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ABSTRACT 
 

Many researchers have studied the self-assembly and microphase 

separation of block copolymer blends involving hydrogen bonding interactions. 

However, self-assembly via competitive hydrogen bonding has never been 

investigated due to the delusion that such systems become completely 

homogeneous and unable to self-assemble under any chemical or physical 

circumstances because of more than one type of intermolecular hydrogen 

bonding. In my project, we have proven that careful selection of the polymers, 

specifically block copolymers, molecular weight of the homopolymer and 

experimental conditions can lead to self-assembled structures in blends and 

complexes exhibiting competitive hydrogen bonding. 

 

In this thesis, we have focussed on the phase behaviour, self-assembly and 

nanostructures from block copolymer/homopolymer mixtures involving both 

competitive and selective hydrogen bonding interactions. We report different 

combinations of self-assembled block copolymer/homopolymer blends and 

complexes of AB/C, AB/CD, and ABC/D types. The self-assembly via 

competitive hydrogen bonding is based on the competition between different 

blocks of the block copolymer to form more than one kind of intermolecular 

interaction with the complimentary polymer in the system. The microphase 

separated structures were formed due to the disparity in hydrogen bonding 

interaction between each pair of the block copolymer and homopolymer. 

Poly(2-vinyl pyridine)-block-poly(methyl methacrylate)/poly(hydroxyether of 

bisphenol A) (P2VP-b-PMMA/phenoxy), poly(ε-caprolactone)-block-

poly(ethylene oxide)/poly(4-vinyl phenol) (PCL-b-PEO/PVPh) and 

polystyrene-block-poly(4-vinyl pyridine)-block-poly(ethylene oxide) and PVPh 

(SVPEO/PVPh) systems were thoroughly studied in this category. In selective 

hydrogen bonding interactions, the homopolymer C can interact with only one 

block of the block copolymer and the non-interacting block gets phase 

separated. The complexes like polystyrene-block-poly(acrylic 

acid)/poly(styrene)-block-poly(ethylene oxide) (PS-b-PAA/PS-b-PEO) and PS-

b-PEO/PAA were studied in this category. We have discussed the conditions 

for the formation of complex morphologies via selective hydrogen bonding 
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interactions between one block of the block copolymer and the homopolymer. 

Finally, we have detailed the importance of non-covalent hydrogen bonding 

interactions for the formation of morphological transitions and self-assembly in 

different block copolymer/homopolymer systems  
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Chapter One______________________________________

General Introduction

1.1 The project aims

Self-assembly of block copolymer (BCP)/homopolymer systems is a 

versatile method to fabricate useful functional materials which merges 

properties like reversibility, control of composition and concurrent phase 

behaviour. Such systems may provide new opportunities for the tailoring of 

novel, tunable materials with new properties such as improved processing, self-

healing behaviour or stimuli responsiveness. Furthermore, a wide range of 

ordered and disordered nanostructures can be created in BCP mixtures based 

on the attraction and repulsion among the chemically connected chains. The 

nanostructure formation can be controlled by changing the parameters like

molecular weights, chemical structure and composition of the BCP.

Self-assembled nanostructures from BCPs with homopolymer involving 

secondary interactions like hydrogen bonding, or electrostatic interactions 

opened a new strategy to construct ordered nanoscale domains for various 

applications.1-10 Among these, hydrogen bonding interactions in the BCP

blends and complexes can show macroscopic changes on their physical 

properties like melting temperature, glass transition temperature, surface 

properties, crystal structure and dielectric properties.7-12 In addition, BCP

blends and complexes involving hydrogen bonding interactions provide a new 

mechanism of self-assembly, that leads to the fabrication of functional 

advanced materials. Here, we report different combinations of self-assembled 

BCP blends and complexes of AB/C, AB/CD, and ABC/D types.

The research described in this thesis aims to develop novel microphase 

separated BCP nanostructures achieved through the competitive and selective 

hydrogen bonding interactions in the bulk and in solution. In competitive 

hydrogen bonded blends and complexes, the homopolymer forms hydrogen 

bonding with more than one block of the BCP but with unequal interactions. 

On the other hand, in selective hydrogen bonding interactions, the 
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homopolymer can interact with only one block of the BCP and the non-

interacting block gets phase separated.  In this work, we have investigated how 

these selective and competitive hydrogen-bonding interactions in 

BCP/homopolymer systems can generate various composition-dependent 

nanostructures both in solid state as well as in solution.

1.2 Thesis organization

Chapter 2 is a literature overview on BCPs, their phase behaviour and 

morphologies along with an emphasis on structure and properties of block 

copolymers. This review discusses the influences of non-covalent bonding 

interactions mainly hydrogen bonding on the morphologies of BCP mixtures in 

the bulk and in solution and their potential applications.

In Chapter 3, the competitive hydrogen bonding interactions of P2VP-b-

PMMA and phenoxy is discussed. A model is proposed to describe the self-

assembled nanostructures of the P2VP-b-PMMA/phenoxy blends and detailed 

how the competitive hydrogen bonding is responsible for the morphological 

changes.

Chapter 4 describes the microphase separation of a double crystalline PEO-

b-PCL di-BCP blended with PVPh induced by competitive hydrogen bonding 

interactions. The formation of various ordered and disordered nanostructures 

relative to the strength of hydrogen bonding interaction between each block of 

the BCP and the homopolymer were explained with the help of a structural 

model. 

In Chapter 5, we have investigated the self-assembled nanostructures of a 

semicrystalline SVPEO tri-BCP with PVPh complexes. In these complexes, 

microphase separation takes place due to the disparity in intermolecular 

interactions; specifically PVPh and P4VP blocks interact strongly compared to 

PVPh and PEO. 

In Chapter 6, a new strategy for the development of multiple vesicular 

morphologies in BCP complexes via hydrogen bonding interactions is detailed. 

A model AB/AC di-BCP system consisting of PS-b-PAA and PS-b-PEO was 

studied. In this study, a new morphology called ICCVs was observed.
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In Chapter 7, we report for the first time, a simple and effective approach to 

trigger a spheres-to-vesicles morphological transition from amphiphilic 

BCP/polyelectrolyte complexes in aqueous solution. Vesicles and large 

compound vesicles were prepared via complexation of PS-b-PEO with PAA in 

water and directly visualized using cryo-TEM. 

Chapter 8 presents the general summary and potential future works related 

to this thesis.
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Chapter Two______________________________________

Literature review

2.1. Introduction

Block polymers today find application in nearly every area of life as they

are used in many forms of materials in science, technology and industry. The 

nanoscale self-organization of block polymers is extensively investigated to 

create periodic structures using a variety of techniques.1-4 This can be achieved 

simply by combining polymer chains together to form unique assemblies with 

specific functional and response characteristics. Correspondingly, theoretical 

and computational methods have also been developed to predict the self-

assembling behaviour. These are the pre-eminent self-assembling materials

with novel morphologies that can be controlled by varying the BCP structure, 

solution ionic strength, polymer concentration and molecular weight.5-14 The 

most common periodic morphologies of BCP comprise of spheres, hexagonal 

cylinders, gyroid and lamellae with dimensions from 10-100 nm. By 

combining these ordered geometries within lithography templates, BCPs can be 

used as scaffolds to create self-assembled patterns in energy storage devices. 

Furthermore, a variety of morphologies can be accessed with di and tri-BCPs.15 

In block-selective solvents, amphiphilic BCPs can self-assemble into micelles

(spheres, rods, lamellae) and vesicles. The structure of these aggregates 

comprises of an immiscible core surrounded by a miscible shell.16-20 A binary 

mixture of self-assembled blends and complexes involving BCP and a

homopolymer can also exhibit well-defined morphologies; these nanostructures 

are currently being used for many applications such as nanocarriers in drug 

delivery, gene therapy, diagnostic agents, flocculants, and in pharmaceutical 

applications.21-25 In this review, a brief overview regarding the developments 

and advances in self-assembly of BCP and BCP/homopolymer mixtures are 

highlighted. 
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2.2 Block copolymers

BCPs are soft materials consist of two or more segments, or blocks, of 

simple, chemically distinct, and frequently immiscible polymers joined by the 

covalent bonding. For example an AABBAA mode where A and B are

different polymer components.26 Depending on the number of distinct polymer 

segments, BCPs can be categorized into di-block, tri-block, and multi-block.

Based on the arrangement of polymer chains, it can be further classified as

linear and star BCPs. BCPs provide a versatile platform for fabricating large-

area periodic nanostructures by controlling their self-assembly behaviour, with 

length scales varying from a few nanometers to several hundred nanometers. 

The repulsive and attractive interactions occur inside and between polymer 

segments and the covalent bond is the driving force for producing self-

assembled nanostructures. BCPs having similar chemical structure but different 

molecular weights and block-ratios provide an effective way to control

nanostructures.27-30 BCPs are important due to their unique structural 

properties. The applications of BCPs are made possible due to the combination 

of sequences, or blocks, of chemically distinct repeat units joined by covalent 

bonding. Hence, a separation can only take place on a nanoscopic level. Based 

on BCP composition and temperature, the phase separation of these polymers 

result in the spontaneous formation of wide array of well-ordered 

nanostructures. This property is largely applied in nanotechnology. 

2.3 Block copolymers: Phase separation and morphologies

The simple and extensively investigated group is the linear AB di-BCP. In 

these BCPs, the groups of A and B molecules self-assemble to form 

nanostructures via the process of microphase separation which is driven by the 

enthalpy of demixing of the BCP components. This enthalpy is proportional to 

the product well-known Flory-Huggins interaction 

parameter and N is the degree of polymerization.31 BCPs with immiscible 

blocks has a general tendency to phase separate due to the repulsion between 

covalently connected blocks. There are three experimentally controllable 

factors for determining the chain organization and to form a final equilibrium 

structure; (1) N (2) and (3) comparative block length, ƒ. Depending upon the 
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value of it is possible to determine the degree of microphase separation of 

the di-BCP. The phase separation of BCP is driven by unfavourable enthalpic 

interactions and entropic elasticity. For minimizing the unfavourable 

interactions, the BCP blocks undergo phase separation. This consists of an 

interfacial free energy contribution and an elastic stretching contribution. 

Stretching free energy reduces the interfacial contribution and thereby reduces 

the interface area. When the two competing effects i.e. interfacial and 

stretching contribution are balanced, the equilibrium structure is formed. Figure 

2.1 represents the schematics of the di-BCP equilibrium morphologies.32 Other 

than these equilibrium morphologies, various additional complex architectures

can be formed, however those are thermodynamically unstable.33

 

Figure 2.1 Schematics of equilibrium morphologies observed for a stable A-b-

B di-BCP as an increasing volume fraction of A (diblocks are represented as 

simplified two-colour chains).32

BCP can pass through order–

disorder temperature (ODT). Upon microphase separation, BCPs can form

various equilibrium structures with respect to the composition. They include

sphere, cylinder, gyroid and lamellae.34 For nearly symmetric compositions, 
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the interfacial area of the BCP components has no curving temptation, 

therefore they from alternate layers known as lamellae. When the BCPs

become asymmetric, the interface tend to curve that leads to hexagonally 

arranged cylindrical or spherical phase of minor block in the major block 

matrix. Body centred cubical structure is formed when ƒA As the volume 

fraction of ƒA increases further (ƒA 0.38), then the A block forms a

bicontinuous gyroid or perforated layers, respectively.33

2.4 Equilibrium block copolymers phases

2.4.1 Spherical phase

BCPs at volume fraction of the minority c

the spheres to form BCC and FCC or HCP spheres. The FCC and BCC 

spherical micelles with cubic packing is shown in Figure 2.2.35 Almdal et al 

investigated the BCC pattern lattices of  PEP–PEE BCP having volume 

fraction ƒPEP=0.83.36 BCPs exhibiting cubic phase was extensively studied by 

several groups including Mortensen et al.,37,38 Hamley et al.,16,26,35 Castelletto 

et al.39 etc. 

Figure 2.2 Schematic representation of molecules arranged in body centred 

cubic lattice, face centred cubic lattice or hexagonally close packed pattens.35

2.4.2 Cylindrical phase

The BCPs form hexagonally arranged cylinders of one block within the 

matrix of the other block (volume fraction of th

%). A sketch of cylinders is shown in Figure 2.3. Leibler’s theory40 proposes 

the first formation of spherical structures that subsequently form a hexagonal 
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cylindrical phase. The influences of surface fields for the orientation of 

cylinders were studied by various groups.41 Morkved et al.42 introduced electric 

field approach to align PS-b-PMMA cylindrical domains.

 

Figure 2.3 Schematic representation of hexagonal cylinders.

2.4.3 Gyroid phase

Gyroid morphology has been identified as a three-dimensionally connected 

interface at the boundary between cylinders and lamellae, close to the order–

disorder transition as shown in Figure 2.4.35a It was observed that [001] planes 

of the lamellar and the [10] planes of the hexagonal phase exhibit an epitaxial 

relationship with the [211] gyroid planes.43 Schultz et al.44 also studied 

epitaxial shift of hexagonal and gyroid morphologies in PS-b-P2VP BCP.  

Figure 2.4 Schematic representation of a bicontinuous gyroid phase.35a

2.4.4 Lamellar phase
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Lamellae phase of BCP self-assembly is favoured at equal volume 

fractions of two blocks. The simplest ordered morphology is lamellar and the 

schematic view of lamellae is shown in Figure 2.5. The major theoretical 

investigations, applications and morphological orientations of lamellar BCPs

were studied by several groups.45-47 The stability of the lamellar structure under 

deformation was theoretically studied by Amundson and Helfand,48 and 

showed that the lamellar phase can be transformed into a disordered state if the 

deformation is large.

Figure 2.5 Schematic representation of lamellae.

2.5 Diblock copolymers

The basic structure of a di-BCP constitutes two distinct monomers linked 

together by covalent bonding. Schematic representation of a AB di-BCP is 

given in Figure 2.6

Figure 2.6 Scheme of a di-BCP

Other than the volume fraction, also describes the phase separation of di-

BCPs using the following equation,

 
AB = 

kBT 

z 
AB  AA BB

2

A B 

 (1)
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Where kB = Boltzmann constant, z = number of nearest monomers, T denotes 

the temperature and AA, BB, AB are the interaction energies of A-A, B-B and 

A-B interactions respectively. If AB>0, then A and B blocks have repulsive 

AB <0, the different components attract each other. 

The phase behaviour of a di-BCP depends on N (where, N is the sum of NA

and NB and the volume fractions ƒA and ƒB, where ƒA = NA/N and ƒA + ƒB

= 1.40 critical value, depending on the copolymer 

architecture and composition (which is parameterized by ƒ), BCP can 

microphase separate to form periodically ordered nanostructures. Three 

different degree of segregation can be defined depending on the value of 

(a) The weak segregation limit (WSL) when ~ 10; (b) the intermediate 

~ 10-100 and (c) the strong segregation limit 

~ 100.

 

Figure 2.7 Liebler’s phase diagram for a di-BCP in mean field theory.40

The phase behaviour of different BCP systems is detailed theoretically by 

a range of methods.31,49  The phase diagram belonging to the regime of the 

WSL was first calculated by Leibler by making use of Landau’s mean-field 

approximation.40 His theory compares the free energy transformation from 

disordered to ordered phase. For an asymmetric di-BCP

theory predicts a first order transition to a BCC from the disordered state. 

According to the phase diagram in Figure 2.7, a symmetric BCP (ƒ= 0.5) 
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undergo a transition directly to the lamellar phase.40,50 By further increasing 

theory suggests a transition from  BCC to the thermodynamically stable 

hexagonal microphase and subsequently to the lamellar microphase. The 

composition fluctuation by a single wave function was approximated in WSL.

On the other hand, SSL was described using the higher degree of segregation 

among the microdomains. Meier51 followed by Semenov52 developed elaborate 

theories for expressing the morphological free energies in SSL. The self-

consistent field (SCF) theory developed by Helfand and Wasserman explained

the earliest microphase separation of BCPs though it failed in the strong 

segregation regime.53 Matsen and Bates combined the two limiting cases of 

WSL and SSL using SCF theory to describe morphological behaviour which is 

shown Figure 2.8.54

 

Figure 2.8 The morphology phase diagram of a symmetrical di-BCP computed 

with the help of SCF. The stable areas containing disordered, lamellae, gyroid, 

hexagonal and body-centred cubic states are shown.54

2.6 Triblock copolymers

BCPs with three different distinct blocks linked by covalent bonds are 

called tri-BCPs. They can be obtained by combining only two chemically 

different species and called binary ABA tri-BCPs or by using three chemically 

different polymers making the ternary ABC tri-BCPs. These binary and ternary 
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tri-BCPs can be classified into linear or star depending upon the arrangements 

of polymer blocks. Figure 2.9 shows the sketch of linear and star tri-BCPs with 

equal chain length. 

 

Figure 2.9 Sketch of [a] linear and [b] star tri-BCPs

In analogy to the AB di-BCPs or ABA tri-BCPs, a rich variety of 

nanostructures can be created via the microphase separation in ABC tri-BCPs

because of the three different components. Generally, disordered states of ABC

melts have better stability compared to AB with a similar length and 

composition. Tri-BCP systems have revealed a rich variety of well-ordered 

complex micro domain morphologies (Figure 2.10).15,55-57 In these BCPs, an

equilibrium morphology can be defined using six parameters; (1 AB BC and 

AC. Here the relative immiscibility is expressed by the interfacial tension çij, 

or by the interaction parameter øij, between the directly connected A/B, B/C 

and the “nonlinked” blocks A/C.55a,58 (2) The formation of microphase 

separated assemblies is influenced by two independent composition 

parameters; ƒA, ƒB and N AC compared 

AB and BC there may be three different types of systems.59 When the value 

AC AB and BC, it is denoted as F2 system or 

frustrations. AB AC BC AC is intermediate between the other 

two neighbouring blocks are said to have F1 system or . The 

third type of systems comprises of F0 system or no frustration, where A/C 

interaction is higher than A/B or B/C interactions. As a result there is a rich 

variety of ABC tri-BCP structures. ABC tri-BCPs are more versatile than di-

BCPs, due to the structural complexity and these materials show a greater 

a) 

b) 
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variety of morphologies.60 Kotaka et al.61 gave the first more detailed picture of 

ABC tri-BCP morphologies, mainly based on styrene, butadiene, and vinyl 

pyridine. In the literature devoted to tri-BCPs, the most important theoretical 

and experimental studies have been carried out on SBM.62,63 There are a large 

number of studies regarding the morphological behaviour of SBM done by 

Stadler’s group.64 A wide range of ordered nanostructures was exhibited by 

SBM based on the fraction of the constituting blocks. In one case a lamellae 

phase of PS and PMMA was formed and a spherical PB was found as spherical 

domains in between the lamellae layers.65,66

Figure 2.10 Schematic representations of morphologies for linear ABC tri-

BCP.15

2.7 Self-assembled block copolymer morphologies in solution

BCP amphiphiles self-organize in solution to form a wide range of various 

structures in nanometer dimensions either in water or in organic solvents.67 The

reason for self-assembly is an unfavourable mixing enthalpy and a small 

mixing entropy, whereas the covalent bonding exists between the blocks avoid

macrophase separation.68 In fact, amphiphilic BCPs can show two behaviour in 

solvent media which are micellization and gelation. The behaviour of BCPs in 

aqueous phase, including micellization, is of great interest in the application 
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point of view. They can be used as toxic removing agents, nanocarriers for 

biomedical applications, protein conjugation, etc.69 The micellization and their 

potential uses are comprehensively reported in the literature.22-25,69 When the 

BCP is mixed with block-selective solvents, the solvent-philic part stretch out 

to the solvent creates the ‘shell’ and solvent-phobic block centred within the 

shell form ‘core’ and this is how micellization usually occurs. One classic 

structure of BCP micelle is displayed in Figure 2.11.70

Figure 2.11 Schematic representation of a polymer micelle.70 

Micellization of BCP in selective solvents occurs above a certain 

concentration known as critical micelle concentration (CMC). With increasing 

BCP blocks, the amount of micelles also increases whereas the amount of non-

associated blocks remains the same which is equivalent to CMC. Similarly the 

temperature at which, for a fixed polymer concentration, micellization occur is 

called critical micelle temperature. There are various methods to induce 

micellization in solution. In another method, BCP aggregation takes place in a

neutral solvent, and followed by the addition of a selective solvent, and finally

the complete removal of the common solvent by dialysis. Also, micellization 

favoured  by changing size and shape of BCPs due to external parameters like 

temperature, pH or solvent composition can lead to polymer phase separation.71

2.7.1 Micelles

Based on the BCPs composition and various experimental methods, it is 

possible to form “crew-cut” or “star” micelles (Figure 2.12). Here, the 

amphiphilic BCPs having longer hydrophobic chain than the hydrophilic chain 

forms the crew-cut and if the hydrophobic block is shorter than the hydrophilic 



16

 

chain, it forms star micelles. In both cases, BCP micelles offer potential 

advantages over low molecular weight lipid amphiphiles and surfactant 

systems. This is due to robust nanostructures obtained from BCPs and their 

flexibility which can be controlled by synthesis. Therefore, the application of 

BCPs especially for drug delivery has been a key area of research in recent 

years. Several systems comprising of BCPs, such as AB,72 ABA,73 and ABC 

star-shaped74 have been investigated extensively. Obviously, the change in the 

chemical factors (structure, composition and architecture)17,75 or solution 

parameters (concentration, temperature, solubility, pH, ionic strength etc.)76 of 

amphiphilic BCPs, it has been possible to manipulate multi-compartment 

micellar structures, including core-shell-corona spheres,77 cylinders,78 and 

helices,79 segmented wormlike micelles,80 disks,81 plates,82 toroids,83 and 

“raspberry-like” micelles.84-85 The morphology and structure of core-shell 

micelles determine the practical applications of BCP in solution.85

Figure 2.12 Schematic representations of star-like and crew-cut micelles.

Mostly, BCP micelles are spherical but under certain environmental 

conditions can change their shape and size distribution; forms various 

morphologies.77-84 A scheme of spherical micelle is shown in Figure 2.13.

Mortensen and Pedersen reported the morphologies of PEO-b-PPO spherical 

micelles where the shell made up of PEO-blocks was found outside the PPO

core-blocks.108 Chou and Zhou detailed the solution properties of both PEO-b-

PPO and PEO-b-PBO BCPs.109 Eisenberg and co-workers extensively 

investigated the crew cut micellization of BCPs containing large hydrophobic 

blocks.110
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Figure 2.13 Scheme of a BCP spherical micelle.35a

Other than the crew cut and star, other types of three layered micellar 

structures for example, onion type or core shell corona (CSC) were also made 

for different applications. Most of these micelles are made from ABC tri-

BCPs.86-90 As an example, PS-b-P2VP-b-PEO,91,92 PS-b-PMMA-b-PtBA,93 and 

P2EHA-b-PMMA-b-PAA94 can self-assemble into CSC micelles with different

phase structures. As the tri-BCPs are difficult to syntheses, CSC micelles are 

less investigated. Besides ABC tri-BCPs, Kabanov et al. proposed the synthesis

of multilayer morphologies by the complexation of AB/BC BCPs.95,96 In 

addition, micellization through electrostatic or hydrogen bonding interactions 

is more facile method than block-selective micellization of BCPs.97-101

Especially, hydrogen bonding and complexation can facilitate co-aggregation 

in blend solutions.99-101 Other than the hydrogen bonded BCP aggregates, 

morphologies formed by the self-assembly of oppositely charged components 

are also useful for many potential applications.102-104 BCPs containing one 

neutral block and a polyelectrolyte block are generally called block ionomers. 

Micelles formed from block ionomers are given different names by different 

research groups. For example, Kabanov et al.105 termed it as “block ionomer 

complexes” (BICs) or interpolyelectrolyte complex (IPEC), Kataoka et al.106,107

used the term “polyion complex micelles” (PIC). The final morphology of the 

self-assembled complexes could be influenced by the interfacial energy of the 

soluble/insoluble phase, core chain stretching, and entropy loss due to the 

insoluble blocks packed into aggregate micro domains.

2.7.2 Vesicles
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BCP vesicle is a functional hollow lamellar bilayer structures and various 

agents can be encapsulated within the hollow core.111 It has been established 

recently that these aggregates can be employed as novel carrier systems in 

advanced drug delivery. The high drug-loading capacity and the unique 

delivering characteristics make these BCP aggregates as efficient candidates in 

this application.112 According to a theoretical study of Safran et al.,113 vesicles 

are more stable with respect to the lamellar phase. Vesicles can be used for 

encapsulating various agents within their hollow structure and therefore their 

potential applications are growing in different biomedical areas including 

targeted deliveries.114,115

Figure 2.14 Schematic representation of a BCP vesicle.35a

The first observation of simple BCP vesicles was done by Eisenberg and 

co-workers using PS-b-PAA BCP.116 Figure 2.14 shows a sketch of a polymer 

vesicle. Discher et al. investigated the physical properties of BCP vesicles and 

termed them as polymersomes.117 Vesicles from multi-BCPs in aqueous 

solution were first investigated by Nolte et al.118 In addition to the classical 

vesicles, large compound vesicles (LCVs) and multilamellar vesicles also exist 

in BCP mixtures.119,120 The formation of LCVs may be either from one lamella 

or from the fusion of many vesicles under kinetic control.121 LCV’s can also 

found use in multiple encapsulating purposes for stepwise release.122

2.8 Block copolymer blends and complexes
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Blending or mixing of polymers have attained considerable attention for 

combining physical properties and significantly broadening the processing 

window for creating materials having desired characteristics that cannot be

attained by a single polymer.123 The homogeneous mixing of polymers can be 

performed in different ways including melt mixing as well as solution casting. 

In solutions, a blend or a complex precipitate can be formed between two 

polymers depending on the interaction between them. If a favourable 

intermolecular interaction exists between different polymers, a miscible 

polymer blend can be formed. And, if the interaction is sufficiently strong, i.e. 

the polymer-polymer interaction prevails over the polymer-solvent interaction, 

the two polymers co-precipitate to form highly associated mixtures known as 

polymer complexes. BCPs can be mixed with different complementary 

polymers to produce blends and complexes. These include blending di-

BCP/homopolymer involving the same component of the blocks such as AB/A 

or AB/B.124 Based on the molecular weight of A or B homopolymers, the phase 

behaviour of the blends exhibit wet brush125 or dry brush characteristics.126 In 

addition, BCP blending with low molecular weight molecules,123 or 

homopolymer of C-type,116,117,127,128 other BCPs128,129 have been studied 

extensively. In this thesis, we mainly focus on BCP/homopolymer systems 

involving hydrogen bonding interactions.

2.9 Hydrogen bonding in polymer mixtures

Hydrogen bonding, one of the major attractive forces, is an important key 

for function of making miscible polymer blends. Hydrogen bonding exists

among the electron deficient [proton-donating group] H-atom and electron 

dense atom [proton-accepting groups] that accompanied by a considerable gain 

in interaction energy as well as a substantial loss in entropy as hydrogen 

bonding is directional.127,130 Typically, hydrogen bonds are expressed as A-H---

B. Here A and B represents the high electronegative fluorine, oxygen and 

nitrogen atoms. There are principally two types of hydrogen bonding, self-

associated bonds which exists within a single polymer component and inter-

associated bonds which is between dissimilar polymer components. It is 

possible to obtain a homogeneous blend having suitable components via
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specific inter-associated hydrogen bonding. Moreover, hydrogen bonding 

interactions are utilized to make various compatible polymer mixtures and 

thereby tune their properties.131,132

Different experimental methods can be applied to characterise the 

hydrogen bonding in polymer blends. These include infrared spectroscopy 

(IR), Raman spectroscopy, nuclear magnetic resonance spectroscopy, gas

phase microwave rotational spectroscopy, X-ray diffraction, neutron diffraction 

etc. Among these methods, IR is found to be the highly efficient technique to 

characterise the hydrogen bonding in blends. Generally, the hydrogen bond

formation in a polymer mixture (A-H---B) involves the transferring of electron 

from B to A-H which makes the A-H bond weak as it begins to elongate. This 

will cause a lowering of frequency generally known as red-shift which is 

identified using IR spectroscopy.

The appropriate mixtures of proton-donors and proton-acceptors can make 

a strong or weak bond. When the hydrogen bond strength ranges from 60–170

kJ/mol, it is a strong bond, a moderate bond is at 15–60 range and weak bonds 

at 4–15 kJ/mol. The common proton-donating polymers include PVPh,133

PVAL,134 PAA,135 their copolymers and analogues. The most common proton-

accepting polymers are polyesters,136 polyacrylates137 and polyethers.138 The 

strength of hydrogen bonds can also be determined by equilibrium constants.

Painter and Coleman Association Model,139-141 has been used to calculate the 

interactions in the hydrogen bonded systems in a blends containing three 

interacting components; one self-associating polymer (B) and two non-self-

associating polymers (A and C), and B can interact with both A and C. Their 

corresponding equilibrium constants are KB, KA and KC respectively and can 

be expressed by the following equations;140,141
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B A C are the total volume fractions of the polymer units in the 

blends B1 A1 C1 are the volume fractions of isolated species in the 

mixture respectively; r is the segmental molar volume given as; rA = VA/VB

and rC = VC/VB. The predicted values of fraction of hydrogen bonding can be 

compared with the experimental values. 

The degree of hydrogen bonding that are inter-associated is a key factor in

polymer blends for inducing the compatibility or/and miscibility because it 

generally contributes significantly to the mixing free energy. Miscible polymer 

blends with hydrogen bonding interactions include, PVPh/PMMA,142,143

PVPh/PEO,144,145 PVPh/P4VP,146 PVPh/PVAc,147 PVPh/PHV,148 PVPh/

PVME,149,150 PVPh/PCL etc.151-153 The hydrogen bonding has a major influence

on polymer properties such as, thermal, crystallization behaviour, mechanical 

properties, etc. Generally, the polymer blends involving hydrogen bonding 

interactions are miscible and exhibit only one glass transition temperature (Tg).

A large number of equations including Fox,154 Gordon–Taylor,155 Couchman–

Karasz,156 and Kwei.157 etc., are utilized to calculate the Tg-composition 

dependence. The disparity between experimental and predicted Tg values 

(5) 

(6) 

(8) 

(7) 
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describe whether a polymer blend shows a positive or negative deviation. This 

can be taken in consideration in order to determine how strongly the polymer 

chains interact. For example, PVPh blended with PMMA,158,159 PVP,160 and 

P4VP161 show a positive deviation, where the observed Tg value is higher than 

the Tgs calculated by a linear additivity law. A negative deviation in Tg is 

shown by PVPh/PCL162 epoxy/PEO163 which is attributed to weak 

intermolecular interactions between the blended polymers. Most of the 

hydrogen-bonded blends exhibit melting point depressions when the blend is 

composed of at least one semicrystalline component.164-167 The miscibility 

induced by inter-associated bonds in polymer blends can suppress the 

crystallization of the crystalline component. For example, crystallization of 

PHB was hindered in its blends with 40 wt% of PVPh.167 In some cases, the 

strong hydrogen bonds can even completely prohibit the crystallization of the 

crystalline component. Moreover, hydrogen bonding can also affect the surface 

enrichment in multicomponent polymer systems.168,169

2.10 Self-assembled block copolymer blends and complexes by hydrogen 

bonding interactions in bulk

Self-assembled structures from BCP materials are attaining increasing 

interest both from a fundamental and applied point of view. The studies on 

nanostructured BCP have been emphasised on the synthesis and control the 

self-assembly by changing the parameters such as their molecular-weights, 

chemical-structure, volume-fraction, chain-flexibility, etc. The self-assembly of 

BCPs by blending is a convenient route for the development of new polymeric 

materials with property profiles superior to those of the individual components. 

This has been on the basis of the non-covalent physical interactions, such as 

ionic or electrostatic interactions, coordination bond and hydrogen bonding. 

The core advantage of this method is that it is possible to tune the behaviour of 

materials with various components at different concentrations.

The conventional AB/C systems involve blending an immiscible AB di-

BCP with the homopolymer C, where C interacts favourably with block B, but 

is immiscible with A. Zhao et al.170 studied the first AB/C system by blending 

an incompatible PS-b-PVPh di-BCP with PEO, P4VP and PBMA
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homopolymers. Here, PEO, P4VP and PBMA are able to make hydrogen 

bonding interactions with PVPh whereas immiscible PS chains are phase 

separated.170 The interactions and nanostructure morphologies formed by the 

hydrogen bonding between a small molecule and BCP were extensively 

investigated by Ikkala’s group.171-173 For example, the blending of immiscible 

PS-b-P4VP di-BCP with PDP, where PDP and P4VP can make hydrogen 

bonds and form an a homogeneous blend, however immiscible PS phase 

separates.174 In other study, Ikkala and co-workers prepared blends of an

incompatible PI-b-P2VP di-BCP and novolac resin. Here also resulted a blend 

of novolac with miscible P2VP and immiscible PI.175

In AB/C BCP/homopolymer blends, AC BC AB can be either positive 

or negative.176 Generally, in such systems, two types of outcomes are possible 

when C is miscible with immiscible AB segments. The first case is C is 

miscible with B but immiscible with A i.e. with a negative BC and positive 

AB AC (A/B and A/C are immiscible). In such cases the immiscible A 

phase separates to form different ordered or disordered morphologies. 

Hashimoto et al., studied blending of PS-b-PI/PPO and PS-b-PB/PMVE 

systems, where the homopolymers exhib

polystyrene.177,178 Various nanostructures of PS-b-P2VP/PVPh blends with 

different blend compositions was reported by Matsushita and co-workers,

where PVPh and P2VP form a miscible phase through strong hydrogen 

bonding interactions.179,180 The second case in AB/C systems is, the 

homopolymer C is miscible with both the blocks of the BCP i.e. A and B. For 

instance, Forster and co-workers investigated P2VP-b-PEO/PVPh blends

where PVPh is miscible with both the BCP blocks.181 Moreover, PVPh-b-

PMMA/PEO blends were investigated by Chang and co-workers.182 However, 

in these cases self-assembly or microphase separation was not detected. This is 

because of the non-selective bonding between the homopolymer and the BCP

blocks to form a completely homogeneous system.

2.11 Self-assembled block copolymer complexes by hydrogen bonding 

interactions in solution
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Recent studies in self-assembled systems have shown that interpolymer 

interactions other than covalent bonding can also create self-assembly in 

solutions. For immiscible polymer systems it is possible to induce miscibility 

by introducing interacting groups. The preparation of aggregates of complexes 

induced by secondary interactions has been extensively investigated.180-186 This 

includes electrostatic, hydrogen bonding, co-ordination bonding or polar-polar 

interactions. The foremost advantage of hydrogen bonded and polyelectrolytic 

mixtures is that they are simpler to process than to synthesize the covalent 

analogues. The most important features of hydrogen bonds are its 

thermoreversibility and stimuli-responsiveness and photochemical behaviour,

so that it is easy to tune the material properties. The thermo-reversibility 

improves the equilibration through the phase separation process unlike if the 

bonds had been permanent. The combination of properties such as reversibility, 

easy control of composition, and concurrent self-assembly behaviour gives new 

opportunities for the tailoring of novel functional materials with new 

properties, such as improved processing, self-healing behaviour or stimuli 

responsiveness. 

Hydrogen-bonding complexation in polymers was first reported by 

Dorby.187 Later, in the 1960s, researchers at Union Carbide studied hydrogen-

bonding complexation of PEO and PAA.188,189 Tsuchida et al.190 and Jiang et 

al. have also given reviews about intermolecular complexations.191 As for 

hydrogen bonding interactions, micelles and other morphologies can be 

obtained either from complexation of by mixing AB with a homopolymer C, or 

AB and BC copolymers or by mixing AB and CD copolymers where A and C

blocks can form hydrogen-bonded complexes.

The solvent plays a significant role in these systems as it controls the 

formation of complexes.192 Hence, it is possible to tune the aggregation 

behaviour of polymer complexes with hydrogen bonding interactions by the 

nature of the solvent used. Jiang et al. reported the first hydrogen-bonded 

micelles by blending PS-b-PMMA with hydroxyl containing modified 

polystyrene (PS(OH)) in toluene at the stoichiometric molar ratio.193 The co-

micellization of PEO-b-PAA/P4VP complexes in ethanol solution was 

investigated by Shi and co-workers.194 There is a strong hydrogen bonding 
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interaction between PAA/P4VP blocks than PAA/PEO pair. Therefore

PAA/P4VP forms the micellar corona and PEO block forms the core. Lee and 

co-workers studied the complex formation induced by the change in pH of 

PCL-b-PMAA/PEO in solution. The long-range-interconnected morphology 

was formed by the hydrogen bonding between PMAA and PEO.195

Complexation of PEO-b-P2VP-b-PEO tri-BCP with PAA at small pH in 

aqueous media resulted in flowerlike micelles.196 Chen et al. investigated the 

formation of controllable vesicles in the complexes of PEO-b-PB and PAA in a 

mixture of THF and n-dodecane.197 Gohy and co-workers reported the 

aggregates formation in PS-b-P4VP and PAA mixtures in organic media.198

Here complexes were formed by the bonding among the P4VP and PAA 

polymer segments. The P4VP/PAA bonded phase forms the core and the non-

interacted PS form corona of the micellar aggregates. Zhang et al. studied a 

hydrogen bond-mediated adsorption of P4VP chains on the kinetically frozen 

PS-b-PAA aggregates in ethanol-DMF mixtures.199

Shi and co-workers prepared multilayered micelles from PS-b-PAA and

P4VP-b-PNIPAM copolymer mixture in ethanol. The complex structure 

comprised of non-interacting PS cores, hydrogen bonded PAA and P4VP shells 

and PNIPAM coronas.200 Those authors also prepared complex micelles from

PtBA-b-PNIPAM with PtBA-b-P4VP.201 Zhang group studied a hyper-

branched structure formed from the complexation of PS-b-PAA and PMMA-b-

PEO BCPs with respect to the molar-ratio of PAA/PEO. They obtained 

micellar clusters with a core of hydrogen bonded PAA/PEO pair and PS as the 

corona.202  

 

2.12 Applications of self-assembled block copolymer systems

BCP self-assembly promises to create complex structures with domain 

sizes less than 20 nm which provides potential applications in electronic,

biomedical, and optical devices. It has been reported that BCPs are extensively 

used for dispersion, wetting, emulsification, foam stabilization, flocculation, 

viscosity modification etc. A few applications of BCP self-assembly are 

detailed in the following section.
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As BCPs can inhibit macrophase separation, they are widely used as TPEs.

BCPs such as PS-b-PB-b-PS (eg., Kraton®), PU-b-PE etc. are chief 

commercial TPEs.203,204 These materials are used as bottle-stoppers, jelly-

candles, exterior coatings for optical-fibres, and in artificial organ equipment.

Some other BCPs are used in acoustic-barriers, airbag-doors, body-plugs, 

body-seals, damper-mounts, glazing-seals and wire and cable purposes.203,204

The surface activity of BCPs employs them to use as patterning templates. 

Self-assembled periodic and ordered BCP nanostructures can be controlled by 

a variety of factors, such as the interaction of the BCP molecules with the 

substrate, the film thickness and the post-deposition annealing procedures. 

Cheng et al. used an etch-mask of PS-b-PFS for fabricating a Co nanodot

array.205 A high density mask from  PS-b-PMMA BCPs was developed by 

Toshiba company.206 Self assembled BCP was used as templates for the 

preparation of nanomaterials through metal deposition or electro-deposition for 

lithography applications.207 The BCP micelle formation can be utilized for the 

elimination and retrieval of toxic components (for example halogenated and 

aromatic hydrocarbon materials) from polluted aqueous media. PCEMA-b-

PAA,208 Pluronic (PEO-b-PPO-b-PEO)209 BCPs are more effective agents for 

this purpose.

The major application of amphiphilic BCPs by value and volume is 

obviously pharmaceutical industry, precisely drug-delivery, which has been 

extensively reviewed.210-212 BCP micelles are suitable for drug-delivery, 

diagnostics and gene therapy since there are options of biocompatible and 

biodegradable BCPs.213-215 Micellar structures such as micelles and vesicles can 

encapsulate a variety of soluble solutes such as drugs, biopolymers (protein or 

DNA), cosmetic ingredients, or agrochemicals in their aqueous/organic core 

and these solutes can subsequently be released slowly and in a controlled 

manner through the vesicle bilayer.216,217 Actually the physical properties of 

micelles including size, size distribution and morphology impact their stability, 

loading and release characteristics, in vivo pharmacokinetics and 

biodistribution.218

In another form of application, nanoparticles were synthesised in the 

presence of BCPs and these particles can be encapsulated within the core of the 
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micelles. Later, these particles were chemically treated and converted into fine 

metal-colloidal particles with attractive catalytic, conducting and magnetic 

behaviours.219 Other important applications of self-assembled BCPs include 

their use in lubrication and surface treatment, stabilizer in latex technology, in 

polymer blends, activators phase transfer catalysts in some organic 

reactions.50,220 Some electroactive BCPs even used as nanoscale protonic 

conductors and nanoporous membranes, agricultural applications and 

emulsification.
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Chapter Three______________________________________

Competitive Hydrogen Bonding and Self-Assembly in
P2VP-b-PMMA/Phenoxy) Blends

3.1 Abstract

Blends of P2VP-b-PMMA and phenoxy were prepared by solvent casting 

from chloroform solution. The specific interactions, phase behaviour and 

nanostructure morphologies of these blends were investigated by FTIR 

spectroscopy, DSC, DLS, AFM and TEM. In this BCP/homopolymer blend 

system, it is established that competitive hydrogen bonding exists as both 

blocks of the P2VP-b-PMMA are capable of forming intermolecular hydrogen 

bonds with phenoxy. It was observed that the interaction between phenoxy and 

P2VP is stronger than that between phenoxy and PMMA. This imbalance in 

the intermolecular interactions and the repulsions between the two blocks of 

the di-BCP lead to a variety of phase morphologies. At low phenoxy 

concentration, spherical micelles are observed. As the concentration increases, 

PMMA begins to interact with phenoxy, leading to the changes of morphology 

from spherical to wormlike micelles and finally forms a homogenous system. 

A model is proposed to describe the self-assembled nanostructures of the 

P2VP-b-PMMA/phenoxy blends, and the competitive hydrogen bonding is 

responsible for the morphological changes.

(This chapter is reproduced from the article:  Nisa V. Salim, Nishar Hameed

and Qipeng Guo. Journal of Polymer Science: Part B: Polymer Physics 2009, 

47, 1894-1905 & the front cover of the issue). Reprinted with permission from 

Wiley and Sons, copy right 2009.
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3.2 Introduction

It is well known that blending is an expedient technique for the 

development of new polymeric materials with improved properties.1,2 There are 

various studies focused on di-BCP/homopolymer blends, mainly on A-b-B/C 

type systems. In particular, self-assembled nanostructures in blends of di-BCP

with homopolymer involving specific interactions have attracted much interest 

in the past few decades because of their potential applications in various fields 

such as cosmetics, drug delivery, diagnostic agents, advanced materials 

formation, electronics, flocculants, viscosity modifiers, demulsifies, etc., in 

many industrial and pharmaceutical preparations.1,3-8

It has been shown that PS-b-PI/poly(2,6-dimethylphenylene oxide)9, PS-b-

PS(OH)/PVME10 and PS-b-P4VP/PAA11 can undergo aggregation and phase 

separation to yield nanoscale morphologies in selective solvents. The 

attachment of a homopolymer C to the di-BCP A-b-B depends on the 

composition and the strength of intermolecular hydrogen bonding between the 

homopolymer and BCP.12 Hydrogen bonded polymer blends show 

macroscopic changes on their physical properties like melting temperature, 

glass transition temperature, surface properties, crystal structure and dielectric 

properties. So, it is a great challenge for constructing self-assembled 

nanostructures from polymeric building blocks through specific interactions.

In this paper, we report A-b-B/C type BCP/homopolymer blends of P2VP-

b-PMMA and phenoxy. The BCP comprises of immiscible blocks A and B and

the homopolymer C is miscible with both A and B. This indicates a positive 

AB AC BC BC AC, which 

designates a competitive hydrogen bonding in this blend system. Moreover, 

phenoxy/PMMA blends13-17 and phenoxy/P2VP blends18 have been studied by 

different authors and it is known that hydrogen bonding is the driving force for 

their miscibility. The competitive hydrogen bonding interactions and phase 

behaviour of P2VP-b-PMMA/phenoxy blends were investigated using FTIR 

spectroscopy, DSC, DLS, AFM and TEM. The morphological changes and 

miscibility of this system are shown to be influenced by two factors: (1) 

intermolecular interaction between phenoxy and P2VP is stronger than that 

between phenoxy and PMMA which indicates the existence of competitive 
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hydrogen bonding, (2) formation of a homogenous phase of phenoxy/P2VP 

which excludes microdomains of PMMA. So, the morphology of blends 

changes upon swelling of phenoxy in the microphase of P2VP block. Self-

assembled nanostructures form via microphase separation of PMMA blocks 

from phenoxy/P2VP phase driven by competitive hydrogen bonding.

 

3.3 Experimental section

3.3.1 Materials and preparation of samples 

The polymers employed in this work were phenoxy and P2VP-b-PMMA. 

The phenoxy sample was a product of Aldrich Chemical Company, and it had a 

quoted average Mw = 40,000 and was used in our previous work.19,20 The 

P2VP-b-PMMA copolymer was from Polymer Source, with Mn (P2VP) = 

56,000, Mn (PMMA) = 57,000, and Mw/Mn = 1.09. The polymers were used 

as received. The P2VP-b-PMMA/phenoxy blends were prepared by solution 

mixing. Chloroform solution containing 1% (w/v) of the polymer mixture was 

stirred well until a clear solution was obtained. The solvent was allowed to 

evaporate slowly at room temperature. The blend samples were dried in 

vacuum at 80 ºC for 12 h before the measurements. 

3.3.2 FTIR spectroscopy

Infrared spectra of P2VP-b-PMMA/phenoxy blends were obtained on a 

Bruker Vetex-70 FTIR spectrometer, and 32 scans were recorded with a 

resolution of 4 cm-1. The spectra of all the samples were determined by using 

the conventional KBr disk method. Thin films of the blends were cast from 

chloroform solution onto KBr pellets and dried under vacuum in an oven to 

completely remove the solvent and then allowed to cool to room temperature.

3.3.3 DSC

The glass transition temperatures of the blends were determined by a TA 

Q200 differential scanning calorimeter using 5–10 mg of the sample under 

nitrogen atmosphere. A heating rate of 20 ºC/min was employed. All the 

samples were first heated to 150 ºC and kept at that temperature for 3 min; 

subsequently cooled to 0 ºC at 20 ºC/min, held for 5 min, and heating continued 
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from 0 to 200 ºC. The midpoints of the second heating scan of the plot were 

taken as the glass transition temperatures (Tgs).

 

3.3.4 AFM

AFM analysis (DME type DS 45–40, Denmark) were performed to study 

the surface morphology of the blends. The thin films of the samples were 

prepared by casting dilute solution of complexes on glass slides using a Laurell 

model WS-400B spincoater operated at 3000 rpm. The samples were annealed 

under vacuum for 72 h before the measurements. The phase images and height 

were obtained by operating the instrument in the tapping mode.

3.3.5 TEM

TEM analysis was carried out on a JEOL JEM-2100 transmission electron 

microscope operating at an acceleration voltage of 100 kV. The chloroform 

sample solution was spread on a carbon coated TEM copper grid. After drying 

at room temperature, the samples were stained with ruthenium tetroxide

(RuO4).

3.3.6 DLS

DLS measurements were performed with a Malvern Zetasizer Nano ZS 

spectrometer equipped with He-Ne laser with a wavelength of 633 nm digital 

correlator. All measurements were carried out at 25 ºC, with a detection angle 

of 173º. Solutions of 0.5% (w/v) blend aggregates in chloroform were used. 

The scattering intensity autocorrelation functions were analyzed using the 

methods of CONTIN and Cumulant which is based on an inverse-Laplace 

transformation of the data and gives access to a size distribution histogram for 

the analyzed solutions. The details were described previously.21,22

3.4 Results and discussion

3.4.1 Hydrogen bonding interactions

FTIR analysis confirms the presence of specific interactions of hydrogen 

bonding in the blends under study. FTIR has been proven to be the most 

suitable technique for the observation of changes of hydrogen bonds in the 
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blends.23 The possible hydrogen bonding interactions between P2VP-b-

PMMA BCP and phenoxy homopolymer are schematically shown in Figure 

3.1.
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Figure 3.1 Schematic representation of possible hydrogen bonding interactions 

between P2VP-b-PMMA di-BCPs and phenoxy homopolymer.

Figure 3.2 shows the hydroxyl stretching region of P2VP-b-

PMMA/phenoxy blends in the infrared spectra at room temperature. Phenoxy,

in general is a selfassociated polymer24 due to the presence of its pendent 

hydroxyl groups in the backbone. The spectrum of pure phenoxy exhibits a 

very broad band centered at 3435 cm-1 indicating the selfassociated hydrogen 

bonded hydroxyl groups. A shoulder band at 3564 cm-1 is assigned as a minor 

contribution which can be attributed to nonassociated hydroxyl groups. For 

P2VP-b-PMMA/phenoxy blends, the broad band appears to shift to lower 

frequencies as a function of BCP concentration, whilst the relative intensity of 

free hydroxyl band decreases and finally disappears. The observed shift of the 

hydrogen bonded hydroxyl region to lower wavenumber is due to the 

interactions of hydroxyl groups of phenoxy and pyridine and/or carbonyl 

groups of the BCP, which indicates the interassociated hydrogen bonds in the 

P2VP-b-PMMA/phenoxy is stronger than that of the self-association in pure 

phenoxy.
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Figure 3.2 Hydroxyl region of P2VP-b-PMMA/phenoxy blends in the infrared 

spectra observed at room temperature

It is observed that a new band centered at 3191 cm-1 corresponds to the 

stretching vibration of the hydroxyl of phenoxy with pyridine nitrogen. This 

result can be compared with those obtained for phenoxy/P2VP by other 

authors.25–28 It is noticed that both P2VP and PMMA subchains of the BCP

have unequal interactions with phenoxy. Moskala et al.29 employed the shift of 

peak position ( ) as a barometer for estimating the strength of hydrogen 

bonding interaction. Consequently, the average hydrogen bonding strength 

between the hydroxyl groups of phenoxy and nitrogen of P2VP ( 373 cm-1)

is significantly greater than that of phenoxy/PMMA blend ( 24 cm-1)30 and 

self-association of pure phenoxy ( 129 cm-1). From this point, it is clear 

that the hydroxyl-pyridine interassociation is more favorable than the 

hydroxyl-carbonyl interassociation. It is also noted that the band observed at 

3440 cm-1 is due to the overtone of C=O stretching mode of pure PMMA.



47 

 

 

1760 1740 1720 1700

Phenoxy/P2VP-b-PMMA

Wavenumber (cm-1)

Ab
so

rb
an

ce
 (a

.u
.)

1730 cm-1

1712 cm-1
100/0
90/10
80/20
70/30
60/40
50/50
40/60
30/70

20/80
10/90

0/100

 

Figure 3.3 Infrared spectra corresponding to the carbonyl stretching region of 

P2VP-b-PMMA/phenoxy blends at room temperature

FTIR spectra in Figure 3.3 represent the carbonyl stretching vibrations 

ranging from 1760 to 1690 cm-1 of the blends at room temperature. The 

absorption at 1730 cm-1 represents the stretching of free carbonyl resembles a 

typical Gaussian type distribution. At higher concentration of phenoxy, a 

shoulder band is observed at low wave number region near 1712 cm-1 which is 

due to the hydrogen bonded carbonyl groups. It should be noted that only the 

blends of 80 and 90 wt% of phenoxy show this minor band indicating the weak 

intermolecular hydrogen bonding between phenoxy and PMMA. The spectra 

confirm that PMMA forms hydrogen bonds with phenoxy only when the 

phenoxy content is greater than 70 wt%.  

FTIR spectra in the range of 1610-1550 cm-1 of P2VP-b-PMMA/phenoxy 

blends with different compositions are plotted in Figure 3.4. In this figure, the 

pyridine ring of P2VP shows intense bands at 1590 and 1568 cm-1. But only

1590 cm-1 mode shows diverse behaviour when pyridine rings are hydrogen 

bonded which is attributed to an increase of the stiffness of pyridine ring by 

hydrogen bonding.28 As a result the band at this region is shifted to higher 
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wave number regions. These results imply that the hydroxyl groups of phenoxy 

form hydrogen bonds with P2VP preferentially at all concentrations, whereas 

PMMA can take part in intermolecular interaction only at higher phenoxy 

content.
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Figure 3.4 Infrared spectra in the region between 1550-1610 cm-1 of P2VP-b-

PMMA/phenoxy blends at room temperature.

Again, a quantitative analysis of the fraction of free and hydrogen bonded 

carbonyl and pyridine groups can be conducted as the phenoxy content varies 

in the polymer blends. But in these blends, the hydrogen bonding between 

phenoxy and PMMA is found to be very weak; therefore the study of fraction 

of hydrogen bonded carbonyl groups is excluded. We use a least square curve 

fitting method for the pyridine bands located at 1590 and 1568 cm-1 region. It 

should be noticed that the fraction of hydrogen bonded pyridine groups can be 

determined from the following equation27

a/
/

fb
Ab Af+

= Ab
a

where Af and Ab are the areas (absorbances) under the peaks representing free 

and hydrogen bonded pyridine groups, and a is the conversion constant 

(1) 
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corresponding to the ratio of the molar absorption coefficient of the above 

bands. Here, the value of a is taken as 1, is obtained from the literature where 

vinyl pyridines are blended with hydrogen donor polymers.27

P2VP-b-

PMMA/ 

phenoxy

Free pyridine group Bonded pyridine group
fb

(%)
(cm-1)

W1/2

(cm-1)

Af

(%) (cm-1)

W1/2

(cm-1)

Ab

(%)

10/90 1590 4.2 9.1 1595 14.1 90.9 90.9

20/80 1590 5.2 17.9 1595 13.8 82.1 82.1

30/70 1590 5.9 27.3 1595 14.2 72.7 72.7

40/60 1590 6.5 35.7 1595 10.9 64.3 64.3

50/50 1590 8.2 44.7 1595 8.4 55.3 55.3

60/40 1590 7.8 49.5 1595 9.3 50.5 50.5

70/30 1590 8.4 57.2 1595 9.1 42.8 42.8

80/20 1590 9.6 60.1 1595 10.2 39.9 39.9

90/10 1590 11.1 71.6 1595 8.8 28.4 28.4

Table 3.1 Curve fitting results of phenoxy hydroxyl and P2VP pyridine 

interactions in P2VP-b-PMMA/phenoxy blends at room temperature.

Table 3.1 shows the fraction of free and hydrogen bonded pyridine groups 

in the P2VP-b-PMMA/ phenoxy blends under study. The two bands of the free 

and interassociated pyridine groups were found to be well fit to a Gaussian 

function. In the present system, the band centered at 1568 cm-1 should be 

included in the fitting analysis, as this band remains unaffected by hydrogen 

bonding. However, this band is overlapped with the 1590 cm-1 band. For 

calculating the fraction of hydrogen bonded pyridine group, the band at 1568 

cm-1 has been taken as internal standard as this pyridine mode not influenced 

by the presence of hydroxyl group. From the calculated results, it can be 



50 

 

noticed that the fraction of hydrogen bonding in pyridine groups increases with 

increase in the phenoxy content. The variation in half width values can be 

attributed to the sharp decrease in intensity of pyridine peak due strong 

interaction with phenoxy compared to PMMA. 

In terms of the above results, FTIR spectra confirm that there is 

competitive hydrogen bonding interactions involved in P2VP-b-

PMMA/phenoxy blends. Due to the strong hydrogen bonding between phenoxy 

and P2VP, the interaction between phenoxy and PMMA is observed to be mild. 

Only at higher phenoxy content, PMMA blocks form interassociated hydrogen 

bonding with phenoxy. Thus, we can conclude that competitive hydrogen 

bonding exists between phenoxy–phenoxy, phenoxy–P2VP, and phenoxy–

PMMA, while the phenoxy–P2VP is observed to be most favorable.

3.4.2 Phase behaviour

We used DSC to assess the thermal properties of the BCP/homopolymer 

systems by measuring the Tg of all blend compositions. Figure 3.5 shows the 

DSC thermograms of the P2VP-b-PMMA/phenoxy blends. From the DSC 

curves, Tg of pure phenoxy is 86 oC whereas the BCP shows two glass 

transition temperatures revealing the presence of two immiscible blocks, 

namely P2VP and PMMA. The blends containing low phenoxy contents show 

two Tgs corresponding to the phenoxy/P2VP phase and non-hydrogen bonded 

PMMA blocks.
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Figure 3.5 DSC thermograms of the second scan of P2VP-b-PMMA/phenoxy 

blends.

DSC thermograms in the temperature range of 80–130 oC of the blends 

containing 10–30 wt% of phenoxy are shown in Figure 3.6. It can be seen that 

PMMA exhibits Tg values at 10–30 wt% of phenoxy, however the intensity is 

reduced upon increase in phenoxy concentration. This is due to the increasing 

degree of hydrogen bonding interaction between phenoxy and PMMA at low 

phenoxy concentrations. However, the Tg of PMMA could not be distinguished 

in the blends containing 30 wt% or above phenoxy as the Tg value of phenoxy/ 

P2VP meets that of PMMA. This could be due to the partial formation of 

hydrogen bonds between PMMA and phenoxy to form a phenoxy/P2VP phase 

and phenoxy/PMMA phase. At very high concentrations of phenoxy, PMMA 

also became miscible with phenoxy forming phenoxy/P2VP phase and 

phenoxy/PMMA phase. The miscibility can be identified by the formation of a 

single Tg value for the blends.

Based on the DSC results, it can be concluded that microphase separation 

exists only due to PMMA, which has weaker hydrogen bond interaction than 

P2VP. Also, at lower phenoxy contents, phenoxy concentration is insufficient 
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to form two hydrogen bonding integrations namely, phenoxy/PMMA and 

phenoxy/P2VP. Therefore PMMA has a higher chance to phase separate at 

these concentrations. This can be evidenced by TEM and AFM and will be 

discussed in the later part of this article.

 

80 100 120

Tg P2VP

30/70

20/80

10/90En
do

Temperature (0C)

Phenoxy/P2VP-PMMA

0/100
Tg PMMA

Figure 3.6 DSC thermograms of the second scan of P2VP-b-PMMA/phenoxy 

blends at 10-30 wt% of phenoxy.

3.4.3 Self-assembly and microphase separation in phenoxy/P2VP-b-

PMMA blends

BCPs can self-assemble into micelles of varying sizes of nanometer scale. 

Addition of a homopolymer cause changes in the microdomain structure of the 

di-BCP. The micelles which are generally spherical undergo changes in their

shape and size distribution under specific conditions to form various 

morphologies such as cylindrical, rods, lamellae and wormlike micelles. 

Morphological transitions due to hydrogen bonding interaction between 

homopolymer and BCP were studied by several groups including Hameed et 

al.19,21,22 Abetz et al.,31 Gohy et al.,32 and Chang et al.33 By tuning the factors 

such as, stretching of the core-forming blocks, interfacial energy and 

intercoronal energy between the solvent and the micellar core, the forces 
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balancing the micellar structure can be disturbed, leading to the transformation 

of one morphology to other.

The morphology of self-assembled structures of P2VP-b-PMMA/phenoxy 

blends was observed by AFM. The AFM images of the blends containing 20–

80 wt% of the homopolymer are presented in Figure 3.7.

Figure 3.7 AFM images of P2VP-b-PMMA/phenoxy blends. P2VP-b-

PMMA/phenoxy: (a) 80/20, (b) 60/40, (c) 40/60, (d) 30/70, (e) 20/80, and (f) 

10/90.
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The plain P2VP-b-PMMA BCP exhibited cylindrical lamellar morphology 

[as observed by TEM in Figure 3.8(a)]. The formation of cylindrical lamellar 

micellar via self-assembly of di-BCP is due to an entropy-driven association 

mechanism. When a homopolymer is added to a di-BCP involving competitive 

hydrogen bonding, the less hydrogen bonded block is excluded from the 

homogenous region due to the high entropic penalty for conformational 

distortion. When phenoxy is added to the P2VP-b-PMMA BCP, it selectively 

swells the blocks due to the competitive hydrogen bonding which results in 

phase separation. In the 20 wt% phenoxy blends, spherical micelles with an 

average diameter of 40–50 nm were obtained. As the concentration of phenoxy 

increases, the microphase morphology varies, displaying elongated spherical 

micelles in 40 wt% phenoxy blends, while wormlike morphology is obtained in 

50–70 wt% phenoxy blends. The special feature of this morphology which 

should be noticed is that their diameters are very uniform and are orderly 

arranged. As the concentration reaches 90 wt% phenoxy, the interface between 

the microphases become less distinct. The AFM images clearly displays that 

morphologies transit from spherical to elongated spherical and worm like 

micelles by increasing the content of homopolymer. TEM imaging carried out 

for analyzing the morphologies of P2VP-b-PMMA/phenoxy blends at different 

phenoxy concentration is given in Figure 3.8. The P2VP-b-PMMA/phenoxy 

blend with 20 wt% phenoxy shows spherical micellar morphology as shown in 

Figure 3.8(b) and elongated micelles are observed in 40 wt% phenoxy blend 

[Figure 3.8(c)]. TEM images also confirm that wormlike morphology exists in 

60 and 70 wt% phenoxy blends [Figure 3.8(d,e)] as observed in AFM 

experiments.
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Figure 3.8 TEM micrographs of P2VP-b-PMMA/phenoxy blends. P2VP-b-

PMMA/phenoxy:  (a) 100/0, (b) 80/20, (c) 60/40, (d) 40/60, (e) 30/70, and (f) 

20/80.

The appearance of spherical micellar morphology in 20 wt% phenoxy 

blend is due to the confinement of noninteracting PMMA blocks to the core of 

the micelles and the highly hydrogen bonded phenoxy/P2VP phase to the shell. 

The stretching of PMMA core as the homopolymer concentration increases 

resulting in the elongated micelles. The blends containing 60 and 70 wt% of 

phenoxy show wormlike micelles as observed by both AFM and TEM. This 

can be attributed to the beginning of phenoxy/PMMA interaction. Above 60

wt% phenoxy, PMMA starts forming hydrogen bonds with phenoxy since the 

homopolymer is available even after strong interaction with P2VP. Moreover, 
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at these compositions, molecular weights of the complementary components 

and the weight percentages are in such a way that the three components are in 

an identical state by weight. In fact, the competitive hydrogen bonding is 

supposed to occur with 60 wt% and more phenoxy content though it is not 

detected by FTIR. The transformation from spherical to wormlike morphology 

can be attributed to the competitive hydrogen bonding between phenoxy/P2VP 

and phenoxy/PMMA pairs. In 80 wt% phenoxy blend, spherical microdomains 

[the white areas in Figure 3.8(f)] form via microphase separation of PMMA 

blocks from phenoxy/P2VP phase, which is driven by competitive hydrogen 

bonding. However, it can be suggested that at very high concentrations of 

phenoxy (above 90 wt%), the blends will be homogeneous as phenoxy/PMMA 

hydrogen bonding becomes more prominent (as observed in the FTIR spectra).

3.4.4 Hydrodynamic size in solution

Figure 3.9 shows the Dh and its distribution of P2VP-b-PMMA/phenoxy 

blends in 0.5% (w/v) chloroform solutions determined by DLS experiments.
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Figure 3.9 Hydrodynamic diameters from DLS measurements of 

phenoxy/P2VP-b-PMMA blends in 1% (w/v) chloroform solutions.

The blends all show a single peak, which indicates the uniformity in the 

hydrodynamic size. It can be seen that the blends below 50 wt% phenoxy show 

a sharper peak compared to those above 50 wt% phenoxy. This sharp peak 
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indicates the presence of spherical micelles, whereas broader peaks above 50 

wt% phenoxy show the change in shape from spherical to nonspherical 

micelles in solution.
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Figure 3.10 Hydrodynamic diameter (Dh) vs composition and polydispersity 

index (PDI) vs composition of P2VP-b-PMMA/phenoxy blends in 0.5% (w/v) 

chloroform solution.

The hydrodynamic size and PDI are given in Figure 3.10 as functions of 

blend composition. As can be seen, the pure BCP exhibits a hydrodynamic 

diameter of about 14 nm. The hydrodynamic size increases with increase in 

concentration of phenoxy and remains almost unchanged with 50 wt% and 

more phenoxy. After 50 wt% blends have nonspherical morphology and which 

possess similar hydrodynamic diameter. As we know, DLS measurements 

provide only apparent values of Dh and do not give information about the true 

shape of the micelles. As for the spherical micelles at very low phenoxy 

concentration, Dh is the value deduced from the unique relaxation mode and at 

higher phenoxy concentrations, it is the average of the multimodal distribution. 

This is justified since the AFM experiments have shown polydisperse micellar 

morphologies. It is noted that the size of the micelles obtained by DLS and 

microscopic measurements cannot be compared directly. This is because Dh

from DLS, in principle is applicable to hypothetical spherical objects and not to 

anisotropic objects. Moreover, the Dh value derived from the cumulant analysis 
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represents the average dimensions (equivalent sphere) of the P2VP-b-

PMMA/phenoxy micelles (wormlike). In this work, DLS, TEM and AFM 

results were found to be in good agreement, indicating the strong evolution of 

the micellar morphology as a function of composition due to the competitive 

interactions in the blends.

3.4.5 Mechanism of microphase separation

It is established that several factors influence the phase transitions of BCP

aggregates.34,35 In our system, phenoxy is capable of forming hydrogen 

bonding which plays an important role in the variation in morphology of the 

micelles. In addition, the BCP comprising P2VP and PMMA can form 

intermolecular hydrogen bonding with phenoxy. However, only P2VP is able 

to form strong intermolecular interaction with phenoxy, when compared to 

PMMA. This competitive hydrogen bonding interaction and the repulsive

forces between the two blocks are responsible for the self-assembled 

nanostructures of P2VP-b-PMMA/phenoxy blends.

The mechanism of formation of different microphases in P2VP-b-

PMMA/phenoxy blends is shown in Figure 3.11.

Figure 3.11 Schematic representation of phase morphologies in P2VP-b-

PMMA/phenoxy blends: (a) Spherical micelles at 20 wt% phenoxy 

concentration, (b) elongated spherical micelles at 40 wt% phenoxy 

concentration, and (c) wormlike micelles at 50-70 wt% phenoxy concentration.

From the TEM images, the pure BCP shows cylindrical lamellar structure. 

Upon the addition of homopolymer, the microphase separation takes place to 

form spherical micelles. The schematic representation of spherical micelles 
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formed in 20 wt% phenoxy blends is shown in Figure 3.11(a). Here, phenoxy 

and the P2VP blocks form a single phase due to strong hydrogen bonding 

while the PMMA blocks separate from the homogenous phenoxy/P2VP phase, 

resulting in the two phase structure in the blends. At lower phenoxy contents 

(20 wt%), hydrogen bonding is predominantly between phenoxy and P2VP and 

the PMMA phase had been excluded from the mixed phase because of its 

significantly weaker ability to form hydrogen bonds with phenoxy. This 

spherical structure is easily evident from Figure 3.8(b) as the dark region 

(shell) corresponds to a mixed phase of phenoxy and P2VP; the bright region 

(core) corresponds to the PMMA phase that has been confined within the 

mixed phenoxy/P2VP phase. The phase which looks black can be considered 

as the phenoxy and P2VP rich phase, which is preferentially stained with RuO4 

due to the aromatic moieties in the main chain.20 Moreover it has been proven 

that PMMA cannot be stained by RuO4 and appears bright.36,37

In other words, the incorporation of phenoxy in the P2VP-b-PMMA BCP

may increase the interaction parameter difference between phenoxy/ P2VP and 

PMMA phases because of the difference in the intermolecular interaction 

between them. Therefore, phenoxy forms hydrogen bonding with P2VP 

selectively, and PMMA phase separates. Therefore it can be concluded that in 

A-b-B/ C systems, the strongly hydrogen bonded phase form one phase and the 

nonhydrogen bonded or less hydrogen bonded phase excluded from or 

confined in to the other phase. Similar microphases separated structures have 

been observed in hydrogen bonded BCP/homopolymer systems by many 

authors.19,21,22,37 In the blends containing 20–70 wt% phenoxy, the PMMA 

blocks, which are repelled by P2VP, only have weak interaction with the 

hydroxyl groups of phenoxy, resulting in different nanostructures such as 

elongated spherical micelles [Figure 3.11(b)] and wormlike micelles [Figure

3.11(c)]. As the concentration of phenoxy increases above 70 wt%, the internal 

domains segregate to form featureless microstructures. This is assumed to be 

due to the increased intermolecular interaction between PMMA and phenoxy 

which was confirmed by FTIR spectra. At higher phenoxy compositions 

availability of free hydroxyl group is more, so phenoxy can form hydrogen 
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bonds with both P2VP and PMMA. Here, it is understood that phenoxy can act 

as a nonselective solvent for the two blocks, resulting in a homogenous system.

3.4.6 Conclusions

We have investigated the competitive hydrogen bonding interactions of A-

B/C type P2VP-b-PMMA/phenoxy blends. FTIR study confirms that the 

pyridine groups are stronger hydrogen bond acceptors than the PMMA 

carbonyl groups, which is responsible for the existence of competition in 

hydrogen bonding. Only P2VP can form strong interassociated hydrogen bonds 

with phenoxy when the phenoxy content is low. At moderate and higher 

compositions, PMMA is also capable of making hydrogen bonds with 

phenoxy. By DSC characterization, miscible blends are found due to the 

interactions between homopolymer and di-BCP blocks. The AFM and TEM 

results clearly revealed that the self-assembled nanostructures of a matrix with 

a homogenous phenoxy/P2VP phase and micellar domains of excluded 

PMMA. The competitive hydrogen bonding plays an important role in the self-

assembly and microphase morphology of the P2VP-b- PMMA/phenoxy blends.
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Chapter Four______________________________________

Microphase Separation through Competitive Hydrogen 
Bonding in Double Crystalline Diblock Copolymer/
Homopolymer Blends

4.1 Abstract

Microphase separation induced by competitive hydrogen bonding

interactions in double crystalline di-BCP/homopolymer blends was studied for 

the first time. PEO-b-PCL/PVPh blends were prepared in THF. The di-BCP

PEO-b-PCL consists of two immiscible crystallizable blocks where both PEO 

and PCL blocks can form hydrogen bonds with PVPh. In these A-b-B/C di-

BCP/homopolymer blends, microphase separation takes place due to the 

disparity in intermolecular interactions; specifically PVPh and PEO block 

interact strongly whereas PVPh and PCL block interact weakly. The TEM and 

SAXS results show that the cubic PEO-b-PCL di-BCP changes into ordered 

hexagonal cylindrical morphology upon addition of 20 wt% PVPh followed by 

disordered bicontinuous phase in the blend with 40 wt% PVPh and then to 

homogenous phase at 60 wt% PVPh and above blends. Up to 40 wt% PVPh 

there is only weak interaction between PVPh and PCL due to the selective 

hydrogen bonding between PVPh and PEO. However, with higher PVPh 

concentration, the blends become homogeneous since a sufficient amount of 

PVPh is available to form hydrogen bonds with both PEO and PCL. A 

structural model was proposed to explain the self-assembly and microphase 

morphology of these blends based on the experimental results obtained. 

(This chapter is reproduced from the article:  Nisa V. Salim, Tracey L. Hanley 

and Qipeng Guo. Macromolecules 2010, 43, 7695-7704). Reprinted with 

permission from American Chemical Society, copy right 2010.
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4.2 Introduction

The morphology of BCPs and development of self-assembled 

nanostructures have been intensively studied during the last decades, and 

highly ordered structures such as spheres, cylinders packed in a hexagonal 

lattice, worm like micelles, lamellae, and hierarchical nanostructures have been 

revealed.1-5 A binary mixture of self-assembled mixture comprises a di-BCP

and a homopolymer can also exhibit well-defined morphologies; these 

nanostructures are currently being used for diverse applications.6-16

There is a considerable interest on polymer blends with secondary 

interactions, like ionic or electrostatic and hydrogen bonding interactions.17

Among these, hydrogen bonds in the BCP mixtures can promotes 

nanostructure formation and different phase transitions that allows the 

development of materials with high functionality. Morphological changes due 

to hydrogen bonding between amphiphilic BCPs and a homopolymer were 

studied by several groups.18-20 The hydrogen bonding and nanostructure 

morphologies formed by the hydrogen bonding interaction between a small 

molecule and BCP were extensively investigated by Ikkala’s group.21

Guo et al.22 and Chang et al.23 recently reported the self-assembled BCP

blends and complexes involving competitive hydrogen bonding interactions 

between different BCP blocks and the homopolymer. This new strategy for the 

design of nanostructures is based on the competition between different blocks 

of the BCP forming more than one kind of intermolecular interactions with the 

complimentary polymer, leading to a highly stable blend or complex compared 

to analogous systems which involve elaborate syntheses and multistep 

preparation protocols. It is proven that careful selection of the polymers, 

specifically the BCP, molecular weight, and the experimental conditions, can 

lead to self-assembled structures in blends and complexes. Such self-assembled 

blends involving selective hydrogen bonding could be used for the fabrication 

of hierarchical and functional materials.

The interaction between different chains in A-b-B/C di-BCP/homopolymer 

mixtures can be characterized by Flory-Huggins interaction 24,25

AC BC AB) are either positive or negative and can 
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provide more interesting combinations for blending. The interaction of 

homopolymer C to the BCP depends on the chemical composition and strength 

of hydrogen bonding between BCP and homopolymer. There are many theories 

regarding the microphase separation in BCP/homopolymer systems. One of 

them is random phase approximation (RPA), where 

two interaction parameters using for characterizing such systems.  Hellmann et 

al.25 studied that there is always a repulsive interaction between the 

homopolymer and one block of the BCP

separation avoiding the homogeneous state or macropahse separation. In di-

BCP blends, a homopolymer with high molecular weights can induce phase 

separation with a disordered phase containing homopolymer and ordered phase 

containing BCP.26

Very recently, Guo and co-workers27 have investigated microphase 

separation induced by competitive hydrogen bonding in A-b-B/C di-

BCP/homopolymer complexes where the di-BCP A-b-B is immiscible and the 

homopolymer C can interact unequally with both A and B blocks through 

hydrogen bonding. The hydrogen bonding interactions were analyzed in terms 

of the difference in inter-association constants (K), i.e., interaction parameters 

of each blocks of the BCP to the homopolymer and according to the random 

phase approximation. It has been established how hydrogen bonding 

determines the self-assembly and causes morphological transitions in different 

A-b-B/C di-BCP/homopolymer systems with respect to the K values. The A-b-

B/C systems involving competitive hydrogen bonding investigated so far 

consist of BCP with two amorphous blocks22c, 23a,b or amorphous-crystalline 

blocks.30,31 Nevertheless, blends in which both components of the di-BCP are 

crystalline (double crystalline) have never been studied to our knowledge. In 

BCPs containing crystallizable components, the relationship between 

crystallization and phase separation can affect the structure, phase behavior 

functional application of these materials. If there are two crystallizable

segments in a BCP, it is possible to create different conditions to examine the 

structure and phase behavior of such susytems. 
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In the current study the competitive hydrogen bonding and nanostructure 

formation in self-assembled double-crystalline BCP/homopolymer mixture are

detailed. In particular, the self-assembly, crystallization, phase behaviour and 

morphology of PEO-b-PCL/PVPh blends are investigated. The di-BCP PEO-b-

PCL is immiscible and PVPh can hydrogen bond with both PEO and PCL

components. However, there is an unequal competitive hydrogen bonding 

interaction between the PVPh/PEO and PVPh/PCL sets. The results are 

correlated with the phase behaviour of the blends experimentally obtained with 

SAXS and TEM. This work for the first time demonstrates how the 

competitive hydrogen bonding determines the self-assembly and causes 

morphological transitions in A-b-B/C double crystalline di-BCP/homopolymer 

blends.

4.3 Experimental section 

4.3.1 Materials and preparation of samples.

PVPh with Mw = 20,000 and Mw/Mn = 1.70 was obtained from Aldrich 

Chemical Co., Inc. The BCP used in the present study, PEO-b-PCL was 

purchased from Polymer Source Inc. with Mn(PEO) = 15,000, Mn(PCL) = 

25,000 and Mw/Mn = 1.17. All these polymers were used as received. The 

blends of PEO-b-PCL/PVPh were prepared by solution mixing. THF solution 

containing 1% (w/v) of the individual polymers were mixed and stirred well 

until a clear solution was obtained. The solvent was allowed to evaporate 

slowly at room temperature. The blends were dried under vacuum for 72 h 

before the measurements in order to reach equilibrium.

4.3.2 FTIR spectroscopy

The IR measurements were performed on a Bruker Vetex 70 spectrometer. 

The THF samples were cast onto KBr pellets and dried in-vacuo (80 ºC) to 

completely remove the solvent and then allowed to cool to room temperature. 

The spectra were recorded at the average of 32 scans at 4 cm-1 resolution.

4.3.3 DSC
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The glass transition temperatures of the blends were determined by a TA 

Q200 differential scanning calorimeter using 5–10 mg of the sample under 

nitrogen atmosphere. A heating rate of 10 ºC/min was employed. All the 

samples were first heated to 150 ºC and kept at that temperature for 3 min; 

subsequently cooled to -70 ºC at 10 ºC/min, held for 5 min, and heating 

continued from -70 to 200 ºC. The midpoints of the second heating scan of the 

plot were taken as the glass transition temperatures (Tgs).

4.3.4 POM

Spherulite growth was studied using a POM with the Nikon Digital Sight 

DS 5M U1 system. The polymer sample sandwiched between two glass slides.

All samples were vacuum-dried at 50 ºC (48 h), then melted at 100 ºC (5 min),

finally quenched and annealed at 25 ºC for 4h. 

4.3.5 TEM

TEM experiments were performed on a JEOL JEM-2100 transmission 

electron microscope at an acceleration voltage of 100 kV. The samples were 

cut into ultrathin sections of approximately 70 nm thickness at room 

temperature with a diamond knife using a Leica EM UC6 ultra microtome 

machine. The bulk samples were annealed at 180 °C for about 48 hrs before 

microtoming. The thin sections were stained by ruthenium tetroxide (RuO4)

before TEM observation.

4.3.6 WAXS

WAXS analyses were carried out on a Panalytical XPert Pro XRD 
o to 35o was swept at a speed of 0.02/s. 

The polymer thin films were fixed on the equipment, and the data were 

collected with every 0.02°.

4.3.7 SAXS

The SAXS experiments were performed on a Bruker NanoStar 3 pin-hole 

Annealed samples 

having 1mm thickness were prepared for SAXS measurements The intensity 
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profiles were interpreted as scattering intensity (I) vs vector, q

cattering angle). 

4.4 Results and discussion

4.4.1 Hydrogen bonding interactions. 

FTIR technique provides information on specific interaction between 

PEO-b-PCL/PVPh blends.28 Figure 4.1 shows the possible specific interaction 

in the PEO-b-PCL/PVPh blends. PVPh has an excellent potential as a proton 

donor because the hydroxyl groups are simply acceptable at the fourth location

of every aromatic ring. 

PVPh

O

CH )( CH2

H
O

H

PVPh

CH )( CH2

O

PEO-b-PCL

block)CH( CH2 O2 O CH2
5

C )(

Figure 4.1 Schematic representation of possible hydrogen bonding interactions 

between PEO-b-PCL di-BCPs and PVPh homopolymer. 

 

As shown in Figure 4.2, PVPh displays two absorption peaks in the OH 

region. The first absorption is at 3352 cm-1 that represents self-associated 

hydroxyl groups. The other absorption observed at 3525 cm-1 indicates the free 

hydroxyl region, but the intensity of this band reduces and finally disappears 

with increase in BCP content in the blends. This implies the hydrogen bonds of 

PVPh/PEO and PVPh/PCL pairs. Meanwhile, the self-associated hydroxyl 

groups of PVPh at 3352 cm-1 shift towards low frequencies with increasing 

PEO-b-PCLcontent. The peak at 3325 cm-1 in 90/10 PEO-b-PCL/PVPh blends 

represents the intermolecular interactions between PVPh with PEO/PCL 

blocks.
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Figure 4.2 Hydroxyl region of PEO-b-PCL/PVPh blends in the infrared spectra 

observed at room temperature.

Table 4.1 shows the difference in frequencies among the free OH

region to that of the bonded components.29 (105 

cm-1)30 and PVPh/PEO (295 cm-1)31 binary blends are also given for 

comparison. This observation implies that the average strength of the bond 

among PVPh hydroxyl group and PEO-b-PCL BCP (200 cm-1) is higher than 

that between hydroxyls in PVPh (173 cm-1) homopolymer.

System -1)

PVPh 173

PVPh/PEO 295a

PVPh/PCL 105b

PEO-b-PCL/PVPh 200

a. Ref. [31], b. Ref. [30]

Table 4.1 Wave number shift of hydroxyl region in PEO-b-PCL containing

PVPh
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However, this value is less than the interassociation between PVPh and 

PEO (295 cm-1). This method also reveals the hydrogen bonding strength of 

PEO-b-

PVPh/PEO, and PVPh/PCL reflects that PEO and PCL are both capable of 

making hydrogen bond with PVPh, although the resulting bond strengths are 

unequal. The above results denote that the hydrogen bonds among PVPh/PEO 

are stronger compared to PVPh/PVPh and PVPh/PCL hydrogen bonds.
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Figure 4.3 FTIR spectra corresponding to the ether region of PEO-b-

PCL/PVPh blends at room temperature.

Figure 4.3 represents the FTIR spectra of CH2 wagging of PEO from 1380 

to 1320 cm-1. The PEO spectra show absorptions at 1360 and 1343 cm-1

corresponding to its crystalline phases.32 Upon blending, retardation of PEO 

crystallization takes place which can be observed in Figure 4.3. When the 

PVPh concentration increases in PEO-b-PCL/PVPh blends, a new band is 

formed at 1350 cm-1 which represents the amorphous state of PEO. This result 

designates that the interactions between PVPh/PEO is very strong and exists at 

all compositions of PVPh.
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Figure 4.4 FTIR spectra in the carbonyl region of PEO-b-PCL/PVPh blends

Figure 4.4 shows the carbonyl (C=O) spectrum in region of 1660-1780 cm-

1. The IR spectra of pure PCL exhibits two peaks: a sharp absorption at 1725 

cm-1 corresponds to PCL in its crystalline-phase conformation, and another 

weak absorption at 1735 cm-1 implying the amorphous-phase of PCL.33 When

the PVPh concentration is above 20 wt%, another band contribution is 

observed at 1710 cm-1 confirming the absorption of bonded C=O groups. This 

implies that the interaction among PVPh and PCL starts when the PVPh 

concentration is above 20 wt%. Here the intensity increases very slowly with 

increase in PVPh concentration compared to the free carbonyl band. This 

signifies that the fraction of bonded C=O group in PEO-b-PCL/PVPh blends 

are less at lower PVPh concentrations. This is due to the strong hydrogen 

interacting ability of PEO with PVPh compared to PCL.
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Figure 4.5 Carbonyl stretching region of PEO-b-PCL/PVPh blends at 75 ºC.

The hydrogen bonding interaction of PVPh and PCL was also examined at 

higher temperature. Figure 4.5 displays spectral changes of PEO-b-PCL/PVPh 

blends in the carbonyl stretching region at 75 ºC. The crystalline peak of PCL 

centered at 1725 cm-1 has vanished here because of the melting of crystalline-

phase of PCL blocks. It is to be noted that the intensity of 1710 cm-1 absorption 

increases with increasing concentration of PVPh. Again, quantitative 

determination of the fraction of free and bonded C=O groups was calculated 

based on the equation below;

fb =
Ab/a

AfAb/a  

where Af and Ab are the areas (absorbances) under the peaks representing 

free and hydrogen bonded C=O group, respectively. The conversion factor ‘a’

is the specific absorption ratio of the free and bonded bands. The value of a =

1.5 for the PVPh/PCL system was determined previously.34 The results of room 

temperature curve fitting are given in Table 4.2.
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PEO-b-

PCL/PVPh

Amorphous C=O Bonded C=O

fb (%)(cm-1)

W1/2

(cm-1)

Af

(%) (cm-1)

W1/2

(cm-1)

Ab

(%)

80/20 1735.5 15.57 28.82 1704.5 26.98 71.18 62.21

60/40 1735.1 17.81 58.2 1710.9 29.27 41.8 32.37

50/50 1735.3 16.39 64.9 1709.9 29.25 35.1 26.5

40/60 1735.6 17.26 81.26 1710.1 26.63 18.74 13.32

20/80 1735.8 18.89 94.75 1711.2 27.36 5.25 3.52

10/90 1735.4 17.82 98.28 1712.8 28.36 1.72 1.14

Table 4.2 Curve fitting results of PVPh hydroxyl and PCL carbonyl 

interactions in PEO-b-PCL/PVPh blends at room temperature.

These results indicate that the fraction of bonded carbonyl group is very 

less at low PVPh concentrations and also the value increases as the 

concentration of PVPh increases. From the FTIR data given in Figure 4.1- 4.5

and Table 4.2, up to 40 wt% of PVPh, the peak intensity and fraction of the 

bonded carbonyl group are relatively less compared to the free carbonyl peak. 

It is assumed that the C=O groups are less involved in bonding in the present 

BCP blend system compared with the PVPh/PCL homopolymer binary blends 

investigated by other authors.35

In the present PEO-b-PCL/PVPh blends, PCL block also forms hydrogen 

bonds with PVPh, and the average strength of these bonds increases with 

increasing PVPh concentration. The PCL block exhibits extensive hydrogen 

bonding with PVPh only when PVPh content reaches 40 wt% or above. This is 

due to the competitive hydrogen-bonding interaction between PVPh/PEO 

blocks and PVPh/PCL blocks. Since the ability of PEO to form hydrogen 

bonds with PVPh is relatively high compared with PCL, the PEO blocks 

preferentially form high degree of hydrogen bonding with PVPh first.
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It can be concluded from the FTIR results that strong hydrogen bonding 

between PEO and PVPh was observed in all the compositions. However, the 

carbonyl groups of PCL form less hydrogen bonding with PVPh hydroxyl 

groups at very low PVPh concentrations and PCL interacts more strongly with 

PVPh at higher PVPh blends. In PEO-b-PCL/PVPh blends, competitive 

hydrogen bonding exists between PVPh/PEO pair and PVPh/PCL pair at all the 

compositions. Since the PVPh/PEO pair is relatively much stronger, 

PVPh/PCL hydrogen bonded pair exists weakly at lower PVPh concentration. 

4.4.2 Phase behaviour and crystallization.

-50 0 50 100 150 200
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0/100
10/90
20/80
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80/20
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Temperature (oC)

PEO-PCL/PVPh

100/0

 

Figure 4.6 DSC thermograms of the second scan of PEO-b-PCL/PVPh blends.

 

DSC experiments were conducted to investigate the phase behaviour of

PEO-b-PCL/PVPh blends. Figures 4.6 and 4.8 show the DSC traces of PVPh, 

PEO-b-PCL, and PEO-b-PCL/PVPh blends measured during heating and 

cooling, respectively. The pure BCP PEO-b-PCL should exhibit two Tgs

corresponding to two immiscible blocks such as PEO and PCL. However, the 

Tgs of pure BCP components were not detectable under the present 

experimental conditions. It is noticeable that during heating and cooling run of 
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DSC, the crystallization and melting peaks were overlapped for samples with 

PEO-b-PCL due to the quite near (cooling) Tc and (melting) Tm of both blocks.

In fact, PVPh/PEO31 and PVPh/PCL36 blends are completely miscible through 

all composition range; however the Tgs of the blends PEO-b-PCL/PVPh show 

variations. The pure PVPh exhibits a Tg at 164 ºC, which becomes broad and 

shifted down to lower temperatures in the blends as the BCP content was 

increased. This is due to the miscibility between PVPh/PEO and PVPh/PCL 

components indicating strong hydrogen bonds between them.

Melting point depression is a major characteristic feature of a miscible 

blend involving hydrogen bonding interactions. The pure PEO-b-PCL di-BCP

shows two melting points, Tm (PEO) = 60 ºC and Tm (PCL) = 56 ºC,

corresponding to that of PEO and PCL, respectively. Figure 4.6 shows the 

heating scan of PEO-b-PCL/PVPh blends. As the concentration of PVPh 

increases, the Tm of PEO disappears (or overlaps with the Tm of PCL), whereas 

that of PCL significantly moves to low temperature region. At low PVPh 

content, there is no variation in the melting of PCL segments in PEO-b-

PCL/PVPh blends. This represents that a good level of miscibility was not 

achieved between between PCL and PVPh at low PVPh contents. The Tm of 

crystalline PCL phase decreases in its intensity and finally vanishes at 50-60 

wt% PVPh, due to the miscibility of PCL and PEO with PVPh at higher PVPh 

contents.

The values of Hf and crystallization Hc for PEO-b-PCL/PVPh blends 

are represented with respect to the composition in Figure 4.7. These graphs 

indicate that at higher BCP concentration the heat of crystallization and 

melting temperature are very high, whereas the values go to zero when the 

PVPh content in the blends increases. This is because the overall crystallinity 

decreases due to the miscibility of PVPh with the BCP components. This is due 

to to the interaction of PEO and PCL components with PVPh. f decrease is 

the indication of decreased crystallinity in the blends. But PEO-b-PCL/PVPh 

blends show a superposed Tm and Tc peak in the second heating as well as 

cooling; that is, both PCL and PEO chains exhibit comparable Tm and Tc.37

Therefore, it is difficult to calculate the individual degrees of crystallinity of 



77 

 

PCL and PEO. However, overall crystallinity of the BCP keeps decreasing 

with increase in PVPh concentration.
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Figure 4.7 Hf and Hc of PEO-b-PCL/PVPh blends.
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Figure 4.8 Crystallization curves of PEO-b-PCL/PVPh blends during cooling.

Figure 4.8 represents the cooling scan of PEO-b-PCL/PVPh blends. The 

neat BCP shows two Tcs at 25 and 28 ºC. However the Tc of the blends 
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increases slightly by the addition of PVPh which is due to the PCL chain 

relaxation. Moreover there is a better bond formation between PVPh and PEO 

rather than PVPh and PCL which also facilitate the Tc shift. 

WAXS patterns of PEO-b-PCL/PVPh blends are given in Figure 4.9. It is 

noted that PEO and PCL show monoclinic and orthorhombic crystal systems,

respectively. [120] peak of PEO and [200] of PCL were observed for neat 

BCP. This indicates that both segments are crystallizable and form distinct

crystalline phases. The PEO crystallization peak is dropped with increase in 

PVPh in the blends, indicating the deterioration of the PEO crystalline structure 

[Figure 4.9]. The addition of PVPh resulted in the change of crystal alignment 

for the development of the inter-associated bonds between PEO and PVPh. At 

40 wt% PVPh, the blends show a relative intensity of the [032] plane and 

minor to [120] plane. The crystalline order of PEO declines designates that the 

hydrogen bonding interactions of PEO with PVPh prevents its crystallization, 

which also agrees with DSC data in Figures 4.6 and 4.8. Moreover, in PEO-b-

PCL di-BCPs, the capacity of PEO to crystallize is constrained by PCL blocks, 

which is covalently coupled to the other end of the PEO block. This indicates 

that two separated crystalline domains comprising of PEO and PCL segments 

in these di-BCPs. This crystalline order of PCL also decreases once the PCL 

block starts to make hydrogen bonds with PVPh. Further increasing the PVPh 

content to 60-70 wt%, the crystallization peak of PCL disappears and results in 

amorphous halos in the WAXS because a large number of hydroxyl groups of 

PVPh form hydrogen bonds with carbonyl groups of PCL which inhibits the 

crystallization. In other words, the blend becomes miscible, and the crystalline 

structures of the PEO and PCL are destroyed. Further increasing the PVPh 

content, abundant PVPh becomes available to interact with both PEO and PCL 

through hydrogen bonding. By blending 70 wt% PVPh, the blends become 

miscible, and PVPh acts like a common solvent in this blend system. The 

WAXS results also show decreased crystallinity in the blends for PCL and 

PEO as in agreement with DSC results.
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Figure 4.9 WAXD profile of PEO-b-PCL/PVPh blends.

Blending of crystalline polymers with amorphous polymers induces 

changes in the crystallization such as depression in equilibrium melting 

temperature, decrease of crystallinity, and changes in semicrystalline 

morphology.38 The POM images of neat BCP and the blends are shown in 

Figure 4.10. The samples were observed at various magnifications. Spherulite 

attains diverse crystalline orientations as the concentration of PEO-b-PCL 

changes in the blends. In PEO-b-PCL/PVPh blends, as the concentration of 

PVPh increases, the size of spherulite becomes small. The POM picture of the 

neat BCP is given in Figure 4.10(a). A Maltese cross birefringence pattern was 

observed for BCP with an even shape and distinct boundaries. On the other 

hand, the blends exhibit a smaller amount of even spherulitic pattern.
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Figure 4.10 POM images of different PEO-b-PCL/PVPh blends at room 

temperature; (a) 100/0, (b) 90/10, (c) 80/20, (d) 70/30, (e) 60/40, and (f) 50/50 

PEO-b-PCL/PVPh.

This is because the region in the blend comprising PVPh and the 

amorphous phases of PEO/PCL can interfere in the spherulite formation and 

merged with the lamellae during crystal formation process. This in turn 

interrupts the radial alignment and the lamellar region finally coarsens.25

Figure 4.10(b) shows the spherulite morphology of 10 wt% PVPh blends, 

where the spherulite apprears quite different to that of PEO-b-PCL BCP. 

Apparently, PVPh significantly dampens the crystallization of PEO blocks due 

to stronger hydrogen bonding or miscibility, whereas PCL has no strong 

interactions at lower PVPh concentrations. As the content of PVPh reaches 60 
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wt% (not given), there is no indication of crystalline structure; this specifies the 

miscibility of PCL blocks with PVPh, which restricts PCL from crystallization 

in these compositions. The morphologies obtained from POM seem to be a 

result of changes in the hydrogen bonding interactions between PVPh/PEO and 

PVPh/PCL. The degree of crystallinity was found to be lowered in blends 

where both chains are crystallized, which was speculated to be due to 

crystallization of one component reducing crystallization of the other within 

the same molecule.25 Furthermore, the presence of PVPh in the blends having 

high glass transition reduces the degree of crystallization of PEO and PCL, 

thereby reducing the spherulite growth. 

4.4.3 Self-assembly and nanostructures in PEO-b-PCL/PVPh blends.

BCPs can self-assemble into a variety of ordered nanostructures due to 

microphase separation. This is driven by the enthalpy of demixing of the 

constituents of the BCP.39 Since the BCPs have covalent bond between them, 

they have a general tendency to separate, which results in microphase separated

structures. When a homopolymer is added to a di-BCP involving competitive 

hydrogen bonding, the less hydrogen bonded block is excluded from the 

homogeneous region due to the entropic penalty for conformational distortion.

Figure 4.11(a) displays the structure of double crystalline PEO-b-PCL 

BCP observed by TEM. The plain BCP shows an ordered cubic structure in 

which spherical PEO nanophases are arranged in cubic lattices. The 

morphology of the PEO-b-PCL changes after the addition of homopolymer. 

Blends containing 20 wt% PVPh exhibit hexagonal cylindrical morphology 

with size in the order of 40 nm [Figure 4.11(b)]. Thus, it is obvious that the 

addition of PVPh can induce morphological transition in PEO-b-PCL 

selfassemblies. The nanostructures in blends was observed to change from 

hexagonal cylindrical to disordered bicontinuous phase as the PVPh 

concentration reaches 40 wt% [Figure 4.11(c)], which is a result of segregation 

of PCL blocks. At 60 wt% PVPh, the polymer blend adopts a miscible or near-

homogeneous morphology with no evidence of phase separation, illustrated in 

Figure 4.11(d). As the content of PVPh is increasing further, the blends show 

completely homogeneous phase.
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Figure 4.11 TEM micrographs of PEO-b-PCL/PVPh blends. (a) 100/0, (b) 

80/20, (c) 60/40, and (d) 40/60; PEO-b-PCL/PVPh

The self-assembled morphology of PEO-b-PCL/PVPh blends was again 

studied using SAXS and the patterns are given in Figure 4.12. The microphase

separated morphology of the blends is clearly seen in the SAXS profiles. It is 

evident that the PEO-b-PCL BCP exhibits a scattering profile characteristic of 

ordered cubic phase having period of 35 nm represents the distance between 

adjacent PEO and PCL microdomains. The SAXS peaks of the BCP at q values 

scattering of spheres (or cylinders) dispersed in cubical lattice for example 

BCC, FCC or simple cubic. Moreover, the cubic morphology of the pure BCP 

was already revealed in TEM observations. The 20 wt% PVPh blend shows a 

and is also in consistent with the TEM images. The blends with 40 wt% PVPh 

give broad peaks, and the broadening of the peak indicates the deterioration of 

long-range ordered structures. The average spacing between the neighboring 

micro domains is 38, and 41 nm for 20, and 40 wt% PVPh blends, respectively. 

This result shows that there is a systematic increase in the size of the phase 
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separated domain which implies the progressive incorporation of PVPh. Above 

40wt% PVPh, the blends show only weak and broad peaks indicating a near-

homogeneous morphology as observed in 60 and 80wt% PVPh blends in 

Figure 4.12.
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Figure 4.12 SAXS profiles of PEO-b-PCL/PVPh blends at roon temperature.

Figure 4.13 displays the SAXS measurements of the blends performed at

100 ºC. At 100 ºC, where both PCL and PEO blocks are amorphous, broad 

scattering peaks are observed, indicating that there are no ordered structures; 

i.e., neither crystalline lamellae nor ordered microphases existed in the melts. 

Therefore PVPh can be located in both the PEO and PCL domains. Moreover, 

an ordered-to-disordered transition of the microphase morphology took place

upon heating, and the order-disorder transition temperature is lower than 100 

ºC. This is revealed by disappearance of the ordered cubic phase for the pure 

BCP and the hexagonal cylindrical morphology for the blend with 20 wt%

PVPh. The blends all display disordered microphase morphology at 100 ºC. It 

is observed in Figure 4.13 that the primary scattering peak of all the blends

moves to higher q-values with broadening of some peaks which indicating a 

reduction in the domains distance. 
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Figure 4.13 SAXS profiles of PEO-b-PCL/PVPh blends at 100 ºC. 

 

4.4.4 Mechanism of microphase separation.

The formation of nanostructures in PEO-b-PCL/PVPh blends at variuos

compositions is schematically summarized in Figure 4.14. The blends include 

an immiscible BCP PEO-b-PCL and a homopolymer PVPh, which is miscible 

with both PEO and PCL blocks depending on the concentration. The pure di-

BCP exhibits a cubic structure. The BCPs have the general tendency to 

separate. They exhibit amphiphilic characteristic which is caused by the 

restriction due to the presence of a covalent bond between the chemically 

different blocks, resulting in microphase separated structures.
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Figure 4.14 Schematic representation of phase morphologies in PEO-b-

PCL/PVPh blends: (a) Cubical micelles of PEO-b-PCL BCP, (b) hexagonal 

cylindrical micelles at 20 wt% PVPh concentration, and (c) disordered lamellae 

at 40 wt% PVPh concentration. 

The 20 wt% PVPh blends show a cylindrical morphology. At 20 wt%, the 

added PVPh and PEO interact very strongly, whereas PCL blocks, which are 

repelled by PEO, have a weak association with PVPh. The added PVPh which 

strongly hydrogen bonded with PEO form PVPh/PEO single phase cylinders 

inside, whereas the weakly interacting PVPh/PCL phase separates, as shown in 

Figure 4.14(b). At very low concentration, PVPh selectivly interacts only with 

PEO. For the pure BCP, which is originally in the cubical phase, the addition 

of PVPh is thus expected to induce structural transformations, in analogy with 

BCP selective solvent systems.32 In 40 wt% PVPh blends, the concentration of 
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homopolymer, as well as PVPh/PEO single phase, increases, whereas PCL also 

forms hydrogen bonds with PVPh. This competitive hydrogen bonding 

destroys the ordered structure of the BCP. This leads to the decrease in the 

interfacial area, which results in the planar interfaces and thereby the formation 

of disordered bicontinuous phase, as shown in Figure 4.14(c). At 60 wt% or 

above PVPh blends, more PCL forms hydrogen bonds with PVPh, or in other 

words, both BCP blocks are miscible with PVPh to form homogeneous 

morphology. At high PVPh contents, hydrogen bonding interactions with PCL 

also occurs because extra free hydroxyl groups are available for bonding which 

finally results in homogeneous morphology. Here, hydrogen bonds clearly 

form the dominant interaction in the blend where PVPh/PEO hydrogen bonds 

are found to be stronger than PVPh/PVPh and PVPh/PCL hydrogen bonds.

The hydrogen bonding interactions in PEO-b-PCL/PVPh blends are 

detailed int this study. Here, AB AC BC are 

AC BC. The variation in morphologies in

PEO-b-PCL/PVPh blends is affected by two factors: (1) intermolecular 

interaction between PVPh and PEO is stronger than that between PVPh and 

PCL, which indicates the existence of competitive hydrogen bonding, and (2) 

formation of a homogeneous phase of PVPh/PEO excludes the microdomains 

of weakly interacted PCL. So the geometry of the structures formed in the 

blends is decided by the competition among PEO and PCL blocks in regards to 

hydrogen bonding with PVPh. Moreover, it is also established that adding a

homopolymer to a BCP can alter the microphase structure.

4.5 Conclusions

The microphase separation facilitated by competitive hydrogen bonding in 

PEO-b-PCL/PVPh double crystalline di-BCP/homopolymer blends was 

investigated. The hydroxyl groups of PVPh can selectively interact with both 

PEO-ether and PCL-carbonyl, which results in the development of 

composition-dependent nanostructures in these blends. The disparity of weakly 

associated PVPh/PCL pairs and strongly associatedPVPh/PEOpairs results in 

microphase separation and the formation of cubic, hexagonal cylindrical 

morphologies at lower PVPh concentrations. The PVPh acts like a common-
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solvent for both blocks at higher concentrations which results in disordered and 

homogeneous blends at high PVPh contents. The formation of various

composition-dependent microphase-separated morphologies in the PEO-b-

PCL/PVPh blends can be explained on the basis of relative strength of 

interactions among different pairs in the system.
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Chapter Five_____________________________________

Microphase Separation Induced by Competitive
Hydrogen Bonding Interactions in Semicrystalline 
Triblock Copolymer/Homopolymer Complexes

5.1 Abstract

In this study, we have investigated that self-assembled nanostructures can 

be obtained in the bulk by the complexation of a semicrystalline SVPEO tri-

BCP with a PVPh homopolymer in THF. In these complexes, microphase 

separation takes place due to the disparity in intermolecular interactions; 

specifically PVPh and P4VP blocks interact strongly compared to PVPh and 

PEO. At low PVPh concentrations, PEO interacts relatively weak with PVPh, 

whereas in the complexes containing more than 30 wt% PVPh, PEO block 

began to interact considerably with PVPh, leading to the formation of 

composition-dependent morphologies. SAXS and TEM results indicate that the 

cylindrical morphology of SVPEO BCP changes in to twisted lamellae 

structures at 20 wt% of PVPh then to disordered bicontinuous phase with 40 

wt% PVPh. Wormlike structures were obtained in the complex with 50 wt% 

PVPh, followed by spherical microdomains with the size range of 40-50 nm in 

the complexes with 60-80 wt% PVPh. Also when the content of PVPh 

increases to 80 wt%, the complexes show a completely homogenous phase of 

PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains. 

Moreover, we have examined the fractional crystallization behaviour in 

SVPEO and complexes with lower PVPh content. A structural model was 

proposed to explain the microphase separation and self-assembled 

morphologies of these polymer complexes according to the experiment results. 

The formation of nanostructures and changes in morphologies depend on the 

relative strength of hydrogen bonding interaction between each block of the 

BCP and the homopolymer.
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5.2 Introduction

BCPs belong to the category of soft materials and they can self-assemble 

to form various nanostructures.1 The repulsive and attractive interactions 

within and between the blocks as well as their covalent linkage are the driving 

force for producing self-assembled nanostructures. In di-BCP, the microphase 

behaviour i

critical value, the BCPs microphase separates into a periodically ordered 

structure with a length scale varying from a few nanometeres to several 

hundred nanometers. Blending of BCP with a homopolymer is a convenient 

technique that offers rich variety of self-organized nanostructures with diverse 

applications.2-6 There are many theoretical as well as experimental analyses 

investigated extensively regarding the microphase separation in 

BCP/homopolymer systems.7,8 Unlike di-BCP, the microphase separation in 

ABC tri-BCPs results in a rich variety of nanostructures because of the three 

different components A, B and C. Tri-BCP systems have revealed a wide range 

of well- ordered complex micro domain morphologies.9,10 In ABC tri-BCPs

with one or more crystallizable bock, a much more complex behaviour can be 

expected because of the crystallization process which, either disturb an already 

organized structure and microphase separation, or induce a transition between 

two different morphologies.11

In recent years, more attention has focused on blending BCPs of different 

compositions or adding homopolymer to a BCP involving secondary 

interactions, though there were a few reports which have dealt with the 

influence of association on nanophase separated structures. In many polymer 

blends, hydrogen bonding is an important secondary interaction, where the 

strength of this interaction depends on the relative affinities between hydrogen 

bond acceptors and donors.12 When the hydrogen bonding interaction among 

polymers is strong, a miscible polymer blend can be formed. And, if the 

interaction is sufficiently strong i.e., polymer-polymer interaction prevails over 

the polymer-solvent interaction, the two polymers co-precipitate to form highly 

associated mixtures known as polymer complexes. Very recently, Guo et al.13-

16 and Chang et al.17-19 have reported a facile way for the self-assembly of 

nanostructured BCP blends13,14,17-9 and complexes15,16 through competitive 
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hydrogen bonding interactions. The concept is based on the competition 

between different blocks of the BCP to form more than one kind of 

intermolecular interaction with the complimentary polymer in the complex. 

This important advance directs to a new strategy for the design of self-

assembled nanostructures for diverse applications. 

In this study, for the first time we have investigated the microphase 

separation induced by competitive hydrogen bonding in self-assembled 

semicrystalline tri-BCP/homopolymer complexes in THF. The self-assembly, 

hydrogen bonding interaction, phase behaviour and crystallization of

SVPEO/PVPh complexes have been studied. The tri-BCP ABC is immiscible 

and the homopolymer D can interact with both B and C blocks, but unequally 

due to the competitive hydrogen bonding interaction between the B/D and C/D 

pairs, while the A block has no interactions with D and gets phase separated in 

AB BC BD

CD are negative, however th BD CD.

There is an unequal hydrogen bonding interactions of PVPh with both P4VP 

and PEO, whereas, the unreacted PS phase separated which altogether leads to 

form various nanostructures in PVPh/SVPEO complexes. The strength of 

hydrogen bonding interaction between PVPh/P4VP, PVPh/PEO pairs and self-

associated PVPh/PVPh leads to the nanoscale organization of the complxes via 

competitive distribution of PVPh chains in the SVPEO BCP. This will further 

enhance the miscibility of the blocks; facilitate the phase separation which in 

turn affects the properties of the complexes. The phase behaviour of the 

complexes is correlated with the results obtained from SAXS and TEM. This 

work, for the first time, demonstrates how the competitive hydrogen bonding 

determines the self-assembly and causes morphological transitions in ABC/D 

tri-BCP/homopolymer complexes. 

5.3 Experimental section 

5.3.1 Materials and preparation of samples

PVPh with an average Mw = 20,000 and Mw/Mn = 1.70, was a product of 

Aldrich Chemical Company. The tri-BCP, SVPEO was purchased from 

Polymer Source Inc., with Mn(PS) = 60,000, Mn(P4VP) = 32,000, Mn(PEO) = 



94 

 

39,500 and Mw/Mn = 1.2. All these polymers were used as received. The 

complexes of PVPh/SVPEO were prepared by solution mixing. THF solution 

containing 1% (w/v) of the individual polymers were mixed and stirred well 

until the complexes were precipitated. The solvent was allowed to evaporate 

slowly at room temperature. The complexes were dried under vacuum for 72 h

before the measurements in order to reach equilibrium.

5.3.2 FTIR spectroscopy

Infrared measurments were obtained from a Bruker Vetex-70 FTIR 

spectrometer and 32 scans were recorded with a resolution of 4 cm-1. Thin 

films of the blends were cast from THF solution onto KBr pellets and dried 

under vacuum at 80 ºC to completely remove the solvent and then allowed to 

cool to room temperature. 

5.3.3 DSC

The glass transition temperatures of the complexes were determined by a 

TA Q200 differential scanning calorimeter using 5–10 mg of the sample under 

nitrogen atmosphere. A heating rate of 10 ºC/min was employed. All the 

samples were first heated to 150 ºC and kept at that temperature for 3 min; 

subsequently cooled to -70 ºC at 10 ºC/min, held for 5 min, and heating 

continued from -70 to 200 ºC. The midpoints of the second heating scan of the 

plot were taken as the glass transition temperatures (Tg).

5.3.4 SAXS

The SAXS measurements were taken on a Bruker NanoStar 3 pin-hole 

instrument Annealed samples 

having 1mm thickness were prepared for SAXS measurements The intensity 

profiles were interpreted as the plot of scattering intensity (I) versus scattering 

vector, q

5.3.5 TEM

TEM experiments were performed on a JEOL JEM-2100 transmission 

electron microscope at an acceleration voltage of 100 kV. The samples were 
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cut into ultrathin sections of approximately 70 nm thickness at room 

temperature with a diamond knife using a Leica EM UC6 ultra microtome 

machine. The bulk samples were annealed at 180 °C for about 72 hrs before 

microtoming. The thin sections were stained by ruthenium tetroxide (RuO4)

before TEM observation.

5.4 Results and discussion

5.4.1 Hydrogen bonding interactions

FTIR spectroscopy is an excellent tool for providing information on 

specific interaction between various components in PVPh/SVPEO complexes 

by detecting hydroxyl, pyridine and ether regions.20-22 Figure 5.1 shows the 

possible hydrogen bonding interaction in the PVPh/SVPEO complexes. 
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Figure 5.1 Schematic representation of possible hydrogen bonding interactions 

between SVPEO tri-BCP and PVPh homopolymer.

The hydroxyl stretching region in the infrared spectra of PVPh/SVPEO 

complexes is given in Figure 5.2. It can be noticed that the hydroxyl region of 

pure PVPh consists of two bands; the absorption at 3354 cm-1 represents the 

self-associated hydroxyl groups. The other absorption at 3525 cm-1 featured the 

free hydroxyl groups.23 In this figure the free hydroxyl absorption band 

observed as a shoulder indicating that relatively smaller amount of free 
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hydroxyl groups compared with the extensively distributed self-associated 

ones. When the SVPEO complexed with PVPh, the intensity of the free 

hydroxyl decreases and ultimately vanishes. But the 3354 cm-1 region shifts to 

a low wavenumber area with increasing SVPEO concentration. The absorption 

of 20 wt% PVPh at 3159 cm-1 is corresponding to the hydrogen bonding of 

PVPh with P4VP and/or PEO blocks of SVPEO.
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Figure 5.2 The hydroxyl region of PVPh/SVPEO complexes in the infrared 

spectra observed at room temperature.

Coleman et al24 have explained the average strength of the hydrogen 

bonding 

bonded species in polymer ble

complexes and the results imply that hydrogen bonding strength of 

PVPh/SVPEO complexes is in-between the values for PVPh/P4VP and 

PVPh/PEO binary systems. By analysing ed that the 

average strength of interaction between PVPh and PEO is less than that 

occurring between PVPh and P4VP, which reflects that both these blocks can 

interact with PVPh, but with unequal strengths.



97 

 

System

PVPh 171

PVPh/P4VP 4001

PVPh/P2VP 3902

PVPh/SVPEO 366 

PVPh/PEO 3253

1Ref. 25, 2Ref. 26, 3Ref. 24

Table 5.1 Wavenumber shift of hydroxyl region in PVPh/SVEPO complexes 

containing PVPh.

The hydrogen bonding interactions between PVPh and P4VP can be 

identified by examining the pyridine region in the spectra of the complexes.  

The characteristics bands of pyridine ring at 1590, 1050, 993, and 625 cm-1 are 

sensitive to hydrogen-bonding interaction.26,27 However, the bands at 1590 cm-1

for P4VP are difficult to analyse as it overlaps with the band of PVPh (1600 

cm-1 region). Therefore the absorption at 993 cm-1 is taken to detect the 

presence of hydrogen bonding between the PVPh hydroxyl group and P4VP 

pyridine group. FTIR spectra in the range of 1030-960 cm-1 of PVPh/SVPEO 

complexes with different compositions are plotted in Figure 5.3. The bands at 

993 and 1013 cm-1 represent the aryl CH bending of pure pyridine ring and 

PVPh phenol ring. Another band observed in the complexes at 1005 cm-1 is 

attributed to the hydrogen-bonding interaction between pyridine ring of P4VP 

and phenol group of PVPh. The spectral changes in both wave number regions 

suggest that strong hydrogen bonding interaction exist between pendant 

pyridine groups of P4VP and phenol group of PVPh in all the complex 

compositions. This interaction is very significant in the formation of a stable 

complex.
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Figure 5.3 The FTIR spectra corresponding to the pyridine region of 

PVPh/SVPEO complexes at room temperature.

Figure 5.4 represents the FTIR spectra of CH2 wagging region of PEO in 

SVEPO and its complexes with PVPh ranging from 1380 to 1320 cm-1. PEO 

shows two absoption regions corresponds to crystalline-phase at 1360 and 1343 

cm-1.28 As the PVPh concentration in the complexes increases, these bands are

substituted with another band around 1350 cm-1 which represents the 

amorphous-phase, which suggests a retardation of PEO crystallization by the 

addition of PVPh. From Figure 5.4 it can be seen that the retardation of PEO 

crystallization peaks begins in complexes with 40 wt% of PVPh. That means a 

considerably strong interaction between PVPh and PEO starts when the PVPh 

concentration is ~ 40 wt%. Therefore it can be assumed that PEO ether groups 

have only weak interaction with PVPh hydroxyl groups at concentrations 

below 40 wt% of PVPh. This is due to the strong hydrogen bonding interaction 

between pyridine groups of P4VP with all the available hydroxyl groups of 

PVPh at low PVPh concentrations.



99 

 

1380 1370 1360 1350 1340 1330 1320
Wavenumber (cm-1)

Ab
so

rb
an

ce
 (a

.u
.)

PVPh/ SVPEO

80/20

60/40

50/50

40/60

20/80

0/100

1350 cm-1

1343 cm-1
1360 cm-1

1380 1370 1360 1350 1340 1330 1320
Wavenumber (cm-1)

Ab
so

rb
an

ce
 (a

.u
.)

PVPh/ SVPEO

80/20

60/40

50/50

40/60

20/80

0/100

1350 cm-1

1343 cm-1
1360 cm-1

Figure 5.4 Ether region of PVPh/SVPEO complexes at room temperature

5.4.2 Phase behaviour 

Figure 5.5 and 5.6 show DSC heating as well as cooling thermograms of 

neat BCP and their complexes with PVPh. Pure PVPh show a Tg at 164 ºC 

whereas BCP exhibit two distinct Tgs at 107 ºC, and 150 ºC corresponding to 

immiscible PS and P4VP blocks. The Tg of PEO block could not be observed 

under the current experimental conditions. The melting temperature (Tm) of the 

PEO block can be observed at 50 ºC. There is no change in the Tg of PS blocks 

since they have no interactions with PVPh at entire compositions. It is already 

proven that the binary complexes of PVPh/P4VP29 and PVPh/PEO30 form 

homogenous blend at all compositions due to the intermolecular hydrogen 

bonding interactions. In PVPh/SVPEO complexes, since PVPh is miscible with 

P4VP blocks, a single Tg was detected. Figure 5.5 shows the Tg of P4VP/PVPh 

phase is substantially higher than the Tg of P4VP at lower PVPh content (20 

wt% PVPh complexes). This positive deviation is due to the formation of 

strong intermolecular interactions between P4VP/PVPh which enhances the 

mixing free energy and thereby from miscible blends. Above 40 wt% of PVPh, 
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there is a reduction in the Tg value of the complexes which is due to the 

considerable miscibility of PEO blocks with PVPh at these compositions. 
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Figure 5.5 DSC thermograms of the second scan of PVPh/SVPEO complexes.

The reductions of melting temperature of the crystalline components in the 

mixtures provide major information regarding miscibility and intermolecular 

interaction behaviour. Figure 5.5 illustrates all the thermal transition 

temperatures of the heating scan of the PVPh/SVPEO complexes. The 

crystalline PEO component in SVPEO shows a melting temperature at 50 ºC. It

is clearly displayed that the Tm of PEO blocks in PVPh/SVPEO complexes 

remains almost unchanged with very low PVPh concentration. This implies a 

weak interaction between PEO/PVPh pair at low PVPh content. There is a 

decrease in intensity and final vanishing of Tm observed at 30-40 wt% PVPh 

complexes. This is due to the miscibility of PEO with PVPh at higher PVPh 

contents. The intensity of melting peak decreases at 30-40 wt% PVPh 

complexes and are unable to see at higher PVPh contents which is due to the 

miscibility of PEO with PVPh at higher PVPh contents.

Figure 5.6 shows the conventional cooling scan of PVPh/SVPEO 

complexes. The crystalline peaks of pure SVPEO and PVPh/SVPEO 
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complexes show a remarkable example of fractionated crystallization with 

increase of PVPh content. The existence of more than one crystallization 

exotherm is termed as fractionated crystallization.31,32 This behaviour was 

previously observed in other semicrystalline BCPs.33-35 Fractionated 

crystallization of a pure BCP takes place either due to morphological 

heterogeneity i.e., heterogeneous-nucleation and homogeneous-nucleation or a 

slow crystallization rate. Usually, homogeneous-nucleation is observed in 

confined or unconnected crystalline domains and that preserves the spherulite 

morphology. However in connected domains, heterogeneous-nucleation takes 

place and form mixed morphologies. The peak of the crystallization exotherm 

is termed as Tf. In pure SVPEO BCP, at low cooling rate, a large part of the 

PEO block crystallizes at 40 °C whereas a minor fraction of the PEO can only 

crystallize at much lower temperatures (30 °C and below). In such cases 

fractionated crystallization results in a lamellar morphology, where the PEO is 

dispersed into droplets in an immiscible matrix.36,37 The exotherm at -27 °C can 

be explained as the crystallization of the PEO block originated from the 

homogeneous nucleation.

The fractionated crystallization behaviour can also be observed in 

PVPh/SVPEO complexes up to 40 wt% of PVPh. From FTIR analyses it was 

confirmed that PVPh interacts weakly with PEO compared to the strong 

interaction between PVPh and P4VP. Therefore the appearance of two 

exotherms can be explained by two different crystallization behaviour of PEO 

domains within the PVPh/P4VP mixed phase. The high temperature exotherm 

is from first crystallization process due to heterogeneous nucleation of the 

continuous domains and the low temperature exotherm is produced by the   

homogeneous nucleation (non-connecting) PEO domains in PVPh/P4VP mixed 

phase.
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Figure 5.6 Crystallization curves of PVPh/SVPEO complexes during cooling.

5.4.3 Nanostructured morphology of PVPh/SVPEO complexes

The morphologies of PVPh/SVPEO complexes were investigated by 

SAXS and their profiles are shown in Figure 5.7. For pure BCP, the first 

scattering (q*) has a Bragg spacing of 35 nm. The scattering peak positions of 

SVEPO in the SAXS profile indicate cylindrical profile, situated at q values of 

-order scattering 

maximum).38 The complexes with 10-40 wt% of PVPh show multiple 

scattering peaks, denotes that they possess long-range ordered nanostructures 

to some extent. The SAXS profile of 20 wt% PVPh complex situated at q 

values of 1: 2: 3 relative to q* are apparent, which are characteristics of twisted 

lamellae. At 40 wt% PVPh, complexes show another small peak around 2 and 

3, respectively, owing to the incomplete disordering of the twisted lamellae 

present in the complexes and the average spacing between the neighboring 

micro domains is 51 nm. Complexes with high content of PVPh exhibit 

disordered structures, which are revealed by the disappearance of higher order 

reflections in the SAXS profiles. This result shows that there is a systematic 

increase in the size of the phase separated domain with the progressive 
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incorporation of PVPh. Above 40 wt% PVPh, the complexes show only weak 

and broad peaks and display a disordered morphology as observed in 60 and 80

wt% PVPh complexes in later part of this paper [Figure 5.8(e, f)] 
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Figure 5.7 SAXS profiles of PVPh/SVPEO complexes.

TEM examination provided further insight into the morphology of 

PVPh/SVPEO complexes. Based on the electron density of various groups, 

PS, P4VP, PVPh and PEO appear as deep, intermediate, light, and very-light 

contrasts when stained with RuO4. The morphological transformations of 

PVPh/SVPEO complexes with 20 to 80 wt% of PVPh compositions are given 

in Figure 5.8. It is seen that all the complexes exhibit heterogeneous 

morphology at the nanoscale. 
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Figure 5.8 TEM micrographs of PVPh/SVPEO complexes. (a) 0/100, (b) 

20/80, (c) 40/60, (d) 50/50, (e) 60/40, and (f) 80/20 PVPh/SVPEO. 

The pure BCP shows a cylindrical morphology [Figure 5.8(a)]. In fact, a

pseudo “hexagonally packed cylinders” was observed for the SVPEO BCP,

where some percolated microdomains coexist with this cylindrical structure in 

some areas [inset Figure 5.8(a)]. The SAXS experiments also prove the 

existence of cylindrical morphology in SVPEO BCP [Figure 5.7], though a 

lateral view of these cylinders was not observed by TEM. A similar cylindrical 

morphology has observed for PS-b-P2VP-b-PtBMA tri-BCP as reported by 

Liedel et al.39

The 20 wt% PVPh complexes exhibit a twisted lamellar structure as shown 

in Figure 5.8(b). Here, the very dark region corresponds to PS and a mixed 

phase of PVPh and P4VP appears as grey and the PEO blocks appears as 

bright.40 At this composition, the concentration of PVPh is very less compared 
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to the BCP. Hence the added PVPh strongly hydrogen bonded to P4VP and 

formed a single phase whereas the less-interacting PEO block, phase separates 

within the matrix as spherical or elongated microdomains [Figure 5.8(b)]. At 

40 wt% PVPh complexes, PEO also forms hydrogen-bonding interaction with 

PVPh since a higher number of hydroxyl units are available even after strong 

interaction with P4VP. This induces a bicontinuous structure for 40 wt% PVPh 

complexes as shown in Figure 5.8(c). This competitive hydrogen bonding 

destroys the ordered structure of the system and leads to the decrease in the 

interfacial area, which results in the planar interfaces and thereby the formation 

of disordered bicontinuous phase. Further increasing the PVPh content to 50 

wt%, the complexes adopt a highly disordered morphology with some 

wormlike structures dispersed in the matrix as given in Figure 5.8(d). The 

PVPh/SVPEO complexes containing 60 wt% PVPh display spherical

nanostrcutures [Figure 5.8(e)]. Here, PS segments are dispersed in the 

hydrogen bonded PVPh/P4VP and PVPh/PEO matrix. As the content of PVPh 

increases to 80 wt%, the complexes show a completely homogenous phase of 

PVPh/P4VP and PVPh/PEO with phase separated spherical PS domains 

[Figure 5.8(f)]. Previously, Lee et al.,41 have investigated the miscibility and 

morphologies of P2VP-b-PEO/PVPh blends. No self-assembly was observed 

and the blends were homogenous at all compositions though the interactions 

between PVPh/P2VP and PVPh/PEO were different. The complete miscibility 

observed in this system was obviously due to the very low molecular weight of 

the blocks compared to the homopolymer. If the molecular weights of the 

homopolymer and each block were comparable or higher, self-assembled 

structures have been formed through competitive hydrogen bonding 

interactions.

5.4.4 Mechanism of microphase separation

The formation mechanism of different self-assembled nanostructures in 

PVPh/SVPEO complexes at different compositions is schematically shown in 

Figure 5.9. The complexes comprise an immiscible SVPEO tri-BCP and a 

homopolymer PVPh, which is miscible with both P4VP and PEO blocks 

depending on the concentration. Pure tri-BCP exhibited cylindrical 
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nanostructures as observed using TEM in Figure 5.9(a). Since the blocks in the 

tri-BCPs have the general tendency to separate, they exhibit amphiphilic 

characteristic which is caused by the restriction due to the presence of a 

covalent bond between the chemically different blocks, resulting in microphase 

separated structures. When a homopolymer is complexed with a tri-BCP,

involving competitive hydrogen bonding interactions, the weakly hydrogen 

bonded block is excluded from the homogenous region due to the high entropic 

penalty for conformational distortion. Here, by addition of homopolymer, 

microphase separation takes place due to the self- assembly of the elementary 

BCP i.e.; it selectively swells the blocks due to the competitive hydrogen 

bonding which results in phase separation.

Figure 5.9 Schematic representation of phase morphologies in PVPh/SVPEO 

complexes: (a) cylindrical morphology of SVPEO tri-BCP, (b) twisted lamellae 

at 20 wt% PVPh concentration, and (c) bicontinuous phase at 40 wt% PVPh 

concentration.

In 20 wt% of PVPh complexes, twisted lamellae with an average diameter 

of 40-50 nm were obtained which is schematically shown in Figure 5.9(b). At 

20 wt%, the added PVPh and P4VP interacts very strongly whereas PEO 

blocks, which are repelled by P4VP, have relatively weak hydrogen bonding 

with PVPh. In other words, PVPh acts as a selective amphiphilic solvent for 

the P4VP blocks of the SVPEO tri-BCP. Therefore the added PVPh form 

PVPh/P4VP single phase layers whereas the weakly interacting PEO phase 

separates as spherical or elongated microdomains. For the pure BCP, which is 

originally in the cylindrical phase, the addition of PVPh is thus expected to 

induce structural transformations, in analogy with BCP selective solvent 
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systems. As the concentration of PVPh increases again, the microphase 

morphology varies, displaying bicontinuous structure in 40 wt% PVPh 

complexes [Figure 5.9(c)], whereas matrix-dispersed wormlike morphology is 

obtained in 50 wt% of PVPh. As the concentration reaches 60-80 wt% PVPh, 

the interface between the PVPh/P4VP and PVPh/PEO microphases become 

less distinct. The interaction of PVPh between P4VP and PEO together with 

non-interacting PS blocks form spherical microdomains. The appearance of 

spherical morphology at high PVPh concentrations is due to the confinement of 

non-interacting PS blocks within the highly hydrogen bonded PVPh/P4VP and 

PVPh/PEO phases form the homogenous matrix. This is due to the hydrogen 

bonding interactions of PVPh with PEO along with P4VP because free 

hydroxyl groups are easiliy available. Or in other words PVPh behaves as the 

common-solvent for both P4VP and PEO polymer segments. The 

morphological variations of this system is shown to be influenced by the 

following factors; (1) intermolecular interaction between PVPh and P4VP is 

stronger than that between PVPh and PEO which indicates the existence of 

competitive hydrogen bonding, (2) strong interaction of PVPh/P4VP excludes 

microdomains of PEO at lower PVPh content, (3) formation of a homogenous 

phase of PVPh/P4VP and PVPh/PEO excludes microdomains of non-interacted 

PS at high PVPh content. So the geometry of the structures formed in the 

complexes is determined to a large extent by the competition between P4VP 

and PEO blocks in regards to hydrogen bonding with PVPh. Moreover it is also 

established that the addition of a homopolymer into to an ordered BCP will 

cause changes in the microdomain structure.

5.5 Conclusions

We have studied the microphase separation mediated by competitive 

hydrogen bonding in PVPh/SVPEO tri-BCP/homopolymer complexes. The 

hydroxyl groups of PVPh can selectively interact with both pyridine group of 

P4VP and ether groups of PEO and can form various nanostructures. The 

disparity of weakly associated PVPh/PEO pairs and strongly associated 

PVPh/P4VP pairs results in microphase separation and the formation of 

cylindrical, twisted lamellae, disordered bicontinuous and wormlike 
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morphologies at lower PVPh concentrations. At higher concentrations, PVPh 

acts like a common-solvent for P4VP and PEO blocks. That results in a 

homogeneous phase with PS as the only phase separated domain. The 

formation of various composition-dependent microphase separated 

morphologies in the PVPh/SVPEO complexes can be explained based on the 

relative strength of hydrogen bonding between the different pairs in the system.   
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Chapter Six_____________________________________

Multiple Vesicular Morphologies in AB/AC Diblock 
Copolymer Complexes through Hydrogen Bonding 
Interactions

6.1 Abstract

We report for the first time multiple vesicular morphologies in BCP 

complexes formed in aqueous media via hydrogen bonding interactions. A 

model AB/AC di-BCP system consisting of PS-b-PAA and PS-b-PEO was 

examined using TEM, SAXS and DLS. The complexation and morphological 

transitions were determined via the hydrogen bonding among PAA/PEO chains 

of two di-BCPs. Upon the addition of PS-b-PEO, a variety of bilayer 

aggregates were formed in PS-b-PAA/PS-b-PEO complexes including vesicles, 

MLVs, TWVs, ICCVs, and IAs. Among these aggregates, ICCVs were 

observed as a new morphology. The morphology of aggregates was correlated 

with respect to the molar ratio of PEO to PAA. At [EO]/[AA] = 0.5, vesicles 

were observed, while MLVs were obtained at [EO]/[AA] = 1. TWVs and 

ICCVs were formed at [EO]/[AA] = 2 and 6, respectively. When [EO]/[AA] 

reached 8 and above, only irregular aggregates appeared. These findings 

suggest that complexation between two amphiphilic di-BCPs is a viable 

approach to prepare polymer vesicles in aqueous media.

(This chapter is reproduced from the article:  Nisa V. Salim and Qipeng Guo. 

Journal of Physical Chemistry B 2011, 115, 9528–9536). Reprinted with 

permission from American Chemical Society, copy right 2011.
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6.2 Introduction

The self-assmbly of BCPs in aqueous solutions including micellization is 

of great interest due to their various possible applications.1-7 By taking 

advantage of interpolymer complexation, it is possible to manipulate novel 

ordered and disordered nanostructures for diverse applications. Complexation 

between two polymers in solution can be driven by electrostatic interactions, 8

hydrogen bonding,9 etc. As an important intermolecular interaction, hydrogen 

bonding plays a fundamental role to a create higher level of hierarchy in

structure formation of BCPs.10 The moderate bonding energy of hydrogen 

bonds offers the flexibility for association and dissociation in the self-assembly 

process. Most of the studies so far reported have shown that the self-assembly 

of micelles via hydrogen bonding interactions are capable of forming 

hierarchical two-dimensional nanostructures.11-13

Some complicated aggregate structures such as helical superstructures and 

multicompartment micelles are reported by the self-assembling behaviour of tri 

and multi- BCPs in solvents.14 Self-assembly and formation of ordered 

nanostructures such as lamellar and gyroid morphology in BCP blends with 

hydrogen bonding interactions were investigated by Matsushita et al.15 and by

Abetz et al.16 Chang et al. studied the self-assembled BCP mixtures in solution 

mediated by hydrogen bonding.17 Other authors have reported the 

comicellization of two BCPs in solutions driven by hydrogen bonding 

interactions.18 The complexation of di-BCP mixtures reported previously 

cannot be strictly compared with our results for different polymer pairs because 

the molecular weights and concentration of polymers are different. We have 

recently reported the self-assembled BCP blends and complexes through 

competitive hydrogen bonding interactions between different BCP blocks and 

the homopolymer.19 These studies have shown that hydrogen bonding 

interactions are crucial in the self-assembling process of BCP blends and 

complexes and also in the formation of aggregate structures.

To date, little work has involved vesicles in di-BCP mixtures in 

solutions.20 In the present study, the complexation and aggregate morphologies 

in a model AB/AC di-BCP system consisting of PS-b-PAA and PS-b-PEO in 

water was studied. Varying the relative amounts of the two BCPs, a range of 
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bilayer aggregates were formed, including vesicles, MLVs, TWVs, ICCVs, and 

IAs. The hydrophobic PS blocks were segregated as the cores while the 

hydrogen bonded PEO and PAA blocks formed the coronae of bilayer 

aggregates. We also investigate how the incoporation of PS-b-PEO into PS-b-

PAA solutions influences the aggregate morphology of the resulting 

complexes. This work introduces a viable route to multicompartment vesicles 

in aqueous solutions. The formation of BCP vesicles in water is of particular 

importance due to their numorous applications.

6.3 Experimental section

6.3.1 Materials and preparation of complex aggregates.

The BCPs PS-b-PAA and PS-b-PEO were purchased from Polymer 

Source, Inc. The PS-b-PAA was with a Mn (PS) = 61,000, Mn (PAA) = 4000, 

and Mw/Mn = 1.05 while the PS-b-PEO had Mn (PS) = 190,000, Mn (PEO) = 

48,000 and Mw/Mn = 1.07. The BCPs were first dissolved individually in 

DMF to prepare a 1% (w/v) of polymer mixture solution. Then PS-b-

PEO/DMF mixture was added dropwise into the PS-b-PAA mixture to get a 

series of solutions with molar ratio ([EO]/[AA]) ranging from 0.5 to 12, i.e., 

corresponding to the weight ratio (WSEO/WSAA) ranging from 0.1 to 1.5. Then 

3-6 wt% of deionized water was added into the mixture followed by stirring for 

1 day to allow polymer chains for exchange. Finally, the mixture solution was 

quenched by adding extra water (25 wt%). This allows the kinetic freezing of 

morphology in the solution. Finally, dialyse the solution against deionized 

water for removing DMF. The solution was maintained at a particular pH ( 4) 

to induce the hydrogen bonding among PAA and PEO blocks. This is because 

PAA is a weak polyanion, and its ionization degree is strongly pH-dependent, 

with a pKa 5.6. The hydrogen bonding complexation between PAA and PEO 

occurs only at low pH values.20 At higher pH, the complexation-level is less 

because PAA ionizes in aqueous environment. The presence of opacity

indicates the aggregation. The obtained complexes were used for further 

experiments.

In amphiphilic BCP systems, the aggregates are created by first 

solubilizing the BCP in a solvent appropriate for all polymer segments. The
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non-solvent is then added that is good for one polymer-block and bad for the 

other one.21 This method was adopted in the preparation of the BCP complexes 

in this study. In PS-b-PAA/PS-b-PEO complexes, the hydrogen bonding 

interactions are relatively strong and interpolymer complexation may occur.22

Both the BCPs were first dissolved in DMF, which is the common solvent for 

all blocks used here. The complexes were made by adding excess H2O drop-

wise into the polymer solution to kinetically freeze the morphology and stirred 

for 1 day. By this process a thermodynamically stable morphology can be 

obtained because the PS blocks are not in their glassy state. According to 

Eisenberg and co-workers,21 a thermodynamic equilibrium is operative in the 

beginning of complexation and aggregation of the BCP mixtures. It was 

suggested that the indirect way as employed here is a practical method to 

prepare equilibrium aggregates of copolymer in solution.23 With increasing 

water, the solvent becomes bad for the core-forming PS block, the interfacial-

tension increases, while the corona repulsion may not change much because 

both the solvents are very good for the corona forming PAA and PEO blocks. 

However, during the process of the core enlargement the stretching of polymer 

chains in the core enhances. This causes an increase in the component of the 

free energy that reflects core chain stretching. The aggregates change to 

another geometry when the stretching is too high, and therefore the total free 

energy is minimized. Overall, the morphological change of the aggregates is 

always in a direction that decreases the overall free energy, which is from 

vesicles to spheres in the present system.

6.3.2 FTIR spectroscopy. 

Infrared spectra of P2VP-b-PMMA/phenoxy blends were obtained on a 

Bruker Vetex-70 FTIR spectrometer, and 32 scans were recorded with a 

resolution of 4 cm-1. The spectra of all the samples were determined by using 

the conventional KBr disk method. The complex powder was mixed with KBr 

and powdered to form the disk. The samples were kept to dry in-vacuo for 72 

hours before the experiments.

6.3.3 TEM
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TEM analysis was carried out on a JEOL JEM- 2100 transmission electron 

microscope operating at an acceleration voltage of 100 kV. The sample 

solution was spread on a carbon coated TEM copper grid. After drying at room 

temperature, the samples were stained with ruthenium tetroxide (RuO4).

6.3.4 SAXS

The SAXS experiments were performed on a Bruker NanoStar 3 pin-hole 

instrument with C Annealed samples 

having 1mm thickness were prepared for SAXS measurements The scattering 

profiles were interpreted as intensity (I) vs scattering vector, q

6.3.5 DLS

The hydrodynamic diameter of the complex aggregates was measured on a 

Zetasizer Nano instrument. The temperature stability inside DLS sample holder 

was controlled at 25 ºC, and the measurements were carried out at detection 

angle of 173º. Solutions of 0.5% (w/v) complex aggregates in water/DMF were 

used. The scattering intensity autocorrelation functions were analyzed by using 

the methods of CONTIN and Cumulant, which are based on an inverse-

Laplace transformation of data, this gives access to a size distribution

histogram for the analysed complex solutions.

6.4 Results and discussion

6.4.1 Hydrogen bonding interactions. 

The hydrogen bonding interactions of the complexes were examined using

FTIR spectroscopy. The pH dependent micellization and hydrogen bonding 

interactions of BCP containing PAA segments was discussed in detail 

elsewhere.24 For the present complexes two absorption bands, the C=O 

stretching near 1700 cm-1 and the OH stretching near 3000-3500 cm-1are 

particularly sensitive to form bonds. Figure 6.1 shows the IR spectra of OH

regions in PS-b-PAA/PS-b-PEO complexes. It can be noticed that the OH

region of PAA shows a broad, peak related to the overlapping elements at 3560 

and 3172 cm-1, respectively. These peaks correspond to the nonassociated OH
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groups and self-associated OH groups of PAA.24 When PS-b-PEO BCP is

added, the free OH peak reduces in its intensity. On the other hand, hydrogen 

bonded peak moves toward low wavenumber area. This shift can be attributed 

to the intermolecular interaction among PAA/PEO pair that is stronger than the 

self-associated OH groups.25
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Figure 6.1 IR in the OH region of the complexes

The FTIR spectra of complexes in the range 1700-1750 cm-1 are shown in 

Figure 6.2. The absorption at 1710 cm-1 corresponding to its C=O stretching of 

PAA. Given the work of Coleman and Painter et al.,26 the lower frequency 

region is corresponding (1710 cm-1) to the intramolecular hydrogen bonding of 

PAA, where two carboxylic acid groups form a dimer and the higher frequency 

one (1724 cm-1) is due to free C=O region. However, upon the addition of PS-

b-PEO BCPs, the band associated with the intramolecular dimers decreases 

significantly, and the free C=O band increases in intensity. This indicates the 

release of C=O when bonds are generated among PEO ether and acid OH 

group.26 There is a high level of hydrogen bonding interaction among PS-b-

PAA and PS-b-PEO BCPs. Also, a band occurs at 1955 cm-1 in the complexes

and its intensity grows when PEO concentration increases. This new band 
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region is an indication of strong hydrogen bonds, which is a satellite band of a 

hydrogen bonded OH group.26
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Figure 6.2 FTIR spectra of PS-b-PAA/PS-b-PEO complexes in the carbonyl 

region at room temperature.

6.4.2 Morphology of PS-b-PAA/PS-b-PEO complexes in water.

Various morphologies of complex BCP aggregates have been intensively 

investigated by Eisenberg and co-workers.27 They detailed about the factors 

influencing the morphological transitions in BCPs such as BCP concentration, 

composition, solvent interaction, etc. In this study, a combination of 

micellization and interpolymer complexation is taking place in these BCP

mixtures. A thermodynamic analysis of these combinations is usually difficult 

because they are composed of multiple components such as BCPs, common 

solvent, and selective solvent.
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(a)
 

 

(b)
 

 

(c)

Figure 6.3 TEM images of (a) PS-b-PAA and (b) PS-b-PEO di-BCP. (c) SAXS 

patterns of PS-b-PAA and PS-b-PEO di-BCPs in aqueous solution.
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TEM observation was performed with the complexes formed in water. It 

can be seen from the TEM images that PS-b-PAA BCP showed vesicular 

morphology [Figure 6.3(a)] whereas spherical micelles were observed for PS-

b-PEO [Figure 6.3(b)]. The PS-b-PEO micelle comprises hydrophobic PS core 

surrounded by hydrophilic PEO corona [Figure 6.3(b)]. In PS-b-PAA vesicles, 

the PS blocks are pointed toward the center of the vesicle membrane and the 

PAA blocks toward the solvent [Figure 6.3(a)]. The vesicles can be identified 

by the high electron transmissions or the lighter areas in the middle of the 

structures than the boundary. The SAXS patterns of PS-b-PAA and PS-b-PEO 

are presented in Figure 6.3(c), distinguishably showing the scattering features 

of spheres and vesicles, respectively. The SAXS pattern of PS-b-PEO exhibits 

a broad scattering peak that is characteristic of spherical micelles. Meanwhile, 

a secondary scattering peak is observed for PS-b-PAA, indicative of vesicles.

The DLS experiment was conducted to calculate the hydrodynamic sizes of the 

pure BCPs and the complexes in water.
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Figure 6.4 Hydrodynamic diameter (Dh) distribution of (a) pure PS-b-PAA di-

BCP and (f) PS-b-PEO di-BCP and PS-b-PAA/PS-b-PEO complexes measured 

by DLS. [EO]/[AA]: (b) 1, (c) 2, (d) 6, and (e) 8.
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The Dh of PS-b-PAA vesicles and PS-b-PEO micelles is about 80 nm 

[Figure 6.4(a)] and 95 nm [Figure 6.4(f)], respectively. It is interesting to see 

that size of PS-b-PEO micelles is bigger than that of PS-b-PAA vesicles. This 

is due to the high molecular weight of PS-b-PEO (Mn = 238, 000) compared to 

PS-b-PAA (Mn = 65, 000). Similar morphology was obtained for Eisenberg et 

al.28 with slightly different molecular weights of the PS-b-PAA BCP.

[EO]/[AA] molar 

ratio
Morphology

Average 

Hydrodynamic 

diameter (Dh) (nm)

Pure PS-b-PAA V 80

0.5 V 105

1 MLV 120

2 TWV 130

6 ICCV 200

8 IA 300

12 IA 310

Pure PS-b-PEO SM 95

V = vesicle, MLV = multilamellar vesicle, TWV = thick-walled vesicle, 

ICCV = interconnected compound vesicle, IA = irregular aggregate, and

SM = spherical micelle.

Table 6.1 Aggregate morphologies formed in PS-b-PAA/PS-b-PEO di-BCP

complexes at different compositions in water.

The TEM images of the PS-b-PAA/PS-b-PEO complexes are presented in 

Figures 6.5-6.8. The morphology of complexes was investigated with 

increasing PS-b-PEO content. The TEM study showed that vesicles were the 

only morphology (not presented here for brevity) when the PS-b-PEOcontent 

was very low in the complexes, i.e., at [EO]/[AA] = 0.5. That means at this 

molar ratio, the PS-b-PEO content was very low and the complex aggregates 

resemble the pure PS-b-PAA di-BCP. Thus, PS-b-PAA, which is the major 

component in complexes, dominated their structure and PS-b-PEO was 
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introduced as the spherical domains in the solution. In other words, the intrinsic 

microphase of each diblock-copolymer was independently formed. TEM 

images in Figures 6.5-6.8 show that, with again increasing PS-b-PEO content, 

the aggregate morphology changes from vesicles to irregular spherical micelles 

through a variety of complex morphologies. This is due to the intermolecular 

hydrogen bonding interaction between PAA and PEO which is proven in the 

FTIR experiments. The morphologies of complexes at different molar ratios of 

[EO]/[AA] were studied and the results are summarized in Table 6.1.

 

Figure 6.5(a) TEM images of MLVs formed in PS-b-PAA/PS-b-PEO complex 

in water at [EO]/[AA] = 1, showing multilamellar layers in the vesicle walls at 

both low and high magnifications; (b) SAXS pattern of the MLVs, showing the 

periodic peak characteristics of multilamellar layers.

 

Figure 6.5(a) shows the TEM image of multilamellar vesicles (MLVs) 

formed from self-assembly of the PS-b-PAA/PS-b-PEO complexes when the 

molar ratio is [EO]/[AA] = 1 in water. The MLVs formation can be identified 

from the presence of different lamellar layers in the vesicle walls of TEM 

image. We assumed that the multilamellar vesicles are formed as a 

consequence of spontaneous reorganization of the PS-b-PAA/PS-b-PEO 
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fragments induced by the hydrogen bonds in the complexes. The vesicle wall 

possesses an overall thickness (LMLV) of approximately 45-50 nm measured 

from TEM image [Figure 6.5(a)]. The DLS measurement shows a sharp peak 

indicating the homogeneity of the size of these MLVs, and their Dh is 

evaluated from the peak position as 120 nm [Figure 6.4(b)]. The SAXS pattern 

of MLVs is given in Figure 6.5(b). This has a typical SAXS pattern of vesicle 

dispersion associated with lamellae. The multiple peaks (structure peak and 

form factors) present in the graph show the multilamellar nature of the vesicles.

The TEM image of the aggregates at concentration [EO]/[AA] = 2 is given in 

Figure 6.6(a).

Figure 6.6(a) TEM images of TWVs formed in PS-b-PAA/PS-b-PEO complex 

at [EO]/[AA] = 2. The dense nature of the vesicle is due to the highly 

accumulated PS chains in the vesicle wall; (b) SAXS pattern of the TWVs.

It is clear that the multilamellar layers in the wall of the vesicles 

transformed into a rather thick wall. That means MLVs have changed into 

TWVs at this concentration. Figure 6.6(a) shows the SAXS pattern of TWVs 

that confirms the lamellar dispersion of a vesicle. However, these vesicles are 

more inhomogeneous compared to the MLVs and this can be identified by the 
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broad DLS peak displayed in Figure 6.4(c). The Dh of the TWVs is 130 nm, 

which is comparable to that of MLVs. Figure 6.6(a) shows that the overall wall 

thickness of these TWVs is slightly decreased (LTWV 35-40 nm). At the even 

higher concentration, [EO]/[AA] = 6, interconnected  compound vesicles 

(ICCVs) were found as shown in Figure 6.7(a).

Figure 6.7(a) TEM images of ICCVs formed in PS-b-PAA/PS-b-PEO complex 

at [EO]/[AA] = 6, showing a structure of vesicles linked via a tube-like bilayer; 

(b) SAXS pattern of the ICCVs. 

It is interesting to point out that ICCV is a new morphology observed for 

the first time. Here, more PEO blocks combine with the PAA in the corona, 

while the remaining PS-b-PEO may act as the channels for ICCVs. This in turn 

leads to the association of vesicles, which grow in fusion and transform into 

new interconnected bilayer structures. Zhang and Eisenberg27 suggested a

fusion/fission process for PS-b-PAA blocks in various dioxane/water solutions

when two vesicles share a common membrane. The TEM images show a 

structure of vesicles connected via a tubelike bilayer that could be due to the 

stretching of the vesicle structures. The connections between the vesicles are 

seen in the magnified TEM image shown in Figure 6.7(a) (the right side 
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image). These ICCVs are polydispersed, as evidenced by the appearance of a 

wide DLS peak [Figure 6.4(d)] with an average Dh value of 200 nm. The 

SAXS pattern of ICCVs is shown in Figure 6.7(b), which represents results 

from two independently scattering structures. The two peaks in the SAXS 

pattern are due to two different form factors (the vesicles and the tubelike 

interconnections).29 At [EO]/[AA] = 8 and above, irregular aggregates (IAs) 

were observed with TEM and SAXS (Figure 6.8(a) and (b), respectively).

Figure 6.8(a) IAs of PS-b-PAA/PS-b-PEO complex at [EO]/[AA] = 8;  (b)

SAXS pattern of the irregular aggregates.

6.4.3 Formation of various aggregates morphologies.

The morphologies observed in this study are fundamentally different at 

each molar ratio as the total structure and size of aggregates changes with the 

range of composition of the BCPs. Here intermolecular bonding among PAA 

and PEO play a crucial part in the complexation and formation of various 

morphologies, which is different fromthe other BCP mixture solutions without 

specific interactions where the morphology transition is only composition-

dependent. When secondary interactions occur between different polymer 

chains in a solution, interpolymer complexation can lead coaggregation in 
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blend solution.30 Such aggregates are completely different from the original 

blocks in terms of their morphology and structure.31

Figure 6.9 Schematic representation of morphological transitions in PS-b-

PAA/PS-b-PEO di-BCP complexes; (a) MLVs at [EO]/[AA] = 1, (b) TWVs at 

[EO]/[AA] = 2 , and (c) ICCVs at [EO]/[AA] = 6. 

The formation of various complex aggregates observed in TEM is 

schematically shown in Figure 6.9, and the morphological transitions can be

explained as follows. The specific final morphology of any aggregates of BCP

complex including vesicles is a result of an equilibrium between three 

thermodynamic contributions to the free energy, which include core-chain

stretching, corona-chain repulsion, and interfacial energy.32 In complexes,

vesicles are formed at molar ratio [EO]/[AA]=0.5. The balance of the above 

explained thermodynamic contributions is changed at the interface by the 

favorable hydrogen bonding interaction of the PEO/PAA blocks. This would 

facilitate the formation of vesicles at minor PS-b-PEO content presumably by 

increasing the core repulsion. 

When the ratio [EO]/[AA] = 1, the complexes show MLVs. MLVs consist of 

lamellae like multiple bilayers in the vesicle wall. Here, the PS blocks from the 

two copolymers may interpenetrate to form intermediate layers of the 

multilamellar core. Meanwhile, PEO is segregated to the outermost layer where

it forms hydrogen bonds with PAA and the remaining PAA blocks form 

multilamellar corona. The aggregates comprise two different layers; an

insoluble PS as core and PAA/PEO bonded pair as corona. Note at this

concentration that the molar ratio of hydrogen bonded components is 

stoichiometric, i.e., 1:1. For such systems, an elongated in line series of bonds 

between the polymer segments may result in a lamellar structure [Figure 
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6.9(a)]. This would rather resist the inter-conformation and results in parallel 

arrangement, which facilitates the formation of MLVs.31 TWVs are observed at 

[EO]/[AA] = 2. Here with increased PSb-PEO content, more PS blocks move 

toward the interior. This caused a high level of PS chains in the vesicle-core, 

resulting in the formation of vesicles with thick walls (TWVs) as schematically

illustrated in Figure 6.9(b). In other words, the increasing thickness of vesicles

is due to the progressive accumulation of the random PS blocks at the interface. 

The term “thick wall” is used because it has a high amount of hydrophobic PS 

blocks, which is in fact more dense compared to hydrophilic PEO and PAA.

A new morphology (ICCVs) is formed in the case of PS-b-PAA/PS-b-PEO 

complexes at [EO]/[AA] = 6. When PS-b-PEO BCP is the main constituent in 

the mixtures, they form ICCVs [Figure 6.9(c)]. At given water content in the 

complexes, as the amount of PS-b-PEO increases, the corona-repulsion around

PAA reduces with increase in hydrophilic chain-length due to the hydrogen 

bonded PAA/PEO. The mechanism of this morphological change is, most 

likely, the partial building up of the segments in the middle, decreasing the 

core chain-stretching.32 Specifically, from Figure 6.7(a), the ICCVs with an 

average size of 200 nm are formed in water at [EO]/[AA] = 6. The formation of 

connection between the vesicles could be due to the aggregation of individual 

vesicles and a subsequent fusion process. Moreover, the bonding among PAA 

and PEO in the corona can also contribute toward the interconnection. 

Theoretically, ICCVs are formed from vesicles by gaining of conformation 

entropy.33 The localization of the PEO blocks at the interface for making 

complexation with PAA actually decreases the corona-chain repulsion and 

increases the core-chain stretching so that the vesicular morphology is 

maintained. The formation of ICCVs normally requires a reduced repulsion of 

PAA blocks by complexation with PEO and thereby increasing the effective 

collisions of the individual vesicles.

With PEO content is at [EO]/[AA] = 8 and above, irregular aggregates 

were mainly observed but with evidence of some spherical micelles. Because 

the amount of PEO blocks is much higher than the amount of PAA blocks at 

this concentration, only part of the PEO chain can take part in bonding with the 

PAA blocks. Therefore, the remaining PEO blocks are dissolved in the solution 
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while the PS blocks formed the core. Based on these results, it is proposed that 

with an increase in the hydrophobicity of PS blocks, the large ICCVs transform

to the irregular aggregates to decrease the interfacial energy between the blocks 

and solvents.

It should be noted that the general trend in variation of the schematic 

morphology shown in Figure 6.9 is not directly dependent on the block-length 

as in pure BCP, but on the molar ratio [EO]/[AA] of two blocks. The current 

AB/AC di-BCP system consists of three chemically different polymeric chains 

but can be separated into two phases. That is, the PS blocks segregate into an 

isolated microphase while PEO and PAA blocks are miscible due to the 

favorable hydrogen bonding interaction, forming one single phase. An 

additional advantage of the present system in comparison with conventional 

BCP systems is the ease of morphology design. To tune nanostructures in PS-

b-PAA/PS-b-PEO complexes simply requires different ratios of the two 

asymmetric BCPs without involving elaborated synthetic efforts.

6.5 Conclusions

Multiple vesicular morphologies were formed in AB/AC di-BCP

complexes of PS-b-PAA and PS-b-PEO in water. The formation of complexes 

is due to the favorable bonding among the PAA and PEO blocks of the two di-

BCPs. A variety of aggregated nanostructures, including vesicles, MLVs, 

TWVs, ICCVs, and IAs were documented in the complexes. Interestingly, 

ICCVs were observed for the first time as a new morphology, which may open 

up various opportunities for nanotechnology applications. The aggregate 

morphologies of the complexes can be correlated to the molar ratios 

[EO]/[AA]. When [EO]/[AA] = 0.5, only vesicles were found, whereas the 

MLVs appeared as [EO]/[AA] reached 1. When [EO]/[AA] was increased to 2

and 6, the TWV’s and ICCVs were formed, respectively. Finally, IAs were 

obtained with [EO]/[AA] = 8 and above. It is clear from the present study that 

complexation of two amphiphilic di-BCPs provides a viable approach to 

vesicles in aqueous media.
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Chapter Seven_____________________________________

A Simple and Effective Approach to Vesicles and Large 
Compound Vesicles via Complexation of Amphiphilic 
Block Copolymer with Polyelectrolyte in Water

7.1 Abstract

In this study, vesicles and large compound vesicles were prepared via 

complexation of PS-b-PEO and PAA in water and directly visualized using 

cryo-TEM. Upon addition of PAA homopolymer into PS-b-PEO, a variety of 

bilayer morphologies were formed in the PS-b-PEO/PAA complexes. The 

morphology of aggregates was correlated with respect to the molar ratio of 

PAA to PEO. At [AA]/[EO] = 0.2  spherical micelles were observed, while a 

mixture of micelles and vesicles were obtained at [AA]/[EO] = 0.5. Vesicles 

were formed at [AA]/[EO] = 1 . When the [AA]/[EO] ratio increases further to 

4 compound vesicular morphology starts to appear and at very high

concentration of PAA ([AA]/[EO] = 8), LCVs appeared. The findings in this 

work suggest that complexation between amphiphilic BCP and polyelectrolyte 

is a viable approach to vesicles and LCVs in aqueous media. 

(This chapter is reproduced from the article:  Nisa V. Salim, Tracey L. Hanley, 

Lynne Waddington, Patrick G. Hartley and Qipeng Guo. Macromolecular 

Rapid Communications 2012, 33, 401-406). Reprinted with permission from 

Wiley and Sons, copy right 2012.
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7.2 Introduction

Vesicles, formed from polymers are often known as ‘polymersomes’1-3 and 

show increased stability and robustness plus reduced membrane permeability 

in aqueous solutions. Most importantly, the physical, chemical and biological 

behaviours of polymer-vesicles can be tuned by varying the composition and 

length of the constituting polymers. Moreover, BCPs having similar

architecture of lipids can mimic the lipid amphiphilicity and the unilamellar 

structure of a vesicle mimics the cell membrane.3 Therefore, these vesicles 

have been widely used as model systems for in vitro explorations such as the 

study of membrane proteins, as well as in the development of drug delivery 

systems.4

Vesicle formation and morphological transition in asymmetric amphiphilic 

BCPs have been comprehensively reported by Eisenberg et al.5 Since BCP

vesicles have the potential for many interesting applications, they have been 

extensively studied over the years.6-11 The findings emphazise the requirement 

of BCP synthesis for achieving a particular type of micelles or vesicles. In 

principle, this can be avoided, to some extent, by developing the mixtures of 

BCPs or BCP with a homopolymer. The formation of vesicles has been 

observed in the solid-state of BCP/homopolymer systems such as in PS/PS-b-

PB blends,12 epoxy/BCP blends,13 reactive BCP blends,14 as well as 

BCP/homopolymer in organic solvents.15

In this communication, we report a simple, effective approach to trigger a 

sphere-to-vesicle morphological transition in PS-b-PEO/PAA complexes in 

aqueous solution. Here we present the creation of vesicles in water by 

complexation of an amphiphilic BCP (PS-b-PEO) and a polyelectrolyte (PAA). 

A variety of vesicular aggregate structures involving small vesicles and LCVs,

were obtained and directly visualized in PS-b-PEO/PAA complexes in aqueous 

solutions using cryo–TEM. The plain PS-b-PEO BCP forms only spherical 

micelles in water. However, the mixture of PS-b-PEO BCP and the 

polyelectrolyte PAA form self-assembled complexes through bonding between 

the PAA and the PEO block of the BCP, which leads to morphological 

transitions from spherical micelles to vesicles, and further to complex 

compound vesicles with the increase of the amount of polyelectrolyte PAA. 



133 

 

7.3 Experimental section

7.3.1 Materials and preparation of complex aggregates

The polymer materials in this study were PAA and PS-b-PEO. The PS-b-

PEO BCP was purchased from Polymer Source, Inc., with Mn (PS) = 190, 000,

Mn (PEO) = 48, 000, and Mw/Mn = 1.07. The PAA sample with a Mw = 1,

800 was the product of Aldrich Chemical Company, Inc. The BCP PS-b-PEO 

was first dissolved in THF (c = 1 mg/ml) solution. Then a specific amount of 

deionized water was added (25 wt%) into the solutions and stirred again for 1 

day to allow the system to reach equilibrium. Then the PAA solution (1 mg/ml

in an identical solvent mixture) was gradually mixed to the PS-b-PEO solution. 

The weight-ratio of the PAA/PEO-b-PS (WA/WES) was from 0.3 to 2.61. Or in 

other words the ratio [AA]/[EO] is 0.2 to 8 ([AA]/[EO] (WA/72)/(0.2 × 

WES/44). Here the values 72 and 44 are the molar-masses of the repeat-units of 

PAA and PEO and 0.2 is the weight-fraction of PEO). Finally, additional 

amount of water was added to the mixture for quenching and kinetic-freezing 

of the structure of the aggregates. The final solution was dialysed with respect 

to water to remove THF. The pH values were adjusted by dilution with 

hydrochloric acid and monitored by a pH meter (Mettler Toledo). The solution 

was maintained at a particular pH (~4.8) so as to induce the intermolecular 

bonding between PAA and PEO blocks. The obtained complexes were used for 

further experiments.

7.3.2 FTIR spectroscopy. 

Infrared spectra of the samples were obtained on a Bruker Vetex-70 FTIR 

spectrometer, and 32 scans were recorded with a resolution of 4 cm-1. The 

spectra of all the samples were determined by using the conventional KBr disk 

method. The complex powder was mixed with KBr and ground well to form 

the disk. The samples were kept to dry in-vacuo for 72 hours before the 

experiments.

7.3.3 Cryo-TEM
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A laboratory-built humidity-controlled vitrification system was used to 

prepare the sample for imaging in a thin layer of vitrified ice using cryo-TEM. 

Humidity was kept close to 80% for all experiments, and the temperature was 

22 °C. 200-mesh copper grids coated with perforated carbon film (Lacey 

aliquots of the sample were pipetted onto each grid prior to plunging. After an 

interval of 30 sec to allow adsorption; the grid was blotted manually using

Whatman 541 filter paper for approximately 2 sec. The blotting time was 

optimized for each sample. The grid was then plunged into liquid ethane 

cooled by liquid nitrogen. Frozen grids were stored in liquid nitrogen until 

required for cryo-TEM observation. The samples were examined using a Gatan 

626 cryoholder (Gatan, Pleasanton, CA, USA) and Tecnai 12 transmission 

electron microscope (FEI, Eindhoven, The Netherlands) at an operating voltage 

of 120KV. At all times low dose procedures were followed, using an electron 

dose of 8-10 electrons/Å2 for all imaging. Images were recorded using a 

Megaview III CCD camera and AnalySIS camera control software (Olympus.) 

using magnifications in the range from 60, 000 to 110, 000.

7.3.4 DLS -potential.

-potential of the complex 

aggregates were measured on a Malvern Zetasizer Nano ZS instrument 

equipped with He-Ne laser with a wavelength of 633nm digital correlator. The

temperature stability inside DLS sample holder was controlled at 25 ºC, and the 

measurements were carried out at detection angle of 173º. Solutions of 0.5%

(w/v) complex aggregates in water were used. The scattering intensity 

autocorrelation functions were analyzed by using the methods of CONTIN and 

Cumulant, which are based on an inverse-Laplace transformation of data. This 

gives access to a size distribution histogram for the analyzed complex 

solutions.

7.4 Results and discussion

7.4.1 Hydrogen bonding interactions
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The possible interactions between ether oxygens (PEO) and the carboxylic 

acids (PAA) in the PAA/PS-b-PEO complexes is given in Figure 7.1

Figure 7.1 Schematic representation of possible bondings in PAA/PS-b-PEO 

complexes: a) Self-associated bonds of PAA; b) bond between PAA and PEO 

blocks of PS-b-PEO di-BCP.
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Figure 7.2 Infrared spectra of hydroxyl region of PAA/PS-b-PEO complexes

a) b) 
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There exist two kinds of hydrogen bonds:  (a) self-associated bonds 

between the hydroxyl (OH) groups of PAA homopolymer; (b) inter-

macromolecular hydrogen bonds among the hydroxyl groups of PAA and ether 

oxygen of PEO blocks.  Figure 7.2 shows the FTIR spectra of OH regions in 

PAA and the PAA/PS-b-PEO complexes. PAA homopolymer shows two bands 

in the OH region. It can be noticed that the hydroxyl region of PAA shows a 

broad band representing the overlapping species at 3556 and 3171 cm-1. These 

absorptions are due to the non-associated free OH groups and self-associated 

hydroxyl groups, respectively.16 With increasing content of the PS-b-PEO 

BCP, the absorption related to the free OH groups declines in intensity, while

the bonded peak shifts to low wave number area. The shift of the band 

corresponding to free hydroxyl group represents intermolecular interactions 

between PAA and PEO chains.

 

1800 1750 1700 1650 1600

1726 cm-1

[AA]/[EO] = 0.6

Ab
so

rb
an

ce
 (a

.u
.)

Wavenumber (cm-1)

100 PAA

[AA]/[EO] = 8

[AA]/[EO] = 4

[AA]/[EO] = 1

[AA]/[EO] = 0.2

1710 cm-1

PS-b-PEO/PAA

1723 cm-1

1725 cm-1

 

Figure 7.3 Infrared spectra of carbonyl region of PAA/PS-b-PEO complexes

The C=O region (1700–1750 cm-1) of the complexes is shown in Figure 

7.3. The band at 1710 cm-1 represents PAA homopolymer. Upon the additon of 

the BCP, this band shifts to high wave number area and a new sharp absorption 

forms at 1723 cm-1. This is assumed to be the release of free C=O groups 
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during the formation of complexes.17 The hydrogen bonding between PAA and 

PEO can be confirmed from the results. 

7.4.2 Morphological transitions in PAA/PS-b-PEO complexes 

Aggregate structures are developed by solubilizing the BCP in a medium

common for both polymers followed by the addition of a non-solvent, that is a 

precipitant for the core-forming block but good for the corona-forming block.18

It has been known that PAA and PEO can form polymer complexes.19 In the 

present study, the self-assembled complexes were prepared by the drop-wise 

addition of PAA/water solution into PS-b-PEO/THF solution. Because of the 

insolubility of PS in water, micellar aggregation can be induced by altering a 

solvent (i.e., THF) good for both blocks to a selective solvent (water). At a 

particular water concentration, the PS chains begin to aggregate and form 

micelles, that is, core-shell micelles with PS chains as the core and the PEO 

blocks as the corona. When a large excess of water is rapidly added to the 

micellar solution, the structure of the core-shell micelles can be kinetically 

frozen in water.20 The morphology was finally fixed by dialysis against

deionized water to remove THF. In such systems, the formation of aggregates 

in aqueous media can be examined by cryo-TEM as well as by DLS. Cryo-

TEM is emerging as one of the finest methods for imaging aqueous assemblies 

of amphiphilic BCPs as a result of the rapid vitrification process. These 

experiments have the advantage to avoid any drying step of the aqueous part 

(artifacts) or staining with heavy metals, and the morphology and size are 

expected to be as similar as possible than they exist in the aqueous 

environment.21 It allows the examination and direct visualization of particular 

micelles and vesicles thereby avoids many of the artifacts associated with 

conventional TEM.21 The micelles and vesicles of some amphiphilic BCPs in 

aqueous solutions were visualized through cryo-TEM.21
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Figure 7.4 Cryo-TEM images of a) plain PS-b-PEO BCP and PS-b-PEO/PAA 

complexes in aqueous solutions with [AA]/[EO] ratios of b) 0.2, c) 0.6, d) 1, e) 

4, and f) 8. Holey carbon films were used for embedding of the vitrified

aqueous solution of the complexes.

 

Figure 7.4 shows cryo-TEM images of PS-b-PEO BCP and PS-b-

PEO/PAA complexes formed at various molar ratios of [AA]/[EO]. The 

morphology of plain PS-b-PEO BCP in water is shown in Figure 7.4(a), which 

displays spherical micellar structure with an average size of about 90 nm. It can 

be observed that the micelles have a dark core and a relatively light corona. 

This suggests that the spherical micelles contain a PS core and PEO corona 

because PS has a higher electron density than PEO. We chose the low 
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molecular weight PAA because it can effectively diffuse and easily penetrate to 

corona of the PS-b-PEO micelles. Spherical micelles remain even after the 

addition of small amount of PAA as observed in the image of PS-b-PEO/PAA 

complex at [AA]/[EO] = 0.2 [Figure 7.4(b)]; however, the size of spheres is 

larger and polydispersity is apparent. When the [AA]/[EO] ratio is 0.6, the size 

of the micelles become even more polydisperse and very large spherical 

microdomains start to form in solution [Figure 7.4(c)]. It can be seen that the 

complexes at this stage show a joint morphology containing both spherical 

micelles and vesicles. The aggregate morphology of the complexes again 

transforms as the concentration of PAA increses. At higher PAA content where 

[AA]/[EO] = 1, vesicles are the only morphology present [Figure 7.4(d)]. The 

hollow vesicles can be identified by a high level of transmission in the middle 

of the aggregate than at the periphery.5c The ring-like structure of vesicles in 

Figure 7.4(c) and (d) is evident as reported by other authors.22 When the 

[AA]/[EO] ratio increases further to 4 [Figure 7.4(e)], a compound vesicular 

morphology starts to appear. At very high concentration of PAA ([AA]/[EO] = 

8), LCVs prevail as observed in Figure 7.4(f).
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Figure 7.5 Hydrodynamic diameter (Dh) distributions of plain PS-b-PEO BCP

and PS-b-PEO/PAA complexes measured by DLS in 0.5% (w/v) aqueous 

solution at [AA]/[EO] ratios of a) PS-b-PEO, b) 0.2, c) 0.6, d) 1, e) 4, and f) 8. 

Figure 7.5 shows the DLS results of the complexes at different molar 

ratios of [AA]/[EO]. The Dh distribution contains a single peak of different 
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widths, implying that the solution comprises aggregates of various sizes. The 

intensity reveals the relative population of the aggregates with different size, 

that is, Dh. The peak shifts toward higher Dh for the complexes with increasing 

PAA content, that is, [AA]/[EO] ratio, indicative of an increase in size of the 

aggregates. The plain di-BCP gives the peak position at 90 nm, whereas the 

complex with the molar ratio [AA]/[EO] = 0.2 shows a broader peak at 112 

nm, which reveals the polydisperse micelles at this concentration. The Dh

distribution peak broadens with increasing molar ratio [AA]/[EO]. The PS-b-

PEO/PAA complexes with [AA]/[EO] = 0.6 and above show an even broader 

peak at 130 nm, indicative of an increase in the polydispersity of aggregate 

size, agreeable with the coexistence of vesicles and the compound vesicles as 

observed by cryo-TEM [Figure 7.4(c)]. Figure 7.5(d-f), the Dh peak shifts from 

300 to 410 nm as [AA]/[EO] is increased from 1 to 8. This is in agreement with 

the TEM images in Figure 7.4(d–f) for vesicles and compound vesicles. The 

Dh peaks are quite broad, indicating that the vesicles and compound vesicles 

are rather polydisperse.

7.4.3 PAA-PEO complexation.

Variation of pH and degree of complexation of PAA with other polymers 

is well studied. Ikawa et al.23 reported the relationship between turbidity and 

molar ratio of PAA/PEO aqueous solutions at various pH. They reported that 

complexes are not developed at high pH (i.e., pH > 5) because of the 

dissociation of –COOH groups of PAA. At low pH, the undissociated 

carboxylic groups play a significant role in the complex formation through 

hydrogen bonding. Karayanni et al.23b detailed the pH dependence of PAA with 

PVME in aqueous solution with increasing polyacid concentration. PAA is a 

weak polyanion, and its ionization degree is strongly pH-dependent, with a 

pKa ~ 5.6. The hydrogen bonding between PAA/PEO occurs only at low pH 

values. With decreasing pH, the PAA/PEO segments contract and this 

association is improved due to the low degree of PAA-neutralization. At higher 

pH, the complexation-degree is actually less because of PAA ionization in 

water. The complexation among PEO and PAA can be described by the 

equation,
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-COOH+ O X-------Hn                               (2)

Where X---H is the complex and n is the number of carboxyl hydrogens 

related to the degree of PAA polymerization. But, the complexes formed, being 

a weak poly acid, is partially dissociated accroding to the equation,

X------H X-----H-k
n-k + kH+ (3)

Where k<<n. At low PAA content, the complexes contains PEO in excess and 

the charge of the  interpolymer complexes are due to the dissociation, which is 

represented in equation 2. 

  

Figure 7.6 pH values as a function of different [AA]/[EO] ratios in 0.5% (w/v) 

aqueous solution.

The charge ratio among the -COOH of the PAA and the ether oxygen of 

the PEO block is an important parameter in the micelle/vesicle formation. The 

pH dependant association of PS-b-PEO/PAA complexes were measured in 

aqueous solution with increasing PAA content. From Figure 7.6, at low PAA, 

that is, [AA]/[EO] = 0.2, the pH of the complexes is equal to that of pure PAA 
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(pKa of pure 23 When the concentration of PAA increases, a 

reduction in pH from 4.8 to 3.4 was observed. At all these pH values, the

capability for protonation of the carboxyl group of PAA is enhanced, which 

leads to strong interactions between PAA and PEO. Maintaining the pH of the 

complexes below 4.8 at various [AA]/[EO] ratios, leads to the shifting of 

dissociation equilibrium towards left  (Equation 4) that results in the reduction 

of H+ content.23 Such low pH micelles and vesicles can be used in areas such as 

biomimetic chemistry, molecular switching. 23

-COOH         - COO- + H+                       (4)

  

-potential values as a function of different [AA]/[EO] ratios in 

0.5% (w/v) aqueous solution.

 

To further confirm the binding of PAA to PS-b- -

-potential of the aggregates in aqueous solution 

is presented in Figure 7.7 as a function of molar ratio [AA]/[EO]. At the 

-potential value is -0.5, slightly lower 

than zero. This can be attributed to the weak acidic nature of PAA, the pKa of 

the PAA units is about 4.3.23 Therefore the PAA will be slightly anionic in 
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water and the complexation between the PAA and the PEO block is not 

-potential continues to decrease for molar ratio [AA]/[EO] > 1. 

The PAA can form hydrogen bonding interactions with the PEO ether oxygen 

-potential is due to the presence of an 

excessive PAA.

 

7.4.4 Mechanism of morphological transitions in complexes 

The complex morphologies depend on a few factors such as the core

stretching, the interfacial tension among the core and repulsion between the 

corona blocks due to reduction in configurational entropy.19 In PS-b-PEO/PAA 

complexes, the incorporation of a homopolymer can considerably affect the 

equilibrium state and also the charge density of the corona as PAA bears more 

charge. The corona radius increases slightly with the addition of PAA.  In fact, 

there is an inherent balance between the number of bonded EO/AA sites and 

the remaining EO units of the PEO blocks which form hydrogen bonds with 

water, maintaining the solubility. Added to this phenomenon is the hydrogen 

bond formation resulting in interchain crosslinking whereby the aggregates 

change progressively from PEO to bonded PEO/PAA, then to the bonded 

PEO/PAA coexisting with excess of PAA. Both of these phenomena will 

change the packing behaviour of the hydrophilic domain composed of PAA 

and the PEO block. Therefore, the hydrophilic domain in the complex is 

enlarged while the amount of unbound EO units is decreased. Therefore it 

needs to increase the radius of curvature to fit in the required space.

When PAA forms strong hydrogen bonds with the corona chains of the 

PEO blocks, the effective size and radius of the corona chains increase 

dramatically. For minimizing the total energy, the micelle changes the

morphology with less diameter and higher radius of curvature and thus formed 

the vesicles. The increase in the amount of interchain crosslinking, which 

originates from the outer surface of the spheres upon complementary 

hydrogen-bonding interactions, is responsible for the micelle-vesicle 

transformation. 
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Figure 7.8 Schematic representation of morphological transitions in aggregates 

of PS-b-PEO/PAA complexes showing the hydrogen bonding interactions 

between the components: a) Spherical micelles formed at lower PAA contents, 

b) vesicles formed at higher PAA contents, and c) large compound vesicles 

(LCVs) formed at even higher PAA contents.

A scheme of morphology of the aggregates in the complexes is given in 

Figure 7.8. The morphology of micellar aggregates at lower PAA 

concentrations is represented in Figure 7.8(a). When the ratio [AA]/[EO] is 0.2, 

the increase in the corona radius becomes more pronounced and the micelle 

size becomes more polydisperse [Figure 7.4(b)]. This implies that 

progressively more homopolymer PAA is adsorbed to the corona as the added 

homopolymer content is increased. The key factor responsible for maintaining 

the initial micelle morphology is believed to be the competition between 

complexation and micellization that occurred during the sample preparation.11

Therefore, only part of the available PAA can form hydrogen bonds with the 

PEO blocks, which results in the spherical morphology.

When the molar ratio of [AA]/[EO] reaches 0.6, an intermediate situation 

for the localization of PAA units leads to a coexistence of spheres and vesicles 

[Figure 7.4(c)]. This partial localization of the AA units gives an intermediate 
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situation where the hydrophilic domains are not uniform so that vesicles are 

formed along with spheres. Moreover, the strong intermolecular hydrogen 

bonding induces complex aggregation forming spherical micelles and vesicles. 

The micellar structure consists of a PS core and a hydrophilic domain of PAA 

and PEO containing corona. Note that when interactions between the PEO 

block and PAA take place, a more compact corona forms with neutral charge. 

This leads to less corona chain repulsion and hence change in the volume ratio 

of the hydrophilic domain to the hydrophobic PS core, favoring vesicles 

(lamellar structure) [Figure 7.8(b)]. In the same way, vesicles are formed at a 

particular PAA content ([AA]/[EO] = 1) in order to decrease the interfacial 

energy and also, to relieve the highly compacted corona domain. Also, in 

hydrogen bonding interactions, unlike other secondary interactions, the PAA 

blocks can penetrate into the shell of PS-b-PEO micelles and forms vesicles.24

When the PAA content is very high ([AA]/[EO] = 4 and above), the complexes 

change the structure from vesicles to compound vesicles [Figure 7.8(c)]. This 

means that the addition of more PAA facilitates the vesicles to adhere together 

(in essence there is less repulsion between vesicles), and the individual vesicles 

overlap to form compound vesicles [Figure 7.4(f)]. The dissociation of the 

excessive PAA changes the charge balance to a significant net charge from the 

approximate neutrality. The PAA dissociates in water and maintains an 

extended chain configuration due to the charge repulsion, which increases the 

corona volume. The charge balance is such that the vesicles can undergo self-

association which also helps to form compound vesicles. Similar kinds of large 

compound vesicles were observed by Yan and coworkers25 in amphiphilic 

hyperbranched multi-arm copolymers. However, to our knowledge, compound 

vesicles have not been observed in BCP/homopolymer complexes in solution. 

In BCP/homopolymer systems, the aggregate morphologies formed in 

solution depend on a few factors, such as block-length of BCP and 

homopolymer, composition, specific interactions, nature of solvent, etc. In PS-

b-PEO/PAA complex mixtures, with increasing the amount of aqueous solvent, 

conditions are worse for PS blocks thereby the interfacial tension increases. 

Meanwhile, the corona repulsion may not change much since both THF and 

water are solvents for corona-forming PAA and the PEO block. In the PS-b-
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PEO/PAA complexes with the addition of water, the core-stretching of PS 

blocks increases, which in turn increases the free energy. When the stretching 

is too high, the corona volume will considerably change. Thus complex 

aggregates have to adapt their geometry to relax the stretching and minimize 

the total free energy. The complex formation among PAA and the PEO 

segments is the reason for the variation in the shape of the corona, responsible 

for the morphological transitions from micelles to vesicles and then to 

compound vesicles. Increasing the molar ratios of [AA]/[EO] changes the 

number of the EO units available for hydrogen bonding and the charge density 

of the corona, which in turn causes the morphological transitions in the present 

system. In addition, there is an entropic increase during the mixing of two 

polymers. The increase in chain stretching is due to the change in entropy.

7.5 Conclusions

We have successfully prepared vesicles in mixtures of BCP with a 

homopolymer in aqueous media for the first time. Small vesicles and LCVs 

were formed and directly visualized using cryo-TEM. The multiple 

morphological transitions were observed from micelles of PS-b-PEO di-BCP to 

vesicular aggregates in PS-b-PEO/PAA complexe mixtures and finally 

compound vesicles by addition of polyelectrolyte PAA. In these complexes, the 

intermolecular interactions among PAA and the PEO block induces the

complexation and formation of multiple morphologies in water. These findings 

suggest that complexation of amphiphilic BCP and polyelectrolyte is an 

effective, simple approach to prepare polymer vesicles and LCVs in aqueous 

media. 
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Chapter Eight______________________________________

Conclusions and Future Works

8.1 General conclusions

This study provides a basic understanding of the formation of self-

assembled nanostructures in block copolymer blends and complexes via 

hydrogen bonding interactions. The different combinations of block copolymer 

blends and complexes of AB/C, AB/CD, and ABC/D mixtures opens a 

convenient way to switch micellar morphologies with controlled size and 

shape. Self-assembled structures will be formed in block

copolymer/homopolymer complexes if there exists at least one type of 

hydrogen bonding interaction. The general conclusions of this work include the 

following:

Development of novel nanostructured blends and complexes via competitive 

hydrogen bonding interactions are performed with P2VP-b-

PMMA/Phenoxy, PEO-b-PCL/PVPh and SVPEO/PVPh systems and the 

typical self-assembled nanostructures such as spherical, lamellae, hexagonal 

cylinder, and bicontinuous phases are formed based on the composition of 

block copolymer and homopolymer in the mixture. 

Selection of homopolymer is important in order to form different 

nanostructures via competitive hydrogen bonding interactions. 

Homopolymers such as PVPh, Phenoxy, PVAL, PAA etc., can be selected 

owing to their strong hydrogen bonding ability with other hydrogen 

accepting polymers.

In selective hydrogen bonding interactions, the homopolymer can interact 

with only one block of the block copolymer and the non-interacting block 

gets phase separated. Block copolymer complexes like PS-b-PAA/PS-b-

PEO and PS-b-PEO/PAA were studied in this category and the phase 

behaviour was correlated with the morphologies. 
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By varying the compositions of the interacting polymers, their mixing ratio, 

and the solubility of the non interacting blocks in selective solvent, 

morphologies like multilamellar vesicles, thick walled vesicles, 

interconnected compound vesicles, entrapped vesicles and various micelles 

have been successfully developed via selective hydrogen bonding 

interactions in block copolymer mixtures.

Block copolymer/homopolymer complexation involving selective hydrogen 

bonding interaction is a simple and viable method to minimize synthetic 

efforts and generate well defined stable morphologies in a nanometer scale 

for specific applications.   

8.2 Future works

Identify the stability of the self-assembled structures, establish a universal 

phase diagram and derive the association constants to investigate the self-

assembly and morphological transitions in self-assembled complexes.

Identify the morphology of different ordered/disordered nanostructures 

under different conditions and analyse these results with the fracture 

behaviour and mechanical properties of these systems.

Development of different nanostructures can be employed in block 

copolymer/thermosetting polymers and establish the basic mechanism for 

the self-assembly via competitive hydrogen bonding.

The morphological results obtained using TEM and AFM will be correlated 

with a temperature dependant SAXS to understand the detailed phase 

behaviour mechanism in the blends and complexes.

Develop a better understanding of the morphology, physical properties and 

biological performance to guide future design and development of self-

assembled complexes. 

Investigate the morphology, stability and biocompatibility of the block 

copolymer complexes in solution and also the analyses of their use in drug-

carrying properties.  


