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Abst r act

This thesis mainly invest igates the state est imat ion problem in close-range involv-

ing mult iple targets using the phase di erence and frequency shift of the returned

Doppler modulated signals. The linear sensor array with minimal con gurat ion

that addresses the data association and missing information problem is provided

for mult iple mobile targets. A recent ly developed robust state est imation approach

is employed to obtain an accurate est imate of the target dynamics progressively

in a linear framework using non-linearly modeled Doppler radar measurements.

Furthermore, the st rength of our approach is experimentally veri ed.

Tracking mobile targets using a Doppler radar system mounted on a moving

vehicle is also considered in this thesis. Dopplers modulated from mobile targets

due to the relat ive motion with the sensor array is analyzed in order to est imate

their states. Maximum likelihood based approach is provided in order to enhance

the localizat ion accuracy.

As the main theme is based on measurements with linear sensor arrays, opt imal

sensor arrangements in such arrays are studied for two most popular measure-

ment technologies: Angle-of-Arrival(AoA) and range based localizat ion systems.

Cramer-Rao lower bound and the corresponding Fisher Information Matrix(FIM)

are ut ilized for the analysis.

Unique localizat ion with eliminat ion of data associat ion problem is explored for

Time-Delay-of-Arrival(TDoA) and Time-of-Arrival measurement technologies. A

comprehensive analysis on the unique solut ion area is provided for the TDoA based

systems.
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C hap t er 1

Int r od uct ion

Target localizat ion and tracking has a rich history dat ing back to several centuries.

In ancient history visual and auditory informat ion were used to localize or t rack

an object of interest such as prey or enemies. With the development of science

and technology, numerous techniques have emerged for the same task, improving

the accuracy and reliability of informat ion. The concept of target localizat ion and

tracking involves est imat ing the locat ion or any other dynamic parameters of a

target of interest using typically noisy and possibly nonlinear measurements of the

target measured from a number of sensor posit ions.

The science of localizat ion and tracking gathered an immense momentum spe-

cially during World War II [1, 2]. Since then, numerous problems and techniques

have evolved in this domain. The well known measurement techniques include the

angle-of-arrival(AoA), target range, t ime-of-arrival(ToA), or the Dopller frequency

modulated by the target . In some applicat ions, two or more aforement ioned tech-

niques are combined together for higher accuracy.

The Radio Detect ion And Ranging (RADAR) technology which is very similar

to ult rasonic sonar was developed during World War II to t rack the enemy ships

and aeroplanes. Nowadays it has many applicat ions in numerous elds such as

aerospace, naval and weather forecast . Most of the implementat ions of Radar is

for the far range applicat ions such as locat ing an aircraft or a ship hundreds of

1
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kilometers away. Close range localizat ion and tracking such as indoor monitoring

using Radar is an emerging eld of interest . There are many other techniques

such as AoA, target range and ToA for close range localizat ion and tracking and

the improvement of the accuracy and reliability is an interest ing eld of research.

Current ly, the research on these part icular areas provides a construct ive impact on

safety and wellbeing of humans.

1.1 B ackgr ou nd

Radar is widely used in di erent applicat ions with di erent measurement technolo-

gies; Cont inuous Wave Radar, Pulsed Radar and Doppler Radar are some of them.

Doppler Radar systems can be used to extract the dynamic informat ion of a moving

target . Most of these applicat ions are for long range localizat ion and tracking of

non-cooperat ive targets.

It is well known that if there is a relat ive mot ion between the source and the

observer, an apparent shift in frequency will occur, which is known as Doppler shift.

A part icular approach for close range localizat ion and tracking is discussed in [3, 4]

in which a low-complexity Doppler radar is used with a two-element receiver array.

Mult iple moving targets were rst resolved based on their Doppler returns which

are related to the radial velocit ies toward the receiving elements. The Angle-of-

arrival (AoA) of each target was then est imated ut ilizing the phase di erence of the

scat tered Doppler modulated signal at the two receiver elements. The complexity

of this approach is less and it is based on the assumption that no two targets

have the same Doppler returns toward any receiving element . When the targets of

interest are not well resolved in Doppler dimension, the est imation error of AoA

increases signi cant ly. This problem is part icularly severe for human tracking, since

micro Doppler returns modulated from human limbs have a broad Doppler spread.

Four- element radar array that combines Doppler signal processing with software
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beam forming is used to resolve targets in both Doppler and the AoA space in [5].

This part icular approach enables the detect ion of targets with overlapping Doppler

signals. However, in an array of limited dimensions, the side lobes due to st rong

targets can prevent the localizat ion of weaker targets when the targets are not

resolvable in the Doppler domain. The CLEAN algorithm [6] is implemented in the

beam-former to iterat ively remove the side lobe features of the st rong target to make

it possible to detect weaker targets. An enhancement of CLEAN, which is known

as RELAX algorithm [7], is also implemented to further improve the accuracy of

the target -parameter est imat ion.

The performance of any part icular localizat ion algorithm is a st rong funct ion of

the relat ive sensor-target geometry [8,9]. A characterizat ion of the geometry of the

sensors and targets with various matrices related to Cramer-Rao inequality or the

corresponding Fisher informat ion matrix has been studied in [10]. Since the Cramer-

Rao lower bound is a funct ion of the relat ive sensor-target geometry, a number of

approaches have been explored to ident ify underlying geometrical con gurat ions

which minimize some measure of this variance lower bound [8, 10{17].

Most of the exist ing literature is concerned on the placement of AoA/ range

sensors around the target for opt imal localizat ion [11, 13] but linear sensor arrays

play a crucial role in some real world applicat ions such as radar [9,18{25]. This study

considers the localizat ion problem involving a single target and mult iple adjustable

AoA/ range sensors located as a linear array(uniform and non-uniform). In this case,

Cramer-Rao lower bound with the corresponding Fisher informat ion determinant is

used to invest igate the opt imality of the relat ive sensor-target geometry, exploring

the int rinsic relat ion with the spacial diversity and the underling measurement

model.

Time-Delay-of-Arrival(TDoA) is another important technique to localize and

track a target of interest . These systems, generally localize an emit ter by processing
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signal arrival-t ime measurements at three or more sensors in R2 and four or more

sensors in R3. In the absence of noise and interference, the ToA measurements

at two sensors are ut ilized to produce a relat ive arrival t ime that , rest ricts the

possible emit ter locat ion to a hyperbola in R2 and a hyperboloid in R3, with the

two sensors as foci. Emit ter locat ion is est imated from the intersect ions of two or

more independent ly generated hyperbolas in R2 and the intersect ions of three or

more independent ly generated hyperboloids in R3 [26].

1.2 Over view of t h e st u d y an d cont r ibu t ion s

The study in this dissertat ion is mainly three fold. In the rst sect ion, it concen-

t rates on sensor placement for opt imal localizat ion using di erent localizat ion tech-

niques and then in the second sect ion it discusses about the unique localizat ion of

targets using Time-Delay-of-Arrival(TDoA) and Time-of-Arrival (ToA) techniques.

In the nal sect ion, the discussion is based on the close range localizat ion and

tracking, using Doppler radar.

A n analysis on t he linear sensor ar r ays for op t im al localiza t ion

The study for the opt imal sensor placement has two main aspects;

1. Developing techniques using Cramer-Rao lower bound with the corresponding

Fisher informat ion determinant to invest igate the opt imality of the relat ive

sensor-target geometry, exploring the int rinsic relat ion with the geometrical

diversity and the underling measurement model.

2. Opt imality analysis for a single target and mult iple adjustable AoA and range

sensors located as a linear array(uniform and non-uniform).
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A n an alysis on t he un iqu e localiza t ion of t ar get s usin g ToA and T D oA
syst em s

The study for the unique localizat ion of targets using ToA and TDoA techniques

has two main aspects;

1. Analysis on the unique solut ion region with measurements errors for a target

using the minimum number of TDoA measurements.

2. Study of the data associat ion problem for mult iple targets in both ToA and

TDoA techniques.

A novel app roach in D opp ler r adar for close r ange localizat ion

The study for the Doppler radar based localizat ion has following aspects;

1. Development of techniques to localize close range mult iple targets using Con-

t inuous Wave Single Frequency(CWSF) radar. These techniques are rela-

t ively simpler than other techniques such as pulsed-Doppler and frequency-

modulated radar,

2. Applicat ion of a linear sensor array with minimal con gurat ion that addresses

the data association and missing information problem.

3. Employment of recent ly developed robust state est imat ion approach to ob-

tain an accurate est imate of the target dynamics progressively in a linear

framework using non-linearly modeled Doppler radar measurements.

4. Evaluate the assert ions with simulat ions and a hardware system.

1.3 T h esis ou t lin e

This thesis is st ructured as follows. Chapter 2 provides a comprehensive analy-

sis of the literature in the elds related to this study. Moreover, the theoret ical

background of the techniques used in the remaining chapters are introduced.
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Chapter 3 provides the study of opt imal sensor placement for linear arrays.

The theoret ical analysis is carried out on Angle-of-Arrival and range based local-

izat ion systems with Gaussian error assumption and the computer simulat ions are

presented to verify the results.

Chapter 4 presents the analysis on the unique localizat ion with TDoA and ToA

measurement techniques. First , the unique localizat ion of an emit ter with minimum

number of TDoA measurements is analysed and then the eliminat ion of the data

associat ion problem in both TDoA and ToA techniques is discussed with computer

simulat ions.

Chapter 5 int roduces the Doppler radar based close range localizat ion and track-

ing technique for mult iple mobile targets. A linear robust ltering based approach

is used for stat ionary sensors and a maximum likelihood approach is employed for

moving sensor platform. Computer simulat ion case studies are also presented to

verify the theoret ical assert ions. This chapter presents a close range radar experi-

mental setup which is developed for real world applicat ions.

Chapter 6 presents conclusions on close range tracking and localizat ion and

direct ions for further work in the eld. Here, an overview of the research is provided

with the connect ivity between di erent topics presented in the study.



C hap t er 2

Localizat ion an d Trackin g: A n
Int r od uct ion

2.1 R ad ar

A blind person makes his way along a busy st reet , maintaining a xed distance

from the wall of a building and also a safe distance form the vehicles whizzing by

on his other side, just by tapping the sidewalk repeatedly with his cane as he walks.

A bat deft ly avoids the obstacles on its path and nds small insects that are it s

prey in a very dark cave just by emit t ing a train of shrill beeps. Just as unerringly,

a ghter aircraft closes in on a possible enemy trespasser, hidden behind a cloud

bank a hundreds of kilometers away.

Underlying each of these impressive feats is a very old and fundamental principle:

detect ing objects range from the echoes they re ect . The main di erence in the

techniques is that , the blind person and the bat ut ilize the echoes from the sound

waves, whereas in the case of ghter aircraft , it detects the echoes from the radio

waves.

RADAR is the acronym of the words Radio Detect ion And Ranging, which

re ects the emphasis placed by early scient ists and experimenters on a device to

detect the presence of a target and est imate its locat ion. It was init ially developed

as a long range detect ion device to warn of the approach of host ile aeroplanes

and for direct ing ant iaircraft weapons such as missiles [1, 2]. Sophist icated modern

7
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radar systems can usually extract more informat ion from the signal of the target of

interest with higher accuracies.

H ist or y of r adar

The code word Radar was o cially int roduced by the US Navy in late 1940s,

as the name what had previously been called, among other jargons, radio echo

equipment [1]. Another group in US Army Signal Corps, who also did pioneer

work in radar development , used the term radio position nding unt il they adopted

the name radar in 1942. The Brit ish in 1943 subst ituted their own term RDF

with radar . The DF is the abbreviated form of direction nding and the origin of

the R is obscure, which was purposely selected to enclose the fact that the range

measuring equipment was under development [1]. In France, radar was called as

DEM(detection electromagnetique), and Funkmessgerat was the name in Germany.

Even though the advancement of radar as a fully- edge technology occurred

during the World War II, the fundamental principle of radar is almost as old as

the eld of elect romagnet ism itself. The similarity between the radio and the light

waves was demonstrated by Heinrich Hertz, in 1886 by experimentally test ing the

Maxwell's theories. In his experiment , he showed that the radio waves could be

re ected by dielect ric and metallic bodies. Although the Hertz's experiments were

carried out with relat ively short wavelengths radiat ion(0.66m), subsequent work in

radio engineering was almost ent irely at longer wavelengths. Unt il late thirt ies, the

shorter wavelengths were not prominent in use [1].

In 1903, Hulsmeyer (a German engineer) experimented with the observat ion

of the radio waves returned from ships. Even though his innovat ion generated

lit t le interest , Marconi ident i ed the potent ialit ies of short waves in radio detect ion

and st rongly urged their use in 1922 for such applicat ions [1]. Although Marconi

successfully demonstrated radio communicat ion between cont inents, he was not

successful in obtaining support for some of his other theories related to very short
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waves. One was the suggest ion that very short waves could propagate well beyond

the opt ical line of sight-a phenomenon current ly known as t ropospheric scat ter.

Cont inuous Wave (CW) was used in the rst radar systems and they worked

on the principle that the interference produced between the signal received from

the transmit ter and the Doppler-modulated signal re ected by a moving target .

This part icular type of radar was originally known as CW wave-interference radar .

Bistatic CW radar is the current name for such systems [1]. The init ial experimen-

tal detect ion of aircrafts ut ilized this principle rather than a monostat ic(single-site)

pulse radar as the CW hardware were readily available. The development of the

successful pulse radar was halted unt il the suitable components, such as high-peak-

power tubes, and a thorough understanding of the pulse receivers. The early evo-

lut ions of pulse radar systems were basically concerned with military applicat ions.

The rst commercial applicat ion of this part icular radar principle was probably the

aircraft alt imeter [1].

In the thirt ies, the development of radar was const rained to frequencies at Ult ra

High Frequency(UHF) or lower. A signi cant advancement in microwave region

was apparent during the fort ies. However, in ft ies, there was a backpedaling of

the upward frequency trend, and a considerable amount of radar development was

again implemented in the UHF region, specially for long-range detect ion.

R adar in nat u re

Even though the radar technology is novel to the humans, it can be found in nature.

The bats and porpoise are both known to ut ilize ult rasonic echo-locat ing principle

which is very similar to radio frequency echo locat ion or ult rasonic sonar used

in modern technology. The built -in ult rasonic \ radar"of a bat enables it to y

through dark environments with impunity and locate and catch ying insects. The

bat usually emits a series of ult rasonic pulses at a repet it ion frequency of the order

of 10 to 20 cycles per second under normal circumstances with a width about
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2ms [1]. The shape of the t ransmit ted pulse is not exact ly rectangular, but reaches

a maximum and then falls. Even more signi cant is the fact that this t ransmission

is not a simple pulse. It is similar to a frequency-modulated pulse or a frequency-

modulated pulse compression. Bats are capable of detect ing obstacles as close as

5cm [1]. Another excit ing observat ion is that the thousands of bats y in dark caves

very close to each other without apparent di culty from mutual interference.

A pp licat ions of r adar

Radar technology has been ut ilized on ground, in air, and at sea. Ground-based

radar has been used mainly in detect ion and localizat ion of aircrafts or space targets.

Shipboard radar is used to detect other ships or aircrafts, or it can be used as a

navigat ion aid to locate shore lines or obstacles. Airborne radar systems are used

to detect other aircrafts, ships or vehicles, or it can be ut ilized for storm avoidance

and navigat ion. The design of a radar system depends on the environment in which

it operates and the nature of the vehicle that carries it [1].

Civilian applications: Current ly, the main use of radar apart from the military

applicat ions is for navigat ion. The most common civilian applicat ion of radar is

in air-t ra c-control. These radar systems monitors the air t ra c in the vicinity

of airports and en route between air terminals. In host ile weather, radar is used

with ground-control-of-approach systems for safe landing. Nowadays, commercial

aircrafts are equipped with radar alt imeters to determine their height above the

ground and weather-avoidance radar to navigate around dangerous weather condi-

t ions.

Radar is used for safe navigat ion in ships, especially in poor visibility or in

host ile weather. Another applicat ion of radar can be found in surveying over large

distances. One of the most important applicat ion of radar in civilian domain is the

detect ion and tracking of weather changes, especially tornadoes and hurricanes.

Military applications: Most of the civilian applicat ions of radar ment ioned above
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Transmitter 

Receiver Processor Display 

Target 

Figure 2.1: Radar system

are also applied in the military domain, specially in radar navigat ion. Moreover,

military employ radars for surveillance and for the control of weapons. Surveil-

lance radar is used to localize and track host ile targets in order to take proper

military act ions. The examples for such radar systems are DEW(Distance Early

Warning) radars, BMEWS(Ballist ic Missile Early Warning System) and shipboard

surveillance radars and AEW(Airborne Early Warning) radars. In the domain of

control of weapons, the examples are homing radars on guided missiles, airborne-

intercept ion radar which is used to help a ghter aircraft to nd its target , and

bombing radars [1].

Scienti c applications: The radar is used by research scient ists to enhance the

knowledge of meteorology, aurora, meteors and other objects in the universe. Space

vehicles and satellites can be guided by radar and it can also be ut ilized in ex-

plorat ion of interplanetary space. The radar techniques can also be ut ilized in

microwave spectroscopy, radio ast ronomy, and radar ast ronomy.

R adar t ech nology in br ief

As depicted in Figure 2.1, common radar systems in their most rudimentary form,

consist of six elements: a radio signal t ransmit ter, signal receiver, two antennas for

t ransmit t ing and receiving(in some cases, the same antenna is used in common for

t ransmit t ing and receiving), signal processing unit and the display. Depending on
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the applicat ion, the radio signal can be sent as a Cont inuous Wave(CW), Frequency

Modulated Cont inuous Wave(FMCW) and in pulses. In the world of radar the term

target is mainly used to refer to anything the system wishes to detect during its

scan: a vehicle, a ship, an aircraft , a human, rain, or even free elect rons. The most

important factors which in uence the range at which the target can be detected are

The power of the t ransmit ted radio waves

Fract ion of t ime the power is t ransmit ted

Dimensions of the antennas

Radio wave re ect ion characterist ics of the target

Time span the target is in the antenna beam during the scan

Wave length of the radio waves

Strength of background noise or clut ter

A radar ident i es the presence of objects and determines their locat ion in space

by emit t ing the elect romagnet ic energy and processing the re ected echo. In pulse

radar, the receiver is turned on after a relat ively short burst of elect romagnet ic

energy is t ransmit ted on the area of interest . The distance of the target form the

radar system is measured by ut ilizing the t ime that elapses between the t ransmission

of the pulse and the receipt of the echo. On the basis of t ime, the transmit ted signal

and the echo can be di erent iated.

If the weak echo can be extracted among the st rong transmit ted signal, the

radar can be operated cont inuously. Usually, the received echo signal power is

signi cant ly smaller than the t ransmit ted power. The isolat ion of weak echo from

strong transmit ted signal is pract ically not su cient even if two antennas are used

for transmission and recept ion.
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Figure 2.2: Doppler e ect

D opp ler R adar

One e ect ive way of separat ing the weak received signal from the transmit ted signal

is to measure the change in the echo-signal frequency due to the phenomenon known

as Doppler e ect [1, 27]. For this Doppler e ect to take place, there should be a

relat ive motion between the target and the receiver. When the Doppler shift is

used for the detect ion of targets, a part of the t ransmit ted signal that falls on the

receiver is not , in principle, problemat ic. In most of the cases it is a requirement

for detect ing the Doppler shift in the received signal.

In the areas of acoust ics and opt ics, it is well known that if there is a relat ive

mot ion between the source and the observer, an apparent shift in frequency will

occur. This is the basis of Cont inuous Wave radar and known as the Doppler

e ect(Figure 2.2).

Consider a radar system and a target R distance apart . Then the total number

of wavelengths ( ) that can be accommodated between the two-way path between

the radar and the target is 2R= (assume that the distance and the wavelength

are measured in the same units). Then the total angular excursions taken by

the signal during its journey is 4 R= . If there is a relat ive mot ion between the
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receiver and the target , R and the phase are constant ly changing. The change in

with respect to t ime is the Doppler angular frequency ! d given by

! d = 2 fd =
d
dt

=
4 dR

dt
=

4 vr ;

where f d is the Doppler frequency shift and vr is the relat ive frequency of the

target with respect to the receiver. Then the Doppler frequency shift is

f d =
2vr =

2vr f o

c
; (2.1.1)

where f o is the transmit ted frequency and c is the velocity of propagat ion which

is approximately 3 108ms 1 for elect romagnet ic waves.

There are numerous applicat ions of CW radar and the the study of CW radar

serves as a means for bet ter understanding the characterist ics and use of the Doppler

radar informat ion encapsulated in the received signal, whether in a CW or a pulse

radar applicat ions. It not only allows the separat ion of the received signal from the

transmit ted signal, but also provides a measurement of radial velocity of the target

toward the receiver which can be ut ilized to dist inguish between the moving targets

from the stat ionary objects or clut ter [1].

Fu t u r e d ir ect ions in close-r ange r adar

Through wall t racking of human act ivit ies is a growing eld of interest due to

the increasing demand in many defense and commercial applicat ions ranging from

urban warfare to rescue operat ions [28{34]. For an example, when a person is

t rapped in a collapsed building, nding the locat ion promptly is vital for search and

rescue operat ions. In defense applicat ions, t racking of human movements inside an

enclosed are or a building increases the chances of successful law enforcements or

military operat ions minimizing casualt ies.

Robust est imat ion of the target state in real t ime is essent ial in such real world
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applicat ions. Ult ra wide band (UWB) radar popular in this domain with resolut ion

of the order of cent imetres have been reported in [28{34]. Studies in [29{31] use im-

pulse wave form for t racking while frequency modulated cont inuous wave (FMCW)

is employed in [28]. In [33] stepped frequency is used and the noise wave form is

analysed in [34] to realize a high range resolut ion. The major drawback of these

systems is the degradat ion of the accuracy in measurements due to the dispersion

and signal loss as the waves are penetrat ing through some wall materials such as

concrete.

Micro-Doppler e ects can be used to recognize the human act ivit ies [35]. Non-

rigid-body motions of human limbs modulate Micro-Dopplers and they contain

valuable informat ion related to human gait recognit ion. Since it was presented in

[35], a number of studies have explored micro-Dopplers for human motion analysis.

A simple classi er is designed by Otero [36]to recognize walking humans using

spectral analysis. Various t ime frequency analysis are used to extract micro-Doppler

features of radar target returns in [37]and [38]. In another study, micro-Doppler

modulat ions are explored to dist inguish among humans, animals and vehicles in

[39{41]. Micro-Doppler signatures are used to classify di erent human act ivit ies

in [42] and this is done by training a support vector machine (SVM) using the

measurement features of the act ivit ies.

Localizat ion and t r acking

The target t racking problem is the next step of the target localizat ion problem.

Several techniques can be employed to nd the target , and the part icular algo-

rithmic related approach is based on nding solut ion to the nonlinear est imat ion

problem. The widely used approaches in these scenarios are the batch of recursive

solut ions which are usually considered with recursive ltering algorithms. In this

part icular domain, the Extended Kalman Filter (EKF) is the most common solu-

t ion to the recursive t racking problem. The EKF has no opt imality propert ies and
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the linearizat ion a ects the performance [43]. In many pract ical situat ions, non-

linearit ies associate with the measurements and the system dynamics which makes

the EKF less favorable for some target t racking problems [44,45]. Compared to the

EKF, unscented Kalman lter and part icle lters have shown bet ter performance

in target t racking.

In typical radar based tracking, the target 's range and the angle-of-arrival are

measured. Commonly, linear target dynamic models are considered in the Cartesian

coordinate system and hence the measurements are nonlinear funct ions of the tar-

get 's state [44, 45]. In these type of t racking problems, nonlinear lters are usually

required [44]. On the other hand, measurement conversion methods have been stud-

ied for target t racking based on range and angle-of-arrival measurements [44,46{48].

The fundamental theory in this method is to rst ly t ransform the nonlinear mea-

surements in to a linear combinat ion of Cartesian coordinates and secondly est imate

the bias and the covariance of the converted measurement noise and nally use a

standard linear Kalman lter [49]. In radar based tracking problems, these par-

t icular measurement conversion methods perform bet ter than the EKF [44, 46{48].

The absence of any mathematically rigorous proof on the boundness of the ltering

error is a major drawback of the EKF and the measurement conversion method.

Moreover, in many pract ical problems, the EKF can diverge quickly from the ac-

tual state [50, 51]. Even though the part icle lters and unscented Kalman lters

perform well in t racking applicat ions [50, 52], results related to the convergence are

not easily obtainable [50, 51, 53, 54].

Localizat ion and tracking of mult iple mobile targets is useful in many defense

and commercial applicat ions such as security surveillance, disaster search, rescue

missions and urban warfare [3,55{58]. Radar systems in the past were mainly used

for long range localizat ion and tracking and those systems were very expensive and

bulky in the design. Due to the rapid development in electronic engineering in recent
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decades the cost and the physical dimensions of Radio Frequency(RF) components

have reduced signi cant ly. Hence, many useful radar systems can now be realized

with a reasonable cost ; specially for indoor and commercial applicat ions which were

less prominent in the past . Through-the-Wall Radar Imaging(TWRI) which has

very useful applicat ions in numerous situat ions is a recent research interest [59{61].

This shows the interest in applying the radar technology in close-range applicat ions

such as counter terrorism engagements and rescue operat ions.

Among the other radar systems Cont inuous Wave (CW) radar systems have at-

t racted extensive at tent ion due to its design and implementat ion simplicity [3, 55].

Single frequency CW radar can measure Doppler frequency shifts due to the relat ive

mot ion of the targets to a higher accuracy. However, in target range measurements,

more sophist icated systems derived from CW radar are current ly being used. These

systems are cost ly, and require complex hardware systems to implement . For ex-

ample, Frequency Modulated CW (FMCW) radar and pulsed Doppler radar both

evolved from the CW radar technique and they are capable of detect ing range but

poor in clut ter mit igat ion. Comparat ively, CW radar is excellent in clut ter sup-

pression; therefore, it can be used to localize moving targets as the Doppler shift in

frequency provides a natural exclusion of clut ter in the ltering [1, 27].

Furthermore, by measuring the phase di erence of CW waves arriving at closely

separated(less than the half-wave length) two antenna elements, the angle-of-arrival

of a target can be measured [3, 62]. In [63{65] only the locat ion informat ion of the

targets were found using the phase di erence of the Doppler-shifted signal, while

Doppler-shift is only ut ilized to dist inguish between the targets rather than deducing

their velocity components. [66,67]consider more complex pulsed radar system where

correct ion of the received Doppler modulated signal under Gaussian assumptions is

studied in [68]. Mult i-target t racking through range and angle measurements are

studied in [67,68] providing comprehensive descript ions based on stat ic opt imizat ion
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techniques.

The t ime derivat ives of displacement is typically used in systems which require

velocity informat ion of moving targets. This results in a t ime lag in velocity est ima-

t ion. The accumulat ion of errors can be signi cant as the locat ion est imat ion errors

are direct ly t ranslated into velocity est imat ions specially for more dynamic targets.

Therefore, the locat ion and the velocity of the target can be est imated simulta-

neously when using CW radar with a dynamic system model for state est imat ion.

Another advantage of this approach is that it is also robust to system uncertaint ies

and measurement errors. Contrast ingly, the Doppler frequency shift due to the

target mot ion is ut ilized in [69] to est imate the target velocity independent ly allow-

ing a bet ter est imate due to addit ional measurements and increased dimension of

the measurement space. Indeed, this measurement modeling int roduces addit ional

non-linearit ies. For the posit ion measurement only case discussed in [69], converted

measurement approach [70] has been used to obtain a bet ter linear formulat ion.

Here, the non-linear measurement equat ion is linearized with a rst order approx-

imat ion equivalent to EKF in the est imat ion process. This type of linearizat ions,

specially in systems with large uncertaint ies, are known for accumulat ion of errors

and in certain instances divergence can occur in the state est imat ion.

In our study, Doppler radar based target t racking is considered and a linear state

est imator is derived with provable performance limits . Here, nonlinear Doppler

frequency modulat ion and corresponding angle of arrivals from the mobile targets

are used as measurements. A completely linear algorithm is given using a novel

measurement conversion technique that does not depend on Taylor-series type ap-

proximat ions. Mathematically rigorous proof of the boundedness of the ltering

error is a signi cant contribut ion of this method. Such results are not obtainable

from EKF.

The linear sensor array with minimal con gurat ion(two sensors) that addresses
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the data association and missing information problem is considered for t racking

mult iple mobile targets as an alternat ive to increasing the number of sensors in the

array.

D i er ent m easu rem ent t echn iques

Radar is mainly ut ilized for localizat ion and tracking of targets. The fundamental

techniques used for this purpose are common for other systems which are designed

to localize and track the targets of interest . These fundamental techniques are

range measurements, angle-of-arrival (bearing) measurements and t ime-of-arrival

measurements.

When it comes to localizat ion and tracking, there are preliminary problems to

be addressed. They can be mainly categorized in to several sect ions: errors due to

measurements, sensor locat ion uncertaint ies, data associat ion , missing informat ion

and false alarms. Where ever possible, these problems are considered separately to

disentangle and simplify the localizat ion or t racking result . As an example, consider

a mult iple target localizat ion problem where the measurements are noisy. This can

be analyzed as a single target localizat ion problem if the measurements can be

allocated to a part icular target . If the origin of the measurements are unknown,

obviously, there are two major problems to be analyzed in this case: measurement

errors and the data associat ion problem [71{77]. Clut ter and elect ronic counter-

measures give rise to the missing measurements and false alarms.

The nature of the localizat ion and/ or t racking problems is highly dependent on

the measurement technology that has been employed. Angle-of-arrival, range, t ime-

of-arrival and Doppler measurements provide di erent informat ion for the localiza-

t ion and/ or t racking. In each case, the type of the available informat ion inherent

to the measurement technology de nes the problem statement and the problem so-

lut ion. As an example, target t racking problem involving both angle-of-arrival and

range based technologies are easier to handle than the angle-of-arrival-only based
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technologies.

2.2 Op t im al localizat ion in an gle-of-ar r ival an d
r an ge b ased lin ear ar r ays

In this dissertat ion, the problem of localizat ion using the angle-of-arrival only and

range only measurements are considered for the opt imal localizat ion in linear ar-

rays. Angle-of-arrival sensors measure the bearing of a target with respect to a

local or global coordinate system [78{84] and allow passive localizat ion by ana-

lyzing the characterist ics of the received signal, for example, the phase di erence

between two adjacent waves. The angle-of-arrival based localizat ion has a long his-

tory [85] and gathered a signi cant interest during World War II [2, 86]. A closed

form error approximat ion of the maximum likelihood est imator was obtained by

Stans eld in 1947 [86] and it is considered as one of the rst localizat ion meth-

ods. It is a weighted least-squares (LS) est imator which assumes small independent

bearing noise with Gaussian dist ribut ion and no sensor locat ion error. A closed

form solut ion to the problem is feasible under these assumptions as shown in [86]

and thoroughly analyzed in [87]. In this study, it is shown that the Stans eld est i-

mator is asymptot ically biased. The pseudolinear est imator (PLE) provided in [8]

relaxed the prior knowledge requirement of the emit ter range by the Stans eld est i-

mator. A novel sensit ivity discussion is provided in [2] after rigorously analyzing the

angle-of-arrival-only localizat ion systems. For Gaussian dist ributed bearing noise,

the passive emit ter localizat ion problem can be translated into a nonlinear least -

squares est imat ion problem by engaging the maximum likelihood approach. In [64]

the non-linear least -squares problem was linearized by Taylor series expansion re-

sult ing an iterat ive Gauss-Newton algorithm. A linearized least-square approach

is given also in [43]. The maximum likelihood est imator is approximated in this

method but this can lead to large errors if the measurement noise is large or the
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sensor-target geometry is unfavorable for accurate localizat ion. Under the normal

density assumption, the maximum likelihood cost funct ion is actually a weighted

nonlinear least -square cost funct ion. An init ial est imate of the target posit ion is

required in linearized and iterat ive algorithms as closed-form solut ions do not exist

in nding the global minimum in such cost funct ions [8,43,64, 87]. A bias and vari-

ance analysis of the maximum likelihood est imat ion is studied in [87]. In [8, 88, 89]

di erent study is carried out where the convergence of the iterat ive least -square

algorithm for angle-of-arrival-only localizat ion is explored.

Range based localizat ion is a common passive measurement technique where the

locat ion of an emit ter is obtained by triangulat ion of range informat ion collected at

a number of sensors. Range from a source to a sensor can be measured in several

ways including the t ime of arrival of signal or signal st rength. These techniques have

numerous potent ial applicat ions in mobile posit ioning in wireless telecommunicat ion

systems, radar and unmanned aerial vehicles (UAVs) [90{98].

Source localizat ion using range measurements is challenging because the source

locat ion is related to the measurements in a highly nonlinear manner. An un-

const rained least squares solut ion named as Quadrat ic-term Eliminat ion (QE) is

used to localize the source in [99, 100]. This approach is known to perform bet ter

than some previous localizat ion methods such as Spherical Interpolat ion (SI) and

Spherical intersect ion (SX) [101]. A di erent approach can be found in [102], where

probabilist ic sampling is used to obtain the localizat ion. Localizat ion of mult iple

emit t ing acoust ic sources for wireless sensor networks has been examined using the

Maximum Likelihood (ML) method in [103]. The Project ion Onto Convex Sets

(POCS) together with iterat ion to localize the source has been discussed in [104].

The potent ial performance of any part icular localizat ion algorithm is a st rong

funct ion of the relat ive sensor-target geometry [9, 105]. As an example, the conver-

gence of iterat ive est imat ion algorithm can be a ected by the relat ive sensor-target
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geometry. A part ial characterizat ion of the sensor-target geometry with di er-

ent matrices related to Cramer-Rao inequality or the result ing Fisher informat ion

matrix has been explored in [10]. Since the Cramer-Rao lower bound is a func-

t ion of the relat ive sensor-target geometry, several studies have been carried out

to ident ify underlying geometrical con gurat ions which minimize some measure of

this variance lower bound [8, 10{16, 26, 106]. The target of these studies is to nd

the geometric con gurat ions which are likely to result in more accurate localiza-

t ions. In general, an opt imizat ion is carried out on the Cramer-Rao lower bound for

those relat ive sensor-target geometries which minimize the selected measure. Any

part icular sensor-target posit ions which minimize some measure of variance lower

bound is considered to be opt imal with respect to this measure. It is obvious that

the measurement technology employed by the sensors is related to the part icular

sensor-target posit ions which optimizes the chosen measure of the localizat ion per-

formance. In [12] the case of moving the sensors in order to localize and track moving

targets while maintaining an opt imal localizat ion geometry is studied. Indeed, for

mobile sensor-based localizat ion problems, a similar measure of localizat ion perfor-

mance can be ut ilized to ident ify opt imal sensor trajectories, hence derive control

laws for navigat ing sensors along such opt imal t rajectories [8, 12, 14, 15, 107{110].

The problem of determining the opt imal t rajectory for a single moving platform

with an angle-of-arrival sensor is explored in [111] and the opt imal t rajectory is de-

termined by maximizing the determinant of the Fisher Informat ion Matrix (FIM),

which minimizes the uncertainty of the overall est imat ion problem. Deriving and

dealing with actual Mean Squared Error (MSE) expressions for angle-of-arrival and

range based localizat ion methods can be mathemat ically challenging due to the

nonlinear nature of the est imat ion problem. Hence Fisher informat ion matrix can

be employed to simplify the analysis to a greater extent [11, 13, 43].

Linear sensor arrays play a crucial role in some real world applicat ions such
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as radar [9, 20, 21, 23{25]. But most of the exist ing literature concern more on

posit ioning the sensors around the target for opt imal localizat ion [11, 13]. In this

study, we provide a characterizat ion of the relat ive sensor-target geometry for linear

sensor arrays based on AoA-only and range-only localizat ions. To the best of our

knowledge, no such analysis exists in the exist ing literature.

2.3 T im e-of-ar r ival an d t im e-delay-of-ar r ival sys-
t em s

Another important measurement technique is to ut ilize the t ime-of-arrival mea-

surements of a signal t ransmit ted by a target to several sensor posit ions to nd

the locat ion of a target . If the originated t ime of the signal at the target is not

known, t ime-di erence-of-arrival between the sensors can be ut ilized to localize the

target . Localizat ion based on TDoA technology is current ly applicable in numer-

ous applicat ions including intelligent t ransport system (ITS), resource management

and performance enhancement in mobile cellular networks, electromagnet ic radar

and acoust ic-based systems. TDoA-based systems may be used to est imate the

locat ion of a wireless emitter or audio source, where a considerable amount of work

exists, [112{115].

TDoA systems, generally localize an emit ter by processing signal arrival-t ime

measurements at three or more sensors in R2 space and four or more sensors in

R3 space. Essent ially, the t ime-di erence-of-arrival measurements give the range

di erence between two sensors with respect to the target . In the absence of noise and

interference, the arrival-t ime measurements at two sensors are combined to produce

a relat ive arrival t ime that , con nes the possible emit ter locat ion to a hyperbola in

R2 and a hyperboloid in 3D, with the two sensors as foci. As depicted in Figure 2.3,

emit ter locat ion is est imated from the intersect ions of two or more independent ly

generated hyperbolas in 2D and the intersect ions of three or more independent ly
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Figure 2.3: Time-Delay-of-Arrival measurement technique

generated hyperboloids in R3 [26]. If two hyperbolas or three hyperboloids are

considered, they can have either one or two points of intersect ion. The locat ion

ambiguity occurred by two points of intersect ion may be resolved by using a priori

informat ion about the locat ion or an addit ional sensor to const ruct an addit ional

hyperbola/ hyperboloid.

TDoA based localizat ion inherent ly allows passive localizat ion which is very use-

ful in modern elect ronic warfare as the target can be localized without it s knowl-

edge [116, 117]. This localizat ion technology has been known even before World

War II [118]. Mainly the studies on TDoA has been on maximum likelihood est i-

mat ions and the development of closed-form solut ions [101, 119, 120], hence a rela-

t ively small number of calculat ions are required in localizing a target . In some other

studies [26, 64, 121] the examinat ion is carried out from purely stat ist ical point of

view by making assumptions on the probability density of the measurement errors.

In this case, for the localizat ion, an init ial est imate of the target posit ion is needed

and which is not necessarily t rivial to obtain. The convergence propert ies of the
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iterat ive localizat ion algorithm is highly dependent on the accuracy of the init ial

est imate.

Unique localizat ion of mult iple emit ters using TDoA or ToA measurements

which addresses the data associat ion problem and an analysis on unique localizat ion

of an emit ter using minimum number of TDoA measurements with bounded error

are provided in our study.
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Opt im al Sensor P lacem ent for
Lin ear Sensor A r r ays

In the classical problem of target localizat ion, the target posit ion is est imated by

mult iple sensor measurements. In pract ice, these measurements are typically noisy.

In some situat ions the geometry of the sensor array is pre xed, for example linear

sensor arrays [9,18{25] which are common in pract ice. There is a limited freedom to

place the sensors in order to get opt imal performance in these part icular geometries.

In this chapter we analyze the opt imal sensor-target geometries for common passive

measurement techniques known as AoA-only and range-only technologies. In our

approach, we consider the localizat ion problem involving a single target and mult iple

adjustable AoA/ range sensors located in a linear array(uniform and non-uniform

linear arrays).

The potent ial performance of any part icular localizat ion algorithm is highly de-

pendent on the relat ive sensor-target geometry [8,9]. For example, the convergence

of iterat ive est imat ion algorithm can be a ected by the relat ive sensor-target ge-

ometry. Lets consider a problem where the locat ion of a single target is to be

found using two angle-of-arrival sensors with noisy measurements. In this mat ter,

hypothesis about the characterist ics of the measurement error is not required. Two

angle-of-arrival sensors independent ly take two measurements and the intersect ion

of the those bearing lines provides an est imat ion for the target posit ion. Even for

26
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the noisy measurements the equat ions have a unique solut ion. In fact , if the mea-

surements are noisy, the two bearing lines corrupted with noise do not intersect on

the exact target locat ion. Hence, the localizat ion performance is dependent on the

sensor-target geometry [8]. The distance between the intersect ion of two bearing

lines and the t rue target locat ion is a measure of performance of the localizat ion.

Obviously, this distance is inversely proport ional to the performance. In this chap-

ter, mathemat ical characterizat ion is carried out for the localizat ion geometries in

linear sensor arrays ut ilizing AoA-only and range-only technologies.

Sensor 1 Sensor 2 Sensor 1 Sensor 2 

Confidence region for 

target position 

Relatively good sensor-target 

geometry

Relatively bad sensor-target 

geometry 

Target 

Figure 3.1: Sensor-target geometry and error

Before embarking on to the mathemat ical analysis which is chosen to repre-

sent this characterizat ion, it is very important to understand how the sensor-target

geometry in uence the potent ial localizat ion performance. Figure 3.1 illust rates

two di erent geometrical localizat ion scenarios for AoA-only localizat ion technique.

The relat ive performance of a given localizat ion geometry can be measured by the

amount a xed error in a angle measurement t ranslates into a corresponding error

in target posit ion. Localizat ion performance can be regarded as less if a small error
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in the measurement t ranslates into a higher error in the localizat ion. In fact , the rel-

at ive performance of the sensor-target geometry should be considered as a relat ive

measure. Hence, in a good performing geometry, a similarly constant error in the

angle measurement should be translated into a relat ively smaller error in the target

posit ion est imate. In some scenarios, the sensit ivity of the target localizat ion, as a

funct ion of the magnitude of the measurement error can be used to characterize the

sensor-target geometry. It is obvious that a measure of the localizat ion performance

can be derived as a funct ion of the part icular sensor-target geometry.

Several studies have been carried out to ident ify underlying geometrical con-

gurat ions which minimize some measure of the variance of the Cramer-Rao lower

bound [8,10{16,26,106], as it is a funct ion of the sensor-target geometry. The objec-

t ive of these studies is to nd the geometric con gurat ions which are likely to result

in localizat ions with good performance. Generally, an opt imizat ion is considered

on the Cramer-Rao lower bound for those relat ive sensor-target geometries which

minimize the selected measure. Such a sensor-target posit ion which minimize some

measure of variance lower bound can be regarded as opt imal with respect to this

measure. An incomplete characterizat ion of the sensor-target geometry with di er-

ent matrices related to Cramer-Rao inequality or the result ing Fisher informat ion

matrix has been studied in [8, 10]

In this chapter we provide a more rigorous characterizat ion of the relat ive sensor-

target geometry for linear sensor arrays based on AoA-only and range-only local-

izat ion. We consider only one target for stat ic localizat ion problem. Here, an

uncertainty ellipse which depicts the geometrical variance dist ribut ion of an e -

cient target est imate can be generated by utilizing the Cramer-Rao lower bound.

This part icular uncertainty ellipse is a ected by the sensor-target geometry and

the corresponding measurement technology. Hence, the object ive of this chapter is

to nd the sensor-target geometry/ geometries which minimizes the area/ volume of
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the corresponding uncertainty ellipse.

When the Cramer-Rao lower bound is obtained, the variance is the reciprocal of

the Fisher informat ion [43]. Hence, the determinant of the Fisher informat ion can be

used to assess the are of the uncertainty ellipse. Hence, the sensor-target geometries

are analysed with respect to the determinant of the Fisher informat ion matrix, and

the geometries which maximize this part icular determinant are considered opt imal

in this sense.

The analysis of the opt imal geometry is subjected to the following const raints:

1. Fixed Uniform Linear Arrays(FULA): One sensor of the linear array is xed

and the distance between the consecut ive sensors are equal.

2. Uniform Linear Arrays(ULA): The distance between the consecut ive sensors

are equal.

3. Fixed Non-Uniform Linear Arrays(FNULA): One sensor of the linear array is

xed and the distance between the consecut ive sensors may not be equal.

4. Non-Uniform Linear Arrays(NULA): The distance between the consecut ive

sensors may not be equal.

In fact , the results presented in this paper provide fundamental informat ion

about how the localizat ion performance is a ected by the sensor-target geometry

for linear sensor arrays1. This informat ion is of signi cant value to users of mult iple

sensor(linear arrays) based localizat ion systems.

1P lease note that the material presented in this chapter was published as conference papers:
S.C.K. Herath and P.N.Pathirana , Opt imal sensor placement in linear arrays: Part I - AoA
based localizat ion, in ISSNIP 2011 : P roceedings of the 7th Internat ional Conference on Intelli-
gent Sensors, Sensor Networks and Informat ion P rocessing, pp. 277-281, IEEE, Adelaide, South
Aust ralia and in S.C.K. Herath and P.N.Pathirana , Opt imal sensor separat ion for AoA based
localizat ion via linear sensor array, in ISSNIP 2010 : P roceedings of the 6th Internat ional Con-
ference on Intelligent Sensors, Sensor Networks and Informat ion P rocessing, pp. 187-192, IEEE,
United States.
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3.1 C onvent ion s an d n ot at ion

Consider the i th sensor of a mult iple AoA/ range sensors located in a linear array

which is posit ioned to localize a single stat ionary target (Figure 3.2) in R2. The

unknown locat ion of the target is given by p = [xp yp]T . The AoA/ range sensors

are marked as i 2 f 1; 2; : : : ; N g and N 2 with the posit ion of the i th sensor given

by S i = [xsi ysi ]T . The distance between the sensor Si and the target P is given by

r i = kp S i k. The bearing i from sensor Si to the target is measured clockwise

from x-axis such that i (p) 2 [0; 2 ) .

3.2 C r am er -R ao lower b ou n d an d F ish er in for -
m at ion m at r ix

In general, the set of measurements from N sensors can be writ ten as ẑ = z(p ) + n ,

where z(p ) = [z1(p) : : : zN (p)]T and n = [n1 : : : nN ]T . It is assumed that the

measurement errors of dist inct sensors are independent of each other. Also, for

simplicity, it is assumed that the error variances of mult iple dist inct sensors are

equal and is given by 2
z . The covariance matrix for N number of sensors is then

given by R z = 2
z IN , where IN is an N -dimensional ident ity matrix. The general

measurement vector ẑ can thus be considered as an observable normally dist ributed

random vector and can be described by ẑ N (z(p ); R z).

 

( , ) 

 

( , ) 
 

 

P 

Figure 3.2: Measurement from a sensor.
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Under the Gaussian measurement error assumpt ion, the likelihood funct ion of

p given the measurement vector ẑ N (z(p ); R z) is given by

f z(ẑ; p ) =
1

(2 )N=2 jR zj1=2
exp

1
2

(ẑ z(p ))T R 1
z

1
2

(ẑ z(p )) (3.2.1)

where jR zj is the determinant of R z and z(p ) is the mean value of ẑ. The

natural logarithm of f z(ẑ; p ) can be writ ten as

ln f z(ẑ; p ) =
1
2

(ẑ z(p ))T R 1
z

1
2

(ẑ z(p )) + c; (3.2.2)

where c is a constant independent of p .

The Cramer-Rao inequality lower bounds the covariance achievable by an unbi-

ased est imator under two mild regularity condit ions [43, 122, 123]. Considering the

unbiased est imate p̂ for p , the Cramer-Rao bound states that

E (p̂ p )(p̂ p )T I 1(p ) , C(p ); (3.2.3)

where I (p ) is the Fisher informat ion matrix. In general if I is singular then

no unbiased est imator for p exists with a nite variance. If I is nonsingular then

the existence of an unbiased est imator of p with nite variance is theoret ically

possible [124,125]. If (3.2.3) holds with equality then the est imator is called e cient

and the parameter est imate p̂ is unique.

Consider the set of measurements from N sensors ẑ N (z(p ); R z). The Fisher

informat ion matrix, in this case, quant i es the amount of informat ion that the

observable random vector ẑ carries about the unobservable parameter p . It can

be stated that the Fisher informat ion characterizes the nature of the likelihood

funct ion(3.2.1). If the likelihood funct ion is sharply peaked then the t rue value of

p is easy to est imate from the measurements. The (i ; j )th element of I is given by
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(I (p )) i ;j = E
@

@pi
ln (f z(ẑ; p ))

@
@pj

ln (f z(ẑ; p )) ; (3.2.4)

In the general case, under the Gaussian noise assumption, (i ; j )th element of I

is given by

(I (p )) i ;j =
@z(p )T

@pi
R 1

z
@z(p )
@pj

+
1
2

tr R 1
z

@R z

@pi
R 1

z
@R z

@pj
; (3.2.5)

where tr(:) is the t race of the square matrix. This part icular term accounts for

the cases when covariance R z is a funct ion of the t rue parameter state p . But , in

this study it is assumed that R z is independent of the parameter p to be est imated.

Then the above (3.2.5) simpli es to

(I (p )) i ;j =
@z(p )T

@pi
R 1

z
@z(p )
@pj

(3.2.6)

If (I (p )) i ;j = 0, then pi and pj are orthogonal and their maximum likelihood

est imates are independent . Then the general Fisher informat ion matrix is given by

I (p ) = r p z(p )T R 1
z r p z(p ): (3.2.7)

where r p z(p ) is the Jacobian of the measurement vector with respect to p .

As long as I (p ) is invert ible the matrix I 1(p ) , C(p ) is symmetric posit ive

de nite and de nes the uncertainty ellipsoid. The eigenvalues of C(p ) are arranged

according to 1 2 : : : M . Note that
p

i ; 8 2 f 1; : : : ; N g is the length

of the i th axis of the ellipsoid and also that the axes of the ellipsoid lie along the

relevant eigenvectors of C(p ).

The potent ial performance of an unbiased est imator can be assessed by the scalar

funct ional measure of the shape and size of the uncertainty ellipse. The est imated

uncertainty can be measured by several di erent scalar funct ions of C(p ). As an

example, the mean squared error of the unbiased and e cient est imate is direct ly
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related to the t race of the C(p ) given by tr(C(p )) =
P

i i . The volume of the

uncertainty ellipsoid given by det(C(p )) =
Q

i i is another important measure of

the performance.

In this study, the volume of the uncertainty ellipsoid is ut ilized as the measure of

the total uncertainty in an est imate p̂ of p . In our analysis, we use the determinant

of the Fisher informat ion matrix (I (p )) as an inverse measure of the uncertainty

ellipsoid volume as it is mathemat ically easier to deal with the determinant rather

than the inverse Fisher informat ion matrix for the analysis.

3.3 A oA b ased localizat ion

Consider the i th sensor of a mult iple AoA sensors located in a linear array which

are posit ioned to localize a single stat ionary target in R2. The measured value of

angle ( i ) is given by,

î = i (p) + ni = arctan
yp y si

xp x si
+ ni ; (3.3.1)

where the ar ctan is de ned such that i (p) 2 [0; 2 ). The measurement error

ni is assumed to be normally dist ributed with zero mean and variance 2, i.e.

ni N (0; 2).

Then using (3.2.7), Fisher informat ion matrix (I (p)) for N number of sensors

can be writ ten as,

I (p ) =
1
2

NX

i= 1

1
r 2

i

"
sin2

i sin i cos i

sin i cos i cos2
i

#

(3.3.2)

Then the Fisher informat ion determinant for AoA-only localizat ion can be given

as,

det(I (p )) =
1
4

X

S

sin2( j i )
r 2

j r 2
i

; (3.3.3)
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and

det(I (p )) =
1

4 4

2

4

 
NX

i= 1

1
r 2

i

!  
NX

i= 1

cos 2 i

r 2
i

! 2

 
NX

i= 1

sin 2 i

r 2
i

! 2
3

5 ;

where S = f f i ; j gg is de ned as the set of all combinat ions of i and j with

i ; j 2 f 1; : : ; N g and j > i , implying jSj= N
2 . The number of combinat ions is

indicated by the j:j.

3.4 R an ge b ased localizat ion

Consider the i th sensor of a mult iple range sensors located in a linear array which

are posit ioned to localize a single stat ionary target in R2. The measured value of

angle (r i ) is given by,

r̂ i = r i (p) + ei ; (3.4.1)

where the ei is the measurement error and it is assumed to be normally dis-

t ributed with zero mean and a variance 2
r , i.e. ei N (0; 2

r ).

Then using (3.2.7), the Fisher Informat ion Matrix (I r (p)) for N number of

sensors around the target can be writ ten as,

I r (p ) =
1
2
r

NX

i= 1

"
cos2

i sin i cos i

sin i cos i sin2
i

#

(3.4.2)

The Fisher informat ion determinant for range-only localizat ion can be given as,

det(I r (p )) =
1
4
r

X

S

sin2( j i ); (3.4.3)

and
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det(I r (p )) =
1

4 4
r

2

4N 2

 
NX

i= 1

cos 2 i

! 2

 
NX

i= 1

sin 2 i

! 2
3

5 ;

where S = f f i ; j gg is de ned as the set of all combinat ions of i and j with

i ; j 2 f 1; : : ; N g and j > i , implying jSj= N
2 .

These relat ionships for AoA and range are used in accessing the opt imal geome-

t ries in following sect ions.

3.5 Op t im al geom et r ies for in lin e A oA sen sor s

3.5.1 F ixed U n iform Lin ear A r rays(F U LA )

T h eorem 3.5.1. Consider a target at P (xp; yp) 2 R2. N number of linear AoA
sensors (one xed at the origin), separated by x distance from each other (Figure
3.3) are b distance away from the target. The Fisher information determinant for
this case is,

det(I x (p )) =
1
4

NX

j = 2

j 2X

i = 0

b[j (i + 1)]x
[(a ix )2 + b2] [(a [j 1]x)2 + b2]

2

;

(3.5.1)

where (a; b) = (xp; yp).

Proof. Transforming (3.3.2) into Cartesian co-ordinates and rearranging leads to
(3.5.1).

C orollary 3.5.2. Consider that the target location is P (xp; yp) and the position of
the xed sensor(S1) and the line on which the second sensor to be placed is known.
Then the optimal distance between these two sensors is equal to the distance between
the xed sensor and the target (ie. kS1 S 2k = kS1 Pk).

Proof. With no loss of generality consider two sensors, one xed at the origin (S1 =
[0 0]T ), the other one on the x-axis (S2 = [xs2 0]T ) as shown in the Figure 3.4. The
Fisher informat ion determinant for this case is,
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1 2 
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([ − 1] ,0) 
 

Figure 3.3: Localizat ion with ULA of N number of sensors(AoA/ Range) with one
sensor xed at the origin.

det(I x (p )) =
1
4

ypxs2

(x2
p + y2

p)[(xp x s2)2 + y2
p]

2

: (3.5.2)

By maximizing (3.5.2) with respect to xs2, it can be shown that , det(I x (p))
maximizes when,

xs2 =
q

x2
p + y2

p:

Hence, kS1 S 2k = kS1 Pk .

3.5.2 U n ifor m Linear A r rays(U LA )

T h eorem 3.5.3. Consider N sensors on a given straight line b distance away from
a target in R2. When x is the distance between consecutive sensors (Figure 3.5),
the optimal localization of the target occurs for the x, which maximize the following
Fisher information determinant,

det(I x (p )) =
1
4
r

NX

j = 2

j 2X

i = 0

(b[c d ]x)
[(cx)2 + b2] [(dx)2 + b2]

2

; (3.5.3)

where

c =
N 1

2
i ;

and

d =
N 1

2
[j 1]:
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Figure 3.4: Localizat ion with two sensors(AoA/ Range) on x-axis.

Proof. Transforming (3.3.2) into Cartesian co-ordinates and rearranging leads to
(3.5.3).

C orollary 3.5.4. For two AoA sensors, the optimal sensor separation occurs when
kS1 S 2k = kS1 Pk = kS2 Pk.

Proof. Consider the sensor-target geometry shown in Figure 3.4. Using (3.3.2), the
Fisher informat ion determinant for this case is,

det(I x (p )) =

(
yp(xs2 x s1)

(xp x s1)2 + x2
p (xp x s2)2 + x2

p

) 2

: (3.5.4)

It can be shown that the maximum of (3.5.4) occurs when

xs1 = xp y p=
p

3;

and
xs2 = xp + yp=

p
3:

When this relat ionship holds for the opt imal sensor separat ion, kS1 S 2k =
kS1 Pk = kS2 Pk .

3.5.3 F ixed N on -U n ifor m Lin ear A r rays(F N U LA )

Suppose that a target (P ) 2 R2 is to be localized using N number of linear array

of sensors (S1; S2; ; : : : ; SN ). t ransforming (3.3.2) in to Cartesian co-ordinates, it

can be shown that the Fisher informat ion determinant for this case is,
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det(I (p )) =
1
4

X

S

(
bkSj S i k

kSj Pk 2 kSi Pk 2

) 2

; (3.5.5)

where b is the distance between the target and the linear array and S = f f i ; j gg

is de ned as the set of all combinat ions of i and j with i ; j 2 f 1; : : ; N g and j > i ,

implying jSj= N
2 .

Finding the opt imal sensor separat ions becomes an (N 1)-dimensional opt i-

mizat ion problem. Finding the solut ions is mathemat ically challenging when n> 3

and the solut ions for the n = 3 case have been found in [126] which is a two-

dimensional opt imizat ion problem.

N on-U n iform Linear A r r ays(N U LA )

 

 

1 2  −1 

 

 

Figure 3.5: AoA/ Range localizat ion with N number of sensors.

T h eorem 3.5.5. Consider N number of AoA sensors on a given line b distance
away from a target in R2. At the optimal geometry, sensors form an equilateral
triangle with the target.

1. N is even; N=2 sensors overlap at each corner of the triangle located on the
line.

2. N is odd; (N 1)=2 and (N + 1)=2 sensors overlap at each corner of the
triangle located on the line respectively.
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Figure 3.6: Localizat ion with N number of AoA sensors.

Proof. Consider the sensor-target geometry shown in Figure 3.6. When the total
number of sensors used for localizat ion is odd (N 2 f 3; 5; 7; : : :g); assume that
(N 1)=2 number of sensors are overlapping at each corner of the triangle (Sk1 and
Sk2), which are y distance apart and the remaining sensor is x distance away from
the symmetric axis. Using (3.3.2) the Fisher informat ion determinant for this case
can be writ ten as,

det(I x;y(p )) =
N 1

2
b2(y + x)2

[(y2 + b2)(x2 + b2]2

+
N 1

2
b2(y x )2

[(y2 + b2)(x2 + b2]2

+
N 1

2

2 b2(2y)2

(y2 + b2)4
: (3.5.6)

It can be shown that (3.5.6) is at maximum when x = b=
p

3 and y = b=
p

3
8 N 2 f 3; 5; 7; : : :g.

When the total number of sensors used for localizat ion is even (N 2 f 2; 4; 6; : : :g);
assume that N=2 and N=2 1 number of sensors are overlapping at each corner
of the t riangle (Sk1 and Sk2), which are y distance apart and the remaining sensor
is x distance away from the symmetric axis. Using (3.3.2) the Fisher informat ion
determinant for this case can be writ ten as,

det(I x;y(p )) =
N
2

1
b2(y + x)2

[(y2 + b2)(x2 + b2]2

+
N
2

b2(y x )2

[(y2 + b2)(x2 + b2]2

+
N
2

N
2

1
b2(2y)2

(y2 + b2)4
: (3.5.7)
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It can be shown that (3.5.7) reaches it 's maximum when x = b=
p

3 and y = b=
p

3
8 N 2 f 2; 4; 6; : : :g.

Then it is clear that for any N 2, x = b=
p

3 and y = b=
p

3 provide the opt imal
geometry for AoA based localizat ion which is an equilateral t riangle.

3.6 Op t im al geom et r ies for in lin e r an ge sen sor s

3.6.1 F ixed U n iform Lin ear A r rays(F U LA )

T h eorem 3.6.1. Consider that a target is at P (xp; yp) 2 R2. N number of linear
range sensors (one xed at the origin), separated by x distance from each other (Fig-
ure 3.3) are b distance away from the target. The Fisher information determinant
for this case is,

det(I x (p )) =
1
4
r

NX

j = 2

j 2X

i = 0

(b[j (i + 1)]x)2

[(a ix )2 + b2] [(a [j 1]x)2 + b2]
;

(3.6.1)

where (a; b) = (xp; yp).

Proof. Transforming (3.4.3) into Cartesian co-ordinates and rearranging leads to
(3.6.1).

C orollary 3.6.2. Consider that the target is at P (xp; yp) and the position of one
sensor( xed) and the line on which the second sensor to be placed is known. The
optimal geometry occurs when the angle subtended by the sensors at the target is

=2 (ie.S1P̂S2 = =2).

Proof. With no loss of generality consider two sensors, one xed at the origin (S1 =
[0 0]T )and the other on the x-axis (S2 = [xs2 0]T ). The target is at P (xp; yp) as
shown in Figure 3.4. The Fisher informat ion determinant for this case is,

det(I x (p)) =
1
4
r

( ypxs2)2

(x2
p + y2

p)[(xp x s2)2 + y2
p]

: (3.6.2)

By maximizing the (3.6.2) with respect to xs2, it can be shown that , det(I x (p))
maximizes when,

xs2 =
x2

p + y2
p

xp
: (3.6.3)

This proves that the opt imal geometry occurs when the angle subtended by the
sensors at the target is =2.
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3.6.2 U n ifor m Linear A r rays(U LA )

T h eorem 3.6.3. Consider N sensors on a given line that are b distance away from
the target in R2. With equal distance between consecutive sensors (Figure 3.5), the
optimal localization of the target occurs for the x, which maximizes the following
Fisher information determinant,

det(I x (p )) =
1
4
r

NX

j = 2

j 2X

i = 0

(b[c d ]x)2

[(cx)2 + b2] [(dx)2 + b2]
; (3.6.4)

where

c =
N 1

2
i ;

and

d =
N 1

2
[j 1]:

Proof. Transforming (3.4.3) into Cartesian co-ordinates and rearranging leads to
(3.6.3).

C orollary 3.6.4. For two range sensors, the optimal sensor target geometry occurs
when the angle subtended by the sensors at the target is =2 (ie.S1P̂S2 = =2).

Proof. Consider the sensor-target geometry shown in Figure 3.4. Using (3.4.3), the
Fisher informat ion determinant for this case is,

det(I x (p )) =
[yp(xs2 x s1)]2

(xp x s1)2 + x2
p (xp x s2)2 + x2

p

: (3.6.5)

It can be shown that the maximum of (3.6.4) occurs when

xs2 =
x2

p + y2
p x pxs1

xp x s1
:

When this relat ionship holds for the opt imal sensor target geometry, the angle
subtended by the sensors at the target is =2.

This result agrees with the geometrical relat ionships obtained in [11], where they

prove that , for two range sensors, the opt imal sensor-target geometry is unique and

occurs when the angle subtended by the sensors at the target is =2. This result

agrees with [106].
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3.6.3 F ixed N on -U n ifor m Lin ear A r rays(F N U LA )

Consider N number of linear sensors (S1; S2; ; : : : ; SN ) are employed to localize

a target (P ) 2 R2. One sensor is xed at the origin. Transforming (3.4.3) into

Cartesian co-ordinates, it can be shown that the Fisher informat ion determinant

for this case is,

det(I r (p )) =
1
4
r

X

S

bkSj S i k
kSj Pk kS i Pk

2

; (3.6.6)

where b is the distance between the target and the linear array whilst S =

f f i ; j gg is de ned as the set of all combinat ions of i and j with i ; j 2 f 1; : : ; N g

and j > i , implying jSj= N
2 .

Finding the opt imal sensor separat ion becomes an (N 1)-dimensional opt i-

mizat ion problem and further studies can be carried out .

3.6.4 N on -U n iform Linear A r rays(N U LA )

Suppose that a target (P ) 2 R2 is to be localized using N number of inline sensors

(S1; S2; ; : : : ; SN ). t ransforming (3.4.3) into Cartesian co-ordinates, it can be shown

that the Fisher informat ion determinant for this case is,

det(I r (p )) =
1
4
r

X

S

bkSj S i k
kSj Pk kS i Pk

2

; (3.6.7)

where b and S carries the same meaning in the above sect ion. Here in this case

too nding the opt imal sensor separat ion leads to an N -dimensional opt imizat ion

problem which requires further studies.
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Figure 3.7: Variat ion of Fisher informat ion determinant value with the distance
between two adjacent sensors of ULA for di erent number of AoA sensors (one
sensor xed).

3.7 Sim u la t ions

3.7.1 A oA -on ly linear sen sor ar r ays

Consider a sensor-target geometry as depicted in Figure 3.3, where sensor S1 is xed

at the origin and the other sensors (S2,S3, . . . SN ) are free to be located on the x-

axis with equal distance from each other. The target is at P = [3 4]T . Figure 3.7

shows the variat ion of the Fisher informat ion determinant value with the distance

between the sensors for di erent numbers of sensors.

It can be seen from the Figure3.7, that when the number of sensors are increased,

the Fisher informat ion determinant value increases and the inter-sensor distance

decreases for opt imal localizat ion which is unique for a given number of sensors.

T wo ad just ab le sensor s

Consider sensors S1 and S2 are located anywhere on the x-axis (Figure 3.4). The

target is at P = [3 4]T . The variat ion of the Fisher informat ion determinant value

with the posit ions of the two sensors is depicted in Figure 3.8 and the corresponding

contour plot in Figure 3.9. It can be seen that the Fisher informat ion value is
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Figure 3.8: Variat ion of Fisher informat ion determinant value with the AoA sensors
posit ions.
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Figure 3.9: Variat ion of Fisher informat ion determinant value with the AoA sensors
posit ions(Contour plot ).
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maximized when xs1 = 9 4
p

3
3 and xs2 = 9+ 4

p
3

3 (Corollary 3.5.4). When xs1 and xs2

at tain these values, the geometry of the sensor-target con gurat ion is an equilateral

t riangle. (ie. kS1 S 2k = kS1 Pk = kS2 Pk ).

U LA wit h m u lt ip le ad ju st ab le sen sor s
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Figure 3.10: Variat ion of Fisher informat ion determinant value with the distance
between two adjacent sensors of ULA for di erent number of AoA sensors (All
adjustable).

As illustrated in Figure 3.5, all the sensors are equally separated by x distance

and the distance to the target from the line on which the sensors are placed is 4.

The variat ion of Fisher informat ion determinant value with respect to x is depicted

in Figure 3.10 for di erent numbers of sensors.

It can be seen from the gure that when the number of sensors are increased,

the Fisher Informat ion determinant value increases and the distance between the

sensors decreases for opt imal localizat ion while it is unique for a given number of

sensors.

3.7.2 R ange-on ly linear sen sor ar r ays

Consider a sensor-target geometry as depicted in Figure 3.3, where sensor S1 is

xed at the origin and the other sensors ( S2,S3, . . . SN ) are located anywhere on

the x-axis keeping the same distance from each other. The target is at P = [3 4]T .
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Figure 3.11: Variat ion of Fisher informat ion determinant value with the distance
between two adjacent sensors of ULA for di erent number of range sensors (One
sensor xed).

Figure 3.11 shows the variat ion of Fisher informat ion determinant value with the

distance between the sensors for di erent number of sensors.

It can be seen from the gure that when the number of sensors are increased,

the Fisher informat ion determinant value increases and the distance between the

sensors decreases for opt imal localizat ion while it is unique for a given number of

sensors.

T wo ad just ab le sensor s

As depicted in Figure 3.4, sensors S1 and S2 are located anywhere on the x-axis. The

target is at P = [3 4]T . The variat ion of the Fisher informat ion determinant value

with the locat ions of the two sensors is depicted in Figure 3.12 and the corresponding

contour plot in Figure 3.13. It can be seen that the Fisher informat ion value

maximizes when xs1 and xs2 sat isfy (3.6.4)(Corollary 3.6.5).

U LA wit h m u lt ip le ad ju st ab le sen sor s

Consider a sensor-target geometry as illust rated in the Figure 3.5, where all the

sensors are equally separated by x distance and the distance to the target from
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Figure 3.12: Variat ion of Fisher informat ion determinant value with the range
sensors posit ions.
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Figure 3.14: Variat ion of Fisher informat ion determinant value with the distance
between two adjacent sensors of ULA for di erent number of range sensors (All
adjustable).

the line on which the sensors are placed is 4. Variat ion of the Fisher Informat ion

determinant value with respect to x is depicted in Figure 3.14 for di erent number

of sensors.

It can be seen from the simulat ion that when the number of sensors increases,

the Fisher informat ion determinant value increases and the distance between the

sensors decreases for opt imal localizat ion which is unique for a given number of

sensors.

3.8 Su m m ar y

This chapter provides a characterizat ion of opt imal sensor-target geometry for lin-

ear arrays of AoA and range sensors in passive localizat ion problems in R2. The

potent ial localizat ion performance of unbiased and e cient est imator is used for

these characterizat ions. The chosen measure of the localizat ion performance (the

area of the uncertainty ellipse) has an explicit and measurable connect ion between

the sensor-target geometry. We have mainly discussed two generic problems of

fully adjustable linear sensor arrays and the case of an array, where the sensors are
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free to be moved with respect to a xed sensor. Cramer-Rao lower bound and the

corresponding Fisher informat ion matrices are used to analyze the sensor target

geometry for opt imal localizat ion.

By increasing the bias, the mean-squared error(or the variance) of an est imate

can be reduced [127]. The relat ionship between the bias and the variance have been

extensively studied in [125, 128, 129]. These works are helpful in understanding the

bias-variance t rade o . The results shown in these studies can be ut ilized to extend

the results obtained in our study for more pract ical est imat ion algorithms such as

maximum likelihood.

The results obtained in this chapter is useful in arranging the AoA or Range

sensors in a manner which can signi cant ly improve recursive localizat ion perfor-

mance. The analysis provided here is also related to opt imal path planning and

trajectory control of mobile sensors for localizat ion, e.g see [15, 109, 111].

It should be noted that only the single target scenario is discussed in this chapter,

but the mult iple target localizat ion can also be explored using the same concept

presented.

The perfect knowledge of the emit ter posit ion should be available in the the-

oret ical development for determining opt imal sensor placement . Even though in

pract ical applicat ions this informat ion is not available, a rough est imate of the

likely region of the emit ter is su cient in determining the sensor posit ions to ob-

tain improved localizat ion results. In some pract ical applicat ions, size of the sensor

and the rest rict ions to the size of the array should be considered. Hence the results

of this chapter can be utilized to establish guidelines for linear sensor placement

leading to improved performance.
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Data associat ion problem or ghost format ion is a phenomena which can be found

in many mult i target localizat ion and tracking systems. When tracking mult iple

targets with relat ively lesser number of sensors, the ghost format ion occurs when

incorrect ly assigning ghost targets to real targets and vice versa. Limited number of

spat ially dist ributed sensors rest rict the recovery of real target posit ions uniquely

from the signals received at each sensor. At this instance, the number of combina-

t ions of the received measurements exceeds the number of real targets and some of

these combinat ions refers to non exist ing targets. These part icular virtual targets

are denoted as ghosts. This chapter mainly discusses about the solut ion to the data

associat ion problem in TDoA and ToA based localizat ion systems. It also addresses

the unique solut ion region for minimal TDoA measurements.1

1P lease note that some of the material presented in this chapter is accepted for publicat ion
in: S.C.K. Herath, P.N.Pathirana, B.T Champion and and S.W.Ekanayake, Localizat ion with
Ghost Eliminat ion of Emit ters Via Time-Delay-of-Arrival Measurements, IEEE 6th Internat ional
Conference on Informat ion and Automat ion for Sustainability (ICIAFS 2012)
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T im e-D elay-of-A r r ival syst em s

Developing an accurate and e cient method to localize a signal sources has drawn

signi cant at tent ion in the recent past . Among numerous techniques, one very use-

ful method of localizat ion is based on measuring the di erence in the ranges from

a part icular emit ter to sensors whose locat ions are known. In our approach, an

array of sensors located at known posit ions in RN are used to measure the signal

arrival t ime transmit ted from an emit ter whose posit ion is desired to be known. The

t ime-delay-of-arrival (TDoA) of the received signal is calculated and converted to

the corresponding range di erence by mult iplying it by the velocity of signal prop-

agat ion in the medium. However, in pract ical applicat ions, the measurements are

corrupted with noise and the sensor posit ions are often not precisely known. Local-

izat ion based on TDoA technology is current ly applicable in numerous applicat ions

including radar, sonar, navigat ion and sensor networks [112{115].

Generally in TDoA systems, the localizat ion of an emit ter is carried out by

processing signal arrival-t ime measurements at three or more sensors in R2 and

four or more sensors in R3. In the absence of noise and interference, the arrival-

t ime measurements at two sensor posit ions are combined to produce a relat ive

arrival t ime that , restrict the possible emit ter locat ion to a hyperbola in R2 (Figure

2.3)and a hyperboloid in R3, with the two sensor posit ions as foci. Posit ion of the

emit ter is est imated from the intersect ions of two or more independent ly generated

hyperbolas in R2, and in R3, from the intersect ions of three or more independent ly

generated hyperboloids [26]. In these limited measurement cases, two hyperbolas

or three hyperboloids can have either one or two points of intersect ion. In these

instances there are some regions in the space which gives an unique solut ion to an

emit ter locat ion [130]. The geometry of this space is related to the sensor geometry.

This unique solut ion region gradually reduces with the increasing measurement

error. Posit ion est imat ion ambiguity occurred by two points of intersect ion may be
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Figure 4.1: Ghost format ion in TDOA measurements

resolved by using a priori informat ion about the posit ion or by using an addit ional

sensor to construct a hyperbola/ hyperboloid.

The ghosts are formed when the t ime of arrival of two or more di erent emit ters

are used in combinat ion to nd emit ter locat ions. As depicted in Figure 4.1, for

R2, sensors S1, S2 and S3 receive the t ime-of-arrival measurements (t i ; t
0

i : i 2 1; 2; 3)

from emit ters, A and A0 respect ively. Considering all the combinat ions of the

measurements to localize the emit ter posit ions, ghosts form at B , B 0, C, C0, D and

D 0.

T im e-of-A r r ival syst em s

Range from an emit ter to a sensor can be measured form the t ime-of-arrival(ToA)

of the signal [131{133]. Localizat ion based on ToA technology is current ly appli-

cable in many applicat ions including mobile cellular networks, intelligent t ransport

system (ITS), elect romagnet ic radar and acoust ic-based systems [131{146].

As the t ime-of arrival (ToA) can be measured accurately by using wide band

or ult ra wide band (UWB) signals and advanced signal processing technologies, a

number of algorithms consider localizat ion using distance measurements between

each pair of neighboring sensors [92, 96, 98]. Time-of-arrival (ToA) systems, gener-

ally localize an emit ter by processing signal arrival-t ime measurements at two or
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more sensors in R2 and three or more sensors in R3. The arrival-t ime measurement

at a sensor rest ricts the possible emit ter locat ion to a circle in R2 and a sphere

in R3 with the sensor as the center. Posit ion of the emit ter is est imated from the

intersect ions of two or more independent ly generated circles in R2, and in R3, from

the intersect ions of three or more independent ly generated spheres.

Di erent types of data-associat ion algorithms are provided for numerous mea-

surement technologies for mult i sensor-mult i target scenario [72,75,147]. This chap-

ter provide a discussion, which infers that the need for such elaborate techniques

may not be necessary in many instances, including the simulat ion scenarios in [72]

and [75]. Important ly, we show how the data-associat ion problem can be removed

through exhaust ion.

Theoret ical condit ions are provided in this chapter for unique localizat ion of

emit ters in the presence of the often overlooked ghost node problem that is found

when at tempting to nd the locat ions of mult iple emit ters in RN using t ime-of-

arrival measurements from mult iple sensors located in RN .

4.1 T im e-D elay-of-A r r ival syst em s

4.1.1 Localizat ion of an em it t er

Lets consider an emit ter (T ) in N D space, N + 1 number of sensors with t i +
0
i

c

denoting the signal arrival t ime at sensor i . Here,
0
i

c . is the bound of the

error. The arrival delay with respect to the reference sensor is t i ;0 = t i t 0+ i
c ; i =

1; 2; : : : ; N . Here i = 0
i

0
0 and i

c 2 . The corresponding range di erence

is di = c ti ;0 = c(t i t 0 + i
c ), where c is the velocity of signal propagat ion. Let

the spat ial coordinate vectors be: x0 = [x0 y0 z0]T = [0 0 0]T , x i = [xi yi zi ]T and

x = [xs ys zs]T , where x0 is the reference sensor posit ion, x i is the i th sensor posit ion

and the unknown emit ter posit ion is x. The range between the i th sensor and the

emit ter can be writ ten as, Ri s = kx i xk. The distance between the reference
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sensor and the emit ter is Rs = kxk. Then the path di erence can be writ ten as,

di = Ri s R s + i , which yields xT
i x + di Rs R s i = 1

2 kx i k
2 (d2

i i )2 .

For a general case of N + 1 sensors, following matrices can be de ned as z =

1
2[kx1k2 (d2

1 1)2 : : kxN k2 (d2
N N )2]T , S = [X 1 : : X N ]T , d = [d1 : : dN ]T and

= [ 1 : : N ]T where, X i = [x i x0]T . In matrix notat ion Sx = z (d )Rs

and solving for emit ter posit ion, x = ST S
1

ST z ST S
1

ST (d )Rs.

When not all range di erences are measured to the same accuracy, a weight ing

matrix R N N is in order. Then,

x̂ = ST R 1S
1

ST R 1z ST R 1S
1

ST R 1(d )Rs: (4.1.1)

De ne the new vectors,

a = ST R 1S
1

ST R 1z = [a1 a2 a3]T (4.1.2)

and

b = ST R 1S
1

ST R 1(d ) = [b1 b2 b3]T (4.1.3)

Then, x̂ = a bRs and the est imat ion for the source posit ion x̂ is obtained as

x̂ =

2

6
6
4

xs

ys

zs

3

7
7
5 =

2

6
6
4

a1 b1Rs

a2 b2Rs

a3 b3Rs

3

7
7
5 : (4.1.4)

Subst itut ing x in Rs = kxk, the following quadrat ic equat ion can be obtained,

AR2
s + 2aT bRs + a T a = 0 (4.1.5)

where A = b T b 1.

4.1.2 A nalysis on t he solu t ion area

In R3 space, if at least four sensors are not coplanar and there is a subset of t ree

sensors which are not collinear, then the matrix S has full rank and it is possible to
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solve the quadrat ic equat ion in (4.1.5). However, depending on the sensor-emit ter

con gurat ion, (4.1.5) will lead to two possible solut ions. It can be shown that

(4.1.5) leads to an unique solut ion if A< 0 and in R2 plane and R3 space, at least ,

3 and 4 sensors are not collinear, respect ively [130, 148]. Also, it can be shown

that , generally, 3 and 4 non-collinear sensors are needed for unique localizat ion of

a target in R2 plane and R3 space, respect ively, but an addit ional sensor is needed

for both cases to resolve the ambiguity in some situat ions.

T h eorem 4.1.1. The unique solution region for minimum number of TDoA mea-
surements in RN is given by, \

8 ;k k1 < 2

N (4.1.6)

where N is the N -dimensional region for A< 0.

Proof. A in (4.1.5) can also be writ ten as,

A = ST R 1S
1

ST R 1 (d )
T

ST R 1S
1

ST R 1 (d ) 1:

If C =
h

ST R 1S
1

ST R 1
i T h

ST R 1S
1

ST R 1
i
, further simpli cat ion will lead to

A = (d )T C (d ) 1: (4.1.7)

A = 0 is an equat ion of an ellipse in R2 and ellipsoid in R3 respectively. A < 0 is the
region inside the ellipsoid which corresponds to the unique solut ion region in RN .
Region bounded by the intersect ion of all the ellipsoids k k1 < 2 corresponds to
the region in RN which always guarantees a unique solut ion for the emit ter posit ion.
Then it can be stated that for minimum number of TDoA measurements, the unique
solut ion region in RN is given by (4.1.6).

4.1.3 M axim u m b ou n d for t he er r or for a u n iqu e solu t ion
region

When the error bound increases the unique solut ion region given by (4.1.6) de-

creases. Then there is a maximum bound for the error ( b) before which, there is a

unique solut ion region for an emit ter for given sensor posit ions. b occurs at k kmi n

for
T

8 ;k k1 < 2
N = f g.

At this instant d = [0; : : : 0]N 1 . Hence (4.1.7) becomes
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T C 1 = 0: (4.1.8)

Since C is a symmetric matrix, using eigen decomposition,

yT Q T C Qy 1 = 0 (4.1.9)

where Q is an orthogonal matrix with the columns which are eigen vectors of

C and y = Q 1 . Now (4.1.9) can be writ ten as

yT D y 1 = 0 (4.1.10)

where

D =

2

6
6
6
6
6
4

1 0 : : 0

: 2 : : :

: : : : :

0 0 : : N

3

7
7
7
7
7
5

N N

i ; i 2 f 1; 2; : : : ; N g are the eigen values of C .

Above (4.1.10) refers to a rotated ellipsoid of (4.2.8) where the principal diag-

onals conside with the coordinate axes. Then the minimum distance between the

origin and the ellipsoid is given by 1p
k k1

. Hence, the at the minimum shift ,

k km i n
= Q 0 : : : : 1p

k k1

: : : : 0
T

: (4.1.11)

Then

b =
k km i n 1

2
(4.1.12)

For a given sensor con gurat ion if < b, there is a region in which a unique

solut ion can always be guaranteed.

The results obtained can be used to localize emit ters in a given region with

minimum number of sensors with known error bound.
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Figure 4.2: Unique solut ion area for R2

Figure 4.2 depicts the unique solut ion area for three t ime-of-arrival sensors po-

sit ioned in R2 at [0 0]T ; [1 0]T and [3 4]T . Figure 4.3 shows the corresponding

transformed area, which is an ellipse.

A unique solut ion region for R3 is shown in Figure 4.4, where the sensors are

posit ioned at [0 0 0]T ; [1 0 0]T ; [0 1 0]T and [1 1 1]T . The corresponding transformed

region is depicted in Figure 4.5. In Figure 4.6, the unique solut ion regions for

= [ 0:3251 0:3251 0:2380]T and = [0:3251 0:3251 0:2380]T are shown. It

can be seen that these two regions marginally touch each other at this error bound

which agrees with our analysis.

4.1.4 D at a associat ion in T D oA m easu r em ent s

Let us denote the following

p number of emit ters

Tj j th emit ter

t i ;j t ime-of-arrival measurement at si from Tj

t i ;j ;i 0;j 0 t ime di erence of arrival ( t i ;j - t i 0;j 0)



C hap t er 4. G h ost E lim in at ion in T im e-D elay-of-A r r ival and
T im e-of-A r r ival M easu r em ent s 58

d1

d2

−2 −1 0 1 2 3

−6

−4

−2

0

2

4

6

A < 0

A > 0

Figure 4.3: Transformed solut ion area for R2

In this sect ion, we consider the general problem involving q+ 2 or more sensors

in q dimensions where q = 2 or q = 3. The emit ters are assumed to be synchronized

to send signals at the same t ime. Each sensor si , i 2 f 0; 1; : : : ; N g measures the

t ime of signal arrival from each target Tj , j 2 f 1; : : : ; pg

For a given emit ter, a system of N q + 1 sensors provide N TDoA measure-

ments that in the noiseless case are described by t i j i 0j 0 = t i ;j t i 0;j 0. True t ime

di erence for a part icular emit ter and two sensors occurs if and only if j = j 0. In

all the other cases(j 6= j 0), the t ime di erence measurements will lead to ghosts or

unrealist ic emit ter posit ions.

4.1.5 G h ost elim in at ion

D e nit ion 4.1.1. Ghost : A solut ion to (4.1.5) which is not overlapping with any
real emit ter.

A ssum p t ion 1. Any combination of 4 sensors in the eld is not collinear. This
assures that the matrix S is full rank for all the combinations.
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Figure 4.4: Unique solut ion region for R3

A ssum p t ion 2. In (4.1.5), A > 0 for any combination of 4 sensors and any
emitter. So, 5 sensors are needed for unique localization of any emitter.

P r op osit ion 4.1.2. In R3, if there are at least ve sensor measurements from
a single emitter (Tj ) in a measurement set, this will lead to the solution of that
particular emitter (Tj ) or to a ghost.

Proof. Lets consider a case where p number of emit ters scat tered over a R3. N
number of sensors are also placed over the same R3 and the sensor-emit ter geometry
for each sensor is such that they need at least 5 sensors for unique localizat ion.

Then with no loss of generality taking t01 as the reference measurement a general
vector for d and z can be writ ten as,

d =

2

6
6
6
6
6
6
4

d1j 101

d2j 201

:
dkj k 01

:
dN j N 01

3

7
7
7
7
7
7
5

; (4.1.13)

z =
1
2

2

6
6
6
6
6
6
4

x2
1 + y2

1 + z2
1 d 2

1j 101

x2
2 + y2

2 + z2
2 d 2

2j 201

:
x2

k + y2
k + z2

k d 2
kj k 01

:
x2

N + y2
N + z2

N d 2
N j N 01

3

7
7
7
7
7
7
5

(4.1.14)

where j k 2 (1; 2; : : : ; p).
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Lets consider a combinat ion where subscripts j a = j b = j c = j d = j e , and
assume that all these refers to the Tth

j emitter. Now we select this subset and
keeping Tj a as the reference develop S0; z0 and d 0 matrices.

S0 =

2

6
6
4

xb yb zb

xc yc zc

xd yd zd

xe ye ze

3

7
7
5 ; (4.1.15)

z0 =
1
2

2

6
6
4

x2
b + y2

b + z2
b d 2

bj a j

x2
c + y2

c + z2
c d 2

cj a j

x2
d + y2

d + z2
d d 2

dj a j

x2
e + y2

e + z2
e d 2

ej a j

3

7
7
5 (4.1.16)

and

d 0 =

2

6
6
4

dbj a j

dcj a j

ddj a j

dej a j

3

7
7
5 : (4.1.17)

This subset will lead to the unique posit ion est imat ion of the Tth
j emit ter. So

the init ial d and z vectors which contain this subset will yield the Tth
j emit ter as the

unique solut ion, if all the combinat ions are referring to the Tth
j emit ter (subscripts

j 1 = j 2 = : : : j i = : : : j N ). If at least two subsets in a set lead to di erent solut ions,
the corresponding set will refer to a ghost or non-real solut ion, then the whole set
can be discarded.

All the subsets in a set will lead to the same solut ion if and only if all of them
are referring to a single real emit ter.
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Figure 4.6: Unique solut ion region for R3 with errors

T h eorem 4.1.3. Assume that any combination of q+ 1 sensors in the eld is not
collinear. I f the number of emitters in Rq is p, the minimum number of non-collinear
sensors required for unique localization of all the targets is (q + 1)p + 1.

Proof. For Rq case , when N = (q+ 1)p + 1 sensors are considered, for any combi-
nat ion of sensor measurement set , there is at least one combinat ion which contains
(q + 2) measurements from a single emit ter. Using p r op osit ion 4.1.2, it can be
shown that the measurement sets which have at least one measurement from a dif-
ferent emit ter can be discarded. Hence, N = (q + 1)p + 1 number of non-collinear
sensors will guarantee the eliminat ion of all the ghosts.

Let k be the number of sensor posit ions that are collinear with each other. Since

the k collinear measurements provide no real addit ional informat ion, they can be

considered as null measurements. The minimum number of sensors, ignoring the

null measurements, required to uniquely localize an emit ter eld of p emit ters is

(q + 1)p + k + 1.

4.1.6 Localiza t ion algor it h m for T D oA m easu rem ent s

In the unique localizat ion of every emit ter in the eld, sensors must measure the

t ime of arrival at spat ially dist inct posit ions and determine the locat ions of the
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All combinations in a  
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same solution? 
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No

Number of remaining sets 
 >  Number of targets 
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Figure 4.7: Algorithm owchart for unique localizat ion in TDoA measurement tech-
nology

N -fold hyperbola/ hyperboloid intersect ions at each measurement . The algorithm

stops when the number of targets in the given area is equal to the detected N -fold

hyperbola/ hyperboloid intersect ions. If the number of emit ters in the given area is

not known, a stat ist ical method can be used to est imate it . On the other hand, if the

number of N -fold hyperbola/ hyperboloid intersect ions remains the same over the

consecut ive measurements at some stage, one can infer that the intersect ions that

were found correspond to the t rue emit ter locat ions. In this case, it is assumed that

the number of emit ters is known. In a pract ical situat ion, the N -fold intersect ions

will not perfect ly overlap but should fall within some bounded region. The bounded

region can be considered as a virtual point , if the measurements are noisy. Here, in
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this analysis, we have assumed that the measurements are perfect .

The algorithm is brie y described in Figure 4.7.
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Figure 4.8: Est imat ion of emit ters using ve and six sensors in R3

For the simulat ions in R3, six TDoA sensors were posit ioned at (0; 0; 0), (1; 0; 0),

(0; 1; 0), (0; 0; 1), (1; 1; 1) and (2; 2; 3). Two emit ters were located at (4; 1; 1)and

(4; 1; 5). First , from the measurements received at the sensors S1,S2,S3,S4 andS5,

target locat ions were est imated. Then the est imat ion was carried out using all the

sensors (S1, S2, S3, S4, S5 and S6)(Figure 4.8). Finally, using our algorithm the

real emit ter locat ions were found(Figure 4.9).

The unique localizat ion of two emit ters require only six sensor measurements

in R3. It can be seen that the number of measurements does not go near the

maximum bound (9 in R3). The ghost problem will not necessarily disappear at

these measurement as shown in the simulat ions. This is part icularly t rue when the

number of emit ters is large and they are densely dist ributed in the eld.



C hap t er 4. G h ost E lim in at ion in T im e-D elay-of-A r r ival and
T im e-of-A r r ival M easu r em ent s 64

−2
0

2
4

6

−3
−2

−1
0

1
2
−2

−1

0

1

2

3

4

5

6

 

X − directionY − direction

 

Z
 −

 d
ire

ct
io

n

Estimated emitter location

Real emitter location

Figure 4.9: Final est imat ion of emit ters in R3

4.2 T im e-of-Ar r ival syst em s

4.2.1 Localizat ion of an em it t er

Lets consider a radiat ing emit ter Tj in R3. In general, N number of sensors are

employed to est imate the emit ter posit ion. The corresponding range between the

si and the emit ter can be writ ten as Ri j = cti j where c is the velocity of signal

propagat ion. Let the spat ial coordinate vectors be: x0 = [x0 y0 z0]T = [0 0 0]T ,

x i = [xi yi zi ]T and x = [xs ys zs]T , where x0 is the reference sensor posit ion, x i is

the i th sensor posit ion and the unknown emit ter posit ion is x. The range between

the i th sensor and the emit ter can be writ ten as, Ri s = kx i xk. The distance

between the reference sensor and the emit ter is Rs = kxk. Further expansion will

yield xT
i x j = 1

2 kx i k
2 R 2

i s + R2
s .

For a general case of N sensors, following matrices can be de ned:z = 1
2[kx1k2

R2
1s : : kxN k2 R 2

1s]T ,S = [X 1 : : X N ]T and d = [1
2 : : 1

2]T where, X i = [x i x0]T . In

matrix notat ion Sx = z + dR2
s. Solving for emit ter posit ion x, following preliminary

posit ion est imate can be obtained.
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x = ST S
1

ST z + ST S
1

ST dR2
s: (4.2.1)

When not all range di erences are measured to the same accuracy, a weight ing

matrix RN N is in order. Then the above (4.2.1) can be rewrit ten as

x = ST R 1S
1

ST R 1z + ST R 1S
1

ST R 1dR2
s: (4.2.2)

De ning the new vectors

a = ST R 1S
1

ST R 1z = [a1 a2 a3]T (4.2.3)

and

b = ST R 1S
1

ST R 1d = [b1 b2 b3]T (4.2.4)

(10) becomes

x = a + bR2
s; (4.2.5)

and the source posit ion x is obtained as

x =

2

6
6
4

xs

ys

zs

3

7
7
5 =

2

6
6
4

a1 + b1R2
s

a2 + b2R2
s

a3 + b3R2
s

3

7
7
5 : (4.2.6)

4.2.2 D at a associat ion in ToA m easu rem ent s

Let us denote the following

p number of emit ters

N number of t ime-of-arrival sensors

si i th sensor

Tj j th emit ter

t i j t ime-of-arrival measurement at si from Tj
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Ri j Range di erence between si and Tj

In this sect ion, we consider the general problem involving three or more sensors

in two dimensions. The emit ters are assumed to be synchronized to send signals at

the same t ime. Each sensor si , i 2 f 0; 1; : : : ; N g measures the t ime of signal arrival

from each emit ter Tj , j 2 f 1; : : : ; pg

The measurements can be writ ten in the matrix form,

M =

2

6
6
6
6
6
4

t11 : : tN 1

: : : :

: : : :

t1p : : tN p

3

7
7
7
7
7
5

; (4.2.7)

where

t i j =
kRi j k

c
: (4.2.8)

We assume that there are no measurement errors.

4.2.3 G h ost elim in at ion

D e nit ion 4.2.1. Ghost : A solut ion to (4.2.6) which is not overlapping with any
real emit ter.

D e n it ion 4.2.2. Measurement set : Any combinat ion of measurements select ing
one element from each column of matrix M .

A ssum p t ion 3. Any combination of three sensors in the eld are not collinear.
This assures that the regressors matrix S is full rank for any combination.

P r op osit ion 4.2.1. In R3 , if there are at least four sensor measurements from
a single emitter (Tj ) in a measurement set, this will lead to the solution of that
particular emitter (Tj ) or this set wil l lead to a ghost.

Proof. Lets consider a case where p number of emit ters scat tered over a R3 . N
number of sensors are also placed over the same R2 .

Then a general vector for z can be writ ten as,
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z =
1
2

2

6
6
6
6
6
6
4

kx1k2 R 2
1j 1

kx2k2 R 2
2j 2

:
kxkk2 R 2

kj k

:
kxN k2 R 2

N j N

3

7
7
7
7
7
7
5

(4.2.9)

where j k 2 (1; 2; : : : ; p).
Lets consider a combinat ion in S; z and d with subscripts j a = j b = j c = j d,

and assume that all these refers to the Tth
j emit ter. Now we select this subset and

keeping xa = [xa ya za]T as the reference sensor develop S0 and z0 matrices.

S0 =

2

4
xb yb zb

xc yc zc

xd yd zd

3

5 ; (4.2.10)

and

z0 =
1
2

2

4
kxbk

2 R 2
bj a

kxck
2 R 2

cj a

kxdk2 R 2
dj a

3

5 : (4.2.11)

This subset will lead to the unique locat ion est imat ion of the Tth
j emit ter. So

the init ial z vector which contains this subset will yield the Tth
j emit ter as the

unique solut ion, if all the combinat ions are referring to the Tth
j emit ter (subscripts

j 1 = j 2 = : : : j i = : : : j N ). If at least two subsets in a set lead to di erent solut ions,
the corresponding set will refer to a ghost or non-real solut ion, then the whole set
can be discarded.

All the subsets in set will lead to the same solut ion if and only if all of them are
referring to a single real emit ter.

T h eorem 4.2.2. Assume that the assumption 1 holds. I f the number of emitters
in Rq is p, the maximum number of sensors required for unique localization of all
the emitters is qp + 1.

Proof. When N = qp+ 1 sensors are considered for any combinat ion of sensor mea-
surement set , there is at least one combinat ion which contains q+ 1 measurements
from a single emit ter. Using p r op osit ion 4.2.1, it can be shown that the mea-
surement sets which have at least one measurement from a di erent emit ter can be
discarded. Hence, it can be concluded that N = qp + 1 number of non-collinear
sensors will guarantee the eliminat ion of all the ghosts.

Let k be the number of sensor posit ions that are collinear with each other.

Since k collinear measurements provide no real addit ional information, they can be

considered as null measurements. The maximum number of measurement posit ions,
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ignoring the null measurements, required to uniquely localize an emit ter eld of p

emit ters is qp + k + 1.

4.2.4 Localizat ion algor it hm for ToA m easu rem ent s

 

Start

TOA set estimation

Take the next sensor measurement Eliminate the sets

Localization complete 

Yes

Measurement from four sensors (No.1, 2 and 3) 

Find solutions for every combination (with 3 sensor measurements)

All combinations in a  
set lead to  

same solution? 

Yes

No 

Number of remaining sets 
 >  Number of targets 

 

No

Figure 4.10: Algorithm owchart for unique localizat ion in ToA measurement tech-
nology

In uniquely est imat ing the posit ion of every emit ter in the eld, ToA sensors

must measure the t ime of arrival at spat ially dist inct locat ions and determine the

posit ion of each emit ter. The algorithm stops when the number of remaining sets

of measurements equals the number of target emit ters in the eld. It is assumed

that the number of emit ters is known or may be est imated using stat ist ical meth-

ods. Also, if the number of remaining sets of measurements remains the same over
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Figure 4.11: Est imat ion of emit ter locat ion for four emit ters with three sensors

mult iple measurements, then it can be inferred that the remaining sets correspond

to the true emit ter locat ions. In this case, it is assumed that the number of emit ters

are known. Also, this analysis has assumed perfect measurements (i.e noiseless).

The algorithm is brie y described in Figure 4.10.

To demonst rate the theoret ical arguments proposed in this paper, a simulat ion

was carried out with perfect measurements.

As shown in Figure 4.11, three ToA sensors were posit ioned at (1; 5),(2; 7) and

(3; 4). Four emit ters were located at (3; 5),(5; 6),(6; 3) and (2; 6). First , from the

measurements received at the sensors, emit ter locat ions were est imated. Then the

fourth sensor is posit ioned at (6; 7) and the est imat ion was carried out using all the

sensors. Finally, using our algorithm the real emit ter locat ions were found(Figure

4.12).

In this simulat ion, unique localizat ion of four emit ters require only four sensor

measurements in R2 . It can be seen that the number of measurements does not

go near the maximum bound (9 in R2 ). The ghost problem will not necessarily

disappear at these measurement as shown in the simulat ions. This is part icularly
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Figure 4.12: Final est imation of emit ter locat ions for four emit ters with four sensors

t rue in a densely dist ributed eld, with large number of emit ters to be localized.

4.3 Su m m ar y

A theoret ical analysis has been provided in this chapter which is required for unique

localizat ion of an emit ter using minimum number of TDoA measurements with

bounded error. Error bounds have been found for both R2 and R3 after which,

there is no existence of the unique solut ion region. More complex analysis can be

carried out , specially in the geometry of the sensor posit ions for robust localizat ions

based on this discussion.

Unique localizat ion of mult iple emit ters using TDoA or ToA measurements is

discussed in this chapter. Necessary fundamental requirements to solve the so-

called ghost node problem associated with sensor arrays are speci cally examined.

Important ly, a maximum bound on the required number of sensors to uniquely

localize a given number of emit ters in Rq was derived. The discussion provides the

groundwork for further studies.
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Tracking wit h D opp ler R adar

Localizat ion and tracking of humans, vehicles or any other moving object is useful

in many defense and commercial applicat ions such as security surveillance, disas-

ter search, rescue missions and urban warfare [3, 55, 56, 147, 149]. Unt il the recent

pass, radar systems were primarily used for long range localizat ion and tracking and

those systems were very expensive and bulky in design. Due to the growth of the

elect ronic engineering in recent decades, the cost and the physical size of Radio Fre-

quency(RF) components have reduced dramat ically. Therefore, many useful radar

systems can now be realized with a reasonable cost and size; specially for indoor and

commercial applicat ions which were not prominent in the past . One of the close-

range applicat ions of radar known as Through-the-Wall Radar Imaging(TWRI) is

a current research interest which has very useful applicat ions in numerous situa-

t ions [59{61, 150].

Among the other radar systems Cont inuous Wave (CW) radar systems have

at t racted signi cant at tent ion due to its simplicity in design and implementa-

t ion [151]. Single-frequency-Cont inuous-Wave (SFCW) radar can measure Doppler

frequency shifts modulated from the moving targets to a higher accuracy. However,

in target range measurements, relat ively complex systems derived from CW radar

71
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are current ly being employed. These systems are expensive, and require sophist i-

cated hardware systems for implementat ion. As an example, Frequency-Modulated-

Cont inuous-Wave (FMCW) radar and pulsed Doppler radar both originated from

the CW radar technique and they are capable of detect ing range but poor in clut ter

mit igat ion. As opposed to those systems, CW radar is excellent in clut ter suppres-

sion [3]; hence, it can be employed to localize moving targets as the Doppler shift

in frequency provides a natural exclusion of clut ter in the ltering [27].

Angle of arrival of a moving target can be measured using the phase di erence

of waves arriving at two receiving antenna elements [3, 62]. In [55], t racking of

moving targets is carried out by a two-frequency Doppler and AoA radar system

where the velocity informat ion of targets are unavailable. Even if the Doppler

modulated signal is used in [56, 152] and [149], only the posit ion informat ion of

the targets is obtained using the phase di erence of the Doppler shifted signal. In

these studies, the dist inct ive frequencies are only ut ilized to ident ify the targets

rather than using the Doppler shift to deduce their velocit ies. [66] [67] and [68]

consider more complex pulsed radar system while correct ion of the received Doppler

modulated signal under Gaussian assumptions is explored in [66]. Mult i-target

t racking through range and angle measurements are invest igated in [67] and [68]

providing comprehensive descript ions based on stat ic opt imizat ion techniques.

The t ime derivat ives of displacement is usually employed in systems which re-

quire velocity informat ion of moving targets. This can potent ially result in a t ime

lag in velocity est imat ion. Specially, for more dynamic targets the accumulat ion of

errors can be signi cant as the locat ion est imat ion errors direct ly in uences the ve-

locity est imat ions. As opposed to this method, the locat ion and the velocity of the

target can be est imated simultaneously by using CW radar with a dynamic system

model for state est imat ion. Robustness to system uncertaint ies and measurement

errors is another advantage of this part icular approach. The Doppler frequency shift



C hap t er 5. Trackin g wit h D opp ler R adar 73

due to the target mot ion is used in [69] to est imate the target velocity separately,

providing a bet ter est imate with addit ional measurements and the increased di-

mension of the measurement space. Further non-linearit ies are int roduced in these

type of measurement modeling. For the posit ion measurement only case discussed

in [3,55], converted measurement approach [70] has been employed to obtain a bet-

ter linear formulat ion. Nevertheless, this has not been the case for Doppler radar

and even in [69], the non-linear measurement equat ion is linearized with a rst order

approximat ion equivalent to Extended Kalman ltering in the est imation process.

Specially in systems with large uncertaint ies, this type of linearizat ions are known

for accumulat ion of errors and in some instances divergence can occur in the state

est imat ion. Therefore, in this chapter a linear formulat ion for inherent ly non-linear

Doppler measurements is used exploit ing the st rength in linear systems theory.

This study considers the case of t racking mult iple mobile targets using the re-

ected Doppler modulated signals with two sets of receiver elements kept approx-

imately half a wave length apart1. Not ice that two element receiver combinat ion

is considered as a sensor . The sensors are posit ioned collinear to each other. The

phase di erence of the re ected waves within a single sensor can be used to measure

the AoA of a target with respect to a part icular set of elements. Once the AoAs are

known triangulat ion can be used to nd the target locat ion while the target velocity

can be deduced by measuring Doppler shifts due to the radial velocity component

in the direct ion of the sensors . Hence, Doppler signal frequency and phase is con-

verted into direct ional posit ion and velocity measurements in order to be used in

the linear form of a robust lter which provides est imates of the states (posit ion,

1P lease note that the material presented in this chapter was published as a journal paper : P.N.
Pathirana , S.C.K. Herath, and A.V.Savkin , Mult i-target t racking via space t ransformat ions
using a single frequency cont inuous wave radar Accepted for publicat ion in Transact ions on
Signal P rocessing in J une 2012, and as a conference paper : S.C.K. Herath and P.N.Pathirana ,

Maximum likelihood approach for t racking mult iple mobile agents with a moving Doppler radar
system, in ISSNIP 2010 : P roceedings of the 6th Internat ional Conference on Intelligent Sensors,
Sensor Networks and Informat ion P rocessing, pp. 193-198, IEEE, United States
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velocity and accelerat ion) of the targets recursively.

M axim um Likelih ood app roach for m obile t arget t r ackin g wit h a m ovin g
sen sor ar r ay

In the automobile indust ry, mult iple mobile target t racking technology can be em-

ployed in a driver alert ing systems to assist the driver with helpful informat ion

about the surrounding of the vehicle. Such improved safety funct ions are now be-

ing introduced to vehicles which reduce the risk of accidents.

Radar technology can be ut ilized in the context of sensing the surroundings in

automobile safety applicat ions [153{155]. In [154] use of ult ra-wideband radar for

short range vehicular applicat ions is invest igated while fusing the vision data with

radar informat ion to enhance the detect ion accuracy has been studied in [155]. [153]

provides a novel Doppler sensor architecture for vehicular applicat ions.

Techn ical or gan izat ion

This chapter is organized as follows. First , the basic theory governing the Doppler

radar based tracking is int roduced in sect ion 5.1. Two crit ical pract ical issues are

discussed in sect ion 5.2 - a format ion of ghost targets due to Data association and a

unique occurrence of missing information. These scenarios require special at tent ion

in mult iple target t racking, since they can potent ially lead to a large number of

sensor elements in the linear receiver. A Theoret ical just i cat ion is provided for

the minimum number of sensor elements in the linear array to completely eliminate

the issues ment ioned above.

The solut ion to the above problems inevitably increases the number of sensor el-

ements of the receiver array. As this is not desirable in most pract ical applicat ions,

minimum con gurat ion array with two sensors is discussed when introducing our

lter. Nearest neighbor type minimizat ion is ut ilized to address the data associa-

tion problem while solut ion to the missing information is provided by an extended

version of the lter.
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Doppler radar system with the linear sensor array and the dynamic modeling of

the targets is presented in sect ion 5.3. The Robust Linear Filter is int roduced in

sect ion 5.4 as the main cont ribut ion of this chapter; for the minimal sensor array,

the underlying non-linearly modeled measurements of Doppler radar(both angle and

radial velocity) is addressed in a linear framework. The non-linear measurement

model for the target is rst t ransformed into a linear separable form with bounded

assumptions on the noise dist ribut ion. A model based est imat ion process is ut ilized

to obtain the target states such as posit ion, velocity and accelerat ion concurrent ly.

Computer simulat ions together with the hardware experimentat ion are provided

in sect ion 5.6 to prove the theoret ical assert ions out lined in this work.

Finally, in 5.7 of this chapter provides a method to track mult iple mobile agents

from an array of Doppler sensors mounted on a moving vehicle. Measurement

technique used here is similar to the stat ionary case discussed earlier(frequency

and corresponding phases of Doppler modulated signals from moving targets). The

vehicle dynamics are taken into account and the maximum likelihood est imation is

used to increase the accuracy in localizat ion.

5.1 B asic t h eor y

Figure 5.1 depicts two nearby scat tered waves returning from a mobile target . The

radial velocity of the target toward the sensor can be measured using equat ion

2.1.1. Due to the relat ive posit ion of the agent , two antenna elements, Rx1 and

Rx2 receive these two signals with a path di erence of y0.

When d is the distance between the two antenna elements Rx1 and Rx2 , and

0 is the Angle-of-Arrival (A0A) of the mobile target ,

y0 = d sin 0: (5.1.1)

Then the phase di erence of the two received waves  , can be writ ten as,
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Rx1 Rx2

v 

d

'y'

Figure 5.1: AoA using two receiving elements

 =
2 y0

c
(5.1.2)

where, c is the wave length of the carrier frequency. Then from (5.1.1) and

(5.1.2), the AoA can be expressed as,

0 = arcsin
 c

2 d
: (5.1.3)

AoA of several mobile agents can be found by Doppler discriminat ion. As de-

picted in Figure 5.2, two mobile targets scat ter Doppler modulated waves on four

antenna elements. x1(t) and x2(t) are the receiving signals on antenna elements

Rx1 and Rx2 after demodulat ion. Then,

x1(t) = k1 sin(2 fd1t + 1) + k2 sin(2 fd2t + 2) (5.1.4)

and,

x2(t) = k1 sin(2 fd1t + 3) + k2 sin(2 fd2t + 4): (5.1.5)

In (5.2.4) and (5.2.5), k1 and k2 are the amplitudes of the incoming waves and

it can be assumed that they are constant for both waves due to a very small path

di erence. f d1 and f d2 are the Doppler frequencies modulated by the two mobile
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targets due to their relat ive velocity. 1, 2, 3 and 4 are the corresponding phases

at the receiving elements.

Fast Fourier Transform (FFT) is performed on each of these signals. Hence,

the frequency bins and the corresponding phases of each frequency bin is obtained.

Phase di erence of a part icular frequency bin  1, can be writ ten as,

 1 = 1 3: (5.1.6)

Rx1 Rx2 Rx3 Rx4

FFT FFT FFT FFT

DOA DOA

LOCATIONS AND VELOCITIES

u v

Figure 5.2: AoA using four receiving elements for mult iple mobile agents

Then, the AoA of the mobile agent is,

0
1 = arcsin

 1 c

2 d
: (5.1.7)

From this technique, AoA of mult iple targets can be resolved, as long as they

have considerable Doppler separat ion. AoA of any target i , can be expressed as,

0
i = arcsin

 i c

2 d
: (5.1.8)

Let 's consider two mobile targets having the same radial velocity toward a sen-

sor, and for simplicity, assume that the distance to the target from the sensors is

the same at a part icular instance. Then, (8) can be rewrit ten as,

x1(t) = k sin(2 fdt + 1) + k sin(2 fdt + 2):
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x1(t) = 2k sin 2 fdt + 1 + 2

2
cos 1 2

2
:

x1(t) = K sin(2 fdt + ): (5.1.9)

where,

K = 2k cos 1 2

2

and,

= 1 + 2

2
:

It can be seen that the receiver is unable to dist inguish between the two signals

and it is perceived as a signal at the same frequency but in a phase, di erent to

either phase of the two incoming signals prevent ing the AoA est imation using the

phase of the incoming signals.

The opt imal linear sensor separat ion in AoA measurement technique for im-

proved localizat ion of targets is discussed in Chapter 3 which can be integrated

in this study. If the region in which the targets are moving is known, the results

obtained in Chapter 3 can be ut ilized to posit ion the sensors for bet ter t racking

accuracy. Also, if possible, the sensors can be dynamically adjusted for enhanced

localizat ion performance depending on the rough est imate of the target posit ion.

5.2 Lar ger ant en n a ar r ay

Consider the situat ion where a single linear array of sensors are employed to t rack

mult iple targets. Here, a discussion is made on the two main issues that can ad-

versely a ect t racking mult iple targets with Doppler radar measurements.

1. Format ion of ghost [156] targets: The problem of data association is created

by the di erent Doppler shifts modulated by the targets on receiving elements.

That is the problem of correct ly assigning modulat ing frequency components

and the associated phase di erences among sensors to the corresponding tar-

gets. Part icularly when localizat ion and tracking of relat ively higher number
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of targets with lesser number of sensors, the data associat ion problem occurs

on the incorrect assignments of ghost [156] targets to real targets and vice

versa. Limited number of spat ially dispersed sensors hinders the recovery of

real target locat ions uniquely from the signals received at each sensor. In this

case, the number of combinat ions of the received measurements exceeds the

number of real targets and some of these combinat ions refers to non-exist ing

targets. These virtual targets are denoted as ghosts. As shown in Figure 5.3

modulat ion of Doppler frequencies and corresponding bearing measurements

in R2 for the case of two mobile targets with two sensors in the linear array

allows two ghost targets to exist .

 

x 

x 

x 

Y X  -  Target 

     -  Ghost 

  

  

 xxxxxx  

 

 

    

 

xxxxx  

  

Figure 5.3: Angle of Arrival(AoA) and radial velocity measurements

2. Modulat ion of ident ical or indist inguishably close Doppler frequencies: Con-

sider the two Doppler bins (collect ion of frequencies) at the two sensors de-

picted in Figure 5.4 modulated by four di erent mobile targets(A; B ; C and

D ). Targets modulat ing frequencies f 1
A ; f 1

B ; f 1
C and f 1

D with the corresponding

phases 1
A ; 1

B ; 1
C and 1

D in sensor 1, modulate frequencies f 2
A ; f 2

B ; f 2
C and

f 2
D with corresponding phases 2

A ; 2
B ; 2

C and 2
D in sensor 2. The radial

velocit ies of two or more dist inct targets can potent ially be very close to each

other, hence, the respect ive Doppler frequencies from those targets modulate

the same(or indist inguishably close) frequency in one sensor prevent ing the
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resolut ion of the corresponding frequency and phase components as discussed

in sect ion 5.1. Then the sensor in concern perceived the two signals as a

signal at the same frequency but in a phase di erent to either phase of the

two incoming signals, so the AoA recovery using the phase of the incoming

signals is not possible [19]. When this takes place, at least one Doppler bin

contains number of frequencies which is less than N (number of targets). This

can be considered as an incomplete informat ion since the data from these

sensors cannot be employed in the est imat ion process. As opposed to that ,

in complete information case, all the informat ion is resolvable for all targets,

i.e no overlapping of frequency in the Doppler bins during the ent ire track-

ing process. it should be emphasized that a fundamentally di erent case of

missing information is considered here, compared to [157] where false alarm

or clut ter is characterized by a probabilist ic dist ribut ion. Missing informat ion

case considered here is based on the target dynamics as this occurs when the

same radial velocity from two or more dist inct targets modulate the same

Doppler frequency at the same sensor. The system detects this instance when

the number of measurements is less than the number of targets and hence

independent of any assert ions based on probabilist ic assumptions. Indeed the

number of targets in the vicinity are assumed to be known in priori. This

is the case with some pract ical indoor applicat ions such as users connected

to a wireless network or premises with monitored access etc. Evident ly, if

the number of targets is unknown, an upper bound for the number of tar-

gets can be used and as measurements are received on the sensors, the absent

targets can be interpreted as missing information [158]. In this case, as the

AoA measurements are not modeled with Doppler signals mathematically, an

arbit rary values can be used for AoA measurements for the lter to work
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properly. Subsequent ly, these est imations can be discarded as they are asso-

ciated with missing information. Probabilist ic assumptions such as false t rack

discriminat ion procedures are employed in a more t radit ional target t racking

context when the number of targets are unknown [159,160]. These techniques

are computat ionally taxing. The aggregat ion of data is eventually expected

to ful ll the probabilist ic assumptions, consequent ly enhancing the tracking

process with an unknown number of targets.

    Target A   Target C   

    Target B   Target D  

 

 

 

 

 

 

 

 

 

Phase 

Frequency 

Phase

Frequency 

Sensor 1 Sensor 2 

 

 

 

 

        

Figure 5.4: Instantaneous frequency and the phase dist ribut ion at the two sensors
for four targets

A ssum p t ion 1. Following assumptions are made with respect to the target motion,
in line with the de nition of the radar equation which uses the phase di erence of
arriving signals:

1. Motion of the mobile targets are con ned to the positive Y half of the X Y
plane.

2. At any given time targets are not collinear with the sensor array positioned
along the positive X axis.

The proposit ion given below sates that two dist inct targets can potent ially mod-

ulate ident ical Doppler frequencies on maximum number of three sensors. Consider

a set z of mobile targets moving only in the posit ive Y half of the X Y plane and

a linear phase array with a set of dist inct sensors posit ioned along the posit ive X
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axis. Init ially, consider two targets A; B 2 z with each modulat ing Doppler shifted

frequencies f 1
A ; f 2

A ; f h i
A and f 1

B ; f 2
B f h i

B respect ively due to their radial veloci-

t ies and de ne, A =
h
f 1

A f h i
A

i >
and B =

h
f 1

B f h i
B

i >
, where h i denotes the

cardinality of a set and > the t ransposit ion.

P rop osit ion 1. Rank[D iag [ A B ]] hi 3

Proof. Here, reductio ad absurdum argumentat ion is ut ilized as an indirect proof to
assert that if two mobile targets modulate the ident ical Doppler frequency in four
dist inct linear sensors, then the two targets are essent ially the same - ident ical in
posit ion and velocity. Consider a linear array of four sensors Si with i 2 f 1; 2; 3; 4g
with the i thsensor at d i = (di ; 0). T1 and T2 are two mobile targets with their
locat ions p ; q 2 R2(in the posit ive Y half of the X Y plane) and the velocit ies
u ; v 2 R2 respect ively. Hence, their respect ive radial velocit ies at the i th sensor: v i

1

and v i
2, are given by:

v i
1 =

u > (d i p)
kd i pk

; v i
2 =

v > (d i q)
kd i qk

i 2 f 1; 2; 3; 4g

respect ively. Assume that these two mobile targets have ident ical radial velocit ies
on each of the sensors corresponding to i = 1; 2; 3; 4. Then,

u > (d i p)
kd i pk

=
v > (d i q)

kd i qk
i 2 f 1; 2; 3; 4g: (5.2.1)

In a situat ion where the target and the sensor array are collinear, the sensors receive
the same radial velocity irrespect ive of the number of senors and with assumption 1,
we avoid this occurrence. Let r i j k = v > (d i q) (dj d k), then the following system
of const raints can be derived for the cyclic groups S1 = (1; 2; 3) and S2 = (1; 2; 4)
respect ively :

X

f i ;j ;kg2 S1

i (dj d k) = 0; (5.2.2)

X

f i ;j ;kg2 S2

i (dj d k) = 0; (5.2.3)

where, i = u > (d i p )(kd i qk)
kd i pk : Note that

P
f i ;j ;kg2 S1

r i j k = 0 and
P

f i ;j ;kg2 S2
r i j k = 0

are used in deducing the above const raints 5.2.2 and 5.2.3. Then taking xi = kd i qk
kd i pk

and qi j k = u > (d i p) (dj d k) for f i ; j ; kg 2 S1
S

S2 and not icing that
X

f i ;j ;kg2 S1

qi j k = 0;

X

f i ;j ;kg2 S2

qi j k = 0;



C hap t er 5. Trackin g wit h D opp ler R adar 83

equat ion 5.2.2 and 5.2.3 can be writ ten as

X

f i ;j ;kg2 S1

qi j kxi = 0; (5.2.4)

X

f i ;j ;kg2 S2

qi j kxi = 0: (5.2.5)

This result can be interpreted such that for an arbit rary constant p , all the possible
variat ions of q. Two trajectories in two planes are given by above 5.2.4 and 5.2.5.
xi s are independent variables of the planes. Since any two non parallel planes
intersect in a st raight line and as all the common points on the line xi = xj 8i ; j 2
f 1; 2; 3; 4g; i 6= j are on both planes, it can be inferred that the two planes intersect
on this part icular line. But taking in to account the de nit ion of xi , only xi = 1; 8i 2
f 1; 2; 3; 4g point is valid(see Appendix I). This infers p = q and hence u = v. From
equat ion 5.2.2 and 5.2.3 it can be shown that this holds only for four sensors and
for one cyclic group there exists in nitely many solut ions for q.

P rop osit ion 2. The necessary and su cient condition for tracking z mobile tar-
gets using a linear array of sensors avoiding incomplete information and ghost elim-
ination is hLi 3hz i C2 + hz i + 1.

Proof. Proposit ion 1 and the ghost eliminat ion result s given in [156] are used for
the proof.

Typically, hz i number of frequencies are contained in each Doppler bin associ-
ated with the respect ive sensor. Using the rst proposit ion, considering the worst
case scenario, a maximum of 3hz i C2 number of sensors should be discarded in order
to guarantee that no remaining sensor receives the ident ical frequency due to two
dist inct targets. Moreover hz i + 1 sensors are required to eliminate the ghost tar-
gets [156]. Therefore, the ghost format ion problem is solved with 3hz i C2 + hz i + 1
number of sensors in the linear array. This will ensure that there is no ambiguity
in any of the mobile target localizat ions.

Note that a comprehensive analysis on the similar type of ghost elimination for

Time-Delay-of-Arrival (TDoA) and Time-of-Arrival (ToA) systems is provided in

Chapter 4. Data associat ion problem is solved using an exhaust ion method in [156]

similar to the approach provided in Chapter 4.

For numerous real world applicat ions, enormous increase in the number of sen-

sors and hence the physical size of the linear array for t racking mult iple mobile

targets posses pract ical limitat ions(146 sensors are required to t rack 10 targets and

591 to t rack 20 targets). The enlargement of the array is not desirable in close
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range or indoor applicat ions. On the other hand, aforement ioned problems of in-

complete informat ion and ghosting will be prominent if the number of sensors are

reduced. Therefore, in this chapter, a minimal array con gurat ion of two sensors

is considered for a mult iple target t racking scenario addressing these underlying

problems.

5.3 Tar get s and t h e r eceiver d yn am ic m od el

State space formulat ion can be used to depict a dynamic system with mult iple

mobile targets and two sensor receiver array. The dynamic system equat ion is

linear in a Cartesian coordinate system for the kinemat ic modeling of targets and

a sensor(linear array) [161]. Generally, the measurement models are non-linear in

the state space formulat ions [54]. In this type of modeling, target kinemat ics are

taken in to considerat ion but the mechanical dynamics are not accounted for each

plat form.i.e modeling parameters are not used to de ne rotat ional mot ion of either

the targets or the receiver unlike in [162]. In [163], a data augmentat ion algorithm

target ing at such target parameter est imat ion incorporat ing an interact ing mult iple

model for kinemat ic state est imat ion is int roduced for simultaneous implementat ion.

A elaborate study of dual body kinemat ic modeling is given in [161] and a basic

principal approach is proposed in [164] where they only consider the t ranslat ional

kinemat ics.

In this study, we consider a point target (or N number of feature points) that

obey a linear dynamic model such as those studied in [54]. In this model, arbit rary

number of point targets can be included and since each point is t racked indepen-

dent ly,object rigidity is not required. However, the ghost formation problem (also

known as the feature point associat ion problem) [161] exists in pract ical applicat ions

for t racking mult iple point targets which is described in sect ion 5.5. Considering

only the t ranslat ional e ects is su cient for the case of radar based tracking with
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a stat ionary receiver which employs a linear dynamic model.

Let N = hz i and with respect to the phase array based coordinate system, the

locat ion, velocity and accelerat ion components in each X ; Y direct ion of the i th t ar-

get in each of the t radit ionally denoted X ; Y direct ions be [xi
1 xi

2]> 2 R2,[xi
3 xi

4]> 2

R2 and [xi
5; xi

6]> 2 R2 respect ively.

Then we can de ne the state x i = [xi
1 xi

2 xi
3 xi

4 xi
5 xi

6]> 2 R6 and x =

[x1> xN > ]> 2 R6N such that it evolves according to

x(k) = A x(k 1) + B w(k): (5.3.1)

Here k = 0; 1; 2; : : :, where A and B are suitably de ned system and noise t ransit ion

matrices [161] respect ively, which can be given as,

A = Diag[ ];

B = Diag[ ];

=

2

6
6
4

I2 ksI2
k2s
2 I2

O 2 I2 ksI2

O 2 O 2 I2

3

7
7
5 ; =

2

6
6
4

k2s
2 I2

ksI2

I2

3

7
7
5 : (5.3.2)

Here, uncertain target maneuvers and addit ive system uncertaint ies are modeled

by w(k) 2 R2N while ks denotes the sampling t ime. I 2 and O2 indicate 2 2 di-

mensional Identity and zero matrices respect ively. Any a priori knowledge of target

maneuvers is not assumed in this study and these are considered as system uncer-

taint ies while the full target state is est imated online. The derivat ion of est imat ion

algorithm is quite general and it allows a large class of linear dynamic models to be

included.

R em ar k 1. The coordinate basis is found rst by positioning sensor 1 at the origin,
and sensor 2 a distance d > 0 apart from sensor 1(Figure 5.3)on the positive X
axis. These two sensors de ne a horizontal axis from which the angle subtended by
the target is measured for the AoA.
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5.4 Lin ear r obu st lt er in g wit h n on lin ear D opp ler
r ad ar

The frequency and phase measurements of the Doppler signals that re ected back

from the mobile targets are used to nd the radial velocit ies and angle measurements

in the underlying approach. While the frequency o set from the carrier frequency

is direct ly proport ional to the target radial velocity toward the sensor, the phase

di erence between the two elements in the sensor is used to nd the AoA.

Consider the i th target which modulates two frequencies f d
1 and f d

2 on each of

the two sensors which correspond to radial velocit ies and AoA values given by v̂i
1; v̂i

2

and î
1; î

2 respect ively. Next , the measurement model for the i th target is out lined

and the corresponding measurement conversion technique along with the robust

linear lter which we derive as the state est imator are presented.

The corresponding measurement noise are given by i and i for i = 1; 2 and \

^ " denotes the noisy measured variables. Then, considering the measurement for

the i th target ,

ŷ i (k) =

2

6
6
6
6
6
4

v̂i
1(k)

v̂i
2(k)

î
1

î
2

3

7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
4

x i
3x i

1 x i
2x i

4q
(x i

1)
2
+ (x i

2)
2 + 1

xi
3(d xi

1) x i
2x i

4q
(d xi

1)
2
+ (x i

2)
2 + 2

arcsin x i
2p

(xi
1)2+ (x i

2)2
+ 1

arcsin x i
2p

(d x i
1)2+ (x i

2)2
+ 2

3

7
7
7
7
7
7
7
7
7
5

; (5.4.1)

with, ŷ = ŷ 1 ŷ N >
providing the t rue measurements for all N targets. Following

converted measurement form can be used to write the noisy locat ions (x̂i
1; x̂i

2) of

(xi
1; xi

2) and the noisy direct ional velocit ies (x̂i
3; x̂i

4) of (xi
3; xi

4):
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2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

x̂i
1

x̂i
2

x̂i
3

x̂i
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

d sin ( i
2+ 2) cos( i

1+ 1)
sin ( i

1
i
2+ 1 2)

d sin ( i
1+ 1) sin ( i

2+ 2)
sin ( i

1
i
2+ 1 2)

(v i
1+ 1) sin( i

2+ 2)+ (vi
2+ 2) sin( i

1+ 1)
sin( i

1
i
2+ 1 2)

(v i
1+ 1) cos( i

2+ 2)+ (vi
2+ 2) cos( i

1+ 1)
sin( i

1
i
2+ 1 2)

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

: (5.4.2)

Here, as d is a known constant(distance between the sensors), we remove the bias

such that x̂1 = x1(noisy) d which will be added subsequent to the est imat ion

process. Bounded errors assumed for the angle and velocity measurement . i.e

j i j j j for i = 1; 2 and j j j jv i
j j for j = 1; 2 where 2 [0; 2 ] and 0 < 1

are given constants and j j indicates absolute value operator. The fract ional noise

upper-bound is indicated by . Then,

mi ,

2

6
6
6
6
6
6
6
6
6
6
6
6
6
4

x̂i
1

x̂i
2

x̂i
3

x̂i
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
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(v i
1+ 1)! 2 sin( i
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7
7
7
7
7
7
7
7
7
5

; (5.4.3)

with the following condit ion

cos !i
1

cos
=

(
1 i = 1; 2

2 i = 3
(5.4.4)

is sat is ed.

R em ar k 2. As the error variations are identical for both sin and cos terms, the
same variable i.e ! i is used for the representation (See the Appendix I I ).
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For the case of N targets, taking m = [m1 mN ]> 2 R4N , a well-de ned system

of converted measurement equat ions comprising noise input processes is considered.

Now assume that the target mot ion is given by (5.3.1) where the matrix A is non-

singular. Let 0 < p0 1 be a given constant and the following assumptions are

sat is ed by the system init ial condit ion x(0), noise w( k) and the actual measure-

ment noise i and i 8i 2 f 1; 2g.

A ssum pt ion 2. The following inequalities with probability p0 simultaneously hold:

j i j j j; j i j jv j
i j 8i 2 f 1; 2g; j 2 [1; ; N] (5.4.5)

(x(0) x0)> N (x(0) x0) +
T 1X

0

w(k)> Q(k)w(k) : (5.4.6)

Here a given initial state estimate vector is denoted by x0. N = N > and Q = Q > are
given positive de nite weighting matrices while > 0 is a given constant associated
with the system. T > 0 denotes a given time.

The following Riccat i di erence equat ion [1, 165] is involved in underlying solu-

t ion to the state est imat ion problem,

F (k + 1) = B̂
h
B̂ > S(k)B̂ + Q

i 1
B̂ > S(k)Â ;

S(k + 1) = Â > S(k)
h
Â F (k + 1)

i
+ C > U(k + 1)C K > K ;

S(0) = N : (5.4.7)

where Â , A 1 and B̂ , A 1B . We also de ne

C ,

2

6
6
6
6
6
4

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

3

7
7
7
7
7
5

; (5.4.8)

K ,

2

6
6
6
6
6
4

1 0 0 0 0 0

0 2 0 0 0 0

0 0 3 0 0 0

0 0 0 4 0 0

3

7
7
7
7
7
5

; (5.4.9)
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where,

1 = 2 =
cos 2 (1 + cos4 )

2 cos2
; 3 = 4 =

(1 + )
2 cos 2 cos

+
(1 ) cos cos 2

2
;

1 = 2 =
cos 2 (1 cos4 )

2 cos2
; 3 = 4 =

(1 + )
2 cos 2 cos

(1 ) cos cos 2
2

:

A set of state equat ions are considered as follows,

(k + 1) =
h
Â F (k + 1)

i >
(k) + C > V (k + 1)m (k + 1);

(0) = N x0;

g(k + 1) = g(k) + m (k + 1)> W (k + 1)m (k + 1)

(k)> B̂
h
B̂ > S(k)B̂ + Q (k)

i 1
B̂ > (k);

g(0) = x>
0 N x0: (5.4.10)

R em ar k 3. Notice that the appropriately de ned matrices U; V; W are utilized to
account for the incomplete information case discussed in section 5.5.2. For the
complete information case, the matrices are evaluated to identity matrices.

The state equat ion (5.4.10) and Riccat i equat ion (5.4.7) can be regarded as a

robust implementat ion of the standard linear Kalman Filter [166] for uncertaint ies

which obey Assumption 2, e.g. see [51,165,166]. Now the main result of this sect ion

can be int roduced.

T h eor em 1. Let 0 < p0 1 be given, and suppose that Assumption 2 holds. Then
the state xT of the system (5.3.1) with probability p p0 belongs to the ellipsoid

ET ,

8
<

:

xT 2 R6N :
k(S(T )

1
2 xT S(T )

1
2 (T ))k2

+

9
=

;
(5.4.11)

where
, (T )> S(T ) 1 (T ) g (T )

and the equations (5.4.10) de ne (T ) and g(T ). Also, we require + 0.

Proof. It follows from (5.4.3) and (5.4.5) that ,

~xi (k) = i xi (k) + ni (k); (5.4.12)

8i 2 f 1; : : : ; 4g and xi (k) is the i th component of the state vector x(k) of the system
(5.3.1) and the inequalit ies,

jni (k)j ~i jxi (k)j; (5.4.13)
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hold together with (5.4.6) to a probability p p 0. Hence, (5.4.13) suggest that

m (k) = C x(k) + n (k); (5.4.14)

where n (k) , [n1(k) n2(k) n3(k) n4(k)]> and the condit ion

kn(k)k2 k K xk2; (5.4.15)

holds together with (5.4.6) to a probability p p 0, where k k indicates the vector
norm. From (5.4.6) and (5.4.15) we obtain the following sum quadrat ic const raint
that should be sat is ed,

(x(0) x0)> N (x(0) x0) +
P T 1

0 w(k)> Q (k)w(k) + kn(k + 1)k2

+
P T 1

0 kK xk2; (5.4.16)

with probability p p 0. Now it follows from Theorem 5.3.1 of [51], p. 75 (see
also [165]) that the state x(T ) of the system (5.3.1), (5.4.14) belongs to the ellipsoid
(5.4.11) with probability p p 0.

The centroid of the bounded ellipsoidal set which is given by bx = S(k) 1 (k)

can be used to nd a point value state est imate. By diagonalizing matrices( ; )

as follows, the worst error in the est imates can be obtained:

bx = 1 1 1 + 1p
+ S(k)

1
2 (k) ;

S(k)
1
2 = 1 ; 1> 1 = > : (5.4.17)

Here, = [0
p

aj 0]> 2 RN with aj = maxN
k= 1 ak , where aj is the spect ral

radius of 1. and denote diagonal matrices of appropriate dimensions. The

centroid (bx, the state est imate) and the end points of the major axis(bx ) of the

ellipsoid can be illust rated as in gure 5.5 for each iterat ion together with the

corresponding uncertainty ellipse that provides the actual bounds of the uncertainty.

Therefore it can be proved that when the relevant uncertaint ies obey Assumption

1, the est imat ion errors are bounded in a probabilist ic sense. A large class of non-

linear and dynamic process noise characterist ics can be accommodated in the sum

quadrat ic constraint given in Assumption 1. As the Gaussian noise is bounded
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Figure 5.5: Uncertainty ellipse in RLF est imat ion

within the rst standard deviat ion to a probability of p0 0:68 and within two

standard deviat ions to a probability of p0 0:95 etc, no generality is lost by

considering uncertaint ies sat isfying Assumption 2. That is, init ial condit ion errors

and Gaussian measurement process form a special case of Assumption 1 which

belongs to a larger class of uncertaint ies. in this study, the Doppler radar problem

is solved in the linear domain and the algorithm used permits very large potent ial

init ial errors. No such proofs available for the extended Kalman lter (EKF) or

the majority of other approaches that ut ilizes some form of Taylor-series based

approximat ions. The novel contribut ion in this study is that the fact that we

can prove bounded tracking performance for Doppler radar based tracking with

arbit rarily large init ial condit ion errors.

5.5 Lin ear ar r ay wit h t wo Sen sor s

The number of sensors in the array a ects the physical size of the antenna which

plays a crucial role in improving the pract icality of the underlying approach, spe-

cially in close range applicat ions. Data associat ion problem occurs when the number
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of sensors to obtain the minimum physical dimensions. Figure 5.6 depicts the AoA

and radial velocity measurement scheme in a minimum physical dimension sensor

array.

AD8347Transmitter AD8347

Local oscillator A/D A/D

FFT FFT

DOA( 2) and radial velocity(u2)

v

u2 (Radial velocity)

Mobile agent

AD8347 AD8347

A/D A/D

FFT FFT

11 2 2

u1 (Radial velocity)

DOA( 1) and radial velocity(u1)

Position and velocity(v)
Sensor 1 Sensor 2

Figure 5.6: AoA and radial velocity measurement scheme in a Sensor array

5.5.1 D at a associat ion wit h com plet e in for m at ion

In this complete informat ion case an assumption is made that each sensor receives all

the (N ) measurements dist inct ively. During the ent ire t racking t ime the frequencies

are easier to dist inguish at each sensor as they are not very close to each other.

Doppler frequency at the receiver is direct ly related to the radial velocit ies and

the corresponding AoA measurements of the targets. Let radial velocity and corre-

sponding AoA measurement at sensor 1 and 2 be L1 = f (v̂1
1; 1̂

1); ;(v̂N
1 ; ^N

1 )g and

L2 = f (v̂1
2; 1̂

2); ;(v̂N
2 ; ^N

2 )g respect ively. Then the assignments should be made

on each ( i
1;

i
3) 2 L1 to ( i

2;
i
4) 2 L2 so that these measurements correspond to

the same target - data association problem.

Lets de ne the set S = f = [ 1
1

1
2

1
3

1
4; ; i

1
i
2

i
3

i
4; ; N

1
N
2

N
3

N
4 ]> :

( i
1; i

3) 2 L1 and ( i
2;

i
4) 2 L2; f i

1
i
2

i
3

i
4g 6= f j

1
j
2

j
3

j
4g 8 i ; j 2 [1; ; N]g.
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Not ice that the cardinality, jSj = N !. The actual physical dist ribut ion of the

targets is given only by a one combinat ion or only one element of S. The other

combinat ions regarded as ghosts.

For = [ 1
1

1
2

1
3

1
4; ; i

1
i
2

i
3

i
4; ; N

1
N
2

N
3

N
4 ]> 2 S and let

[Y i
1 Y i

2 Y i
3 Y i

4 ]> = f ( i
1;

i
2;

i
3;

i
4). Measurement conversion shown in equat ion

5.4.2 denoted as f .

Therefore $ Y = [Y 1
1 Y 1

2 Y 1
3 Y 1

4 Y i
1 Y i

2 Y i
3 Y i

4 Y N
1 Y N

2 Y N
3 Y N

4 ]> is a

one-to-one mapping. Let

E i =

"
Y i

1 (k)

Y i
2 (k)

# "
Y i

1 (k 1) + ksY i
3

Y i
2 (k 1) + ksY i

4

#

; (5.5.1)

and then,

: min
2 S

NX

i = 1

kE i k; (5.5.2)

should correspond to the combinat ion of the real target locat ions and hence elim-

inate all the ghost targets. That is; for the real targets, the two consecut ive state

est imates(converted measurements) are closer than the ghost targets. ghost targets

do not behave according to the est imated measurements and dynamics considered;

only the real targets.

In pract ical applicat ions, maintaining the same order of measurements in the

ltering process is crucial. This is illust rated graphically as given in gure 5.4.

When the Doppler frequencies are not very close to each other, and maintained in

that form, the ordering(of Y ) is maintained and does not pose any complexit ies

in the ltering process. If the modulated frequencies overlap, then the scenario

described as incomplete information occurs (at least for a small durat ion) as the

radial velocit ies of the targets and the corresponding angles are not resolvable at

these part icular instances. Obviously, the problem becomes challenging when the

modulated frequencies cross each other due to the dynamics of the targets and
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prevent keeping the order of the states corresponding to the relevant targets in the

ltering process; but , the above minimizat ion addresses this direct ly.

These searches are of O(N) and for this part icular 2D case, the solut ion is

essent ially in the nearest neighbor form for the linear case.

5.5.2 D at a associa t ion wit h in com plet e in for m at ion

Mult iple targets can provide the modulated frequency on any one of the two sensors.

This results in inaccurate or irret rievable informat ion and should be considered as

missing informat ion for that instant . That is y(t) is incomplete or not available for

that t ime interval t. Let M (t) = [M 1(t) M 2(t) M 4N (t)]> be a given vector

for t = 1; 2; ; T such that M i 2 f 0; 1g, for i = 1; ;4N . Then the matrix

M , [M (1) M (T )]> , is considered as the incomplete matrix. With M i , let us

de ne two sequences of matrices :

E (t) = Diag[M 1(t) M 2(t) M 4N (t)];

Ê (t) = [ ~M 1(t) ~M 2(t) ~M 4N (t)]> ; (5.5.3)

where M i (t) + ~M i (t) = 1.

U; V and W are provided to account for the incomplete information in the Riccat i

equat ion 5.4.7 and 5.4.10, [51].

U = EWE;

V = EW; (5.5.4)

W = I Ê (Ê > Ê ) 1Ê > :

R em ar k 4. For the case of complete information, Ê is the zero vector and E is the
identity matrix. This ensures that U; V and W are evaluated as identity matrices
as stated in section 5.4.

In a pract ical applicat ion, the modulated velocit ies of two di erent agents are

required to be close to the velocity resolut ion for this incomplete information to
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occur. Using the standard Doppler shift equat ion ( f = "
cf 0 where f is the fre-

quency resolut ion, " is the velocity resolut ion, c denotes the speed of light and f 0

is the carrier frequency) " can be obtained. Actually, jv̂i
1(k) v̂i

2(k)j " dist in-

guish dist inct targets. Target dynamics which do not obey this expression should

be regarded as missing information and this will be t riggered by the absence of

measurements.

5.6 Illu st r at ive exam p les

The pract ical relevance of this approach is illust rated by a computer simulat ion and

a hardware based experiment in an indoor set t ing.

5.6.1 F ict ional sim u lat ion dat a

In the ct it ious simulat ion scenario four mobile targets are t racked using Doppler

radar measurements. Table 5.1 provide simulat ion parameters. Comparison be-

tween the Extended Kalman Filter(EKF) and the Robust Linear Filter(RLF) is

made to show the st rength of the underlying approach which is based on linear for-

mulat ions. Both EKF and RLF are init ialized using a Gaussian dist ribut ion with

a mean at the ideal value and a standard deviat ion of 0.02 radians. The EKF is

known to be diverging without correct init ializat ion. The EKF parameters(Q E and

R E ) are tuned fairly accurately. Assuming the init ial error stat ist ics are known to

the t racking system, the init ial covariance of the EKF is also tuned . That is, for

the EKF parameters, the perfect knowledge of all the relevant error stat ist ics is

assumed and tuned around these t rue values to get the best possible performance.

In contrast , for the RLF the ident ity matrix for both the init ial and process noise

weight ings is used. and are taken as two t imes the standard deviat ions of

corresponding Gaussian measurement noise.

Actual and est imated tra jectories of four maneuvering targets for the case of
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Table 5.1: Simulat ion Parameters
In pu t Value C om m ent s

w1 [0:03 0:07]0 Target 1 Accel. Input
w2 [0:01 0:08]0 Target 2 Accel. Input
w3 [0:15 0:01]0 Target 3 Accel. Input
w4 [0:15 0:01]0 Target 4 Accel. Input

vi , i 2 f 1; 2g vi = 0:5 Gaussian Meas. Noise 1

i , i 2 f 1; 2g vi = 0:5 Gaussian Meas. Noise 2
[N R; Q R ] [10 4I 6; 10 5I 2] I Robust Filter Parameters
[R E ; Q E ] [10 8I 2; 104] I EKF Uncertainty

Weight ings
T @ ts 10s @ 0:15s Track Durat ion

and Periodicity

EKF and RLF are illust rated in Figure 5.7 and 5.8 respect ively. Figure 5.9 depicts

the actual velocity and the est imated velocity of the four targets for the case of

RLF while the accelerat ions are given in gure 5.10. The tracking error(kbx xk)

for the robust linear lter and the EKF is illust rated in Figure 5.11 where the sig-

ni cance of the init ial uncertainty for EKF is manifested. Due to the advantage in

the underlying linear approach, the ident ical error in the init ial condit ion(posit ion

and velocity) is instant ly corrected by the RLF. The proposed linear robust l-

ter basically ut ilizes the measurement conversion technique which is essent ially a

computat ion of 2D coordinates of a target in a closed-form manner. Actually, this

robust est imator exhibits excellent performance. As opposed to the RLF, no com-

putat ion of the 2D coordinates of the target is contained in the EKF and it is based

on linearizat ion and Taylor series type approximat ions. Specially in systems with

large uncertaint ies, this type of linearizat ions causes accumulat ion of errors and in

some instances divergence can occur in the state est imat ion.

As depicted in Figure 5.12, converted measurements provided in equat ion (5.4.2)

are essent ially ltered through the linear lter e ect ively.

Some insight into the worst case measurement bounds is given by the end points

of the major axis (bx shown in gure 5.5) of the uncertainty ellipse relevant to each
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measurement generated for a target as shown in gure 5.13 in a 500 trial Monte

Carlo simulat ion. In gure 5.14, the relat ionship between the system performance

with the measurement noise intensity is depicted.
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Figure 5.7: The actual and the EKF est imated tra jectories of four targets.
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Figure 5.8: The actual and the RLF est imated trajectories of four targets

Figure 5.15 and 5.16 depicts the performance of the modi ed version of the
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Figure 5.9: The actual and the RLF est imated velocit ies of four targets
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Figure 5.10: The actual and the RLF est imated accelerat ions of four targets

linear robust lter for the incomplete information scenario. Missing some measure-

ments in the tracking interval can be a common occurrence in a pract ical mult i-

target Doppler radar applicat ion. This can be acute when the ident ical Doppler
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Figure 5.11: The complete state est imat ion error of the four targets using EKF and
RLF
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Figure 5.12: Converted measurements ltering in RLF

frequency(within the resolut ion) modulates at the same sensor from two dist inct

mobile targets. As illustrated in gure 5.15, the ident ical Doppler frequency is

modulated by two targets at sensor 1. For this part icular instant , modi ed version

of the linear lter (equat ion 5.5.3 is used and 5.5.4) in comparison to the predicted

velocity from the previous measurements for the missing instance. As evident in
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Figure 5.13: Error bounds for RLF locat ion est imation
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Figure 5.14: Measurement noise e ect on the performance

gure 5.16, a bet ter est imat ion accuracy is produced by the modi ed version of the

lter with incomplete informat ion correct ion.

5.6.2 R eal exp er im ent al d at a

A Doppler informat ion acquisit ion system ( gure 5.6) is set up to capture the re-

ected Doppler signal from a person moving in a well de ned path in an indoor
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Figure 5.15: Radial velocity toward sensor 1 overlapping for two targets
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Figure 5.16: Linear Robust Filtering with incomplete informat ion

set t ing. The receiving elements and sensors (one sensor is composed of two anten-

nas elements) are posit ioned 6cm and 0.5m distance from the other similar device

respect ively along the X axis as depicted in the gure 5.18. 2.4GHz cont inuous

wave RF at 12dBm is t ransmit ted through the signal generator.

The re ected signals are captured by four low-cost , o -the-shelf integrated boards
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(AD8347) which are quadrature (or I/ Q) receivers. Each receiver comprises of low-

noise ampli er (LNA), I/ Q mixers, gain control, and baseband ampli cat ions. Spe-

cial analog ltering (as in the superheterodyne conversion) is not required as this

chip allows a direct conversion from RF to baseband.

Then the 14-bit NI USB-6009 is used for analog to digital conversion. Next The

digit ized data is collected by the computer. DFT is performed on the data using

Cooley-Turkey algorithm to nd the Doppler frequencies and corresponding phase

di erences to measure the AoA of the object at each t ime step. 104 measurements

are acquired for 200 point FFT with a succeeding frequency resolut ion of 0.1Hz and

a calculated SNR of 34dB which is typical of a 2.4GHz band with surrounding IEEE

802.11 wireless LAN and personnel area networks employing Bluetooth enabled

devices [167]. Indeed, the assumption on the noise model suits this type of noise

and uncertaint ies which do not have a clear and elegant mathemat ical model [168].

In order to t rack a moving target the experimental setup depicted in gure 5.17

is used. The actual path and the est imated path of the person are shown in gure

5.18. The est imat ion error from the converted measurements and the est imat ion

error for the ltered case is depicted in gure 5.19. A signi cant init ial error is

provided to demonstrate the e ect ive convergence not iceable with the RLF.

Moving 
Target 
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Figure 5.17: The experimental setup for t racking a person
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Figure 5.19: The est imat ion error of the four targets

5.7 M axim u m Likelih ood E st im at ion (M LE ) b ased
ap p r oach for m oving sen sor p la t for m

In this sect ion, we consider the case of tracking mobile targets with a linear sensor

array mounted on a moving vehicle. The array is assumed to be placed at the
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front bumper of the vehicle. The dynamics of the vehicle must be incorporated in

accessing the state of the moving targets.

5.7.1 Veh icle dynam ics

Lets consider the velocity pro le of the bumper of a vehicle when it is making a

turn on a radius R [169]. As shown in Figure 5.20 , when the speed at the posit ion

P is U0 and the angle it makes with a line drawn along the vehicle is u0, the velocity

vector at that part icular point is,
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Figure 5.20: Steering dynamics
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where,

U0 =
V 0RU

R
;

u0 = arctan
b

Rr + x0
;
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= arctan
2

cot o + cot i
;

R =
q

a02 + (l cot )2;

Rr =
l

tan i
;

and,

Ru =
p

(Rr + x0)2 + b2:
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Figure 5.21: Tracking a target when the sensors are mounted on a moving vehicle

Consider the Figure 5.21. u0
xA ; u0

xB and u0
xG are the velocity components at the

points A; B and G along x direct ion respect ively. u0
yA ; u0

yB and u0
yG are the velocity

components at the points A; B and G along y direct ion respectively. The signal

generator is at G(g; 0) and G is the bearing of agent with respect to G. For this

dynamic case the state of the target without measurement errors can be writ ten as,
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(5.7.2)

where,

v0
A = vA (u0

xA cos A + u0
yA sin A + u0

xG cos G + u0
yG sin G)

and

v0
B = vB (u0

xB cos B + u0
yB sin B + u0

xG cos G + u0
yG sin G):

Now we consider the case where the angle measurements are corrupted with zero

mean Gaussian noise, hence the Maximum likelihood based approach is provided

to increase the localizat ion accuracy.

5.7.2 M axim u m likelih ood for A oA -on ly locat ion est im a-
t ion

( , ) 

1 

 

 

1 

( 1, 1) 

( , ) 

Figure 5.22: Sensor target locat ions and measurements

AoA-only localizat ion problem can be formulated as follows in R2. Let x =

(xt ; yt )T be the target posit ion vector to be est imated from bearing measurements
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= ( 1; 2; ::::; N )T , where (:)T denotes vector or matrix t ransposit ion. The target

AoAs are measured from xed N number of sensors at known posit ions or from

sensors xed to a moving plat form where the t ra jectory of the plat form is known.

The sensor coordinates are denoted by xs = (xs; ys), which associate with the

measurement s,(s 2 1; : : : ; N ). The problem geometry is shown in Figure 5.22.

The angle measurements consist of the t rue bearings , corrupted by addit ive noise

= ( 1; 2; ::::; N )T , which is assumed to be zero mean Gaussian with N

covariance matrix S = diag( 2
1; 2

2; ::::; 2
N ). Thus the problem is described by the

nonlinear equat ion,

= g(xt ) + : (5.7.3)

where,

g(xt ) = (g1(xt ); ::::::; gN (xt ))T

and

gn(xt ) = arctan( yn = xn );

xn = xt x n ;

yn = yt y n ; n = 1; 2; ::::; N:

The Cramer-Rao Lower Bound on the covariance of any unbiased est imator for

this problem is given by

C = (gT
x S 1gx ) 1: (5.7.4)

The derivat ive, gx = @g=@x evaluated at the t rue target posit ion is then

gx =

0

@
y 1

r 21

y 2

r 22
:: y k

r 2k
:: y N

r 2N
x 1

r 21
x 2

r 22
:: x k

r 2k
:: x N

r 2N

1

A

T
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.

where,

r 2
k = 2

xk + 2
yk ; k = 1; :::; N:

N is the number of sensor posit ions.

The Maximum Likelihood est imator is useful due to its propert ies guaranteed by

a well known theorem of est imat ion theory. The theorem states that , if the number

of measurements is large enough, the ML est imator is unbiased and its covariance

achieves the CRLB under mild regularity condit ions. When the measurement noise

is Gaussian with zero mean, the ML est imator of the target locat ion x, is given by

x̂M L = argminx jFM L (x; )j (5.7.5)

where, the cost funct ion, FM L (X ; ) has the form

FM L (x; ) =
1
2

(g(x) )T S 1(g(x) ):

Above (5.7.5) involves a nonlinear least -square minimizat ion, which can be per-

formed by the Newton-Gauss iterat ions:

x̂i + 1 = x̂i + (gT
x S 1gx ) 1gT

x S 1( g(x̂i )); i = 1; 2; :::: (5.7.6)

An init ial est imate, x̂0 is required for (5.7.6) which is close enough to the t rue

minimum of the cost funct ion. Such an init ial est imate may be available from

prior information. A simple (but subopt imal) procedure can also be used to obtain

an init ial est imate. The part ial derivat ives involved in (5.7.6) are evaluated at

the current est imated posit ion, x̂i . A number of 2-4 iterat ions are su cient for

convergence in real implementat ions.
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Simulat ion result in Figure 5.23 shows the t racking of two mobile agents using

three Doppler sensors mounted linearly on the bumper of a vehicle which are 0.5m

apart . Figure 5.24 depicts the same dynamic system with four Doppler sensors

mounted linearly. The mean squared error of the two systems are compared in

the Figure 5.25 and it can be seen that the system with the four Doppler sensors

performs bet ter than the system with three sensors. The est imation accuracy will

increase as the number of of sensors increases. This is due to the fact that , if the

number of measurements is large enough, the ML est imator is unbiased and its

covariance achieves the CRLB under mild regularity condit ions.
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Figure 5.23: MLE for Doppler-radar t racking with three sensors

5.8 Su m m ar y

In this chapter a linear state est imator is derived with provable performance limits

for radar based target t racking. Here, nonlinear Doppler frequency modulat ion

and associated angle of arrivals are used as measurements. A completely linear

algorithm is provided using a novel measurement conversion method that does

not use Taylor-series type approximat ions. Mathemat ically rigorous proof of the
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Figure 5.24: MLE for Doppler-radar t racking with four sensors

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

Time/(s)

M
ea

n 
sq

ua
re

d
  e

rr
o

r/
(m

)

 

 

MSE with four sensors
MSE with three sensors

Figure 5.25: Variat ion of error with t ime for three and four sensors

boundedness of the ltering error is an important contribut ion of this technique.

Extended Kalman lter does not provide such results.

A linear sensor array is considered here and the mathematically just i ed nec-

essary and su cient condit ion in t racking mult iple mobile targets is derived. The

ghost format ion problem is considered and removal of such targets is addressed
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while rest rict ing to the minimal con gurat ion in the sensor array as an alterna-

t ive to increasing the number of sensors in the array. The linear approach for the

complete informat ion case is also modi ed to account for the case of incomplete

informat ion. The theoret ical assert ions are veri ed via physical experimentat ion in

addit ion to a ct it ious simulat ion scenario.

Also, t racking mult iple mobile targets with a Doppler radar sensor array mounted

on a moving vehicle has been studied in this chapter. Similar to the stat ionary case,

Doppler frequencies modulated from the mobile targets on the single-frequency-

cont inuous-wave radar are captured by the linear sensor array and analyzed in

order to est imate the posit ions and velocit ies of the targets. As the measurements

corrupted by noise lead to poor localizat ion, the maximum likelihood est imat ion

(MLE) is employed to enhance the est imat ion accuracy. The theoret ical derivat ions

are veri ed using computer simulat ion.

For small number of samples maximum likelihood est imates can be heavily bi-

ased and the opt imality propert ies may not apply. Also, the choice of start ing values

in uences the maximum likelihood est imat ion. Model based est imators, such as ex-

tended Kalman lter can be incorporated for bet ter est imat ion in further studies.



C hap t er 6

C on clu d in g R em ar ks

This thesis has led to number of potent ial research direct ions in Doppler radar based

tracking and sensor fusion in AoA, range,TDoA and ToA measurement techniques.

Summary of the di erent research aspects studied in the dissertat ion is given in

this chapter in the form of an applicat ion case study in close range tracking. The

real world applicat ion value to the study is provided by linking it to the seemingly

standalone research outcomes.

T hr ough-W all-R ad ar (T W R )

Through wall t racking of human act ivit ies is an emerging eld of interest due to the

increasing demand in the applicat ions of defense and commercial systems ranging

from urban warfare to rescue operat ions. Tracking of human movements inside a

building enhances the chance of successful law enforcements or military operat ions

minimizing casualt ies. The radar system introduced in this thesis can be modi ed

to t rack humans through the wall.

In such real world applicat ions, the state of the target should be est imated

robust ly in real t ime. Ultra wide band (UWB) radar seems popular in these appli-

cat ions with resolut ion of the order of cent imetres have been reported in [28{34].

The prominent disadvantage of these systems is the degradat ion of the accuracy

in measurements due to the dispersion and signal loss as the waves are t raveling

through some wall materials such as concrete.

112
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Human act ivity can be recognized by analysing the micro-Doppler e ects [35].

Micro-Dopplers are generated from non-rigid-body motions of human limbs and

contain valuable informat ion related to human gait recognit ion. Using a higher

frequency the radar system discussed in our study can be modi ed to obtain the

micro-Doppler e ects of moving limbs.

A coherent wave propagat ion model is needed in the context of Doppler-based

cont inuous wave radar for through wall t racking. This model would address all the

factors such as material type, thickness of the wall and homogeneity of the material

and they should be included in the est imator so that more reliable readings can be

obtained. The signal propagat ion pat terns for di erent wall materials should be

classi ed with their dispersion and loss e ects. Antenna arrays can be designed to

capture the returning wave e ect ively if the wave propagat ion model through the

part icular wall material is known. This radar system should have the capability

to adjust in di erent circumstances, for example walls with di erent materials or

thickness and also be portable and easy to handle by the operator.

As discussed in our study, robust linear ltering can be ut ilized to get a bet ter

approximat ion to the actual t rajectories of the moving humans behind the wall since

the waves contains some noise with the required informat ion. Gait recognit ion can

be carried out by further analysis of the micro-Doppler returns from the moving

human body parts.

For au t om ob ile app licat ion s

Modern cars are equipped with reverse sensors, reverse cameras and blind-spot

sensors for the safety of the vehicle and passengers. One of the main requirements

in these designs is to ident ify the dynamic nature of the surroundings of the vehicle

in real t ime. Camera systems are seemingly good candidate for this applicat ion but

they inherent ly posses the following disadvantages,
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Not reliable in rainy/ snowy condit ions

Not reliable at night as sudden ashes of lights may cause fatal misjudgments

Not reliable when the clut ter in the eld of view increases

As opposed to the camera systems, radar systems have advantages such as,

Can suppress the clut ter when the correct type of Radar is used( As an ex-

ample Doppler radar for moving target detect ion)

Environmental e ects such as rain and snow can be minimized signi cant ly

Reliable at night or gloomy condit ions

Not a ected by sudden light changes

Op t im al sen sor separat ion

In this thesis, opt imal sensor separat ion for linear arrays employing AoA-only and

range-only measurements is discussed. The Cramer-Rao lower bound for the un-

biased est imators is ut ilized for the study and several important results have been

derived. In pract ical applicat ions, these results can only be used as a guide for

sensor posit ioning as the est imat ion accuracy is a ected by the bias and e ciency

characterist ics of the employed est imator.

The bias and the variance (mean-squared error) has an inversely proport ional re-

lat ionship [127]. Extensive studies on this scenario are carried out in [125,128,129].

By incorporat ing the bias-variance t rade o given in these studies, the results ob-

tained in our study can be further extended for more pract ical est imat ion algorithms

such as maximum likelihood.

The results obtained in Chapter 3 can be employed to arrange the AoA-only or

Range-only sensors in a manner which signi cant ly enhances recursive localizat ion
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performance. This analysis is also useful in pract ical applicat ions such as opt imal

path planning and trajectory control of mobile sensors for localizat ion [15,109,111].

For simplicity, single target scenario is analysed in this study. The same concept

proposed here can be further extended for the mult iple target localizat ion. In gen-

eral, overall opt imal sensor placement for mult iple targets will provide subopt imal

posit ioning for individual targets.

The exact posit ion of the target should be known in the theoret ical analysis

in determining the opt imal sensor placement . Even though in pract ical situat ions

this informat ion is not readily available, a rough est imate of the likely region of the

target is su cient in nding the sensor posit ions to obtain enhanced localizat ion

results.

T im e-D elay-of-A r r ival an d T im e-of-A r r ival syst em s

The unique localizat ion of a target with minimum number of TDoA measurements

is analysed in Chapter 4. The measurement error is assumed to be bounded. The

limit ing error bounds have been derived for both R2 and R3 after which, the unique

solut ion region cease to exist . It has been shown that the sensor geometry in uences

the limit ing error bound. This study can be further extended, specially in the

geometry of the sensor posit ions for robust localizat ions.

When it comes to mult iple target localizat ion, the data associat ion problem

is prevalent . The study provides an analysis on unique localizat ion of mult iple

emit ters using TDoA or ToA measurements. For a given number of targets to be

uniquely localized, the maximum bound on the required number of sensors in Rq

is derived. This analysis provides the groundwork for further studies in TDoA and

ToA based localizat ion.
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F inal r em ar k

Several applicat ion scenarios which use the aspects of this research is presented

in the above sect ion. However, there can be many other potent ial applicat ions

which could ut ilize the theories provided in this study either part ially or completely.

Although a major part of this thesis provides a solid foundat ion to a Doppler

radar based close-range tracking using robust linear ltering, there exists many

potent ial future work which will undoubtedly enhances the applicat ion value to

the underlying work. Among them, real-world implementat ion of the though-wall

t racking of humans with gate recognit ion is signi cant .



A pp en d ix I

Consider arbit rary constants x i 2 R2; i 2 f 1; 2; 3g; 2 R+ , and y i 2 R2 arbit rary

variables.

P rop osit ion 3.

kx i y1k
kx i y2k

= 8i 2 f 1; 2; 3g and x i 6= x j ; for i 6= j ) = 1

Proof.

kx i y1k
kx i y2k

= 8i 2 f 1; 2; 3g:

This can be given as,

(1 2)x>
i x i 2x>

i y1 + 2 2x>
i y2 + y >

1 y1
2y >

1 y1 = 0 8i 2 f 1; 2; 3g:(6.0.1)

Considering, i = 1; 2,

(1 2)(x1 + x2) + 2 2y2 2y1 = 0; (6.0.2)

and considering, i = 1; 3,

(1 2)(x1 + x3) + 2 2y2 2y1 = 0: (6.0.3)

Hence, as y1 is not a funct ion of x i and x2 6= x3, = 1(only the posit ive sign is

considered as per the de nit ion of the magnitude).

.
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Figure 6.1: Trajectories of xi ; i 2 f 1; 2; 3; 4g as per equat ion 5.2.4 and 5.2.5
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Consider the following two trigonometric equalit ies

sin ( + v) = ! sin ( ) ; (6.0.4)

cos ( + v) = ! cos ( ) ; (6.0.5)

with a given > 0.

P rop osit ion 4. Then, 8 2 [0; =2], and v j j 9 ! : cos ! 1
cos .

Proof. Writ ing the expressions 6.0.4 and 6.0.5 in the form of,

sin(v) = ! sin cos sin
p

1 ! 2 sin2 ; (6.0.6)

sin(v) = ! sin cos cos
p

1 ! 2 cos2 ; (6.0.7)

respect ively. Consider the posit ive valued one as funct ion f and the negat ive val-

ued one as funct ion g. If the maximum/ minimum value of f and g denoted by

f max=mi n (! ) and gmax=mi n respect ively,

f max=mi n (! ) =

8
><

>:

q
1 1

! 2 ; 1
cos > ! > 1

p
1 ! 2; 1 > ! > cos ;

gmax=mi n (! ) =

8
><

>:

q
1 1

! 2 ; 1
cos < ! < 1

p
1 ! 2; 1 < ! < cos :

Therefore the proof follows immediately.
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Figure 6.2: Error Variat ion of f with !

Due to the symmetric nature around the y axis, the corresponding expressions

6.0.6 and 6.0.7 represents ident ical error variat ion. The error variat ion of f for !

is illust rated in the gure 6.2.
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