt (ha; bars), cumulative total of previous 12-month rainfall (mm. solid line) and 

long-term average annual rainfall (mm; dotted line). 

 

Fig. 5. Percentage area of tree-mallee vegetation that has not been burnt during 1972-2007, and the 

area burnt from 1-4 times.  Note that areas burnt three and four times, each constitute less than 1% of 

all tree-mallee vegetation. 

Fig. 6. Distribution of the inter-fire intervals of fire patches (areas of overlapping fire scars >5 ha) in 

each mallee vegetation type burnt twice during 1972-1977; TM Triodia Mallee, HM Heathy Mallee, 

CM Chenopod Mallee.   

 

Fig 7. Amount of the three mallee vegetation types burnt in each decade from 1972-2007, as a 

proportion of the total area of each vegetation type in the study region.  

 

Fig. 8. Fire age-class structure in conservation reserves and parks of the Murray Mallee region; fire 

age-classes (years since last fire) are broadly in decades, constrained by available satellite image 

layers (> 35 years = unburnt since the earliest image in 1972). 

 

Fig. 9. Comparison of fire age-class structure of tree-mallee vegetation within a) each state (Victoria, 

New South Wales and South Australia), b) within continuous blocks of tree-mallee {Southern block 

includes Murray-Sunset NP and Hattah-Kulkyne NP; Northern block includes Scotia Sanctuary, 

Tarawi Nature Reserve, Danggali Conservation Park, Calperum Station (Bookmark Biosphere), 

Gluepot Reserve and Taylorville Station (Bookmark Biosphere)} and over the entire Murray Mallee 

region. 
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Table 1. Details of sixteen large fires (>10,000 ha) that occurred in the Murray Mallee region during 1972-2007.  

For each fire, the year and month of occurrence, type of fire, area burnt (ha) and the proportion of each vegetation type burnt within the fire is shown. 

Year State Month Fire type Overall area  Vegetation types (% of burn) 

    burnt (ha) CM HM TM NM 

1974 NSW Nov W 657987 12 0 69 19 

1975 NSW Jan W 19355 <1 0 80 19 

1975 NSW Jan W 20271 <1 0 81 18 

1975 NSW Jan W 38069 14 0 81 5 

1975 Vic Feb W 45788 38 0 58 3 

1975 Vic Nov W 21272 64 0 35 1 

1975 SA Dec W 10402 26 0 48 26 

1976 Vic Nov W 13371 11 <1 87 1 

1976 Vic Nov W 13493 4 <1 92 3 

1976 Vic Nov W 12664 67 <1 31 2 

1980 Vic Dec W 124366 8 26 65 <1 

1984 SA Dec W 44109 75 0 19 6 

1985 Vic Jan W 10773 11 1 61 26 

1988 SA Jan W 52972 <1 97 <1 3 

2006 Vic Sept PB/W 24763 6 83 10 <1 

2006 SA Nov W 118783 14 0 82 4 

 

W = WILDFIRE, PB = PRESCRIBED BURN, CM= CHENOPOD MALLEE, HM = HEATHY MALLEE, TM = TRIODIA MALLEE, NM = NON-MALLEE VEGETATION
.  
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Fig. 2.  

 

Fig. 3.  

 

a)               b) 

 

 

 

 

 

Fig. 4. 

 

 

Fig. 5. 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0-10 10-100 100-1000 1000-10,000 10,000-

100,000

>100,000

Fire area (ha)

P
ro

p
o

rt
io

n
 o

f 
a

ll
 f
ir

e
s
 d

e
te

c
te

d
 

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

1972-1980 1980-1989 1989-2000 2000-2007

A
re

a
 b

u
rn

t 
(h

a
)

Sum area (ha)

Average area burnt

(ha)

0

50

100

150

200

250

300

350

400

1972-1980 1980-1989 1989-2000 2000-2007

N
u

m
b

e
r 

o
f 
fi
re

s
Number of fires

Average number of

fires per year

0

100

200

300

400

500

600

700

800

Jan-

71

Sep-

72

May-

74

Jan-

76

Sep-

77

May-

79

Jan-

81

Sep-

82

May-

84

Jan-

86

Sep-

87

May-

89

Jan-

91

Sep-

92

May-

94

Jan-

96

Sep-

97

May-

99

Jan-

01

Sep-

02

May-

04

Jan-

06

C
u

m
. 
a

n
n

u
a

l 
ra

in
fa

ll 
(m

m
) 

  
 

0

100000

200000

300000

400000

500000

600000

700000

A
re

a
 b

u
rn

t 
(h

a
)



Appendices 

265 

 

 

Fig. 6. 

 

 

Fig. 7. 
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Fig. 9.  
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