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Abstract
Although the production of carbon fibres (CFs) from cellulosic precursors has been 

studied since the 1960s, the fabrication of nano-scale CFs from cellulose nanofibres 

(CellNFs) is fairly new and many aspects of this research area are still unknown. In 

addition, the properties of CellNF precursors are expected to greatly affect those of the 

carbon nanofibres (CNFs) and yet only few types of CellNF precursors have been 

investigated. Up to date, there has been little research conducted on the carbonisation of 

CellNFs originated from softwood pulp, due to unavailability of appropriate fabrication 

methods. Our recent successful fabrication of CellNFs from renewable natural plant 

products using a green and scalable technique, has led us to investigate the possibility of 

fabricating CNFs from such materials. 

Although carbonisation of micron-sized cellulose fibres have been widely investigated in 

the past, in this thesis, the novel CellNFs obtained from ball-milled softwood pulp was 

used to investigate the carbonisation process. Various pyrolysis conditions including the 

effect of heating stages, heating rates and maximum temperatures in each stage, and 

holding time at the maximum temperatures were investigated for their effects on the 

morphological, structural and chemical properties of resulting carbon residues. It was 

found that the methods to dry CellNF precursors significantly affected the morphology of 

resulting CNFs. Heat treatment conditions around the thermal decomposition temperature 

of cellulose also greatly influenced the morphological properties of CNFs. Longer 

holding time at 240oC and slower heating rate from 240oC to 400oC were critical to 

preserve the original fibrous structures of the precursor CellNFs after pyrolysis. In 

addition, the method to dry CellNF precursor influenced the yield of resulting CNFs. 

Although mass loss occurred during carbonisation, due to the removal of oxygen, 

hydrogen and carbon, appropriate pyrolysis conditions could reduce the total mass loss 

after carbonisation. Furthermore, the possibility of graphitizing CNFs at temperatures 

above 1600oC was demonstrated. Since graphitization starts from the fibre surface and 

develops towards the core of the fibre, smaller diameters would help the graphitization 

process to be initiated at lower temperatures. It was shown that a certain crystal structure 

was developed in the carbonised fibre at lower temperatures (1600oC) than the 

graphitization temperature of conventional CFs (~ 2800oC).
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Chapter 1: Introduction

1.1 Significance of research

1.1.1 Research problem 

The production of micron-scale carbon fibres (CFs) from cellulosic precursors has been 

studied since the 1960s. However, the fabrication of nano-scale CFs from cellulose 

nanofibres (CellNF) is fairly new and many aspects of fabrication processes are still 

unknown. In addition, the properties of CellNF precursors are expected to greatly affect 

those of the carbon nanofibres (CNF) and yet only few types of CellNF precursors have 

been investigated. To date, there has been little research conducted on the carbonisation 

of CellNFs originated from softwood pulp, due to unavailability of appropriate 

fabrication methods. Recently, Deakin University demonstrated successful fabrication of 

CellNFs from renewable natural plant products using a green and scalable technique. 

This has led us to investigate the possibility of fabrication of CNFs from such materials. 

In the current project, fabrication of CNFs from such CellNFs by pyrolysis is 

investigated. 

1.1.2 Research aim

In order to study the potential of producing CNFs from plant-based CellNFs, this research 

project focuses on the following three specific aims: 

1- Study of the effects of carbonisation conditions, on the structural properties 

of carbon residues

In this project, the production of CNFs is studied using pyrolysis. These carbonisation 

conditions are expected to affect the structural properties of the carbon residues such as 

crystallinity and morphology, because heat treatment conditions influence the 

depolymerisation of the cellulose molecular chains and the formation of new atomic 

bonding between carbon atoms during pyrolysis. Hence, the effects of pyrolysis 

conditions on the structural properties of carbon residues are studied. The process 

parameters studied in each heating stage include (i) a heating rate by which the sample is 

heated to a certain temperature, (ii) a maximum temperature to which the sample reaches 
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in each stage and (iii) holding time at the maximum temperature. All the heat treatments 

are conducted in an inert gas atmosphere under nitrogen gas flow. 

2- Study of the effects of the methods to dry CellNF precursors on the structural 

properties of carbon residues

The spatial distance between the fibres may play an important role in maintaining the 

fibrous morphology in carbon residues. Oven-drying techniques result in a cellulosic film 

that contains highly compact fibres. On the other hand, freeze-drying techniques yield a 

3-dimensional loose nanofibre network. Therefore, carbonisation of oven-dried and 

freeze-dried CellNFs will lead to carbon residues with different structural and 

morphological properties. In this project, the effect of the techniques to dry CellNF

precursors, on the morphological properties of carbon residues is studied, using oven-

drying and freeze-drying techniques. 

3- Feasibility of the graphitization of amorphous CNFs

Graphitization of carbonised nanofibres is expected to occur when the nanofibres are 

exposed to very high temperatures above 2000oC. Normally, graphitization of 

conventional micron-sized fibres requires temperatures above 2800oC. Since 

graphitization starts from the fibre surface, it is expected that the graphitization takes 

place at lower temperatures in nanofibres than in conventional micron-sized fibres. This 

means that graphitized CNFs may be produced with less energy and cost, than 

conventional CFs. In this study, after the carbonisation conditions are optimized and 

CNFs with improved structural and morphological properties are produced, the 

possibility of graphitizing carbonised nanofibres is investigated at the temperatures 

between 1600oC and 2800oC.

1.2. Thesis outline

This thesis consists of seven chapters including this chapter. The outlines of each chapter 

are described as follow:

Chapter 2 is a literature review about CNFs as well as conventional micron-sized CFs. 

The chapter describes the advances in CF research, the properties of CFs, commercial 

production methods and industrial applications of CFs. The descriptions of CNFs
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including their properties, production methods and various applications are also 

described. 

Chapter 3 gives the experimental procedures. The methods to prepare CellNF

precursors, pyrolysis conditions, drying techniques, characterisation instruments and their 

set-ups are explained. 

Chapter 4 presents the study on the pyrolysis of oven-dried CellNFs. The effects of 

heating rates and holding time in each pyrolysis stage were studied. Oven-dried CellNFs

were pyrolysed in three heating stages: 25-170oC, 170-240oC and 240-350oC. The 

heating stages were designed on the basis of the thermal behaviour of CellNFs. The 

samples were characterised after each pyrolysis stage to understand the effect of heating 

conditions on the morphology, crystal structure and chemical bonds of CellNFs. 

Chapter 5 presents the study on the pyrolysis of freeze-dried CellNFs. The pyrolysis 

conditions such as heating rate and holding time were investigated. Based on the thermal 

behaviour of CellNFs, three heating stages were selected: 25-170oC, 170-240oC and 240-

400oC. CNFs were successfully fabricated from freeze-dried CellNFs. It was found that 

the heating conditions largely affect the fibrous morphology during carbonisation. 

Comparing the results in Chapter 4 and Chapter 5, the effects of drying techniques on the 

morphological properties of carbon residues are discussed. 

Chapter 6 investigates graphitization of CNFs. Amorphous CNFs obtained from the 

pyrolysis at 400oC were heated to higher temperatures (1600oC, 1800oC, 2000oC, 

2200oC, 2500oC and 2800oC) and the effect of the temperature on the morphological, 

crystalline and chemical properties were investigated. 

Chapter 7 summarizes the main findings of the project about the effects of drying 

methods and pyrolysis conditions of CellNFs, on the properties of carbon residues. 

Proposed future works are also presented.
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Chapter 2: Literature review

In this chapter, the advances in CF research, the properties of CFs, commercial 

production methods and industrial applications of CFs are presented. The descriptions of 

CNFs including their properties, production methods and various applications are also 

described.

2.1. Carbon fibre

2.1. 1. Overview

CFs have > 92% carbon atoms in their structure. Such structures can be amorphous, semi 

crystalline or crystalline. Crystalline CFs have the hexagonally oriented rings of graphite. 

Carbon atoms have connected to each other via covalent bonding and form hexagonal 

rings. Such rings then connect in the cylindrical plane to form graphitic layers. These 

layers have connected in directions perpendicular to the layer, via van der Waals 

bonding. Such a molecular configuration gives the CFs two properties: a) they are good 

electrical and thermal conductors in the planes and good thermal insulators in the 

direction perpendicular to the planes and b) they have high strength (high modulus of 

elasticity) in the planes and low strength (low modulus of elasticity) in the direction 

perpendicular to the planes [1]. In CFs graphitic layers are highly aligned along the fibre 

axis. This gives the fibres high elastic modulus, large crystallite sizes (Dcr), high density, 

high tensile modulus, high electrical and thermal conductivities along the fibre axis. The 

highly aligned graphitic layers along the fibre axis also give electrical and thermal 

insulation properties to the fibre axis [2]. Graphite is made up of graphene layers that are 

stacked up in a way that only half of one graphene layer (layer A) is on top of another 

layer (layer B). This orientation is called ABAB sequence. Graphene layers can also be 

stacked up in ABCABC sequence which is found when half of layer B is on top of layer 

A while half of layer C is on top of layer B. While most of the graphitic materials have 

ABAB or ABCABC sequences [3-5], graphene layers in CFs can be stacked up parallel 

to one another but with no particular sequence. They can also be amorphous and are 

stacked up unparallel to each other although the layers were highly developed in the 

direction parallel to the fibre axis.
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Table 2.1. some properties of synthetic fibres [6, 7].

Material

Densit
y

(g/cm3
)

Tensile 
Strengt
h (GPA)

Modulu
s of 

elasticit
y

(GPa)

Ductilit
y

(%)

Meltin
g temp

(oC)

Specific 
modulu

s
(106 m)

Specific 
strength
(104 m)

E-glass 2. 
55 2. 55 3. 4 72. 4 4. 7 <1725 2. 9 14

S-glass 2. 
50 2. 5 4. 5 86. 9 5. 2 <1725 3. 56 18

SiOt 2. 19 2. 19 5. 9 72. 4 8. 1 1728 3. 38 27. 4
SiOt 3. 95 3. 95 2. 1 380 0. 55 2015 9. 86 5. 3
ZrOz 4. 84 4. 84 2. 1 340 0. 62 2677 7. 26 4. 3
CF (high-
strength) 1. 5 5. 7 280 2 3700 18. 8 19
CF (high-
modulus) 1. 5 1. 9 530 0. 36 3700 36. 3 13
Cellulose - 0. 9 41 2. 5 - - -

BN 1. 9 1. 4 90 1. 6 2730 4. 78 7. 4
Boron 2. 36 3. 4 380 0. 89 2030 16. 4 9. 9
B4C 2. 36 2. 3 480 0. 48 2450 20. 9 5. 1
SiC 4. 09 2. 1 480 0. 44 2700 12 0. 3

TiB2 4. 48 0. 1 510 0. 02 2980 11. 6 7. 1
Be 1. 83 1. 28 300 0. 4 1277 19. 7 2
W 19. 4 4 410 0. 98 3410 2. 2 27. 4

Polyethyle
ne 0. 97 2. 59 120 2. 2 147 12. 4 25. 7

Kevlar 1. 44 4. 5 120 3. 8 500 8. 81 53. 3
Al2O3

whiskers 3. 96 21 430 4. 9 1982 11 47
BeO 

whiskers 2. 85 13 340 3. 8 2550 12. 3 56. 1
B4C

whiskers 2. 52 14 480 2. 9 2 450 19. 5 66. 5
SiC 

whiskers 3. 18 21 480 4. 4 2 700 15. 4 44. 5
Si3N4

whiskers 3. 18 14 380 3. 7 - 12. 1 12
Graphite 
whiskers 1. 66 21 703 3 3 700 43 128

Cr 
whiskers 7. 2 8. 9 240 3. 7 1 890 3. 4 12

Table 2.1 compares the properties of CFs with those of some other fibres. It is noted that 

‘high-strength CFs’ have the highest tensile strength among all fibres (5.7 GPa) while 

‘high-modulus CFs’ have the highest modulus of elasticity (530 GPa). Moreover, CFs
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exhibit the lowest density among the fibres (1.5 g/cm3) which makes the specific modulus 

(modulus/density) of CFs significantly higher than that of even Kevlar fibres. 

Commercial CFs are produced for three main purposes:

1- General purpose CFs: They are mainly amorphous in structure with low modulus, 

strength and production cost. 

2- High performance CFs: They are graphitic in structure with high modulus, strength and 

higher price than general purpose CFs. 

3- Activated CFs: They are porous in their micro structures which make them highly 

adsorptive to other chemicals [8].

Figure 2.1. Schematic processes of CFs production [9-11].

2.1.2. Production 

2.1.2.1. Overview

Commercially available CFs are mainly produced from pyrolysis of synthetic precursors 

such as polyacrylonitrile (PAN), oil- or coal-based precursors such as pitch, and natural 

precursors such as cellulose (Figure 2.1). Pitch-based CFs have higher strength than 

PAN-based CFs, since pitch can be better graphitized in higher temperatures. The cost of 

producing CFs from PAN is higher than pitch or cellulose (Table 2.2) [10].
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Table 2.2. Cost of CF production [10].

Cost of 
precursor 

($/kg)
Cost of CFs

($/kg)
PAN-based 0. 4 60
Cellulose 0. 31 4

Isotropic pitch-based 0. 6 22

Polymeric precursors such as polyvinylidene chloride, polyvinyl alcohol and PAN are 

commonly used for CF production. Table 2.3 shows the mass loss during carbonisation of 

PAN, pitch and cellulose fibres. 

Table 2.3. precursor mass loss during carbonisation [12, 13].

Precursor 
fibres

Weight loss 
(%)

Pitch 30

PAN 60, 67

cellulose 88

2.1.2.2. Pitch

Pitch is a black/brown sticky material that is usually solid at room temperature and melts 

at higher temperatures. It can be produced from partial pyrolysis of some polymers such 

as polyamides and polyesters, or coal and petroleum [14]. Pitch is a combination of some 

monomers that form a three- to eight-ring molecular structure with a molecular weight of 

300 to 400 [15].

In order for pitch to be used as the precursor in the production of CFs, pitch should fulfil 

certain requirements. It should be free from metallic ions and insoluble particles that 

would reduce the mechanical properties of CFs [16]. In addition, it should have high 

carbon content and be mesophase in its structure. Mesophase pitch is a mixture of 

aromatic hydrocarbons containing anisotropic liquid-crystalline particles that can be 

obtained by heat treatment of pitch at 250-400oC. Mesophase helps produce fibres with 

high molecular orientation that are suitable for CF production [17, 18], because liquid-

crystalline materials orient easily during fibre formation [19].
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CFs with high degrees of molecular orientation have high elastic moduli and thermal 

conductivities whereas CFs with more discontinuous and less ordered fibrillar structures 

have higher tensile strengths. The latter can be used as reinforcement components for 

high-strength composites [20, 21]. By increasing the molecular orientation during fibre 

formation, the strength of pitch-based CFs can be improved [22, 23]. Linearizing the 

molecular orientation during fibre formation can yield pitch-based fibres with improved 

thermal conductivities. Controlling such structures during fibre formation can optimize

CF as well as improve processing conditions [21, 24].

The crystal structure of pitch is isotropic in nature and hence pitch requires some heat 

treatment to become anisotropic suitable for fibre spinning. In order for the pitch to 

become anisotropic, it is held at 400oC for some time (14-32 h [25]). Spinning of 

anisotropic pitch into pitch fibres is not an easy process, and several alternative methods, 

such as melt spinning, jet spinning and centrifugal spinning, were proposed to obtain 

pitch fibres. Melt spinning is however the most favourable method among all. 

Conventional melt spinning methods can be used to prepare pitch fibres. Molten 

anisotropic pitch with a certain viscosity passes through spinnerets that forms continuous 

pitch filaments. Air is flown to the spun filaments to cool them, and then the filaments are 

collected [7, 26-28]. In order to obtain CFs with high tensile strength and high modulus, 

pitch fibres are drawn to increase molecular orientation during the spinning process. The 

stretching can be done within 5mm of the spinneret while the pitch fibres are still hot 

enough to be stretched. Pitch fibres are then carbonised to obtain CFs. The spinneret 

shape and the pressure applied to the molten pitch during spinning govern the mechanical 

and structural properties of the resultant CNFs. For instance, stirring the molten pitch in 

the spinneret nozzles helps formation of more oriented and even fibres. Applying the 

correct pressure during spinning also avoids the off-gassing phenomenon. 

Pitch-based CFs are produced by pyrolysis at various temperatures. It is critical to 

maintain their fibrous structure and avoid infusion during pyrolysis. Stabilization is a 

process to partially introduce oxygen atoms in pitch polymer molecules in order to 

prevent the pitch fibres from fusing together during the carbonisation (Figure 2.2) [29-

32]. Surface oxidation helps pitch fibres to behave as if they are thermoset fibres instead 

of thermoplastic fibres, so that the fibrous structures are retained during carbonisation 

[33].
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Figure 2.2. Fusion of fibres during carbonisation [34].

The oxidative stabilization step is normally performed at 350oC. Pitch fibres are then 

suspended in graphite or carbon black to enhance the fibre stability during carbonisation. 

Stabilized pitch fibres are then carbonised in a series of ascending heating temperatures. 

CFs are then graphitized at above 2000oC.

2.1.2.3. PAN

PAN is a polymer with the molecular weight of 120,000 g/mol and acrylonitrile content 

of >85%. PAN is widely used for the production of CNFs (Figure 2.3). Its decomposition 

temperature is below melting point (350oC). Hence PAN fibres could not be produced by 

melt-spinning. Commercial production of PAN fibres uses wet spinning techniques with 

dimethyl formamide (DMF) as a solvent for PAN. 

As a precursor of commercial CFs, high purity PAN is not commonly used. PAN 

precursors usually contain other monomers such as itaconic acid, acrylic acid, and 

methacrylic acid [35]. Although mass loss is higher with PAN than pitch, PAN is a 

cheaper and more favourable precursor than pitch in CF production [36].
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Figure 2.3. Schematic structure of PAN molecules [37-39].

The process to produce PAN fibre precursors is critical to assuring the high quality in 

resulting CFs. All stages of the fibre production process should be done accurately in 

order to obtain PAN fibres with least defects in their molecular structures. The molecular 

defects such as amorphous regions, folded and entangled parts can reduce fibre strength 

[40]. To minimize such defects, partial oxidation of PAN fibres during stabilization [41-

43] and stretching [44-47] is applied. However, this causes reduction of the tensile 

strength and elongation at break of PAN fibres [48-50].

Once PAN fibres are spun via wet spinning, they undergo stabilization at 300oC and 

carbonisation above 1000oC to convert into CFs. The stabilization stage comprises three 

main reactions; cyclization, dehydrogenation and oxidation.  The stabilization stage is 

necessary to increase carbon yield in the carbonisation stage [9]. During cyclization 
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reaction, C

fibre axis. Dehydrogenation reaction comprises removal of H atoms from the benzene 

rings and formation of C=C groups in the rings [51]. During oxidation process, OH 

groups are formed on the rings to further stabilize the fibres. Up to 180oC, the heating 

rates can be as high as 5oC/min [52-55]. However, it should be maintained from 180oC up 

to 350oC [56-59]. The maximum temperature should be kept below the decomposition 

temperature of PAN to let the volatile gases released from the fibres before chain scission 

and to obtain higher carbon yield [35, 46, 54, 60-64]. During the carbonisation, nitrogen, 

oxygen and hydrogen are released from the molecules in the form of gaseous by-products 

[54, 58, 65-71]. This stage is then completed at 1000oC and CFs with carbon content of 

>92% in the molecules are left. 

During carbonisation, volatile gases such as HCN, NH3, CH4 and H2 are formed and 

released from the structure [12]. Heating rates below 600oC should be less than 5oC/min 

to allow the volatile gases to be removed from the fibres with least damage to the fibre 

structure. Above 600oC, higher heating rates can be applied since only carbon and 

nitrogen are left in the fibre molecules [72]. Carbonisation of PAN fibres are completed 

at 1500oC where the residual nitrogen is removed from the fibre structure and CFs with < 

95% carbon in the molecule is produced [73-75]. Although graphitization or 

carbonisation takes only minutes to complete, the stabilization stage takes some hours 

[76]. This makes carbonisation of PAN fibres costly. In addition, the mass loss during 

carbonisation is over 50%. These factors add to the final price [77] and make PAN-based 

CFs expensive. HCN which is released during carbonisation is an extremely toxic gas 

with a linear molecule comprising the molecular structure of H C

such highly toxic by-product gas during the production also adds to the final price of 

PAN-based CFs. 

The structural properties of CFs greatly influence their electrical, mechanical and thermal 

properties. Important structural aspects are: (i) crystallinity such as crystallite size (Dcr), 

degree of crystallinity (Icr) and interlayer spacing d, (ii) graphene layers orientation along 

and perpendicular to the fibre axis (texture), and (iii) shape and orientation of defects and 

voids [78-90]. Generally larger crystallite sizes, higher degrees of crystallinity, lower 

interlayer spacing and higher graphene alignments along the fibre axis result in CFs with 

greater tensile and modulus values and electrical and thermal conductivities [91-96].

However, fibre production methods, especially heat treatment and processing, affect the 
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structures of CFs and influence such properties. PAN-based CFs exhibit different 

structures in the fibre core from that of the skin [97-103]. Heat treatment to over 2000oC

results in graphitic layers along the fibre surface. Graphene layers along the skin prohibit 

the heat to get absorbed into the fibre core and hence the core does not develop the 

graphitic structure. Therefore, PAN-based CFs cannot be graphitized as much as pitch-

based CFs [104-108]. Shorter distances between graphene layers, d, results in higher 

mechanical strength and improved electrical and thermal conductivities along the fibre 

axis [109]. Figure 2.4. shows the scanning electron microscopy image of typical PAN-

based CFs [110]. 

Figure 2.4. SEM image of PAN-based CF [110].

2.1.2.4. Cellulose

Compared to pitch or PAN precursors, cellulose is more widely available and comparably 

cheaper. Cellulose is a renewable raw material and widely available on earth with the 

estimated yearly-production of 1010 tons. Cellulose is found in plants, sea shelves and 

some animals such as tunicates and fungi [111-114]. It consists of a long linear 

homopolymer of 1 - -D-glucosidic rings with the formula of (C6H10O5)n (n=degree of 

polymerization of glucose) that are combined to form a highly ordered cellulosic chains 

(Figure 2.5) [115, 116]. Natural cellulose has the cellulose-I structure (Figure 2.6) with a

high degree of polymerization (DP) of over 10000 but processing of cellulose-

reduces the DP to 2500 [10]. These chains form parallel nanoscale fibrillar structures 

which again link together via strong hydrogen bonds to form cellulose fibres [117]. These 

intermolecular hydrogen bonds break in the aqueous state because hydroxyl groups (OH) 

in water compete with those in the cellulose. The intra-molecular hydrogen bonds are 
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comparatively stiff and make the anhydro-glucose rings stable. Intermolecular hydrogen 

bonds are responsible for the fibrillar nature of cellulose [118-120]. The distance between 

chains is ~ 0.45 nm and the distance between two adjacent rings is ~ 0.5 nm. 

Cellulose has a high carbon content of 44.4 wt% in addition to 49.4 wt% of oxygen and 

6.2 wt% of hydrogen [121, 122]. When cellulose is heated to its decomposition 

temperature (~320oC), the polymeric chains break down and volatile gases such as CO, 

CO2 and H2O are formed, and hence cellulose loses around 40% of its weight [123-127].

Figure 2.5. Molecular configuration of cellulose [128].

 

The degree of crystallinity varies in different celluloses from 30% to over 70%. Chemical 

and mechanical treatment can reduce the crystallinity to less than 50% [129-137]. Highly 

crystalline cellulose has long cellulosic chains parallel to one another and oriented along 

the direction of the chains (Figure 2.5) [138, 139]. Mechanical properties such as tensile 

strength also increase when crystallinity improves [140, 141].

Cellulose crystals have several polymorphs [142]. Native plant cellulose has crystal 

structures of I or I . It is known that treatment of native cellulose under different 

temperatures and chemical environments can transform the crystal structure to many 

other forms [142]. Both cellulose I and I consist of sheets placed parallel to each other 

[144]. In the cellulose I structure, the sheets are placed parallel to the unit cell axis b. On 

the other hand, in the cellulose I structure, the sheets are placed parallel to the diagonal 

direction of the cell axis a and b. Due to the close similarity in the structure, it is difficult 

to distinguish cellulose I and I structures by X-ray powder diffraction [144]. Normally 

nuclear magnetic resonance spectroscopy or 2-dimensional X-ray diffraction study is 

used to identify these crystal phases. 
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It has been reported that cellulose I form dominates in softwoods [143].

Figure 2.6. Crystal structure of cellulose- [145].

Cellulose was used as a precursor to produce CFs in Thomas Edison’s laboratory in 1880 

in search of finding a filament for his light bulbs. However, it took another 80 years, in 

1959, before the National Carbon Company used cellulose-based precursor to produce 

CFs. Since then, many researchers have studied the production of CFs by pyrolysis of 

cellulose using various heat treatments. 

Currently most of the commercial CFs with micron size diameters are produced by the

pyrolysis of precursors made from fossil fuels, such as PAN [146] or oil-/coal-based pitch 

[147]. Viscose rayon precursors have also been used while prepared by some hazardous 

chemicals to enhance the properties. Hence those methods pose environmental and cost-

related concerns. Despite this drawback, the investigation of CF production by the 

pyrolysis of renewable materials such as native cellulose has rarely appeared in the 

literature [148, 149]. Although the pyrolysis of bulk cellulosic materials has been 

extensively investigated in the past, most of the studies focused on the production of 

energy or bulk char rather than fibres [111, 149-160]. The formation of CFs by pyrolysis 

of cellulose is more challenging than the formation of activated carbon, as the fibrous 

structure needs to be preserved during carbonisation. In particular, the formation of 

volatile and often sticky tar (levoglucosan) should be avoided. 
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2.1.3 Properties

2.1.3.1. Mechanical properties

Mechanical properties of CFs are usually explained by tensile strength and Young’s 

modulus. The actual tensile strength of CFs is lower than the theoretical one, because the 

alignment of graphitic layers along the fibre axis is not perfect and crystallite size is 

lower than the ideal CFs [161]. Table 2.4 shows the theoretical and actual values for 

tensile strength and Young’s modulus of CFs [162].

Table 2.4. Mechanical properties of CFs [146].

CF
precursor Tensile strength Young's modulus

theoretical 
value (GPa)

actual value 
(GPa)

theoretical 
value (GPa)

actual value 
(GPa)

Pitch 25 3-4 2000 500
PAN 15 2-3 1000 250
cellulose 8 0. 8-1 1000 80

Tensile strength depends on the orientation of the graphene layers along the fibre axis as 

well as the interlayer spacing; the higher the alignment and lower interlayer spacing (d), 

the higher the tensile strength. The tensile strength increases as the fibre diameter 

decreases [163]. In addition, pitch-based CFs show higher tensile strength than PAN- or 

cellulose-based CFs, because the graphene layers are highly oriented along the fibre axis 

in pitch-based CFs. However, increase in tensile strength results in decrease in shear 

modulus, since the higher orientation of graphene layers along the fibre axis makes fibres 

weaker to shear forces. 

2.1.3.2. Electrical properties

Although CFs are electrically conductive to a certain extent, their conductivity is much 

lower than that of metals except for highly graphitic CFs. One method to increase the 

electrical conductivity of CFs is intercalation [162]. In this method, metal particles such 

as copper [164], nickel [165, 166] or bromine [167, 168] are inserted in between 

graphene layers so as to increase the electrical conductivity up to 70% [169]. This 
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method is only possible in graphitic CFs which have well-developed graphitic structures

[170, 171].

2.1.3.3. Thermal properties

Thermal conductivity of highly graphitized CFs is generally higher than that of metals 

such as copper [172, 173]. In addition, increase in tensile strength increases the thermal 

conductivity due to the more developed graphitic structure. [174-176].

2.1.3.4. Chemical properties

Graphitized CFs exhibit high chemical resistance in harsh chemical environments. Due to 

highly oriented graphene layers as well as highly stable benzene rings, graphitized CFs

have low tendency to react with acidic or basic agents [177-180].

CFs can be oxidised to modify some physico-chemical properties such as polarity. Polar 

CFs have enhanced electromechanical properties suitable for electrical and composite 

applications [181-186]. Partial oxidation may increase the weight while complete 

oxidation results in 100% mass loss depending on the oxidation duration. 

2.1. 4. Application

CFs are widely used in the production of composite materials for various purposes. 

Excellent mechanical properties and lightweight of CFs are suitable as reinforcement 

components in polymer and many other matrices.  

2.1.4.1. Structural composites

Inclusion of CFs in polymer matrices can increase electrical and thermal conductivity, 

chemical resistivity and also mechanical strength [187]. Pitch- or PAN-based CF/cement 

composites show lower deflection than cement matrix when a given load is applied [188].

The composites can be used in a variety of applications from aerospace to sport and 

biomedical applications. Some examples are given in the following sections. 

2.1.4.2. Biomedical composites

CF composites are used to produce artificial feet (Figure 2.7) [189]. The strength and 

flexibility of CFs enable the artificial feet to adjust to the person’s pace and direction. 
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Figure 2.7. Use of CFs in artificial feet [187].

CFs are also widely used in medical applications such as in dental [190, 191] and surgical 

instruments [192-194].

2.1.4.3. Polymer composites for sports and leisure

CFs are widely used in the production of sport equipment such as bicycle, yacht, body-

building equipment, hockey, golf shaft, tennis and badminton rackets, fishing and ski 

equipment in a form of polymer composites [195, 196]. CF bicycles are much lighter than

conventional aluminium bicycles with the same or better strength and flexibility. A 100% 

CF bicycle can weigh only 1.05 kg. CF composites reduce production costs significantly 

while enhancing the performance [197-199].

2.2. Carbon nanofibre

2.2.1. Overview

Due to their excellent mechanical, thermal and electrical properties, CNFs have attracted 

much attention in many applications. Graphitic CNFs have successfully used in 

nanocomposites in automotive [200-202] and sensors and electrode in electronics [203],

gas sensor [204, 205] and solar cells [206, 207]. Graphitized CNFs consist of long 

graphitic layers that are oriented along the fibre axis and stacked up perpendicular to the 

fibre axis [5-7]. Such structural orientation has provided CNFs with very attractive 

properties such as ultra high aspect ratios (the ratio of fibre length to its diameter) and 

high specific surface area. They exhibit very high tensile strength and modulus which are 
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comparative with metals. Superior properties of CNFs have promised bright future in 

many applications where strength is needed combined with flexibility. 

2.2.2. Properties

2.2.2.1. Mechanical property

Theoretically, CNFs show tensile strength of 100 GPa and modulus of 1000 GPa. 

However, in reality, CNFs from various precursors would have tensile strength and 

modulus of 2-5 GPa and 300-700 GPa, respectively. Some factors, such as defects on the 

surface or within the fibres, handling procedures and impurities in the nanofibre structure, 

affect the mechanical properties of CNFs [105].

The aspect ratio of nanofibres is another important property that influences the 

mechanical properties of composites. Since CNFs have diameters in nano-scale and 

lengths of up to several micro meters, their high aspect ratio enables them to distribute 

the load evenly throughout the matrix with no fibres pulled out of the matrix, and hence 

increase the reinforcement effects in composites [208, 209].

2.2.2.2. Thermal property

Thermal stability of CNFs depends on the atmosphere in which they are used. CNFs can 

be oxidized in air and great mass loss occurs above 400oC [210]. Graphitized CNFs show 

higher stability than un-graphitized CNFs. However, mass loss still occurs above 600oC. 

Therefore, if CNFs are to be used in atmospheric environments, their working 

temperature should be below 400oC. Thermal stability of CNFs also depend on the 

amount of impurities such as Na, Si, Mg and Ca [211]. Although these impurities may 

increase thermal conductivity, they lower the stability of CNFs at high temperatures 

[212].

2.2.2.3. Electrical property

Oxidation reduces the electrical conductivity of CNFs. Oxidation occurs when CNFs are 

exposed to air at high temperatures (>600oC) [213]. Electrical resistivity is increased by 

oxidation and higher initial resistivity leads to larger increase in resistivity [214].

Electrical conductivity depends greatly on the physical deformation or damage in CNF, 

because any change in the cross-section and length of the graphitic layers would reduce 

the conductivity [215].
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Electrical properties are influenced by the production conditions. For instance, PAN 

based CNFs become semi-conductive when they are partially oxidized in air and heat 

treated at 700-900oC [216]. Electrical conductivity can be increased by optimizing the 

carbonisation stages of the precursor fibres [217].

As shown in Table 2.5, thermal and electrical properties of CNFs along the fibre axis and 

perpendicular to the fibre axis vary due to the anisotropic graphitic structure of the CNFs.

Table 2.5. Properties of CNFs along and perpendicular to the fibre axis.

Property Along the fibre 
axis

Perpendicular to the fibre 
axis

Coefficient of thermal 
expansion 0–1000 oC (K-1)

3. 0 ×10-6 2. 8×10-6

1. 1 × 10-3 4. 1 × 10-3

2.2.3. Applications

2.2.3.1. Biological applications

Any material that is going to be used inside human body has to be safe, non-toxic and 

non-reactive in acidic or basic environments [218]. Use of CNFs in biomedical 

applications such as tissue engineering, implant and wound healing has been studied and 

fibres with specific properties suitable for such end-uses have been successfully 

commercialized [219, 220]. For example, CNFs were used to reinforce calcium 

phosphate composites for bone replacement [221].

2.2.3.2. Electrical applications

Because of their high electric conductivity, CNFs can be used as an anode in batteries 

[222]. They have also been used in transmitters as electrodes [223]. CNFs are also used 

as an anode material in fuel cells due to their capacity to store hydrogen (Figure 2.8) 

[187].
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Figure 2.8. Schematic illustration of the structure of a fuel cell [172].

2.2.3.3. Thermal applications

CNFs are used as heat insulating and fire resistant materials [224, 226]. They are mixed 

with phenol resin and carbonised at high temperatures (>1000oC). These products are 

used in aircraft seats as fire blocking materials in post-crash fires, insulators in aircraft 

body between the exterior and interior, and personal fire retardants [226-228].

2.2.3.4. Aerospace applications

Use of CNFs in aerospace industry is increasingly becoming diverse. They are now used 

in army and civil aircrafts and helicopters as composite reinforcement agents in nose, 

engine blades, interior body, exterior body, wings, stabilizers, etc (Figure 2.9) [229-231].

CNFs not only bring strength to the structure, but also reduce the overall aircraft weight 

by up to 1.5 tons. CNFs are also used in aerospace industry as a sound insulator.

Figure 2.9. Cabin of Proteus aircraft fabricated by Viper 7-axis fibre placement system 
[187].
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2.2.5. Production 

CNFs are produced using 2 main methods: (i) chemical vapour deposition (CVD) and (ii) 

pyrolysis. 

2.2. 5. 1. Chemical vapour deposition (CVD)

In this method, CNFs are produced from carbonaceous gases such as acetylene, methane, 

natural gas, benzene and ethylene in the presence of catalytic particles [232]. The 

catalysts are mainly iron, nickel, copper, cobalt or palladium [233]. At accelerating 

temperatures carbonaceous gases are flown onto the catalytic particles which have certain 

diameters [234]. The diameters of CNFs are normally determined by the diameter of 

catalyst nanoparticles. 

The growth process comprises endothermic and exothermic reactions which occur on the 

particles surface. Carbon atoms are adsorbed on the hotter side of the catalyst’s surface in 

which the exothermic reaction occurs. Then a CF starts to grow on the cooler side of the 

catalyst particles where the endothermic reaction occurs (Figure2.10). This process 

continues and more and more carbon atoms are built up on top of each other in the form 

of benzene rings. The growth develops along the fibre axis as well as in the direction 

perpendicular to the fibre axis (fibre thickening) (Figure 2.11). Hence CVD methods 

normally results in the production of nanotubes, although CNFs have also successfully 

produced using CVD. As the fibre grows, the thickness of the fibres can be increased by 

increasing the gas concentration. The fibre growth can be stopped by reducing the gas 

concentration [236-239].

Figure2. 10. CNF growth using CVD methods.
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Figure 2.11. CNF lengthening [240].

Figure 2.12. TEM image of a CVD grown CNF [241].

CVD grown CNFs (Figure 2.12) have high mechanical strength due to their highly 

graphitized structure. They show modulus of >200 GPa and tensile strength of >2 GPa 

[242].

2.2.5.2. Pyrolysis

Pyrolysis comprises a series of heat treatment stages where each stage has a particular 

heating rate, maximum temperature and holding time [243, 244]. Mainly organic 

materials are pyrolysed for the production of activated carbon, CFs and CNFs [245-247].

The type of atmosphere used in the pyrolysis of various materials can be inert such as N2

and Argon or oxidative such as O2, depending on the desired properties of the resultant 

carbon material. However, the atmosphere and the gas flow rate should be carefully 

controlled during the pyrolysis [248, 249]. The molecular structure of precursors breaks 

down during the pyrolysis which leads to the formation of gaseous species, tar and a 

carbon rich residue (Figure 2.13) [250-253].
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Figure 2.13. Schematic illustration of the pyrolysis of organic materials.

For the production of CNFs by pyrolysis, there are two classes of precursor nanofibres 

that can be used. One is polymeric nanofibres made using electrospinning techniques. 

Another is CellNFs extracted from naturally occurring materials. 

2.2.5.2.1. Pyrolysis of Electrospun nanofibres

Electrospinning was first invented in the early 20th century. But it was until the early 21st

century when the real novelty and functionality of this technique was realized [254].

Electrospinning setup comprises a high voltage power supply, an electrically conductive 

polymer solution, an electrode collector and an injection tip (usually syringe needle) 

[255]. Electrically charged polymer solution is exposed to an electric field which leads to 

the formation of droplets at the tip of the needle. As a result, the electric field forces the 

droplet to draw towards the opposite electrode that also serves as a collector. As the 

droplet travels along the electric field, it is then exposed to the electric field resulting in 

the formation of filaments before hitting the electrode collector [256].

Electrospun nanofibres present excellent characteristics such as [257]:

High surface area;

High porosity;

High mechanical and structural strength;

Low weight;

Ability to integrate with other materials;

Ability to form different fibre diameter and length and chemical and mechanical 

properties. 



Chapter 2

24 
 

Electrospun nanofibres are used in many applications such as filtration [258], catalyst 

support [259], biomedical [260-262] and sensors in electronics [263, 264].

CNFs can be produced from electrospun nanofibres by undergoing carbonisation in an 

inert atmosphere [54, 265, 266]. Zhou et al. used PAN-based electrospun nanofibre 

precursors to produce CNFs of 200-300 nm in diameter using pyrolysis in an inert gas 

[216]. They applied tension during the stabilization process which increased the structural 

order within the fibres. Thus, the pyrolysed CNFs were more graphitic than the ones with 

no applied tension. The CNFs produced by this method showed tensile strength of 300-

600 MPa, modulus of 40-60 GPa and improved electrical conductivity. Figure 2.14 

shows the typical TEM images of PAN-based electrospun carbon nanofibres.

Figure 2.14. TEM images of the PAN-based electrospun CNFs [216].

Nataraj et al. studied the use of various acids for the preparation of PAN nanofibres and 

their effects on the morphological and electrical properties of resulting CNFs [267]. They 

reported that the CNFs showed improved morphological and electrical properties by 

using heteropolyacids with 5% concentration. 

CNFs inherit their properties from their precursors. For example, precursors with high 

tensile strength and modulus will produce CNFs with similar properties [216]. Thus, 

electrospun-based CNFs display very high surface area, low weight and high mechanical 

and structural strengths, because of the properties of electrospun PAN fibres. Electrospun 
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CNFs are used in many applications such as batteries, hydrogen storage, catalyst 

supports, nanocomposites and fuel cells [268, 269].

CNFs with smaller diameters, when used as a structural material in composites, enhance 

the integration between the matrix and the fibres and hence distribute the applied force 

more evenly throughout the network. As a result, the composite has a longer life span and 

higher mechanical strength. Typical electrospun-based CNFs have diameters of >100 nm 

[270, 271]. Smaller diameters are difficult to obtain mainly due to the limitations in 

electrospinning techniques where the attempt in producing finer diameter fibres leads to 

an increase in the formation of beads (defects) within the nanofibre network [266].

Electrospinning requires a polymer solution, such as chloroform and methylene chloride 

[272], in which the polymer is well dispersed. The evaporation of such solvents during 

fibre formation can cause health risks. 

2.2.5.2.2. Pyrolysis of CellNFs

The pyrolysis of CellNFs is expected to result in the formation of CNFs. Due to their 

small diameter, cellulose-based CNFs may require lower temperature for graphitization 

[273]. However, little research has been reported on the production of nano-scale CFs by 

pyrolysis of CellNFs. It is expected that the molecular and morphological properties of 

precursors strongly affect those of the pyrolysed carbon material [203]. Ishida et al.

investigated the carbonisation of freeze-dried bacterial and tunicate CellNFs and found 

that the carbon residue retained its fibrous morphology by using HCl as a pyrolytic 

atmosphere and a pretreatment chemical [149]. Another study showed that the effect of 

surface area and thermal stability of chitin and softwood CellNFs was considered to be 

the main factors in altering the fibrous morphology in the resultant carbon residues. 

However, these studies did not report successful retention of the fibrous structure of 

softwood-based CellNFs in the carbon residue. 

Recently, Deakin University has successfully developed the technology to produce 

CellNF from natural plant products [274]. Mechanical ball-milling was used in order to 

obtain CellNFs. It is known that when cellulose fibres are placed in water, the hydroxyl 

groups (OH) of water competes with the ones in cellulose to form hydrogen bonding. 

This can help separate cellulose fibres from each other [275-277]. Ball-milling of 

cellulose in aqueous suspension breaks down the raw fibres into CellNFs suitable for 

CNF production. Successful fabrication of CellNFs using such green and scalable 
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technique was a major step toward CNF fabrication. Unlike CVD or electrospinning, 

pyrolysis does not require the precursor to undergo pre-treatment using hazardous 

chemicals. Once the optimum conditions are found, carbonisation of cellulose can be 

undertaken in inert atmosphere. 

2.2.6. Thermal decomposition mechanism of cellulose

Cellulose undergoes thermal decomposition without going through the melting stage and 

thus it does not behave like other precursors such as PAN or pitch [78, 278, 279]. If the 

decomposition of cellulose was an idealistic dehydration reaction, then the following 

reaction would happen [10]:

(C6H10O5)n 6nC + 5nH2O (2.1)

However, cellulose decomposition is a complex phenomenon comprising a series of 

reactions occurring in succession or concurrently, which eventually leads to mainly three 

products: (a) water, (b) gases and (c) char. There have been many studies investigating 

cellulose decomposition and theories developed explaining the phenomenon [149, 200,

1202, 279-284]. However, since cellulose itself has many physical forms in nature, the 

decomposition mechanism is influenced by its structural configuration. Hence it is 

difficult to obtain a general explanation of the decomposition mechanism. However, the 

current consensus can be summarised as follow [10]. The thermal decomposition of 

cellulose occurs in several stages:

External dehydration (120–180oC)

When cellulose is heated to 120oC, physically absorbed water molecules are released 

(external dehydration). The hydrogen bonds between water molecules and OH groups in 

cellulose are replaced with the hydrogen bonding between OH groups in cellulose. 

Internal dehydration (180 – 250oC)

As the temperature increases to around 180oC the energy is sufficient to excite some 

bonds within the cellulose molecules such as —OH and —H atoms ready to break the 

bonds [126, 127, 285, 286]. This causes dehydration from the cellulose glycosidic rings 

(internal dehydration) and elimination of water molecules from the rings [279]. Whether 

the OH and H from one glycosidic ring or from two neighbouring rings link together is 

still being debated.
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Figure 2.15. Internal dehydration of cellulose.

Initial chain scission (180–250oC)

At ~250oC, levoglucosan (1-6-anhydro- -D-glucopyranose) is formed by an intra-chain 

dehydration reaction between an OH group in CH2OH and the oxygen in 1-4 glycoside 

links (Figure 2.16) [275-277, 287]. Levoglucosan is volatile and, at higher temperatures, 

breaks down into tar and some other by-products such as char, CO2 and furan [288, 289].

Tar is a brown sticky by-product of levoglucosan decomposition [290-296].

Levoglucosan is also responsible for the flammability of cellulose since its structural 

breakdown results in the formation of flammable gases. Hence, the prevention of 

levoglucosan formation will increase the yield of carbon residue [152-154, 160, 297-

299]. The use of fire retardants such as ZnCl2 [300-302] was studied in order to reduce 

the amount of levoglucosan that was produced during cellulose decomposition [52, 303-

306].

Figure 2.16. Formation of levoglucosan.

Depolymerization (250–400oC)
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Above 250oC, the scission of glycosidic rings occurs that leads to the formation of CO, 

CO2, H2O and char (Figure 2.17) [157, 307, 308]. However, the scission is not a straight 

reaction but a series of other reactions leading to such a phenomenon. A glycosidic ring 

has four OH groups located at 2-, 3-, 4- and 6-C [309]. On one hand, the removal of these 

OH groups from the rings results in the formation of C=C and C=O bonds, while the 

chair/bed [112, 310] conformation of cellulose is still maintained [311-314]. On the other 

hand, levoglucosan is also formed at above 250oC. These two reactions are always 

concurrent and compete with each other [10].

Figure 2.17. Chain scission of cellulose and formation of gaseous species.

Aromatization (>400oC)

Depolymerization is completed at 400oC and further increase in temperature initiates 

aromatization of CFs. At the completion of cellulose decomposition, carbon atoms 

connect with each other and form hexagonal rings similar to graphite. However, the paths 

in which carbon atoms connect and form rings are not fully understood. It was suggested 

that longitudinal polymerization occurs where carbon atoms join to form carbon chains 

and chains connect to form rings (Figure 2.18). However, this model has little 

experimental support [317]. Davidson [318] suggested that increasing temperature causes 

the carbon chains to get closer to each other and join to form rings. Losty [159, 319]

suggested that elimination of pyranose rings and glycoside links create aromatic rings 

with hydrogen attached to them. Attached hydrogen atoms act as isolators and keep the 

rings separate from each other [158]. The rings then connect and form graphitic layers at 

higher temperatures. 



Chapter 2

29 
 

Figure 2.18. Aromatization of chains and formation of graphitic carbon.

2.3. Summary

CNFs are a new class of materials with many new applications from which various 

industries from automobile and aerospace to electronics and medicine can greatly benefit. 

While micron sized CFs are widely used, CFs with diameters in nanometer range exhibit 

improved properties such as mechanical strength and electrical conductivities. In 

addition, CNFs have high aspect ratios and high specific surface areas, which enable 

them to greatly interact with other materials and distribute the desired function evenly 

across the host material. In the past, some studies have been conducted on the 

development of new techniques to produce CNFs and utilisation of various precursors 

including natural polymers such as cellulose. The common methods to produce CNFs are 

CVD, electrospinning and pyrolysis techniques. CVD uses carbonaceous gases as a 

precursor and metallic catalysts as a platform to grow CNFs. Electrospinning produces 

precursor nanofibres using charged polymeric solutions and an electric field initiating the 

fibre-spinning process, and the resulting polymer fibres are subsequently carbonised. 

Both CVD and electrospinning have major drawbacks. CVD grown CNFs often contain a 

high percentage of impurities. Electrospinning methods result in precursor nanofibres 

with diameters larger than 100 nm. In addition, the cost of CVD and electrospun CNFs is 

high due to slow and rather difficult production processes. The environmental concerns 

of CVD and electrospun CNFs, due to the involvement of hazardous chemical treatments, 

limit the horizons for the commercial development of such techniques. 

Carbonisation of cellulose using pyrolysis has some advantages:
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1. Cellulose is a renewable material which is widely available on earth and hence 

the cost of the precursor is low. The environmental benefit is high, as it does not 

rely on petrol-based raw materials;

2. Precursor preparation does not require hazardous chemical treatments, which add 

another environmental benefit;

3. Pyrolysis does not require facilities as complex as for CVD;

4. Pyrolysis of plant-based cellulose is theoretically carbon-neutral and hence has 

reduced environmental impacts compared with CVD and electrospinning 

techniques;

5. The pyrolysis process is relatively easy to scale up for commercial purposes.

Although the pyrolysis of bacterial cellulose or chitin-based celluloses has been 

investigated in the past, the use of plant-based CellNFs as a precursor has rarely appeared 

in the literature. This research was conducted to fill this knowledge gap by investigating 

the potential to produce CNFs by pyrolysis of plant-based CellNFs.  
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Chapter 3: Experimental

In this chapter, the details of the materials, instruments, experimental procedures and 

characterisation methods used in this research work are presented. 

3.1. Cellulose nanofibre preparation

3.1.1. Overview

The fabrication procedure of CellNFs has been detailed elsewhere [274]. Briefly, 

softwood pulp was suspended in deionised water, blended in a mixer and stirred for 48 h. 

The pulp suspension was then ball-milled for 90 min using zirconia balls. The suspension 

was then dried (using oven-drying or freeze-drying techniques) for carbonisation. 

3.1.2 Cellulose pulp suspension

Cellulose pulp (NIST standard material RM 8495 Northern Softwood Bleached Kraft 

Pulp) was kindly donated by the Australian Pulp and Paper Institute in Monash 

University. Cerium-doped zirconium oxide balls (Zirconox 0.4-0.6 mm in diameter) were 

purchased from Jyoti Ceramic Industries Pvt. Ltd. 

Cellulose pulp sheeting was cut into 5×5 cm pieces and soaked in deionised water in the 

fridge overnight. The weight ratio between the pulp and water was 99:1. Wetted cellulose 

was then defibrillated using a conventional kitchen blender and then stirred at 70oC

overnight. The cellulose suspension, thus obtained, was kept in the fridge and used as 

required. 

3.1.3. Ball milling

In order to mill the pulp suspension, 45 g of cerium-doped zirconia balls and 20 mL of 

deionised water were added to 20 g of 1wt% pulp suspension in a 70 ml polypropylene 

container. Ball-milling was performed in a Spex 8000M shaker mill for 90 min (Figure 

3.1). The CellNF suspension was then filtered to remove balls and clotted fibres using a 

polyethylene terephthalate mesh with a mesh opening of 125 μm. 
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Figure 3.1. Spex 8000M shaker mill.

 

3.1.4. Drying

For oven drying, the CellNF suspension was poured into a purpose-made aluminium foil 

container and placed in a laboratory oven at 60oC overnight. A translucent CellNF film 

was collected and used for carbonisation and characterisation. 

For freeze-drying, a small amount of CellNF suspension was poured in a flask and dipped 

and stirred in liquid nitrogen. The CellNF suspension was then vacuum dried using a 

Labconco freeze-drier for 72 h. CellNFs with a spongy appearance were collected and 

used for carbonisation and characterisation.

3.2. Carbonisation

3.2.1. Below 1000oC

A pyrolysis method was selected to carbonise CellNFs. A tubular furnace (TF55035C-1, 

Lindberg/Blue M) were used with a quartz tube with the length of 68 cm and diameter of 

2.7 cm (Figure 3.2). A small piece of sample (~ 15 mg) was placed on an alumina boat of 

85×10 ×13 mm inside the quartz tube. A nitrogen gas flow at the rate of 70 ml/min was 

introduced into the tube to create an inert atmosphere and also to constantly remove the 

evolved gases from the system. Higher flow rates would blow the samples off the tube 

while lower flow rates would not remove the by-product gases and water from the 

system. The furnace temperature was accurately calibrated so that the temperature 

variation was negligible. The heating elements were aligned along and around the tube 

hole so that a uniform heating area was facilitated for accurate sample heating. The 

nitrogen flow rate, heating rate, maximum temperature and holding time were controlled 

throughout the experiment. 
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Figure 3.2. Tube furnace, TF55035C-1, Lindberg/Blue M.

3.2.2. Above 1600oC

Graphitization experiments at temperatures above 1600oC were conducted using a 

Tanmann furnace (Figure 3.3) in the laboratory of Professor Toyoda (Applied chemistry, 

Faculty of Engineering, Oita University). The heat treatment was carried out under 

vacuum in a graphite container. The heating rate was fixed to 10oC/min. 

Figure 3.3. Tanmann furnace, school of applied chemistry, faculty of Engineering, Oita 

University.
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3.3. Characterisation of nanofibres

3.3.1. Scanning Electron Microscopy (SEM)

The morphological properties of fibres were studied with scanning electron microscopy 

(SEM, SUPRA 55P). Unlike optical microscopes that use light for imaging, SEM 

microscope uses electrons to interact with the sample and produce images of the sample 

surface. An electron beam sends out electrons to the sample. These electrons then interact 

with the atoms which make up the sample and send back electrons with specific energies 

(secondary electrons). These electrons are then collected and used for producing images 

containing information about the surface morphology of the samples. The low energy of 

secondary electrons allows them to escape only from near the sample surface (a few nm) 

and hence SEM is an excellent method to analyse surface morphology of nano-scale 

objects.

A small amount of sample was placed on a sample holder using carbon tape and was 

sputter coated with gold or carbon, using a Baltec SCD50 sputter coater. Due to the 

sensitivity of samples to high voltage, all images were taken at an acceleration voltage of 

~ 1 kV with magnifications of 5,000-10,000. The SEM images were used to calculate the 

average fibre diameters using an image analysis software (Image Pro-Plus 4. 5, Media 

Cybernetics Co., Santa Clara, CA). 

For the analysis of fibre diameters, SEM images were taken from randomly selected spots 

on the sample. All the fibers in one image were measured using Image Pro Plus software. 

Since all the fibres in one image were measured, the bias in the selection of fibres was 

minimal. On average 7-15 images were taken from one sample and fiber diameter of all 

the fibers in the images were measured. 

In this research, different magnification was used for different samples to estimate the 

fibre diameter. The magnifications of SEM images were selected based on the limitations 

arising from the sample damage caused by the electron beam. Higher magnification 

means higher concentration of electrons in one spot. It was noticed that, under high 

magnifications, cellulose fibers could be damaged by the electron beam before being 

measured. The degree of damage varied among the samples even using the same 

magnification, which reason should be further investigated. Therefore, different 
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magnifications were chosen depending on the sample’s characteristics to tolerate electron 

beams.

3.3.2. Transmission Electron Microscopy (TEM)

TEM observations of the samples were undertaken on a JEM-2100 TEM. Similar to SEM 

technique, in TEM microscopy an electron beam sends out electrons to a thin sample (< 

100 nm in thickness). The electrons interact with the sample atoms as they pass through 

the thickness of the sample. Electrons that were not scattered by the sample were 

transmitted through and were collected for producing images containing information 

about crystalline, chemical and electronic properties of the sample. Because of the very 

small wavelength of electrons (~2.5 pm for 200 keV) compared to visible light (400 –

750 nm), TEM enables the observation of nanoscale objects. 

All the samples were ultrasonically dispersed in ethanol and then a drop of the dispersion 

was dried on a copper grid covered with a carbon film. TEM images were observed 

through a Gatan image filter at an accelerating voltage of 200 keV. 

3.3.3. Fourier Transform Infrared Spectroscopy (FT-IR)

Fourier transform infrared (FT-IR) spectra were recorded by an FT-IR spectrophotometer 

(Bruker Vertex 70) to study the chemical configuration of the samples. Fourier transform 

infrared spectroscopy is a technique to analyse the chemical and crystalline properties of 

the sample. It uses a beam of infrared light that hits the sample in a wide range of 

wavelengths and measures that how much of the light is absorbed/transmitted. The 

atomic bonds that make up the sample absorb a particular wavelength of light depending 

on the characteristics of the chemical bonds. Hence the information about the types of 

chemical bonding that are present in the sample is recorded in the spectrum. 

The spectra were obtained under the condition of 64 scans per spectra at 4 cm-1

resolution. All test runs were undertaken in a controlled environment (20±2oC and 

65±2% relative humidity). The data were analysed using OPUS 5.5 software. Samples 

pallets were produced using the KBr method. The samples were diluted and evenly 

distributed in the KBr disks so that appropriate effective thickness was achieved not to 

saturate the FTIR signal.
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3.3.4. X-ray Diffraction (XRD)

The crystallinity of the samples was studied by X-ray diffraction analysis. X-ray 

diffraction technique is used to analyse the crystal structures of materials. When a 

monochromatic X-ray beam is projected onto a crystalline sample, X-ray diffraction 

occurs only in certain diffraction angles, depending on the crystal structure of the sample. 

Most atoms scatter X-ray through destructive interference in most directions whereas 

atoms that are in one lattice plane scatter the X-ray in a certain angle through constructive 

interference (Bragg’s law). The constructive interference leaves high intensity spots (or 

peaks) on the detector which is then used to analyse the crystal properties such as crystal 

symmetry, crystallite size and crystallinity. It can also be used to analyse chemical 

compositions by identifying the crystalline phases of known materials in the observed 

diffraction patterns.  

An X-ray diffraction instrument (Panalytical X'Pert PRO MRD XL) was used to obtain 

the curves at 2

Å) radiation generated at 40 kV and 30 mA. All tests were undertaken at room 

temperature and atmospheric pressure. Samples were put on glass holders and flattened

before measurement.

Crystallite sizes were calculated using the Bragg-Scherrer equation:

cos
KD (3.1), 

0.154 nm. K is the Scherrer constant, 0.94, is the diffraction peak’s full width at 

half maximum in radian. 

The degree of crystallinity was estimated using the Segal method that is frequently used 

for cellulose [320]:

Icr = Imax  IminImax  × 100 (3.2),

where Imax is the maximum intensity of the peak at 22.5o and Imin is the peak intensity of 

the amorphous fraction represented by the diffraction intensity at 19o.
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Interplanar spacing, d, is the distance between adjacent planes in the set (hkl) crystal 

plane. The has a monoclinic P21 unit cell containing two non-

equivalent chains. The periodic chains run parallel to each other forming single planar 

sheets that stack into 3D crystals [321].

3.3.5. Thermal Gravimetry/ Differential Scanning Calorimetry (TG/DSC)

Thermal properties of the samples were investigated with TG/DSC using a Netzsch 407 

PC Luxx instrument with the NETZSCH Proteus analysis software. In thermal 

gravimetry analysis (TGA), the changes in weight are measured to analyse the thermal 

behaviour/reaction of the sample. This requires precise measurements in weight, 

temperature and temperature change. By heating the sample to above decomposition 

temperature, at least one component decomposes into gas and is released from the sample 

by which the weight change can be measured. The data give information about the 

thermal characteristics of the material. In Differential Scanning Calorimetry (DSC)

analysis, the difference in the required amount of heat energy to increase the temperature 

of a sample and reference is measured. DSC allows the detection of phase changes as the 

appearance of peaks associated with endothermal or exothermal reactions, or the change 

in specific heat as the change in the slope of temperature-heat curve.

Samples of 5-10 mg were placed in an alumina crucible and measured at the heating rate 

of 10oC/min in a nitrogen atmosphere. The measurements were carried out in the 

temperature range between 30oC-1000oC under atmospheric pressure. 

3.3.6. Raman spectroscopy

Raman spectroscopy reveals the vibrational mode of atoms and molecules using a 

monochromatic light.  The shift in the wavelength of detected light from the wavelength 

of incident light, Raman shift, is associated with the energy of atomic or molecular 

vibrations/ rotations that are excited by the incident light. The vibrational/rotational 

energy is specific to chemical bondings and molecular structures.  For example, the peaks 

at 1350and 1580 cm-1 in Raman spectra of carbonadoes materials represent the vibration 

in defective graphitic structure and the tangential vibration of carbon atoms in graphitic 

layers, respectively. By comparing these two peaks, the extent of carbonisation can be 

analysed. 
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Raman spectra were obtained using an InVia Confocal microscope system (Renishaw, 

Gloucestershire, UK) with 514 nm excitation from a Modu-Laser Stellar-Pro ML/150 

argon ion laser through a X20 (0.4 na) objective. Nanofibre samples were packed into a 2 

mm cavity cell held on a 250 mm × 750 mm plate. Incident laser power was 1.1 mW and 

coaxial backscatter geometry was employed. Use of higher laser power was found to 

cause decomposition of the nanofibres. Laser power was measured at the sample using an 

Ophir Nova power meter fitted with a PD300-3W head. Spectra were collected over the 

range 3200 cm-1 to 200 cm-1 and averaged over at least 5 scans, each with an 

accumulation time of 40 s. Signal to noise was further reduced by averaging a minimum 

of two spectra obtained from different areas of the sample. These spectra were found to 

be highly reproducible. The Raman shifts were calibrated using the 520 cm-1 line of a 

silicon wafer. The spectral resolution was ~ 1 cm-1.
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Chapter 4: Carbonisation of oven-

dried cellulose nanofibre

4.1. Introduction 

In this chapter, the pyrolysis of oven-dried CellNFs under atmospheric pressure and inert 

environment was investigated using controlled heating conditions. An oven-drying 

method was selected as the first drying technique to investigate its suitability for the 

production of carbon nanofibres, as the methods is simple and easily scalable. The oven 

drying method leaves a compact network of nanofibres due to strong hydrogen bonding 

between nanofibres. The effect of heat treatment conditions on the properties of 

carbonised residue was investigated using TGA, SEM, XRD and FT-IR. 

4.2. Experimental procedure

4.2.1. Carbonisation equipment

The pyrolysis of oven-dried CellNFs was carried out using the tube furnace as described 

in Chapter 2. In order to study the pyrolysis effect on the original CellNFs and for the 

experimental accuracy, one batch of oven-dried CellNFs was split into two identical 

batches. Small pieces of one batch of oven-dried CellNFs (1cm×1 cm) were placed on the 

boat and placed in the middle of a quartz tube. The other batch was used for comparison 

with the pyrolysis results. 

4.2.2. Carbonisation conditions

As discussed in chapter 2, it has been reported that the pyrolysis of cellulose comprises 

four stages: dehydration of physically absorbed water (25oC - 180oC), inter and intra 

molecular dehydration (180-250oC), depolymerisation (240 -350oC) and aromatization 

(over 350oC). Therefore, separate investigations in these temperature ranges are crucial to 

understand the pyrolysis characteristics of oven-dried CellNF. 

Heating the CellNFs above 180oC is expected to cause the internal dehydration from the 

cellulose molecules. H2O is formed by connection of and OH group and hydrogen in the 
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cellulose molecules. Cellulose dehydration continues up to 250oC where the major stage 

in decomposition is initiated. It was suggested that if hydrogen and oxygen were 

completely released from the cellulose molecules prior to the decomposition stage, the 

interference of these elements with carbon atoms would be minimum during cellulose 

decomposition. This has two advantages: 1) less carbon atoms are released from the 

molecules in the form of gas, so that less mass loss occurs, 2) upon completion of the 

decomposition, presence of oxygen and hydrogen complexes in the carbon residue would 

be minimal. Thus, holding CellNFs below 180oC would affect the CellNF properties and 

the pathways in which cellulose converts into carbon. The carbon residue would retain its 

original cellulosic morphology. In order to study such effects, three holding times of 1, 2 

and 3 h at 170oC, a slightly lower temperature than 180oC where the internal dehydration

starts, were investigated. Likewise, heating conditions up to 240oC, a slightly lower 

temperature than 250oC where the decomposition starts, were investigated.

Table 4.1 shows the heat treatment conditions selected for carbonisation of oven-dried 

CellNFs. Past studies showed that higher heating rates leads to higher mass loss and 

formation of tarry by-products whereas lower heating rates prohibits such results, for 

conventional micron sized cellulose [146]. Hence, different heating rates of 1oC/min, 

2oC/min and 10oC/min, were selected in this temperature range. 
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Table 4.1. Heat treatment conditions.

Sample 
ID

Target 
temperature 1

Target 
temperature 2

Target 
temperature 

3

Heating 
rate

(oC/min)

Temp. 

(oC)

Residence 
time (h)

Heating 
rate

(oC/min)

Temp. 
(oC)

Residence 
time (h)

Heating 
rate

(oC/min)

Temp. 

(oC)

NF1 1 170 — — — — — —

NF2 2 170 — — — — — —

NF3 10 170 — — — — — —

NF4 10 170 1 — — — — —

NF5 10 170 2 — — — — —

NF6 10 170 3 — — — — —

NF7 10 170 1 1 240 — — —

NF8 10 170 1 2 240 — — —

NF9 10 170 1 10 240 — — —

NF10 10 170 1 1 240 1 — —

NF11 10 170 1 1 240 2 — —

NF12 10 170 1 1 240 3 — —

NF13 10 170 1 1 240 3 1 400

NF14 10 170 1 1 240 3 2 400

NF15 10 170 1 1 240 3 10 400

4.3. Results and discussion

4.3.1. Characteristics of oven-dried CellNFs before heat treatment

4.3.1.1. Morphology 

Figure 4.1 (a) shows the SEM image of the oven-dried CellNFs. Oven-drying left a very 

compact film of fibres and little spatial gaps exist between the fibres. This suggested that 

cellulosic chains from neighbouring nanofibres could form hydrogen bonding and joined 

together. Figure 4.1(b) shows the fibre diameter distribution analysed from SEM images. 
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The fibre diameter distribution is in good agreement with the previous report by Zhang et 

al. [274].

Figure 4.1. (a) SEM image of the oven-dried CellNFs and (b) fibre diameter distribution 

analysed from SEM images.

4.3.1.2. Crystallinity

Figure 4.2 shows the XRD graphs of the oven-dried CellNFs and softwood pulp. It is 

shown that the characteristic peak of cellulose occurs at 22.5o, indicating that the 

cellulose-I crystal structure was maintained after ball-milling and drying. CellNFs show 

main peaks at 15 o, 16o, 22.5o and 34.1o associating with the (110), (200) and (004) 

lattice planes. 

Figure 4.2. XRD graphs of softwood pulp and oven-dried CellNFs.

Table 4.2 shows the crystalline properties of softwood pulp and oven-dried CellNFs. 

Preparation of CellNFs including ball-milling did not drastically change the crystal 

properties. 
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Table 4.2. Crystal size D, index of crystallinity Icr, and interplanar distances d, of raw 

pulp and oven-dried CellNFs, estimated from XRD patterns.

2 theta 
(deg)

hkl d
(Å)

Dcr
(nm)

Icr (%)

Softwood 
pulp

16. 1 o 110, 1-10 5. 4
22. 5 o 200 4. 1 3. 6 73
34. 1 o 004 2. 6

Oven-
dried 

CellNFs

16. 1 o 110, 1-10 5. 5
22. 5 o 200 3. 9 3. 5 71
34. 1 o 004 2. 6

4.3.1.3. Chemical bonding

Figure 4.3 shows the FT-IR spectra of softwood pulp and oven-dried CellNFs. The 

spectra are identical with each other which indicate that CellNF preparation did not 

change the molecular structure of CellNFs. 

Figure 4.3. FT-IR spectra of softwood pulp and oven-dried CellNFs.

4.3.1.4. Thermal properties

Figure 4.4 shows the thermal behaviour of the oven-dried CellNFs when heated with a 

rate of 10oC/min up to 600oC. The chemical breakdown process started from around 

250oC and completed at ~360oC. From the TG graph, it was evident that the sample lost 

80% of its original weight. From the DSC graph, it was noted that a peak occurred at 

353oC and indicates that the decomposition stage is an endothermic process. 
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Figure 4.4. TGA/DSC graphs of CellNFs.

4.3.2. Effects of heating conditions below 170oC

4.3.2.1. Morphology

Figure 4.5 shows the SEM images of the samples heated to 170oC with heating rates of 1, 

2, and 10oC/min. The fibrous morphology was retained during the heat treatment under 

the three heating rates. The macroscopic morphology of the resultant materials was 

similar to the original CellNFs (Figure 4.1). It is also evident from the SEM images that 

nanofibres were greatly compacted after heating and little space was remained between 

the fibres. 

Figure 4.5. SEM images of heat treated samples to 170oC with heating rate of 1oC/min 

(NF1), 2oC/min (NF2) and 10oC/min (NF3).
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4. 3. 2. 2. Crystallinity

Figure 4.6 Shows the XRD patterns of the samples heat treated with the three heating 

rates. The position of the main peak at ~ 22.5o did not change with the heating rate. 

However, the peak at ~ 15o shifted to a slightly higher angle in the samples NF1 and NF2 

with low heating rate (1 and 2oC/min respectively). This may suggest the formation of a 

disordered state of cellulose-I structure [322], but further detailed investigation is 

required to confirm the structural change during heat treatment at such a low temperature 

range. 

Figure 4.6. XRD graphs of heat treated samples with heating rates of 1oC/min (NF1), 

2oC/min (NF2) and 10oC/min (NF3).

 

Table 4.3 lists the estimated crystal size D, index of crystallinity Icr, and interplanar 

distances d, after heat treatment. It is evident that heating the CellNFs up to 170oC did not 

affect the crystallinity and crystallite size (see Tables 4.2 and 4.3). Hence, the crystal 

structure of CellNFs showed little change up to this temperature irrespective of heating 

rate.



Chapter 4

46 
 

Table 4.3. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples with various heating rate, estimated from XRD patterns.

Heating 
rate

2 theta 
(deg)

hkl d
(Å)

D cr
(nm)

Icr 
(%)

1oC/min 16. 1 o 110, 1-10 5.4
22. 5 o 200 3.9 3.7 73
34. 1 o 004 2.6

2oC/min 16. 1 o 110, 1-10 5.7
22. 5 o 200 4.0 3.6 70
34. 1 o 004 3.3

10oC/min 16. 1 o 110, 1-10 5.8
22. 5 o 200 3.9 3.7 71
34. 1 o 004 2.3

4.3.2.3. Chemical structure

Figure 4.7 shows the FT-IR spectra of CellNFs heated to 170oC with the three heating 

rates. Characteristic peaks of cellulose occur between 1000 cm-1 to 1500 cm-1 as shown in 

Figure 4.7(b). These peaks were assigned to the chemical bonds in the cellulose 

molecules (Table 4.4). Figure 4.7 shows that these three spectra are identical and no peak 

shift was observed. This indicates that heating to 170oC does not alter the chemical 

configuration of CellNFs and that the heating rate does not influence the chemical 

bondings in CellNFs.
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Figure 4.7. FT-IR spectra of heat treated CellNFs with heating rates of 1oC/min (NF1), 

2oC/min (NF2) and 10oC/min (NF3); (a) 4000-800cm-1, (b) 2000-800cm-1.

Table 4.4. Assignment of FT-IR peaks to chemical bonds.

Wavenumber (cm
-1

) Chemical bond
1112 C-OH
1163 C-O
1227 O-H
1277 C-H
1315 CH

2
1336 O-H
1365 C-H
1428 CH

2

4.3.3. Effect of holding time at 170oC

4.3.3.1. Morphology

Figure 4.8 shows the SEM images of the CellNFs held at 170oC for 1, 2 and 3 h, 

respectively. These images indicate that the morphological properties remained intact 

although dehydration and formation of H2O from the cellulose molecule have already 
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started (180oC -250oC) (see the TG/DSC data Figure 4.4). The average fibre diameter

before and after each experiment was calculated from the SEM images and are shown in 

Figures 4.1(b) and 4.9. The Average fibre diameter did not show remarkable changes

before and after heat treatment at 170oC for various holding times. This suggests that 

major decomposition process of cellulose was not initiated at this temperature. 

Figure 4.8. SEM images of heat treated samples at 170oC, with holding times of 1 h 

(NF4), 2 h (NF5) and 3 h (NF6).

Figure 4.9. Fibre diameter distribution (average of three samples) of NF4, NF5 and NF6
estimated from SEM images.
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4.3.3.2. Crystallinity

Figure 4.10 Shows the XRD graphs of CellNF samples heated to 170oC and held for 

various times. These three XRD patterns of heat treated samples show similar patterns to 

that of CellNFs before heat treatment. The position of the main peak at ~ 22.5o did not 

change with heating rate. However, the peak at ~ 15o shifted to a slightly higher degree in 

the samples NF4 and NF5 with long holding times (2 and 3 h respectively). This may 

suggest the formation of a disordered state of cellulose-I structure [322], but further 

detailed investigation is required to confirm the structural change during heat treatment at

such a low temperature range.

Figure 4.10. XRD graphs of heat treated samples at 170oC with holding times of 1 h 

(NF4), 2 h (NF5) and 3 h (NF6).

Table 4.5. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples with various holding times, estimated from XRD patterns.

Holding 
time

2 theta 
(deg)

hkl d
(Å)

D cr
(nm)

Icr(%)

3 h 16.1 o 110, 1-10 4.3
22.5 o 200 3.8 3.8 72
34.1 o 004 2.9

2 h 16.1 o 110, 1-10 5.1
22.5 o 200 4.3 3.5 70
34.1 o 004 3.3

1 h 16.1 o 110, 1-10 5.5
22.5 o 200 3.9 3.9 72
34.1 o 004 2.9

Table 4.5 lists the estimated crystal size D, index of crystallinity Icr, and interplanar 

distances d, after heat treatment. It is noted that the crystalline properties of heat treated 
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CellNFs did not change dramatically. This indicates that heat treatment at 170oC has little 

effect on the structure of the material irrespective of holding time.

4.3.3.3. Chemical structure

Figure 4.11 shows the FT-IR spectra of CellNFs heat treated at 170oC for 1, 2 and 3 h. It 

is noted that the FT-IR spectra of heat treated cellulose resemble the one before heat 

treatment (Figure 4.3) indicating that external dehydration, not internal one, was mainly 

taking place at this temperature. 

Figure 4.11. FT-IR spectra of heat treated CellNFs with holding times of 1 h (NF4), 2 h 

(NF5) and 3 h (NF6).

 

4.3.4. Effect of heating rate between 170oC to 240oC

4.3.4.1. Morphology

Figure 4.12 shows the SEM images of the samples after heating up to 240oC with various 

heating rates. These images show that fibrous morphologies from different heating rates 

resemble the original ones. Between 170oC to 240oC internal dehydration mainly takes

place which comprises connection of OH groups with H atoms in the cellulose molecules 

and formation of water molecules. 
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Figure 4.12. SEM images of samples heat treated to 240oC, with heating rates of 1oC/min 

(NF7), 2oC/min (NF8) and 10oC/min (NF9).

4.3.4.2. Crystallinity

Figure 4.13 shows the XRD patterns of the samples before and after heating up to 240oC. 

The sharp peak at 22.5o indicates that the cellulosic structure still remained at 240oC and 

that the difference in heating rate in the temperature range between 170oC and 240oC

does not influence the crystal structure. 

Figure 4.13. XRD patterns of heat treated CellNFs, with heating rates of 1oC/min (NF7), 

2oC/min (NF8) and 10oC/min (NF9).
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Table 4.6. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples with various heating rates between 170oC to 240oC, estimated from XRD 

patterns.

Heating
rate

2 theta 
(deg)

hkl d
(Å)

D cr
(nm)

Icr(%)

1oC/min 16.1 o 110, 1-10 3.8
22.5 o 200 3.6 3.1 70
34.1 o 004 2.7

2oC/min 16.1 o 110, 1-10 4.3
22.5 o 200 5.1 2.9 70
34.1 o 004 3.7

10oC/min 16.1 o 110, 1-10 5.1
22.5 o 200 3.8 3.7 71
34.1 o 004 2.6

4.3.4.3. Chemical structure

Figure 4.14 shows FT-IR spectra of the samples heat treated to 240oC. The FT-IR spectra 

of the samples were identical to that of CellNFs before heat treatment, except the 1700 

cm-1 band which was not identified and is a subject of further study. 1112 cm-1 and 1165 

cm-1 bands assigned to CH2 and OH groups were still present in the FT-IR spectra. The 

results indicate that cellulosic chemical configuration seemed to have not changed by the 

heat treatment regardless of heating rate.

Figure 4.14. FT-IR spectra of heat treated samples, with heating rates of 1oC/min (NF7), 

2oC/min (NF8) and 10oC/min (NF9).
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4.3.5. Effect of holding time at 240oC

4.3.5.1. Morphology

Figure 4.15 shows the SEM images of oven-dried CellNFs held at 240oC for 1, 2 and 3 h.

It is noted that CellNFs still maintained their fibrous morphologies. The average fibre 

diameter was measured for three heat treated samples separately and averaged in order to 

analyse the fibre diameter after heat treatment. The average fibre diameter was 33.58 nm 

which is identical the oven-dried CellNFs (Figure 4.16). 

Figure 4.15. SEM images of samples held at 240oC, with holding times of 1 h (NF10), 2 

h (NF11) and 3 h (NF12).
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Figure 4.16. Fibre diameter distribution (average of NF-10, NF11 and NF12) estimated 

from SEM images.

4.3.5.2. Crystallinity

Figure 4.17 shows the XRD results for the samples held at 1, 2 and 3 h. The peak at 22.5o

was evident in all samples indicating that the cellulose-I crystal structure was retained 

[145].

Figure 4.17. XRD graphs of samples heat treated at 240oC, with holding times of 1 h 

(NF10), 2 h (NF11) and 3 h (NF12).
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Table 4.7. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples with various holding time at 240oC, estimated from XRD patterns.

Holding 
time

2 theta 
(deg)

hkl d
(Å)

D cr
(nm)

Icr(%)

3 h 16.1 o 110, 1-10 4.3
22.5 o 200 4.2 3.7 70
34.1 o 004 3.1

2 h 16.1 o 110, 1-10 5.3
22.5 o 200 3.5 2.9 68
34.1 o 004 3.8

1 h 16.1 o 110, 1-10 5.4
22.5 o 200 3.3 3.9 69
34.1 o 004 2.4

4.3.5.3. Chemical structure

Figure 4.18 shows FT-IR spectra of heat treated samples heat treated at 240oC. The FT-

IR spectra show rather similar spectra to that of freeze-dried CellNFs before heat 

treatment. Cellulosic peaks in the spectra were identical for the three different holding 

times. No major change in the band position or disappearance of bands from the spectra 

was recorded. The result indicates that the difference in holding time at 240oC did not 

influence the chemical structure of cellulose. This is in agreement with the XRD results 

(Figure 4.17) indicating that the crystalline structure of the cellulose was also maintained. 

Figure 4.18. FT-IR spectra of heat treated samples, with holding times of 1 h (NF10), 2 h 

(NF11) and 3 h (NF12).
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4.3.6. Effect of heating rate between 240oC to 400oC

4.3.6.1. Morphology

Figure 4.19 shows the SEM images of the samples heat treated at 400oC. It is shown that 

the fibrous morphology was greatly damaged and a film-like structure was formed. Some 

traces of fibres were evident in the sample heated with the heating rate of 1oC/min. It is 

also shown that heating rate of 10oC/min resulted in agglomerated particles on the 

surface. 

Figure 4.19. SEM images of heat treated samples to 400oC, with heating rates of 1oC/min 

(NF13), 2oC/min (NF14) and 10oC/min (NF15).

4.3.6.2. Crystallinity

Figure 4.20 shows the XRD patterns of the samples when heated to 400oC. The 

diffraction peak at 22.5o that is associated with cellulose-I structure disappeared. This 

indicates that the resultant material was amorphous. 
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Figure 4.20. XRD graphs of samples heat treated at 400oC, with heating rates of 1oC/min 

(NF13), 2oC/min (NF14) and 10oC/min (NF15).

4.3.6.3. Chemical structure

Figure 4.21 shows the FI-TR spectra of the samples heated to 400oC. Cellulosic 

characteristic bands were no longer observed in these samples. The peaks at 1603 cm-1

and 1703 cm-1 were assigned to C=O and C=C groups. The formation of C=C is the first 

step in progressing into graphitization at higher temperatures. However, the XRD results 

indicate that no long range atomic order associated with the graphene structure was

formed at this temperature. 
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Figure 4.21. FT-IR spectra of samples, with heating rates of 1oC/min (NF13), 2oC/min 

(NF14) and 10oC/min (NF15); a) 4000-800cm-1, (b) 2000-800cm-1.

 

4.4. Conclusion

In this chapter, the effect of low-temperature heat treatment of oven-dried CellNFs on the 

morphology, crystal structure and chemical bonding was studied. Cellulose 

decomposition comprises 3 main stages: (i) physical dehydration from the surface, (ii) 

internal dehydration from the cellulose molecule and (iii) the breakdown of the glycosidic 

rings into volatile gases and water. The effects of pyrolysis conditions such as heating 

rate, holding time and maximum temperature in each decomposition stage were 

investigated. 

Oven-drying left a compact network of cellulose fibres which connected to each other via 

hydrogen bonding. Between 25oC to 170oC, neither the heating rate nor the holding time 

altered the cellulosic structure. The glycosidic rings still maintained the chain-like 

structure of cellulose alongside with the strong hydrogen bonding. 
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However, XRD study showed that holding the oven-dried CellNFs at 170oC altered the 

crystal structure to cellulose-I . Further study is required to confirm the phase transition, 

preferably by using synchrotron radiation. The change in crystal phase, however, did not 

break the glycosidic rings and the fibrous structure. 

Furthermore, the oven-dried CellNFs samples showed little response to heat treatment to 

240oC. Various heating rates did not change the cellulosic chemical or crystal structures; 

hence the samples maintained their fibrous morphology. Holding time at 240oC did not 

cause changes in cellulosic chemical and crystalline properties. The nanofibres retained

their original fibrous morphology after various holding times. 

Heating the samples up to 400oC caused cellulosic rings to break down. As a result, a 

carbon rich residue was formed. The morphological properties were independent of 

heating rate from 240oC to 400oC. Furthermore, the crystal and chemical properties of the 

samples were not influenced by heating rates. 

Upon carbonisation, the original fibrous morphologies were lost. It appeared in the SEM 

images that the oven-dried CellNF sheets were transformed into sheet-like carbon 

residues. This may be caused by the fact that the distance between CellNFs was close 

enough to form bridging between fibres during carbonisation. As will be investigated in 

the next chapter, different drying technique resulting in wider spatial distance between 

fibres may results in different morphological characteristics of residual carbon. 
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Chapter 5: Carbonisation of freeze-

dried cellulose nanofibre
 

5. 1. Introduction 

In the previous chapter, it was shown that oven-drying of CellNFs aqueous suspensions 

results in a compact network of nanofibres which were closely packed in the form of a 

translucent sheet-like structure. It was suggested that this close packing of CellNFs led to 

the destruction of fibrous structures in carbonised samples. On the other hand, freeze 

drying of CellNFs would retain the spatial gap between the fibres, and hence the 

carbonisation of freeze dried CellNFs would show characteristics different to that of 

carbonised oven-dried CellNFs. In this chapter, pyrolysis of freeze-dried CellNFs under 

atmospheric pressure and inert environment was investigated using controlled heating 

conditions. The freeze drying method leaves a network of nanofibres with spatial distance 

between the fibres and turns them into spongy looking masses. The effect of heat 

treatment conditions on the freeze-dried CellNFs and the carbonised residues was 

investigated using TGA, SEM, XRD and FT-IR. The results were compared with those

from oven-dried CellNFs and the decomposition mechanism of CellNFs was discussed.

5.2. Experimental procedure

5.2.1. Freeze-drying

The procedure to produce CellNFs was described in chapter 3. A small amount of CellNF 

suspension was poured in a flask and dipped and stirred in liquid nitrogen. The CellNFs 

were then vacuum dried using a Labconco freeze-drier for 72 h during which water is 

removed. A spongy looking CellNF mass was collected which was used for carbonisation 

and characterisation. 

5.2.2. Pyrolysis

Freeze-dried CellNFs were pyrolysed using a Lindberg tube furnace by gradually 

increasing the temperature to 400oC. The instrument calibration was carried out prior to 

experiments so that temperature variation was negligible. 
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An alumina boat was used to hold the samples in the tube. The macroscopic appearance 

of freeze-dried CellNFs was a spongy looking patch containing nanofibres. Small pieces 

of samples (1cm×1 cm) were cut and placed on the boat and was then put in the tube. 

Nitrogen gas was blown into the tube to create an inert atmosphere in the system. The 

flow rate was chosen to be 70 ml/min. Higher flow rates would blow the sample off the 

system whereas lower flow rates would not remove the by-product gases and water 

(which were produced from cellulose decomposition) from the system during pyrolysis. 

5.2.2. Carbonisation of freeze-dried CellNFs

Table 5.1 shows the heat treatment conditions selected for carbonisation of freeze-dried 

CellNFs. The heating parameters were selected because of the same reasons as for oven-

dried samples described in the previous chapter. 

Table 5.1. Heat treatment conditions.

Sample 
ID

Target 
temperature 1

Target 
temperature 2

Heating 
rate

(oC/min)

Temp. 

(oC)

Residence 
time (h)

Heating 
rate

(oC/min)

Temp. 
(oC)

Residence 
time (h)

NF16 10 170 0 — — —

NF17 10 170 2 — — —

NF18 10 170 3 — — —

NF19 10 170 0 1 240 —

NF20 10 170 0 2 240 —

NF21 10 170 0 10 240 —

NF22 10 240 1 — — —

NF23 10 240 3 — — —

NF24 10 240 17 — — —

NF25 10 240 17 1 400 —

NF26 10 240 17 10 400 —

NF27 10 240 1 1 400 —
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Figure 5.1(a) shows the TG/DSC curves of freeze-dried CellNFs. Below 170oC, the mass 

loss was insignificant (<1%). Upon further heating to 240oC, the mass loss started to 

increase. The DSC curve in Figure 5.1(a) shows a peak at 360oC due to an endothermic 

reaction associated with the breakage of glycosidic rings of cellulose. CellNFs lost 81% 

of their weight between 240oC and 370oC. Further heating above 370oC caused negligible 

mass loss, indicating the near completion of the decomposition of cellulose and formation 

of a carbonaceous residue above 370oC. Figure 5.1(b) shows the mass loss of the sample 

during isothermal heat treatment at 240oC. After heat treatment for 1100 min, the mass 

loss nearly reached a plateau during which ~40% of its weight was lost. Based on this

result, the effect of holding times of 0 h, 3 h (where weight loss was ~ 20%) and 17 h

(where weight loss was ~ 40%) was investigated.

Figure 5.1. (a) TG/DSC graphs of CellNFs and (b) mass loss at 240oC as a function of 

holding time.

5.3. Results and Discussion 

5.3.1. Effect of holding time at 170oC

5.3.1.1. Morphology

Figure 5.2 shows the SEM images of the samples at 170oC held for 0, 2 and 3 h. The fibre 

diameter distributions are also shown in Figure 5.2. It is noted that the fibrous 

morphology was retained after heat treatment. The average fibre diameter for the three 

heat treatment conditions is shown in Figure 5.2. The fibres show average diameters of <

50 nm. 
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(a)

(b)

(c)

Figure 5.2. SEM images and fibre diameter distributions of heat treated samples at 170oC,

with holding time of (a) 0 h (NF16), (b) 2 h (NF17) and (c) 3h (NF18).

5.3.1.2. Crystallinity

Figure 5.3 Shows the XRD patterns of the samples heat treated with three holding times 

at 170oC. The XRD pattern of freeze dried CellNFs before heat treatment is also shown 

for comparison. Freeze-dried CellNFs show a sharp peak at 22.5o. This peak was 

assigned to the (200) lattice plane in cellulose-I crystal structure. This peak was observed 

in all the samples heat treated with various holding times indicating that the glycosidic 

rings have not been deformed by such pyrolysis conditions. As for the oven-dried 
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samples (Figure 4.10), the peak at ~ 15o shifted to a slightly higher degree in the samples 

NF17 and NF18 with long holding times (2 h and 3 h respectively), suggesting the 

formation of a disordered state of cellulose-I structure.

Figure 5.3. XRD patterns of freeze-dried sample before heat treatment and heat treated 

samples at 170oC, with holding time of 0 h (NF16), 2 h (NF17) and 3h (NF18).

Table 5.2. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples at 170oC with various holding times, estimated from XRD patterns.

Holding 
time

2 theta 
(deg)

hkl d (Å) Dcr (nm) Icr 

3 h 16. 1 o 110, 1-10 4. 3

22. 5 o 200 3. 8 3. 5 69

34. 1 o 004 2. 9

2 h 16. 1 o 110, 1-10 5. 1

22. 5 o 200 4. 3 3. 5 70

34. 1 o 004 3. 3

1 h 16. 1 o 110, 1-10 5. 5

22. 5 o 200 3. 9 3. 9 72

34. 1 o 004 2. 9

The crystal parameters of the heat treated CellNFs was calculated from the XRD patterns 

as shown in Table 5.2. It is evident that the crystal properties of heat treated CellNFs did 

not change dramatically with holding time. 
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5.3.1.3. Chemical bonding

Figure 5.4 shows the FT-IR spectra of freeze-dried CellNFs and heat treated samples at 

170oC. The peaks were assigned to the chemical bonds listed in Table 4.4. For the sample 

with holding time of 0 and 2 hrs, the FT-IR spectra were nearly identical to that of un-

heat treated sample. However, in the spectrum of the sample held for 3 h (NF18), the 

relative intensities of the peaks at 1025 cm-1 and 1050 cm-1 (associated with C-OH bonds 

at the 1st and 2nd alcohols in the glucose rings), compared to the peak at 1112 cm-1

(associated with C-O-C glycoside links in the cellulose chain), were reduced. This 

suggests that internal dehydration started to occur after holding the temperature at 170oC

for 3 h.

Figure 5.4. FT-IR spectra of heat treated samples at 170oC with holding times of (a) 0 h 

(NF16), (b) 2 h (NF17) and (c) 3h (NF18); (a) 4000-800 cm-1, (b) 2000-800 cm-1.

5.3.1.4. Discussion on the effect of holding time at 170oC

The SEM images show that the temperature at 170oC was not enough to initiate 

decomposition of cellulosic rings (glycosidic rings) and hence the fibrous structure was 

maintained during heat treatment. According to the FT-IR spectra, internal dehydration 

may have started at 170oC though XRD study showed that the cellulose-I crystal structure 

was still retained. 

5.3.2. Effect of heating rate between 170oC to 240oC

For the heat treatment up to 240oC, a residence time of 0 h was selected at 170oC.
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5.3.2.1. Morphology

Figure 5.5 shows SEM images of the samples heat treated from 170oC to 240oC with 

heating rates of 1oC/min, 2oC/min and 10oC/min. The nanofibres retained their fibrous 

morphology with heating rates of 1oC/min and 2oC/min. The average fibre diameter 

measured for three samples showed similar value of 27 nm. It is noted that a heating rate 

of 10oC/min caused some damage to the fibrous structure in some areas, as indicated with 

arrows in Figure 5.5.

Figure 5.5. SEM images of freeze-dried samples heat treated samples to 240oC with 

heating rates of 1oC/min (NF19), 2oC/min (NF20) and 10oC/min (NF21).

Figure 5.6. Fibre diameter distribution (average of NF19, NF20 and NF21) estimated 

from SEM images.
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5.3.2.2. Crystallinity

Figure 5.7 shows the XRD patterns of the samples with different heating rates. The peak 

associated with the cellulose-I structure was observed at 22.5o for these samples. A broad 

peak at 16.1o also indicates that crystallinity has not been altered severely. Difference in 

heating rates between 170oC to 240oC did not greatly influence the crystal structure. 

Table 5.3 lists the crystal properties of the samples NF19, NF20 and NF21. The crystal 

size was reduced as the heating rate decreased.

Figure 5.7. XRD graphs of freeze-dried samples heat treated to 240oC with heating rates 

of 1oC/min (NF19), 2oC/min (NF20) and 10oC/min (NF21).

Table 5.3. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples at 240oC with various heating rates estimated from XRD patterns.

Heating 
rate 

(oC/min)

2 theta 
(deg)

hkl d (Å) D cr(nm) Icr

1 16. 1 o 110,1-10 4. 5

22. 5 o 200 3. 4 2. 2 69

34. 1 o 004 3. 1

2 16. 1 o 110,1-10 4. 2

22. 5 o 200 4. 2 3. 9 70

34. 1 o 004 3. 3  

10 16 o 110,1-10 4. 6  

22. 5 o 200 3. 9 3. 6 72

34. 1 o 004 2. 89
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5.3.2.3. Chemical structure

Figure 5.8 shows the FT-IR spectra of samples heated to 240oC with three different 

heating rates. Peaks at 1336 cm-1 and 1365 cm-1 corresponding to O-H and C-H were still 

present in the spectra. Hence the difference in heating rates between 170oC to 240oC did 

not cause noticeable structural change within the molecule. 

As described earlier, the bands at 1025 cm-1 and 1050 cm-1 were assigned to the vibration 

of C-OH bonds at the 1st and 2nd alcohols in the glucose rings, and 1112 cm-1 was 

assigned to C-O-C glycoside links in the cellulose chain [323-326]. It is evident in Figure 

5.8(b) that the relative intensities of the peaks at 1025 cm-1 and 1050 cm-1, compared to 

the peak at 1112 cm-1, were reduced as the heating rate decreased. This indicates that, 

longer heat treatment between 170oC and 240oC induced more removal of the OH bonds 

via dehydration processes, while glycoside link remained intact.

Figure 5.8. FT-IR spectra of freeze-dried samples heat treated to 240oC with heating rates 

of 1oC/min (NF19), 2oC/min (NF20) and 10oC/min (NF21); (a) 4000-800 cm-1, (b) 2000-

800 cm-1.

 

5.3.2.4. Discussion on the effect of heating rate between 170oC and 240oC

The SEM images show that fast heating rate of 10oC/min between 170oC and 240oC may 

influence the morphology by causing fusion of fibres and formation of film-like 

structures. However, according to the data shown in Figure 5.7 and Figure 5.8, the 

difference in heating rate caused no significant changes in crystal structures. However,

further internal dehydration was initiated when the sample was heated longer. These 
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results show that slow heating rate between 170oC and 240oC is necessary to maintain the 

fibrous morphology of heat treated samples.

5.3.3. Effect of holding time at 240oC

5.3.3.1. Morphology

Figure 5.9 shows the SEM images of the samples held at 240oC for 0h, 3h and 17 h. The 

images did not show any distinct difference in morphology between the samples heat 

treated for different holding times at 240oC. The average fibre diameter was measured for 

three samples and was ~27 nm.

Figure 5.9. SEM images of freeze-dried samples heat treated to 240oC with holding times 

of 0 h (NF22), 3 h (NF23) and 17 h (NF24).
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Figure 5.10. Fibre diameter distribution (average of NF22, NF23 and NF24) estimated 

from SEM images.

5.3.3.2. Crystallinity

Figure 5.11 shows the XRD patterns of the samples when held at 240oC for 0h, 3h and 

17h. Table 5.4 shows the crystal properties of the samples estimated from the diffraction 

peaks at 16.1o, 22.5o and 34.1o. The values of d and D are similar to these of the samples

held at 170oC. The results indicate that cellulose has retained its crystal structure 

irrespective of holding times.

Figure 5.11. XRD graphs of freeze-dried samples heat treated to 240oC with holding 

times of 0 h (NF22), 3 h (NF23) and 17 h (NF24).
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Table 5.4. Crystal size D, index of crystallinity Icr, and interplanar distances d, of heat 

treated samples with various holding times at 240oC estimated from XRD patterns.

Holding 
time (h)

2 theta 
(deg)

hkl d (Å) D cr(nm) Icr

0 16. 1 o 110, 1-10 4. 7  

22. 5 o 200 4. 1 2. 5 62 

34. 1 o 004  

3 16. 1 o 110, 1-10 4. 6  

22. 5 o 200 3. 8 3. 9 60 

34. 1 o 004  

17 16.1 o 110, 1-10 4. 2  

22. 5 o 200 4. 6 3. 9 60 

34. 1 o 004  

5.3.3.3. Chemical structure

Figure 5.12 shows the FT-IR spectra of the freeze-dried samples when held at 240oC for 

0, 3 and 17 h. The spectra of samples NF16-NF23 resembled the spectrum of CellNFs. 

The bands at 1025 cm-1 and 1050 cm-1 were assigned to the vibration of C-OH bonds at 

the 1st and 2nd alcohols in the glucose rings, and 1112 cm-1 was assigned to C-O-C

glycoside links in the cellulose chain (Figure 5.12b) [323-326]. It is evident that the 

relative intensities of the peaks at 1025 cm-1 and 1050 cm-1, compared to the peak at 1112

cm-1, were further reduced in NF24 from that in CellNFs. This indicates again that longer 

heat treatment below 240oC induced the removal of the OH bonds by internal 

dehydration processes, while glycoside link remained intact.
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Figure 5.12. FT-IR spectra of freeze-dried samples heat treated to 240oC with holding 

times of 0 h (NF22), 3 h (NF23) and 17 h (NF24); (a) 4000-800 cm-1, (b) 2000-800 cm-1.

5.3.3.4. Discussion on the effect of holding time at 240oC

The results show that holding time at 240oC did not influence the morphology and crystal 

structure of heat treated samples. It is interesting to note that, even after 17 h of holding 

time, cellulose-I crystal structure was retained even after the mass loss of ~ 40 %. Similar 

results were also reported by Davidson and Losty [159]. The removal of hydrogen and 

oxygen from cellulose molecules continued as the heat treatment prolonged. Based on the 

results, two possible explanations can be drawn: a) dehydration was mostly taking place 

which was temperature-sensitive and b) the C=O formation seems to be reversible due to 

release of hydroxyl groups. The date indicates that glycosidic rings or C-O-C bonds (1, 4-

been present in the molecule resulting the XRD peaks at 16.1o and 22.5o.

5.3.4. Effect of heating rate to 400oC

In order to investigate the effect of heat treatment condition in 240-400oC, the samples 

were heated to 240oC where they were held for 1h and 17 h. They were then heated to 

400oC by 1oC/min and 10oC/min. Such experimental procedure was designed in order to 

distinguish the effects of heating rate and holding time. 

5.3.4.1. Morphology

Figure 5.13 shows SEM images of the samples treated under various heat treatment 

conditions (NF25-NF27). These samples have undergone carbonisation and their 

appearance changed from a white spongy mass to a black char (Figure 5.15). The SEM 
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images of NF26 and NF27 show that, during carbonisation, the fibres were damaged by 

fusing together and forming bundles of carbon char rather than fibres. Although some 

fibres retained their fibrous structures, they did not retain their original high aspect ratios. 

On the other hand, the SEM image of NF25 shows the morphology similar to its 

cellulosic precursor with high aspect ratios. On the other hand, the SEM image of NF25 

shows the morphology similar to its cellulosic precursor with high aspect ratios. Figure 

5.14 shows the fibre diameter distribution of the sample NF25. The average diameter was 

around 25 nm, close to that of commercial multiwall carbon nanotubes.

Figure 5.13. SEM images of samples heat treated to 400oC under different conditions; 

holding time at 240oC and heating rate to 400oC are 17 h and 1oC/min (NF25), 17 h and 

10oC/min (NF26), and 1 h and 1oC/min (NF27).
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Figure 5.14. fibre diameter distribution of sample NF25 estimated from SEM images.

Figure 5.15. Appearance of (a) freeze-dried CellNFs and (b) carbon residue after heat 
treatment at 400oC.

5.3.4.2. Crystallinity

The crystal structure of the precursor cellulose is expected to influence the decomposition 

and subsequently the resultant carbon materials [146]. Figure 5.16 shows XRD patterns 

of NF25-NF27. The peaks associated with cellulose-I crystal structure was no longer 

evident in the XRD patterns. Instead, the patterns showed an amorphous-like feature.
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Figure 5.16. XRD graphs of samples heated to 400oC under different conditions; holding 

time at 240oC and heating rate to 400oC are 17 h and 1oC/min (NF25), 17 h and 10oC/min 

(NF26), and 1 h and 1oC/min (NF27).

5.3.4.3. Chemical structure

Figure 5.17 shows the FT-IR spectra of samples under different heat treatment 

conditions. These samples show rather different curves to that of the CellNF precursors. 

The carbon residue shows peaks at 1603 cm-1 and 1703 cm-1 which were assigned to C=O 

and C=C bands respectively. The latter group did not appear in the samples heat treated 

below 400oC. This indicates the breakdown of glycosidic rings resulting in the formation 

of carbon rich char. However, oxygen was still present in the carbon chemical structure, 

as the peak corresponding to C=O was present in the spectra. It is suggested that 

complete removal of oxygen and hydrogen from the molecule occurs at above 400oC

[279].

Figure 5.17. FT-IR spectra of samples heat treated to 400oC under different conditions; 

holding time at 240oC and heating rate to 400oC are 17 h and 1oC/min (NF25), 17 h and 

10oC/min (NF26), and 1 h and 1oC/min (NF27); (a) 4000-800 cm-1, (b) 2000-800 cm-1.
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5.3.4.4. Discussion on the effect of heating rates and holding time 

The XRD study confirmed that the decomposition of cellulose-I crystal structure takes 

place in the temperature range of 240-350oC. The FT-IR data indicated that the 

decomposition of cellulose-I crystal structure is accompanied by the breakdown of 

glycosidic rings. The SEM study showed that the decomposition reactions are sensitive to 

heating rate; higher heating rates severely damage the fibrous morphology. The heating 

rate dependency of the morphology of carbon residue indicates the possibility of two or 

more competing reactions occurring during the decomposition of the cellulose-I crystal 

structure; one is to destroy cellulose chains that is favourable at high heating rates, 

another is to carbonise cellulose without chain scission that is favourable at low heating 

rates. These two reactions will be discussed further in the later sections. 

In addition, holding time at 240oC has influence on the morphological properties of the 

resultant residue. Longer holding time of 17 h resulted in better preservation of the 

fibrous morphology. TG data showed that extensive mass loss occurred at 240oC

(Figure5.1) while retaining the original cellulose-I crystal structure. The mass loss 

reached ~40 % after 17 h of isothermal heating. Since intra and inter molecular 

dehydration occur at 240oC, it is expected that longer holding time at 240oC removed 

much of the oxygen and hydrogen from the cellulose molecules. This will help prevent 

the formation of levoglucosan and the scission of cellulosic chain (Figure 2.17). 

5.4. Discussion on the effect of heat treatment conditions and drying methods

5.4.1. Sensitivity of heat treatment conditions to the formation of CNFs

The results showed that heat treatment conditions around the thermal decomposition 

temperature greatly influence the morphological properties of CNFs. Longer holding time 

at 240oC and slower heating rate from 240oC to 400oC were necessary to preserve the 

original fibrous structures of CellNFs in CNFs. This may be explained from the 

viewpoint of intermolecular dehydration. 

According to the results of XRD and SEM studies, the crystal structure, crystallinity and 

morphology were not significantly affected by the heat treatment conditions below 

240oC. However, TG data showed that extensive mass loss occurred at 240oC

(Figure5.1). The mass loss reached ~40 % after 17 h of isothermal heating. The FT-IR 
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results indicate that the mass loss is associated with the loss of OH groups and hence is 

caused by intra- or inter-chain dehydration. 

An intra-molecular dehydration model between two OH groups has frequently been used 

for explaining the mass loss of cellulose below 300oC [10]. This model predicts the 

formation of C=C and C=O bonds (Figure 5.18). However, as can be seen in the FT-IR 

spectrum of NF24, C=C or C=O bands in the aromatic rings did not appear after heat 

treatment for 17 h at 240oC. The result implies that the dehydration process occurred 

mainly between the interchain OH groups, but not between the OH groups in the same 

pyranose rings. 

Figure 5.18. Intramolecular dehydration in cellulose chains.

In cellulose crystals, straight cellulose chains are interconnected with other chains 

through strong hydrogen bonds between the OH groups. Dehydration at 240oC may result 

in covalent bonding between cellulose single chains and help preserve fibrous structures 

upon carbonisation. In addition, the removal of OH from –CH2OH groups may prevent 

(i) the chain scission at glycoside links and (ii) the formation of volatile and viscous tar 

(levoglucosan) (Figure 5.19), which may play a critical role in preserving the original 

fibrous structures (Figure 5.20). 
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Figure 5.19. Formation of levoglocosan associated with depolymerisation.

Figure 5.20. Model of cellulose pyrolysis [327].

The D-glucose unit in cellulose has 3 OH groups and their loss is equivalent to the mass 

loss of ~33 %. This value is smaller than the observed mass loss of 40 % during the 

isothermal heating at 240oC. Hence, apart from dehydration, the evolution of some 

gaseous species such as CO, CO2 and CH4 may have occurred at 240oC, without affecting 

the crystal structure of cellulose. Further study is required to identify these gases evolved 

during the isothermal heat treatment at 240oC by, for example, FT-IR or mass 

spectroscopy [328].

The SEM images of NF25 and NF26 show that, even after dehydration at 240oC for 17 h, 

fast heating rate can still destroy the original fibrous structure. This result suggests that 

the removal of remaining oxygen in the pyranose rings and glycoside links could lead to 

depolymerisation at fast heating rates (e.g. 10oC/min). The slow heating rate (1oC/min) 

may provide the carbon atoms with sufficient time to diffuse inside the nanofibres and 
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form aromatic rings without causing morphological damages. In addition, it has been 

reported that more oxygen and hydrogen can escape the cellulosic chains during 

carbonisation if slower heating rates are applied between 240oC to 350oC [1, 203]. This 

helps reduce oxygen-to-carbon ratio within the carbon structure, contributing to the 

preservation of fibrous structures in carbon residues. 

5.4.2. Influence of drying methods on the morphology of carbon residue. 

The difference in fibrous morphology of the carbon residues between the two drying 

methods can be explained from the viewpoint of the spatial distance between the fibres. 

It is known that, cellulose goes through thermal decomposition between 180-400oC and 

further aromatization above 400oC starting with a dehydration (180-240oC) followed by 

depolymerisation (240-400oC) [283]. Tang et al. suggested that between 240-400oC

cellulosic rings start to break down which leads to the formation of highly active free 

radicals. They cause formation of gaseous products such as CO2 and CO as well as H2O

and tar [279]. Due to the hydrophilic property of cellulose and upon oven-drying the 

CellNFs, the hydroxyl groups tend to bridge between the cellulosic chains of 

neighbouring nanofibres via hydrogen bonds. Thus the fibres tend to be in close contact 

with each other in the oven-dried sample. Viscous tar may connect fibres with each other 

when their distance is very short, leading to the disappearance of fibrous structure in 

oven-dried samples. On the other hand, freeze drying creates sufficient space between the 

individual fibres whereby removal of gaseous and tarry by-products from the sample

becomes faster by the flow of an inert gas, which allows individual fibres to remain 

relatively isolated from adjacent fibres. 

The difference in spatial distance between the fibres may also contribute to the difference 

in the formation of tar/levoglucosan. As shown in Figure 4.10, after isothermal heat 

treatment at 170oC, the FT-IR spectra of oven-dried sample did not show much change in 

the 1000–1100 cm-1 region. On the other hand, the FT-IR spectra of freeze-dried sample 

did show changes in the 1000–1100 cm-1 region as a function of holding time at 170oC; 

the relative intensities of the peaks at 1025 cm-1 and 1050 cm-1 (associated with C-OH 

bonds at the 1st and 2nd alcohols in the glucose rings), compared to the peak at 1112 cm-1

(associated with C-O-C glycoside links in the cellulose chain), were reduced as the 

isothermal heat treatment time increased. The same trend was observed during heating 

from 170oC to 240oC. As shown in Figures 4.13 and 5.8, the FT-IR spectra of oven-dried 
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sample did not show much change in the 1000–1100 cm-1 region, whilst the FT-IR 

spectra of freeze-dried sample did show changes in the 1000–1100 cm-1 region, as a 

function of heating rate. In freeze-dried sample, lower heating rate (i.e., longer heat 

treatment time) caused reduced relative intensity of the peaks at 1025 cm-1 and 1050 cm-

1, compared to the peak at 1112 cm-1. The results indicate that internal dehydration 

process occurs below 240oC in freeze-dried samples but not in oven-dried samples. This 

may be because water molecules can escape cellulose easier from the open network 

structure in freeze-dried samples than from tightly fused structures in oven-dried samples. 

Thus, large spatial distance between fibres in the precursor CellNFs can serve two 

proposes to preserve original fibrous structures in the carbon residue; (1) by promoting 

internal dehydration to prevent the formation of tar and chain scission, and (2) by 

preventing tar from bridging neighboring fibres so as not to form fusion between 

carbonised fibres. 

5.5. Conclusion

In this chapter, the effects of heat treatment conditions on amorphous CNFs and their 

precursor CellNFs were investigated. Amorphous CNFs were produced by the pyrolysis 

of CellNFs below 400oC. It is shown that heat treatment conditions around the thermal 

decomposition temperature greatly influence the morphological properties of CNFs. 

Longer holding time at 240oC and slower heating rate from 240oC to 400oC were critical 

to preserve the original fibrous structures of the precursor CellNFs after pyrolysis. It was 

suggested that intermolecular dehydration was induced during the prolonged isothermal 

heat treatment at 240oC and that the removal of OH groups reduced the chance of chain 

scission and the formation of tar. This in turn contributed to the retention of the original 

fibrous structure during carbonisation between 240oC and 400oC. Slow heating rate helps 

the carbon chains to join neighbouring chains to form aromatic rings within the nanofibre 

boundaries without causing morphological damage to the nanofibre. These heat treatment 

conditions will have stronger influence on the morphology of resulting carbon residues in 

nanofibres than in conventional micron-diameter fibres, as the fibrous structures can be 

altered by atomic diffusion over much shorter distances in nanofibres than in micron-

diameter fibres. This study demonstrated that, upon optimization of heat treatment 
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conditions, CNFs with diameters of <100 nm can be produced from renewable raw 

materials in a simple and scalable manner. 
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Chapter 6: Graphitization of 

carbon nanofibres from freeze-

dried cellulose nanofibre
 

6.1. Introduction

In the previous chapter, CNFs were successfully fabricated from freeze-dried CellNFs. 

However, the fibres were made in an amorphous structure. In order to increase the 

mechanical properties, the fibres need to be graphitized. In this chapter, CNFs were heat

treated at high temperatures. The effect of the graphitization temperatures on the 

properties of CNFs were investigated using TEM, SEM, XRD, FT-IR and Raman 

spectroscopy. 

6.2. Experimental 

CNFs were prepared by the pyrolysis of freeze-dried CellNFs under the optimized 

conditions described in Chapter 5. Amorphous CNFs were heated to 1600oC, 1800oC,

2000oC, 2200oC, 2500oC and 2800oC to study the effect of temperature on the properties 

of CNF. Each sample was held at these temperatures for 30 min before cooling down to 

room temperature. The heating rate of 10oC/min was used for all the heat treatment. 

CVD grown CNFs with average fibre diameters of 200-500 nm and lengths of 10-40 μm 

were purchased from Nanostructured and Amorphous Materials Inc., USA and used as 

received. Graphite powder was purchased from Asbury Graphite Mills, USA and used as 

received. The CVD grown CNFs and graphite powders were used as reference samples in 

Raman spectroscopy.

6.3. Results and discussion 

6.3.1. Morphology

Figure 6.1 shows TEM images of the heat treated samples between 1600 and 2800oC.

After heating up to 1600oC, aligned crystalline regions have been formed in some parts of 
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the fibres. The crystallized fibres were observed only in a localized area and the bulk for 

the samples did not show this feature. Nonetheless, it is interesting to note that the growth 

of crystalline structures started from such low temperatures. Ishida et al. suggested that 

the crystallization at low temperature will lead to the crystal structure different from 

graphite [149]. However, detailed structural analysis is required as a part of future work, 

by electron diffraction study. Upon increasing the heat treatment temperature from 

1600oC, most of the fibrous structures were lost. Furthermore, in all samples, there were 

particles in different sizes. These particles developed hexagonal shapes as the 

temperature reached 2800oC.

Figure 6.1. TEM images of heat treated samples; a) 1600oC, b) 1800oC, c) 2000oC, d) 

2200oC, e) 2500oC and f) 2800oC.
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Figure 6.2 shows the SEM images of the heat treated samples between 1600oC and 

2800oC. It appears that the fibres of ~20 nm in diameters are entangled and fused in a 

network structure or a film-like structure. Free nanofibres with high aspect ratios were 

rarely observed. 

Figure 6.2. SEM images of heat treated samples; a) 1600oC, b) 1800oC, c) 2000oC, d) 

2200oC, e) 2500oC and f) 2800oC.

Figure 6.3 shows the SEM images of the sample graphitized at 2000oC. Some fine 

fibrillar structures of ~5 nm in diameter were formed between two parts of the carbon 

residues. They were aligned in one direction and stretched parallel to each other. Further 
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investigation needs to be undertaken to understand how these fibrillar structures are 

formed. 

Figure 6.3. SEM images of fine fibrillar structure in 2000oC sample; a) lower 

magnification and b) higher magnification.

6.3.2. XRD analysis

Figure 6.4 shows the XRD patterns of heat treated samples at various temperatures. All 

samples showed broad peaks at 15o similar to CNFs at 400oC (Figure 5.16). However, 

above 2000oC, the samples show crystalline peaks at 33o, 39o, 55o 65o and 69o. The peaks 

were identified to be associated with zirconium carbide. No peak associated with graphite 

was observed. 

Figure 6.4. XRD patterns of heat treated samples.
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6.3.3. FT-IR analysis

Figure 6.5 shows the FT-IR spectra of samples heat treated at various temperatures. The 

peaks at 1112cm-1 and 1163cm-1 that are associated with oxygen bonds were still present. 

A sharp peak was present at 1380cm-1 associated with the strong Zr—O covalent bonds 

[329-331].

Figure 6.5. FT-IR spectra of heat treated samples; a) 4000-800 cm-1, (b) 2000-800 cm-1.

6.3.4. Raman analysis

Figure 6.6 shows Raman spectra of heat treated samples and Figure 6.7 shows Raman 

spectra of graphite and CVD CNFs. Compared to graphite, heat treated CNFs exhibit 

broader peaks at 1350 cm-1 and 1580 cm-1. These peaks are associated with D and G 

bands, respectively. D band shows the defective graphitic structure and G band is 

associated with the tangential vibration of carbon atoms in graphitic layers. The D/G ratio 
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gives an understanding about how much of the material is graphitic. A larger D/G value 

indicates more disordered structure [332-335].

Figure 6.6. Raman spectra of heat treated samples; a) 1600oC, B) 1800oC, C) 2000oC, D) 

2200oC, E) 2500oC and F) 2800oC

Figure 6.7. Raman spectra of CVD grown CNF and graphite.

Table 6.1 shows the D and G band parameters associated with the graphitized samples. 

Figure 6.8 shows the D/G peak intensity ratio as a function of heat treatment temperature. 

As shown in Figure 6.8, D/G ratio decreased as the heat treatment temperature increased, 

indicating the progress of graphitization with increasing the heat treatment temperature. It 

is noted that the D/G ratio of the samples heat treated above 2200oC is between the D/G 

ratios of CVD CNFs and graphite. Hence the degree of graphitization in the samples heat 

treated in this temperature range is as high as that of commercial CVD-based CNFs. 

Figure 6.9 shows the Raman shift of the peak G as a function of heat treatment 

temperature. The peak position shifted toward lower wavenumber as the heat treatment 

temperature increased. This result indicates that the number of graphite stacking layers 

increased as a function of heat treatment temperature [336].These results indicate that 
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graphitization started at around 1600oC. The investigation about the effect of holding 

time on the degree of graphitization is suggested for future study. 

Table 6.1. D and G band parameters.

Sample D/G G (cm-1) D (cm-1)

1600oC 1. 447 1596 1340

1800oC 1. 192 1582 1347

2000oC 1. 270 1581 1345

2200oC 0. 762 1577 1348

2500oC 0. 611 1572 1345

2800oC 0. 487 1579 1351

CVD CNF 0. 809 1587 1350

Graphite 0. 238 1579 1353

Figure 6.8. D/G peak intensity ratio as a function of heat treatment temperature.
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Figure 6.9. Raman shift of the peak G as a function of heat treatment temperature.

6.3.4. Source of contaminant particles

As shown in Figures 6.1 and 6.4, a significant quantity of contaminant particles was 

observed in the heat treated samples. The contaminants were identified as ZrC. It is likely 

that the contaminants stemmed from the milling balls made of ceria doped zirconia. The 

reaction between zirconia (ZrO2) and carbon to form ZrC via the following reaction is 

thermodynamically favourable above 1700oC;

ZrO2 + 3C = ZrC + 2CO(g) (6.1)

Thus ZrC particles were formed during heat treatment in the Tanmann furnace. It was 

assumed that the fragments of milling balls were not detected by XRD before 

graphitization, possibly because the quantity and crystallite sizes of the fragments were 

small compared to CellNFs.  

6.4. Conclusion

In this chapter, CNFs obtained from freeze-dried CellNFs were heat treated at various 

temperatures above 1600oC. The effects of heat treatment temperatures on the 

graphitization and morphology of CNFs were characterised by TEM, SEM, XRD, FT-IR 

and Raman spectroscopy. 
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TEM and SEM studies showed that the original fibrous morphology was not retained 

during graphitization. XRD results showed that the samples were mainly amorphous, 

apart from ZrC crystal contaminants. FT-IR spectra of samples showed that oxygen 

related bonds were still present in samples after heat treatment. However, a small part of 

the sample heat treated at 1600oC showed crystal-like structures under TEM. Raman 

spectroscopy also indicated that graphitization started gradually from above 1600oC. The 

number of graphite stacking layers increased steadily as a function of heat treatment 

temperature. It was also found that in the sample heat treated at 2000oC, some fine fibres 

of around 5 nm in diameter were bridged between bundles of fibres. They were aligned in 

one direction and were parallel to each other. 

A significant quantity of contaminant particles was observed in the heat treated samples. 

The contaminants were not detected before high temperature heat treatment. As the 

contaminant particles may act as catalysts, it is critical to minimize the amount of 

contaminant arising from milling balls in order to control the graphitization reaction in 

CNFs. Further study is required to optimize the heat treatment conditions to retain fibrous 

structures during high temperature heat treatment. 
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Chapter 7: Conclusion and future 

work

7.1. Main conclusions

In this thesis, the potential of pyrolysis methods to form CNFs from CellNFs was 

investigated.  Although carbonisation of micron-sized cellulose fibres has been widely 

investigated in the past, in this thesis, the novel CellNFs obtained from ball-milled 

softwood pulp was used to investigate the carbonisation process. Various pyrolysis 

conditions including the effect of heating stages, heating rate in each stage, maximum 

temperature in each stage and holding time at the maximum temperature were 

investigated for their effects on the morphological and structural properties of resulting 

carbon residues. By the use of freeze-dried CellNFs and optimized heat treatment 

conditions, CNFs with diameters of <100 nm were produced from renewable raw 

materials in a simple and scalable manner. Several conclusions were drawn from the 

investigation as listed below:

1) Heat treatment conditions below 400oC affect the morphology of the resulting 

carbon nanofibres. 

CNFs were produced by the pyrolysis of CellNFs below 400oC. It is shown that heat 

treatment conditions around the thermal decomposition temperature greatly influence the 

morphological properties of CNFs. Longer holding time at 240oC and slower heating rate 

from 240oC to 400oC were critical to preserve the original fibrous structures of precursor 

CellNFs in CNFs. It was suggested that intermolecular dehydration was induced during 

the prolonged heat treatment below 240oC and that the removal of OH groups reduced the 

chance of chain scission and the formation of tar/ levoglucosan. This in turn contributed 

to the retention of the original fibrous structure during carbonisation between 240oC and 

400oC. Slow heating rate helps the carbon chains to join neighbouring chains to form 

aromatic rings within the nanofibre boundaries without causing morphological damage to 

the nanofibre. 
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2) The method to dry CellNF precursors affects the morphology of resulting carbon 

nanofibres. 

The freeze drying method left a network of nanofibres with wider spatial distance 

between the fibres than oven-dried samples, and turned them into spongy looking masses. 

Hydrogen bonding still occurred between nanofibres and connected the fibres together in 

an open-network structure. 

The open structure allowed effective removal of oxygen and hydrogen from the cellulose 

molecules during heat treatment below 240oC. This prevents the formation of 

levoglucosan and the scission of cellulosic chain during decomposition of cellulose 

between 240oC and 400oC and, in turn, the retention of the original fibrous structure. 

On the other hand, oven-drying left a compact network of fibres which connected to each 

other via hydrogen bonding. During heat treatment below 240oC, the oxygen and 

hydrogen were not efficiently removed from the cellulose molecules. This may be due to 

the closely packed structure without much open space between fibres. As a result, the 

formation of levoglucosan and the scission of cellulosic chain were promoted during 

decomposition of cellulose between 240oC and 400oC, resulting in the loss of original 

fibrous structure. The viscous tar that was formed from levoglucosan may bridge the 

closely packed fibres, which further contributed to the loss of original fibrous structure. 

It was also found that the method to dry CellNF precursors affects the yield of resulting 

CNFs. Oven-dried and freeze-dried CellNFs show mass loss of 80-85% and 90-95% 

respectively after carbonisation to 400oC. Greater mass loss in freeze-dried CellNFs may 

be the result of adjacent nanofibres having greater spatial distance which facilitates 

higher rates of oxygen and hydrogen removal from the cellulose molecules. 

3) The possibility of graphitizing carbon nanofibres at temperatures above 1600oC

was demonstrated. 

Since graphitization starts from the surface and develops to the core of the fibre, having 

finer diameter would help the graphitization process to initiate at lower temperatures. It 

was shown that crystal-like structures were developed at lower temperatures (1600oC). 

However, the development of such crystals was localized in a small area of the sample 

and the bulk of the samples did not show such structures. Nonetheless, the results of 

Raman spectroscopy showed that formation of crystalline regions in the carbon residues
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started at about 1600oC. Furthermore, sever contamination was reported occurring. It is 

speculated that the contaminant derived from zirconia milling balls and that zirconium 

carbide contaminants were formed during heat treatment at high temperatures. FT-IR

analysis showed that oxygen related bonds were still present in samples after heat 

treatment at high temperatures 

In summary, this thesis has provided a new understanding of the carbonisation of 

CellNFs. It was demonstrated that pyrolysis of CellNFs produces CNFs of < 100 nm in 

diameter which have potential in various applications such as biomedical, electronic and 

structural devices. 

7.2. Suggested future work

While interesting and encouraging results were drawn, a lot of new horizons have been 

opened which need to be studied in the future. Based on the conclusions made in this 

work, future works are proposed to further deepen the understanding towards the 

carbonisation and graphitization processes of CellNFs:

1- Although the effect of heat treatment on the oven-dried CellNFs was investigated, 

the heat treatment conditions used were not exactly the same as those for freeze-dried 

CellNFs. This occurred because the experiments on freeze-dried samples were 

conducted after oven-dried samples when additional knowledge was accumulated. Thus, 

using the heat treatment conditions optimized for freeze-dried samples, the experiments 

on oven-dried samples should be conducted and the results should be compared between 

the two drying methods.

2- The formation of gaseous species during carbonisation between 240-400oC should 

be investigated using mass spectroscopy or FT-IR. It is thought that identification of 

gaseous species would provide better insight on the breakdown of cellulosic rings and 

complex reactions that occur between 240-400oC.

3- Graphitization should be thoroughly investigated using pure CellNFs free from 

contamination. Starting temperature should be around 1600oC with longer holding time. 

It is suggested that longer holding times may provide enough time and energy for the 

graphitized regions to develop across the fibres. 
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4- Investigations should be re-visited by addressing the yield of CNFs. Most of the 

investigations in this thesis were focused on the effects of heat treatment and drying 

conditions on the morphological feature of carbon residues. The optimization of 

pyrolysis conditions from the minimisation of mass loss should be investigated. 

Levoglucosan is volatile and breaks down into tar and some other by-products such as 

char, CO2 and furan at higher temperatures. Once pyrolysis conditions were optimized, 

hydrogen and oxygen atoms could be eliminated from the cellulosic chains. Thus, less 

carbon atoms reacted with hydrogen and oxygen and released from the chains, and the 

formation of levoglucosan will be suppressed. This in turn had two effects:

a. A smaller mass loss occurred;

b. Fibrous structure was maintained. 

Both effects are desirable and improve the cost-related issues and CNF properties.

5- The effect of atmospheric conditions during pyrolysis should be investigated. In 

this thesis, only nitrogen gas was used. Reducing atmosphere using hydrogen or 

ammonium gas may influence the decomposition processes of cellulose and in turn 

change the morphological and structural properties of carbon residues. 

6- A thorough investigation should be carried out on how chemical pre-treatments 

on the CellNF precursors will affect the yield and morphology of carbonised fibres. Use 

of fire retardants for mass loss reduction should be investigated. The presence of 

chemicals absorbed onto CellNF precursors may also influence the decomposition 

reaction of CellNFs and in turn affects the chemical and physical structures of carbon 

residues. 

7- Another method to increase the spatial distance between CellNFs upon drying 

should be explored. It is suggested that chemical treatment of the CellNFs within the 

suspension may avoid the formation of hydrogen bonding between CellNFs during 

drying. Hence, upon drying, the fibres will remain independent from each other. This 

will help retain the fibrous morphology during carbonisation. 

8- The method to quantitatively analyse the fibre morphology should be developed. 

In this thesis, the retention of fibrous morphology was assessed qualitatively based on 

the SEM image. Quantitative analysis is required to further investigate the effect of 

drying and heat treatment conditions on the morphological properties of carbon residue 
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in detail. For example the use of specific surface area measurements should be 

considered.

9- In depth statistical analysis should be undertaken to source and eliminate fiber 

diameter measurements using Image Pro Plus software. Sources of error include:

a) Operator eye

b) Number of images

c) Scale bar

d) Fiber uniformity 

e) Angle of bar to fiber axis

Since the diameter is in nanometer range, these factors could potentially affect the fiber 

diameter.
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