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Abstract

This thesis mainly investigates the state estimation problem in close-range involv-
ing multiple targets using the phase di erence and frequency shift of the returned
Doppler modulated signals. The linear sensor array with minimal con guration
that addresses the data association and missing information problem is provided
for multiple mobile targets. A recently developed robust state estimation approach
is employed to obtain an accurate estimate of the target dynamics progressively
in a linear framework using non-linearly modeled Doppler radar measurements.
Furthermore, the strength of our approach is experimentally veri ed.

Tracking mobile targets using a Doppler radar system mounted on a moving
vehicle is also considered in this thesis. Dopplers modulated from mobile targets
due to the relative motion with the sensor array is analyzed in order to estimate
their states. Maximum likelihood based approach is provided in order to enhance
the localization accuracy.

As the main theme is based on measurements with linear sensor arrays, optimal
sensor arrangements in such arrays are studied for two most popular measure-
ment technologies: Angle-of-Arrival(AoA) and range based localization systems.
Cramer-Rao lower bound and the corresponding Fisher Information Matrix(FIM)
are utilized for the analysis.

Unique localization with elimination of data association problem is explored for
Time-Delay-of-Arrival(TDoA) and Time-of-Arrival measurement technologies. A
comprehensive analysis on the unique solution area is provided for the TDoA based

systems.
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Chapter 1

Introduction

Target localization and tracking has a rich history dating back to several centuries.
In ancient history visual and auditory information were used to localize or track
an object of interest such as prey or enemies. With the development of science
and technology, numerous techniques have emerged for the same task, improving
the accuracy and reliability of information. The concept of target localization and
tracking involves estimating the location or any other dynamic parameters of a
target of interest using typically noisy and possibly nonlinear measurements of the
target measured from a number of sensor positions.

The science of localization and tracking gathered an immense momentum spe-
cially during World War II [1,2]. Since then, numerous problems and techniques
have evolved in this domain. The well known measurement techniques include the
angle-of-arrival(AoA), target range, time-of-arrival(ToA), or the Dopller frequency
modulated by the target. In some applications, two or more aforementioned tech-
niques are combined together for higher accuracy.

The Radio Detection And Ranging (RADAR) technology which is very similar
to ultrasonic sonar was developed during World War II to track the enemy ships
and aeroplanes. Nowadays it has many applications in numerous elds such as
aerospace, naval and weather forecast. Most of the implementations of Radar is

for the far range applications such as locating an aircraft or a ship hundreds of



Chapter 1. Introduction 2

kilometers away. Close range localization and tracking such as indoor monitoring
using Radar is an emerging eld of interest. There are many other techniques
such as AoA, target range and ToA for close range localization and tracking and
the improvement of the accuracy and reliability is an interesting eld of research.
Currently, the research on these particular areas provides a constructive impact on

safety and wellbeing of humans.

1.1 Background

Radar is widely used in di erent applications with di erent measurement technolo-
gies; Continuous Wave Radar, Pulsed Radar and Doppler Radar are some of them.
Doppler Radar systems can be used to extract the dynamic information of a moving
target. Most of these applications are for long range localization and tracking of
non-cooperative targets.

It is well known that if there is a relative motion between the source and the
observer, an apparent shift in frequency will occur, which is known as Doppler shift.
A particular approach for close range localization and tracking is discussed in [3,4]
in which a low-complexity Doppler radar is used with a two-element receiver array.
Multiple moving targets were rst resolved based on their Doppler returns which
are related to the radial velocities toward the receiving elements. The Angle-of-
arrival (AoA) of each target was then estimated utilizing the phase di erence of the
scattered Doppler modulated signal at the two receiver elements. The complexity
of this approach is less and it is based on the assumption that no two targets
have the same Doppler returns toward any receiving element. When the targets of
interest are not well resolved in Doppler dimension, the estimation error of AoA
increases signi cantly. This problem is particularly severe for human tracking, since
micro Doppler returns modulated from human limbs have a broad Doppler spread.

Four- element radar array that combines Doppler signal processing with software
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beam forming is used to resolve targets in both Doppler and the AoA space in [5].
This particular approach enables the detection of targets with overlapping Doppler
signals. However, in an array of limited dimensions, the side lobes due to strong
targets can prevent the localization of weaker targets when the targets are not
resolvable in the Doppler domain. The CLEAN algorithm [6] is implemented in the
beam-former to iteratively remove the side lobe features of the strong target to make
it possible to detect weaker targets. An enhancement of CLEAN, which is known
as RELAX algorithm [7], is also implemented to further improve the accuracy of
the target-parameter estimation.

The performance of any particular localization algorithm is a strong function of
the relative sensor-target geometry [8,9]. A characterization of the geometry of the
sensors and targets with various matrices related to Cramer-Rao inequality or the
corresponding Fisher information matrix has been studied in [10]. Since the Cramer-
Rao lower bound is a function of the relative sensor-target geometry, a number of
approaches have been explored to identify underlying geometrical con gurations
which minimize some measure of this variance lower bound [8, 10{17].

Most of the existing literature is concerned on the placement of AoA/range
sensors around the target for optimal localization [11, 13] but linear sensor arrays
play a crucial role in some real world applications such as radar [9,18{25]. This study
considers the localization problem involving a single target and multiple adjustable
AoA/range sensors located as a linear array(uniform and non-uniform). In this case,
Cramer-Rao lower bound with the corresponding Fisher information determinant is
used to investigate the optimality of the relative sensor-target geometry, exploring
the intrinsic relation with the spacial diversity and the underling measurement
model.

Time-Delay-of-Arrival(TDoA) is another important technique to localize and

track a target of interest. These systems, generally localize an emitter by processing
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signal arrival-time measurements at three or more sensors in R? and four or more
sensors in R3. In the absence of noise and interference, the ToA measurements
at two sensors are utilized to produce a relative arrival time that, restricts the
possible emitter location to a hyperbola in R? and a hyperboloid in R3, with the
two sensors as foci. Emitter location is estimated from the intersections of two or
more independently generated hyperbolas in R? and the intersections of three or

more independently generated hyperboloids in R® [26].

1.2 Overview of the study and contributions

The study in this dissertation is mainly three fold. In the rst section, it concen-
trates on sensor placement for optimal localization using di erent localization tech-
niques and then in the second section it discusses about the unique localization of
targets using Time-Delay-of-Arrival(TDoA) and Time-of-Arrival (ToA) techniques.
In the nal section, the discussion is based on the close range localization and

tracking, using Doppler radar.
An analysis on the linear sensor arrays for optimal localization

The study for the optimal sensor placement has two main aspects;

1. Developing techniques using Cramer-Rao lower bound with the corresponding
Fisher information determinant to investigate the optimality of the relative
sensor-target geometry, exploring the intrinsic relation with the geometrical

diversity and the underling measurement model.

2. Optimality analysis for a single target and multiple adjustable AoA and range

sensors located as a linear array(uniform and non-uniform).
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An analysis on the unique localization of targets using ToA and TDoA
systems

The study for the unique localization of targets using ToA and TDoA techniques

has two main aspects;

1. Analysis on the unique solution region with measurements errors for a target

using the minimum number of TDoA measurements.

2. Study of the data association problem for multiple targets in both ToA and

TDoA techniques.
A novel approach in Doppler radar for close range localization
The study for the Doppler radar based localization has following aspects;

1. Development of techniques to localize close range multiple targets using Con-
tinuous Wave Single Frequency(CWSF) radar. These techniques are rela-
tively simpler than other techniques such as pulsed-Doppler and frequency-

modulated radar,

2. Application of a linear sensor array with minimal con guration that addresses

the data association and missing information problem.

3. Employment of recently developed robust state estimation approach to ob-
tain an accurate estimate of the target dynamics progressively in a linear

framework using non-linearly modeled Doppler radar measurements.

4. Evaluate the assertions with simulations and a hardware system.

1.3 Thesis outline

This thesis is structured as follows. Chapter 2 provides a comprehensive analy-
sis of the literature in the elds related to this study. Moreover, the theoretical

background of the techniques used in the remaining chapters are introduced.
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Chapter 3 provides the study of optimal sensor placement for linear arrays.
The theoretical analysis is carried out on Angle-of-Arrival and range based local-
ization systems with Gaussian error assumption and the computer simulations are
presented to verify the results.

Chapter 4 presents the analysis on the unique localization with TDoA and ToA
measurement techniques. First, the unique localization of an emitter with minimum
number of TDoA measurements is analysed and then the elimination of the data
association problem in both TDoA and ToA techniques is discussed with computer
simulations.

Chapter 5 introduces the Doppler radar based close range localization and track-
ing technique for multiple mobile targets. A linear robust Itering based approach
is used for stationary sensors and a maximum likelihood approach is employed for
moving sensor platform. Computer simulation case studies are also presented to
verify the theoretical assertions. This chapter presents a close range radar experi-
mental setup which is developed for real world applications.

Chapter 6 presents conclusions on close range tracking and localization and
directions for further work in the eld. Here, an overview of the research is provided

with the connectivity between di erent topics presented in the study.



Chapter 2

Localization and Tracking: An
Introduction

2.1 Radar

A blind person makes his way along a busy street, maintaining a xed distance
from the wall of a building and also a safe distance form the vehicles whizzing by
on his other side, just by tapping the sidewalk repeatedly with his cane as he walks.
A bat deftly avoids the obstacles on its path and nds small insects that are its
prey in a very dark cave just by emitting a train of shrill beeps. Just as unerringly,
a ghter aircraft closes in on a possible enemy trespasser, hidden behind a cloud
bank a hundreds of kilometers away.

Underlying each of these impressive feats is a very old and fundamental principle:
detecting objects range from the echoes they re ect. The main di erence in the
techniques is that, the blind person and the bat utilize the echoes from the sound
waves, whereas in the case of ghter aircraft, it detects the echoes from the radio
waves.

RADAR is the acronym of the words Radio Detection And Ranging, which
re ects the emphasis placed by early scientists and experimenters on a device to
detect the presence of a target and estimate its location. It was initially developed
as a long range detection device to warn of the approach of hostile aeroplanes

and for directing antiaircraft weapons such as missiles [1,2]. Sophisticated modern
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radar systems can usually extract more information from the signal of the target of

interest with higher accuracies.
History of radar

The code word Radar was o cially introduced by the US Navy in late 1940s,
as the name what had previously been called, among other jargons, radio echo
equipment [1]. Another group in US Army Signal Corps, who also did pioneer
work in radar development, used the term radio position nding until they adopted
the name radar in 1942. The British in 1943 substituted their own term RDF
with radar. The DF is the abbreviated form of direction nding and the origin of
the R is obscure, which was purposely selected to enclose the fact that the range
measuring equipment was under development [1]. In France, radar was called as
DEM(detection electromagnetique), and Funkmessgerat was the name in Germany.

Even though the advancement of radar as a fully- edge technology occurred
during the World War II, the fundamental principle of radar is almost as old as
the eld of electromagnetism itself. The similarity between the radio and the light
waves was demonstrated by Heinrich Hertz, in 1886 by experimentally testing the
Maxwell's theories. In his experiment, he showed that the radio waves could be
re ected by dielectric and metallic bodies. Although the Hertz's experiments were
carried out with relatively short wavelengths radiation(0.66m), subsequent work in
radio engineering was almost entirely at longer wavelengths. Until late thirties, the
shorter wavelengths were not prominent in use [1].

In 1903, Hulsmeyer (a German engineer) experimented with the observation
of the radio waves returned from ships. Even though his innovation generated
little interest, Marconi identi ed the potentialities of short waves in radio detection
and strongly urged their use in 1922 for such applications [1]. Although Marconi
successfully demonstrated radio communication between continents, he was not

successful in obtaining support for some of his other theories related to very short
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waves. One was the suggestion that very short waves could propagate well beyond
the optical line of sight-a phenomenon currently known as tropospheric scatter.

Continuous Wave (CW) was used in the rst radar systems and they worked
on the principle that the interference produced between the signal received from
the transmitter and the Doppler-modulated signal re ected by a moving target.
This particular type of radar was originally known as CW wave-interference radar.
Bistatic CW radar is the current name for such systems [1]. The initial experimen-
tal detection of aircrafts utilized this principle rather than a monostatic(single-site)
pulse radar as the CW hardware were readily available. The development of the
successful pulse radar was halted until the suitable components, such as high-peak-
power tubes, and a thorough understanding of the pulse receivers. The early evo-
lutions of pulse radar systems were basically concerned with military applications.
The rst commercial application of this particular radar principle was probably the
aircraft altimeter [1].

In the thirties, the development of radar was constrained to frequencies at Ultra
High Frequency(UHF) or lower. A signi cant advancement in microwave region
was apparent during the forties. However, in fties, there was a backpedaling of
the upward frequency trend, and a considerable amount of radar development was

again implemented in the UHF region, specially for long-range detection.
Radar in nature

Even though the radar technology is novel to the humans, it can be found in nature.
The bats and porpoise are both known to utilize ultrasonic echo-locating principle
which is very similar to radio frequency echo location or ultrasonic sonar used
in modern technology. The built-in ultrasonic \radar"of a bat enables it to y
through dark environments with impunity and locate and catch ying insects. The
bat usually emits a series of ultrasonic pulses at a repetition frequency of the order

of 10 to 20 cycles per second under normal circumstances with a width about
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2ms [1]. The shape of the transmitted pulse is not exactly rectangular, but reaches
a maximum and then falls. Even more signi cant is the fact that this transmission
is not a simple pulse. It is similar to a frequency-modulated pulse or a frequency-
modulated pulse compression. Bats are capable of detecting obstacles as close as
Scm [1]. Another exciting observation is that the thousands of bats y in dark caves

very close to each other without apparent di culty from mutual interference.
Applications of radar

Radar technology has been utilized on ground, in air, and at sea. Ground-based
radar has been used mainly in detection and localization of aircrafts or space targets.
Shipboard radar is used to detect other ships or aircrafts, or it can be used as a
navigation aid to locate shore lines or obstacles. Airborne radar systems are used
to detect other aircrafts, ships or vehicles, or it can be utilized for storm avoidance
and navigation. The design of a radar system depends on the environment in which
it operates and the nature of the vehicle that carries it [1].

Civilian applications: Currently, the main use of radar apart from the military
applications is for navigation. The most common civilian application of radar is
in air-tra c-control. These radar systems monitors the air tra c in the vicinity
of airports and en route between air terminals. In hostile weather, radar is used
with ground-control-of-approach systems for safe landing. Nowadays, commercial
aircrafts are equipped with radar altimeters to determine their height above the
ground and weather-avoidance radar to navigate around dangerous weather condi-
tions.

Radar is used for safe navigation in ships, especially in poor visibility or in
hostile weather. Another application of radar can be found in surveying over large
distances. One of the most important application of radar in civilian domain is the
detection and tracking of weather changes, especially tornadoes and hurricanes.

Military applications: Most ofthe civilian applications of radar mentioned above
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Figure 2.1: Radar system

are also applied in the military domain, specially in radar navigation. Moreover,
military employ radars for surveillance and for the control of weapons. Surveil-
lance radar is used to localize and track hostile targets in order to take proper
military actions. The examples for such radar systems are DEW(Distance Early
Warning) radars, BMEWS(Ballistic Missile Early Warning System) and shipboard
surveillance radars and AEW(Airborne Early Warning) radars. In the domain of
control of weapons, the examples are homing radars on guided missiles, airborne-
interception radar which is used to help a ghter aircraft to nd its target, and
bombing radars [1].

Scienti ¢ applications: The radar is used by research scientists to enhance the
knowledge of meteorology, aurora, meteors and other objects in the universe. Space
vehicles and satellites can be guided by radar and it can also be utilized in ex-
ploration of interplanetary space. The radar techniques can also be utilized in

microwave spectroscopy, radio astronomy, and radar astronomy.
Radar technology in brief

As depicted in Figure 2.1, common radar systems in their most rudimentary form,
consist of six elements: a radio signal transmitter, signal receiver, two antennas for
transmitting and receiving(in some cases, the same antenna is used in common for

transmitting and receiving), signal processing unit and the display. Depending on



Chapter 2. General Introduction 12

the application, the radio signal can be sent as a Continuous Wave(CW), Frequency
Modulated Continuous Wave(FMCW) and in pulses. In the world of radar the term
target is mainly used to refer to anything the system wishes to detect during its
scan: a vehicle, a ship, an aircraft, a human, rain, or even free electrons. The most

important factors which in uence the range at which the target can be detected are

The power of the transmitted radio waves

Fraction of time the power is transmitted

Dimensions of the antennas

Radio wave re ection characteristics of the target

Time span the target is in the antenna beam during the scan

Wave length of the radio waves

Strength of background noise or clutter

A radar identi es the presence of objects and determines their location in space
by emitting the electromagnetic energy and processing the re ected echo. In pulse
radar, the receiver is turned on after a relatively short burst of electromagnetic
energy is transmitted on the area of interest. The distance of the target form the
radar system is measured by utilizing the time that elapses between the transmission
of the pulse and the receipt of the echo. On the basis of time, the transmitted signal
and the echo can be di erentiated.

If the weak echo can be extracted among the strong transmitted signal, the
radar can be operated continuously. Usually, the received echo signal power is
signi cantly smaller than the transmitted power. The isolation of weak echo from
strong transmitted signal is practically not su cient even if two antennas are used

for transmission and reception.
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Figure 2.2: Doppler e ect

Doppler Radar

One e ective way of separating the weak received signal from the transmitted signal
is to measure the change in the echo-signal frequency due to the phenomenon known
as Doppler e ect [1,27]. For this Doppler e ect to take place, there should be a
relative motion between the target and the receiver. When the Doppler shift is
used for the detection of targets, a part of the transmitted signal that falls on the
receiver is not, in principle, problematic. In most of the cases it is a requirement
for detecting the Doppler shift in the received signal.

In the areas of acoustics and optics, it is well known that if there is a relative
motion between the source and the observer, an apparent shift in frequency will
occur. This is the basis of Continuous Wave radar and known as the Doppler
e ect(Figure 2.2).

Consider a radar system and a target R distance apart. Then the total number
of wavelengths ( ) that can be accommodated between the two-way path between
the radar and the target is 2R= (assume that the distance and the wavelength
are measured in the same units). Then the total angular excursions taken by

the signal during its journey is 4 R=. If there is a relative motion between the
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receiver and the target, R and the phase are constantly changing. The change in
with respect to time is the Doppler angular frequency ! 4 given by
d 4 dR 4 vy

' — - = T = Tt
ta=2 fq dt dt ’

where fq is the Doppler frequency shift and v, is the relative frequency of the
target with respect to the receiver. Then the Doppler frequency shift is
2ve  2vf,

fa= =0 = =% (2.1.1)

where f, is the transmitted frequency and cis the velocity of propagation which
is approximately 3 108ms ' for electromagnetic waves.

There are numerous applications of CW radar and the the study of CW radar
serves as a means for better understanding the characteristics and use of the Doppler
radar information encapsulated in the received signal, whether in a CW or a pulse
radar applications. It not only allows the separation of the received signal from the
transmitted signal, but also provides a measurement of radial velocity of the target
toward the receiver which can be utilized to distinguish between the moving targets

from the stationary objects or clutter [1].
Future directions in close-range radar

Through wall tracking of human activities is a growing eld of interest due to
the increasing demand in many defense and commercial applications ranging from
urban warfare to rescue operations [28{34]. For an example, when a person is
trapped in a collapsed building, nding the location promptly is vital for search and
rescue operations. In defense applications, tracking of human movements inside an
enclosed are or a building increases the chances of successful law enforcements or
military operations minimizing casualties.

Robust estimation of the target state in real time is essential in such real world
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applications. Ultra wide band (UWB) radar popular in this domain with resolution
of the order of centimetres have been reported in [28{34]. Studies in [29{31] use im-
pulse wave form for tracking while frequency modulated continuous wave (FMCW)
is employed in [28]. In [33] stepped frequency is used and the noise wave form is
analysed in [34] to realize a high range resolution. The major drawback of these
systems is the degradation of the accuracy in measurements due to the dispersion
and signal loss as the waves are penetrating through some wall materials such as
concrete.

Micro-Doppler e ects can be used to recognize the human activities [35]. Non-
rigid-body motions of human limbs modulate Micro-Dopplers and they contain
valuable information related to human gait recognition. Since it was presented in
[35], a number of studies have explored micro-Dopplers for human motion analysis.
A simple classi er is designed by Otero [36]to recognize walking humans using
spectral analysis. Various time frequency analysis are used to extract micro-Doppler
features of radar target returns in [37]and [38]. In another study, micro-Doppler
modulations are explored to distinguish among humans, animals and vehicles in
[39{41]. Micro-Doppler signatures are used to classify di erent human activities
in [42] and this is done by training a support vector machine (SVM) using the

measurement features of the activities.
Localization and tracking

The target tracking problem is the next step of the target localization problem.
Several techniques can be employed to nd the target, and the particular algo-
rithmic related approach is based on nding solution to the nonlinear estimation
problem. The widely used approaches in these scenarios are the batch of recursive
solutions which are usually considered with recursive ltering algorithms. In this
particular domain, the Extended Kalman Filter (EKF) is the most common solu-

tion to the recursive tracking problem. The EKF has no optimality properties and
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the linearization a ects the performance [43]. In many practical situations, non-
linearities associate with the measurements and the system dynamics which makes
the EKF less favorable for some target tracking problems [44,45]. Compared to the
EKF, unscented Kalman Iter and particle Iters have shown better performance
in target tracking.

In typical radar based tracking, the target's range and the angle-of-arrival are
measured. Commonly, linear target dynamic models are considered in the Cartesian
coordinate system and hence the measurements are nonlinear functions of the tar-
get's state [44,45]. In these type of tracking problems, nonlinear Iters are usually
required [44]. On the other hand, measurement conversion methods have been stud-
ied for target tracking based on range and angle-of-arrival measurements [44,46{48].
The fundamental theory in this method is to rstly transform the nonlinear mea-
surements in to a linear combination of Cartesian coordinates and secondly estimate
the bias and the covariance of the converted measurement noise and nally use a
standard linear Kalman Iter [49]. In radar based tracking problems, these par-
ticular measurement conversion methods perform better than the EKF [44,46{48].
The absence of any mathematically rigorous proof on the boundness of the Itering
error is a major drawback of the EKF and the measurement conversion method.
Moreover, in many practical problems, the EKF can diverge quickly from the ac-
tual state [50,51]. Even though the particle Iters and unscented Kalman Iters
perform well in tracking applications [50,52], results related to the convergence are
not easily obtainable [50,51, 53, 54].

Localization and tracking of multiple mobile targets is useful in many defense
and commercial applications such as security surveillance, disaster search, rescue
missions and urban warfare [3,55{58]. Radar systems in the past were mainly used
for long range localization and tracking and those systems were very expensive and

bulky in the design. Due to the rapid development in electronic engineering in recent
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decades the cost and the physical dimensions of Radio Frequency(RF) components
have reduced signi cantly. Hence, many useful radar systems can now be realized
with a reasonable cost; specially for indoor and commercial applications which were
less prominent in the past. Through-the-Wall Radar Imaging(TWRI) which has
very useful applications in numerous situations is a recent research interest [59{61].
This shows the interest in applying the radar technology in close-range applications
such as counter terrorism engagements and rescue operations.

Among the other radar systems Continuous Wave (CW) radar systems have at-
tracted extensive attention due to its design and implementation simplicity [3, 55].
Single frequency CW radar can measure Doppler frequency shifts due to the relative
motion of the targets to a higher accuracy. However, in target range measurements,
more sophisticated systems derived from CW radar are currently being used. These
systems are costly, and require complex hardware systems to implement. For ex-
ample, Frequency Modulated CW (FMCW) radar and pulsed Doppler radar both
evolved from the CW radar technique and they are capable of detecting range but
poor in clutter mitigation. Comparatively, CW radar is excellent in clutter sup-
pression; therefore, it can be used to localize moving targets as the Doppler shift in
frequency provides a natural exclusion of clutter in the ltering [1,27].

Furthermore, by measuring the phase di erence of CW waves arriving at closely
separated(less than the half-wave length) two antenna elements, the angle-of-arrival
of a target can be measured [3,62]. In [63{65] only the location information of the
targets were found using the phase di erence of the Doppler-shifted signal, while
Doppler-shift is only utilized to distinguish between the targets rather than deducing
their velocity components. [66,67]consider more complex pulsed radar system where
correction of the received Doppler modulated signal under Gaussian assumptions is
studied in [68]. Multi-target tracking through range and angle measurements are

studied in [67,68] providing comprehensive descriptions based on static optimization
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techniques.

The time derivatives of displacement is typically used in systems which require
velocity information of moving targets. This results in a time lag in velocity estima-
tion. The accumulation of errors can be signi cant as the location estimation errors
are directly translated into velocity estimations specially for more dynamic targets.
Therefore, the location and the velocity of the target can be estimated simulta-
neously when using CW radar with a dynamic system model for state estimation.
Another advantage of this approach is that it is also robust to system uncertainties
and measurement errors. Contrastingly, the Doppler frequency shift due to the
target motion is utilized in [69] to estimate the target velocity independently allow-
ing a better estimate due to additional measurements and increased dimension of
the measurement space. Indeed, this measurement modeling introduces additional
non-linearities. For the position measurement only case discussed in [69], converted
measurement approach [70] has been used to obtain a better linear formulation.
Here, the non-linear measurement equation is linearized with a rst order approx-
imation equivalent to EKF in the estimation process. This type of linearizations,
specially in systems with large uncertainties, are known for accumulation of errors
and in certain instances divergence can occur in the state estimation.

In our study, Doppler radar based target tracking is considered and a linear state
estimator is derived with provable performance limits . Here, nonlinear Doppler
frequency modulation and corresponding angle of arrivals from the mobile targets
are used as measurements. A completely linear algorithm is given using a novel
measurement conversion technique that does not depend on Taylor-series type ap-
proximations. Mathematically rigorous proof of the boundedness of the Itering
error is a signi cant contribution of this method. Such results are not obtainable
from EKF.

The linear sensor array with minimal con guration(two sensors) that addresses
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the data association and missing information problem is considered for tracking
multiple mobile targets as an alternative to increasing the number of sensors in the

array.
Di erent measurement techniques

Radar is mainly utilized for localization and tracking of targets. The fundamental
techniques used for this purpose are common for other systems which are designed
to localize and track the targets of interest. These fundamental techniques are
range measurements, angle-of-arrival (bearing) measurements and time-of-arrival
measurements.

When it comes to localization and tracking, there are preliminary problems to
be addressed. They can be mainly categorized in to several sections: errors due to
measurements, sensor location uncertainties, data association , missing information
and false alarms. Where ever possible, these problems are considered separately to
disentangle and simplify the localization or tracking result. As an example, consider
a multiple target localization problem where the measurements are noisy. This can
be analyzed as a single target localization problem if the measurements can be
allocated to a particular target. If the origin of the measurements are unknown,
obviously, there are two major problems to be analyzed in this case: measurement
errors and the data association problem [71{77]. Clutter and electronic counter-
measures give rise to the missing measurements and false alarms.

The nature of the localization and/ or tracking problems is highly dependent on
the measurement technology that has been employed. Angle-of-arrival, range, time-
of-arrival and Doppler measurements provide di erent information for the localiza-
tion and/or tracking. In each case, the type of the available information inherent
to the measurement technology de nes the problem statement and the problem so-
lution. As an example, target tracking problem involving both angle-of-arrival and

range based technologies are easier to handle than the angle-of-arrival-only based
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technologies.

2.2 Optimal localization in angle-of-arrival and
range based linear arrays

In this dissertation, the problem of localization using the angle-of-arrival only and
range only measurements are considered for the optimal localization in linear ar-
rays. Angle-of-arrival sensors measure the bearing of a target with respect to a
local or global coordinate system [78{84] and allow passive localization by ana-
lyzing the characteristics of the received signal, for example, the phase di erence
between two adjacent waves. The angle-of-arrival based localization has a long his-
tory [85] and gathered a signi cant interest during World War II [2,86]. A closed
form error approximation of the maximum likelihood estimator was obtained by
Stans eld in 1947 [86] and it is considered as one of the rst localization meth-
ods. It is a weighted least-squares (LS) estimator which assumes small independent
bearing noise with Gaussian distribution and no sensor location error. A closed
form solution to the problem is feasible under these assumptions as shown in [86]
and thoroughly analyzed in [87]. In this study, it is shown that the Stans eld esti-
mator is asymptotically biased. The pseudolinear estimator (PLE) provided in [8]
relaxed the prior knowledge requirement of the emitter range by the Stans eld esti-
mator. A novel sensitivity discussion is provided in [2] after rigorously analyzing the
angle-of-arrival-only localization systems. For Gaussian distributed bearing noise,
the passive emitter localization problem can be translated into a nonlinear least-
squares estimation problem by engaging the maximum likelihood approach. In [64]
the non-linear least-squares problem was linearized by Taylor series expansion re-
sulting an iterative Gauss-Newton algorithm. A linearized least-square approach
is given also in [43]. The maximum likelihood estimator is approximated in this

method but this can lead to large errors if the measurement noise is large or the
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sensor-target geometry is unfavorable for accurate localization. Under the normal
density assumption, the maximum likelihood cost function is actually a weighted
nonlinear least-square cost function. An initial estimate of the target position is
required in linearized and iterative algorithms as closed-form solutions do not exist
in nding the global minimum in such cost functions [8,43,64,87]. A bias and vari-
ance analysis of the maximum likelihood estimation is studied in [87]. In [8, 88, 89]
di erent study is carried out where the convergence of the iterative least-square
algorithm for angle-of-arrival-only localization is explored.

Range based localization is a common passive measurement technique where the
location of an emitter is obtained by triangulation of range information collected at
a number of sensors. Range from a source to a sensor can be measured in several
ways including the time of arrival of signal or signal strength. These techniques have
numerous potential applications in mobile positioning in wireless telecommunication
systems, radar and unmanned aerial vehicles (UAVs) [90{98].

Source localization using range measurements is challenging because the source
location is related to the measurements in a highly nonlinear manner. An un-
constrained least squares solution named as Quadratic-term Elimination (QE) is
used to localize the source in [99, 100]. This approach is known to perform better
than some previous localization methods such as Spherical Interpolation (SI) and
Spherical intersection (SX) [101]. A di erent approach can be found in [102], where
probabilistic sampling is used to obtain the localization. Localization of multiple
emitting acoustic sources for wireless sensor networks has been examined using the
Maximum Likelihood (ML) method in [103]. The Projection Onto Convex Sets
(POCS) together with iteration to localize the source has been discussed in [104].

The potential performance of any particular localization algorithm is a strong
function of the relative sensor-target geometry [9,105]. As an example, the conver-

gence of iterative estimation algorithm can be a ected by the relative sensor-target
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geometry. A partial characterization of the sensor-target geometry with di er-
ent matrices related to Cramer-Rao inequality or the resulting Fisher information
matrix has been explored in [10]. Since the Cramer-Rao lower bound is a func-
tion of the relative sensor-target geometry, several studies have been carried out
to identify underlying geometrical con gurations which minimize some measure of
this variance lower bound [8, 10{16,26,106]. The target of these studies is to nd
the geometric con gurations which are likely to result in more accurate localiza-
tions. In general, an optimization is carried out on the Cramer-Rao lower bound for
those relative sensor-target geometries which minimize the selected measure. Any
particular sensor-target positions which minimize some measure of variance lower
bound is considered to be optimal with respect to this measure. It is obvious that
the measurement technology employed by the sensors is related to the particular
sensor-target positions which optimizes the chosen measure of the localization per-
formance. In [12]the case of moving the sensors in order to localize and track moving
targets while maintaining an optimal localization geometry is studied. Indeed, for
mobile sensor-based localization problems, a similar measure of localization perfor-
mance can be utilized to identify optimal sensor trajectories, hence derive control
laws for navigating sensors along such optimal trajectories [8, 12, 14, 15,107{110].
The problem of determining the optimal trajectory for a single moving platform
with an angle-of-arrival sensor is explored in [111] and the optimal trajectory is de-
termined by maximizing the determinant of the Fisher Information Matrix (FIM),
which minimizes the uncertainty of the overall estimation problem. Deriving and
dealing with actual Mean Squared Error (MSE) expressions for angle-of-arrival and
range based localization methods can be mathematically challenging due to the
nonlinear nature of the estimation problem. Hence Fisher information matrix can
be employed to simplify the analysis to a greater extent [11,13,43].

Linear sensor arrays play a crucial role in some real world applications such
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as radar [9,20,21,23{25]. But most of the existing literature concern more on
positioning the sensors around the target for optimal localization [11, 13]. In this
study, we provide a characterization of the relative sensor-target geometry for linear
sensor arrays based on AoA-only and range-only localizations. To the best of our

knowledge, no such analysis exists in the existing literature.

2.3 Time-of-arrival and time-delay-of-arrival sys-
tems

Another important measurement technique is to utilize the time-of-arrival mea-
surements of a signal transmitted by a target to several sensor positions to nd
the location of a target. If the originated time of the signal at the target is not
known, time-di erence-of-arrival between the sensors can be utilized to localize the
target. Localization based on TDoA technology is currently applicable in numer-
ous applications including intelligent transport system (ITS), resource management
and performance enhancement in mobile cellular networks, electromagnetic radar
and acoustic-based systems. TDoA-based systems may be used to estimate the
location of a wireless emitter or audio source, where a considerable amount of work
exists, [112{115].

TDoA systems, generally localize an emitter by processing signal arrival-time
measurements at three or more sensors in R? space and four or more sensors in
R3 space. Essentially, the time-di erence-of-arrival measurements give the range
di erence between two sensors with respect to the target. In the absence ofnoise and
interference, the arrival-time measurements at two sensors are combined to produce
a relative arrival time that, con nes the possible emitter location to a hyperbola in
R? and a hyperboloid in 3D, with the two sensors as foci. As depicted in Figure 2.3,
emitter location is estimated from the intersections of two or more independently

generated hyperbolas in 2D and the intersections of three or more independently
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Figure 2.3: Time-Delay-of-Arrival measurement technique

generated hyperboloids in R® [26]. If two hyperbolas or three hyperboloids are
considered, they can have either one or two points of intersection. The location
ambiguity occurred by two points of intersection may be resolved by using a priori
information about the location or an additional sensor to construct an additional
hyperbola/ hyperboloid.

TDoA based localization inherently allows passive localization which is very use-
ful in modern electronic warfare as the target can be localized without its knowl-
edge [116, 117]. This localization technology has been known even before World
War II [118]. Mainly the studies on TDoA has been on maximum likelihood esti-
mations and the development of closed-form solutions [101, 119, 120], hence a rela-
tively small number of calculations are required in localizing a target. In some other
studies [26, 64, 121] the examination is carried out from purely statistical point of
view by making assumptions on the probability density of the measurement errors.
In this case, for the localization, an initial estimate of the target position is needed

and which is not necessarily trivial to obtain. The convergence properties of the
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iterative localization algorithm is highly dependent on the accuracy of the initial
estimate.

Unique localization of multiple emitters using TDoA or ToA measurements
which addresses the data association problem and an analysis on unique localization
of an emitter using minimum number of TDoA measurements with bounded error

are provided in our study.



Chapter 3

Optimal Sensor Placement for
Linear Sensor Arrays

In the classical problem of target localization, the target position is estimated by
multiple sensor measurements. In practice, these measurements are typically noisy.
In some situations the geometry of the sensor array is pre xed, for example linear
sensor arrays [9,18{25] which are common in practice. There is a limited freedom to
place the sensors in order to get optimal performance in these particular geometries.
In this chapter we analyze the optimal sensor-target geometries for common passive
measurement techniques known as AoA-only and range-only technologies. In our
approach, we consider the localization problem involving a single target and multiple
adjustable AoA/range sensors located in a linear array(uniform and non-uniform
linear arrays).

The potential performance of any particular localization algorithm is highly de-
pendent on the relative sensor-target geometry [8,9]. For example, the convergence
of iterative estimation algorithm can be a ected by the relative sensor-target ge-
ometry. Lets consider a problem where the location of a single target is to be
found using two angle-of-arrival sensors with noisy measurements. In this matter,
hypothesis about the characteristics of the measurement error is not required. Two
angle-of-arrival sensors independently take two measurements and the intersection

of the those bearing lines provides an estimation for the target position. Even for

26
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the noisy measurements the equations have a unique solution. In fact, if the mea-
surements are noisy, the two bearing lines corrupted with noise do not intersect on
the exact target location. Hence, the localization performance is dependent on the
sensor-target geometry [8]. The distance between the intersection of two bearing
lines and the true target location is a measure of performance of the localization.
Obviously, this distance is inversely proportional to the performance. In this chap-
ter, mathematical characterization is carried out for the localization geometries in

linear sensor arrays utilizing AoA-only and range-only technologies.

Confidence region for
target position

Q\Target /
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! \ '
K \ \
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1

Senéor 1 Sensor 2 [Sensor 1] [Sensor 2]

Relatively good sensor-target Relatively bad sensor-target
geometry geometry

Figure 3.1: Sensor-target geometry and error

Before embarking on to the mathematical analysis which is chosen to repre-
sent this characterization, it is very important to understand how the sensor-target
geometry in uence the potential localization performance. Figure 3.1 illustrates
two di erent geometrical localization scenarios for AoA-only localization technique.
The relative performance of a given localization geometry can be measured by the
amount a xed error in a angle measurement translates into a corresponding error

in target position. Localization performance can be regarded as less if a small error
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in the measurement translates into a higher error in the localization. In fact, the rel-
ative performance of the sensor-target geometry should be considered as a relative
measure. Hence, in a good performing geometry, a similarly constant error in the
angle measurement should be translated into a relatively smaller error in the target
position estimate. In some scenarios, the sensitivity of the target localization, as a
function of the magnitude of the measurement error can be used to characterize the
sensor-target geometry. It is obvious that a measure of the localization performance
can be derived as a function of the particular sensor-target geometry.

Several studies have been carried out to identify underlying geometrical con-

gurations which minimize some measure of the variance of the Cramer-Rao lower
bound [8,10{16,26,106], as it is a function of the sensor-target geometry. The objec-
tive of these studies is to nd the geometric con gurations which are likely to result
in localizations with good performance. Generally, an optimization is considered
on the Cramer-Rao lower bound for those relative sensor-target geometries which
minimize the selected measure. Such a sensor-target position which minimize some
measure of variance lower bound can be regarded as optimal with respect to this
measure. An incomplete characterization of the sensor-target geometry with di er-
ent matrices related to Cramer-Rao inequality or the resulting Fisher information
matrix has been studied in [8, 10]

In this chapter we provide a more rigorous characterization of the relative sensor-
target geometry for linear sensor arrays based on AoA-only and range-only local-
ization. We consider only one target for static localization problem. Here, an
uncertainty ellipse which depicts the geometrical variance distribution of an e -
cient target estimate can be generated by utilizing the Cramer-Rao lower bound.
This particular uncertainty ellipse is a ected by the sensor-target geometry and
the corresponding measurement technology. Hence, the objective of this chapter is

to nd the sensor-target geometry/ geometries which minimizes the area/ volume of
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the corresponding uncertainty ellipse.

When the Cramer-Rao lower bound is obtained, the variance is the reciprocal of
the Fisher information [43]. Hence, the determinant ofthe Fisher information can be
used to assess the are of the uncertainty ellipse. Hence, the sensor-target geometries
are analysed with respect to the determinant of the Fisher information matrix, and
the geometries which maximize this particular determinant are considered optimal
in this sense.

The analysis of the optimal geometry is subjected to the following constraints:

1. Fixed Uniform Linear Arrays(FULA): One sensor of the linear array is xed

and the distance between the consecutive sensors are equal.

2. Uniform Linear Arrays(ULA): The distance between the consecutive sensors

are equal.

3. Fixed Non-Uniform Linear Arrays(FNULA): One sensor of the linear array is

xed and the distance between the consecutive sensors may not be equal.

4. Non-Uniform Linear Arrays(NULA): The distance between the consecutive

sensors may not be equal.

In fact, the results presented in this paper provide fundamental information
about how the localization performance is a ected by the sensor-target geometry
for linear sensor arrays'. This information is of signi cant value to users of multiple

sensor(linear arrays) based localization systems.

1Please note that the material presented in this chapter was published as conference papers:
S.C.K. Herath and P.N.Pathirana , Optimal sensor placement in linear arrays: Part I - AoA
based localization, in ISSNIP 2011 : Proceedings of the 7th International Conference on Intelli-
gent Sensors, Sensor Networks and Information Processing, pp. 277-281, IEEE, Adelaide, South
Australia and in S.C.K. Herath and P.N.Pathirana , Optimal sensor separation for AoA based
localization via linear sensor array, in ISSNIP 2010 : Proceedings of the 6th International Con-
ference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 187-192, IEEE,
United States.
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3.1 Conventions and notation

Consider the i'" sensor of a multiple AoA/range sensors located in a linear array
which is positioned to localize a single stationary target(Figure 3.2) in R2. The
unknown location of the target is given by p = [X, Yp]'. The AoA/range sensors
are marked asi 2 f1;2;:::;Ngand N 2 with the position of the it" sensor given
by Si = [Xs Ysi]'. The distance between the sensor S; and the target P is given by
ri = kp Sik. The bearing ; from sensor S; to the target is measured clockwise

from X-axis such that ;(p) 2 [0;2 ).

3.2 Cramer-Rao lower bound and Fisher infor-
mation matrix

In general, the set of measurements from N sensors can be written as 2 = z(p)+ n,
where z(p) = [z1(p) : :: zv(P)]" and n = [ng : ::ny]". It is assumed that the
measurement errors of distinct sensors are independent of each other. Also, for
simplicity, it is assumed that the error variances of multiple distinct sensors are
equal and is given by 2. The covariance matrix for N number of sensors is then
given by R, = 2Iy, where Iy is an N-dimensional identity matrix. The general
measurement vector 2 can thus be considered as an observable normally distributed

random vector and can be described by 2 N (z(p);R>).
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Figure 3.2: Measurement from a sensor.
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Under the Gaussian measurement error assumption, the likelihood function of

p given the measurement vector 2 N (z(p);R ) is given by

|
(2 NZJR,j

f.(2:p) - ap S0 AP RSIC 2p) (2D

where jR ,j is the determinant of R, and z(p) is the mean value of 2. The

natural logarithm of f,(2;p) can be written as

1 1
Infa2:p)= (2 2(p) R, z(p)+c (3.2.2)

where C is a constant independent of p.
The Cramer-Rao inequality lower bounds the covariance achievable by an unbi-
ased estimator under two mild regularity conditions [43,122,123]. Considering the

unbiased estimate p for p, the Cramer-Rao bound states that

E® poe p" | 'p), Ap); (3.2.3)

where | (p) is the Fisher information matrix. In general if | is singular then
no unbiased estimator for p exists with a nite variance. If | is nonsingular then
the existence of an unbiased estimator of p with nite variance is theoretically
possible [124,125]. If(3.2.3) holds with equality then the estimator is called € cient
and the parameter estimate p is unique.

Consider the set of measurements from N sensors 2 N (z(p);R ;). The Fisher
information matrix, in this case, quanti es the amount of information that the
observable random vector 2 carries about the unobservable parameter p. It can
be stated that the Fisher information characterizes the nature of the likelihood
function(3.2.1). If the likelihood function is sharply peaked then the true value of

p is easy to estimate from the measurements. The (i;j)!" element of | is given by
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@ln(f (2;p)) —@ln(f (2;p)) (3.2.4)

@ j

In the general case, under the Gaussian noise assumption, (i;j)!" element of |

()i = E

is given by

@(p) 1@(13) 1 1@2 1@\2 }
@ " @ o RGR @

where tr(:) is the trace of the square matrix. This particular term accounts for

()i = (3.2.5)

the cases when covariance R, is a function of the true parameter state p. But, in
this study it is assumed that R, is independent of the parameter p to be estimated.

Then the above (3.2.5) simpli es to

@p)" R, @(p)
@ @

If (1 (p))i;j = 0, then p and p; are orthogonal and their maximum likelihood

()i = (3.2.6)

estimates are independent. Then the general Fisher information matrix is given by

| (p)=r pz(p) R, "t pz(p): (3.2.7)

where r ,z(p) is the Jacobian of the measurement vector with respect to p.

As long as | (p) is invertible the matrix | '(p) , C(p) is symmetric positive
de nite and de nes the uncertainty ellipsoid. The eigenvalues of C(p) are arranged
according to 4 5 lll m. Note that P ;82 f1;:::;Ng is the length
of the i'" axis of the ellipsoid and also that the axes of the ellipsoid liec along the
relevant eigenvectors of C(p).

The potential performance of an unbiased estimator can be assessed by the scalar
functional measure of the shape and size of the uncertainty ellipse. The estimated
uncertainty can be measured by several di erent scalar functions of C(p). As an

example, the mean squared error of the unbiased and e cient estimate is directly



Chapter 3. Optimal Sensor Placement for Linear Sensor Arrays 33

p
related to the trace of the C(p) given by tr(C(p)) = , i. The volume of the

uncertainty ellipsoid given by det(C(p)) = i 1s another important measure of

i
the performance.

In this study, the volume of the uncertainty ellipsoid is utilized as the measure of
the total uncertainty in an estimate p of p. In our analysis, we use the determinant
of the Fisher information matrix (I (p)) as an inverse measure of the uncertainty

ellipsoid volume as it is mathematically easier to deal with the determinant rather

than the inverse Fisher information matrix for the analysis.

3.3 Ao0A based localization

Consider the it" sensor of a multiple AoA sensors located in a linear array which
are positioned to localize a single stationary target in R2. The measured value of

angle ( ;) is given by,

Yp Vs
Xp Xisi

N = i(p) + nj = arctan

+ nj; (3.3.1)

where the arctan is de ned such that ;(p) 2 [0;2 ). The measurement error

n; is assumed to be normally distributed with zero mean and variance 2, i.e.

ni N (0; 2).
Then using (3.2.7), Fisher information matrix (I (p)) for N number of sensors

can be written as,
n #
X 1 sin? sin j oS |

2

r2 . (3.3.2)
=1 i sin j cos | COS” |

Then the Fisher information determinant for AoA-only localization can be given

as,

X sinz(j i)
2¢2

I’J- I’i

det(l (p)) = % ; (3.3.3)

S
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and
? g X He
1 1 cos?2 ;
det(l = —4 — !
e( (p)) 4 4 - r|2 - r|2
1,3
X sin2
r? ’

where S = ffi;jgg is de ned as the set of all combinations of i and j with
i;j 2 f1;::;Ng and j>i, implying jSj= " . The number of combinations is

indicated by the j;j.

3.4 Range based localization

Consider the i'" sensor of a multiple range sensors located in a linear array which
are positioned to localize a single stationary target in R2. The measured value of

angle (r;j) is given by,

f=rip)+ &; (3:4.1)

where the g is the measurement error and it is assumed to be normally dis-

tributed with zero mean and a variance 2, ie. & N (0; 2).

r

Then using (3.2.7), the Fisher Information Matrix (I.(p)) for N number of

sensors around the target can be written as,

n #
X cos? ;  sin jcos ;

i1 sin jcos j sin? |

1
l(p) = = (342)

The Fisher information determinant for range-only localization can be given as,

1 X
det(l(p))= —  sin®(;  1); (3.4.3)
r-s

and
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2 I

'2
gz X
det(l.(p)) = 13 N cos2 i
r i=1
1 .3
N 2
sin 2 5;

i=1
where S = ffi;jgg is de ned as the set of all combinations of i and j with

i;j 2f1; ::;Ngandj>i, implying jSj= % .
These relationships for AoA and range are used in accessing the optimal geome-

tries in following sections.

3.5 Optimal geometries for inline AoA sensors

3.5.1 Fixed Uniform Linear Arrays(FULA)

Theorem 3.5.1. Consider a target at P(x,;y,) 2 R?. N number of linear AoA
sensors (one xed at the origin), separated by x distance from each other (Figure
3.3) are b distance away from the target. The Fisher information determinant for
this case is,

| X K2
det(Ix(p)) = —
j=2i=0
b (i + D 2
(a ix)2+ @@ [ I1x2+©

(3.5.1)
where (a;b) = (Xp; Yp).

Proof. Transforming (3.3.2) into Cartesian co-ordinates and rearranging leads to
(3.5.1). O

Corollary 3.5.2. Consider that the target location is P(X,;Y,) and the position of
the xed sensor(S4) and the line on which the second sensor to be placed is known.
Then the optimal distance between these two sensors is equal to the distance between
the xed sensor and the target (ie. kS; S,k = kS; PKk).

Proof. With no loss of generality consider two sensors, one xed at the origin (S; =
[0 0]"), the other one on the X-axis (S, = [Xs2 0]") as shown in the Figure 3.4. The
Fisher information determinant for this case is,
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Figure 3.3: Localization with ULA of N number of sensors(AoA/Range) with one
sensor xed at the origin.

1 YpXs2

det(| =~ 2 ; 3.5.2

( X(p)) 4 (Xg + yg)[(xp X S2)2 + yg] ( )

By maximizing (3.5.2) with respect to Xgp, it can be shown that, det(l x(p))
maximizes when, q

st - Xp+ yp.

Hence, kS; Sk = kS; Pk. O

3.5.2 Uniform Linear Arrays(ULA)

Theorem 3.5.3. Consider N sensors on a given straight line b distance away from
a target in R?2. When x is the distance between consecutive sensors (Figure 3.5),
the optimal localization of the target occurs for the x, which maximize the following
Fisher information determinant,

_ 1N XA (bfc dx) 2.
det(l «(p)) = ?j=2 iy ()2 + P][(dx)2+ 7] (3.5.3)
where
N 1
c= — i
2
and
d= N 1 1]
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Figure 3.4: Localization with two sensors(AoA/Range) on x-axis.

Proof. Transforming (3.3.2) into Cartesian co-ordinates and rearranging leads to
(3.5.3). O

Corollary 3.5.4. For two AoA sensors, the optimal sensor separation occurs when
kS; S)k=kS; Pk =kS, Pk

Proof. Consider the sensor-target geometry shown in Figure 3.4. Using (3.3.2), the
Fisher information determinant for this case is,

( ) 2
Yp(Xs2 X s1)

(3.5.4)
(Xp X 31)2+ X5 (Xp X 52)2 + X3

det(l «(p)) =

It can be shown that the maximum of (3.5.4) occurs when

Xs1= Xp Yp= 3;

and p_
Xs2 = Xp+ Yp= 3.

When this relationship holds for the optimal sensor separation, kS; Sk =
kS; Pk = kS, PKk. ]

3.5.3 Fixed Non-Uniform Linear Arrays(FNULA)

Suppose that a target (P) 2 R? is to be localized using N number of linear array
of sensors (Sy;Sy; ;:::;Sy). transforming (3.3.2) in to Cartesian co-ordinates, it

can be shown that the Fisher information determinant for this case is,
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(
X bkS, Sk
kS, Pk’kS; Pk?

det(l (p) = ; (3.5.5)

S
where bis the distance between the target and the linear array and S = ffi;jgg

is de ned as the set of all combinations of i and j withi;j 2 f1; ::;Ngandj>i,
implying jSj= '; )

Finding the optimal sensor separations becomes an (N  1)-dimensional opti-
mization problem. Finding the solutions is mathematically challenging when n>3
and the solutions for the n = 3 case have been found in [126] which is a two-

dimensional optimization problem.

Non-Uniform Linear Arrays(NULA)
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Figure 3.5: AoA/Range localization with N number of sensors.

Theorem 3.5.5. Consider N number of AoA sensors on a given line b distance
away from a target in R2. At the optimal geometry, sensors form an equilateral
triangle with the target.

1. N is even; N=2 sensors overlap at each corner of the triangle located on the
line.

2. N isodd; (N 1)=2 and (N + 1)=2 sensors overlap at each corner of the
triangle located on the line respectively.
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PO

Figure 3.6: Localization with N number of AoA sensors.

Proof. Consider the sensor-target geometry shown in Figure 3.6. When the total
number of sensors used for localization is odd (N 2 f3;5;7;:::9); assume that
(N 1)=2 number of sensors are overlapping at each corner of the triangle (S, and
Sk,), which are y distance apart and the remaining sensor is X distance away from
the symmetric axis. Using (3.3.2) the Fisher information determinant for this case
can be written as,

N 1 PPy + x)?
det(I x;y(p)) = 2 [(y2+ P?)(x2+ b2]2
LN Py x)?

2 [(y2+ B2+ PP
N 1 % PQy?

T T e

(3.5.6)

It can be shown that (3.5.6) is at maximum when X = b=p Jand y = b=p 3
8N2f3;5,7,:::0.

When the total number of sensors used for localization is even (N 2 f2;4;6;:::9);
assume that N=2 and N=2 1 number of sensors are overlapping at each corner
of the triangle (S, and Sy,), which are y distance apart and the remaining sensor
is X distance away from the symmetric axis. Using (3.3.2) the Fisher information

determinant for this case can be written as,

bP(y + x)?
2 [(y2+ B)(x2 + BF
. N (y x)?
2 [(y2+ B)(x2+ 2T
K(2y)? .
(y2+ BP)*

det(l xy(p)) =

N N
4+ - — D.
5 5 (3.5.7)
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It can be shown that (3.5.7) reaches it's maximum when X = b=p Jandy = b=p 3
8N2f2;4;6;:::0. D D

Then it is clear that forany N 2, x= b= 3andy= b= 3 provide the optimal
geometry for AoA based localization which is an equilateral triangle. []

3.6 Optimal geometries for inline range sensors

3.6.1 Fixed Uniform Linear Arrays(FULA)

Theorem 3.6.1. Consider that a target is at P(Xp;yp) 2 R2. N number of linear
range sensors (one xed at the origin), separated by x distance from each other (Fig-
ure 3.3) are b distance away from the target. The Fisher information determinant
for this case is,

LR X2
det(Ix(p)) = —;
rj=2i=0
(B (i + Dx)? .
(@ ix)?+ Pl [ 1x2+P] "

(3.6.1)
where (a;b) = (Xp; Yp)-

Proof. Transforming (3.4.3) into Cartesian co-ordinates and rearranging leads to
(3.6.1). O

Corollary 3.6.2. Consider that the target is at P(x,;Yyp) and the position of one

sensor( xed) and the line on which the second sensor to be placed is known. The

optimal geometry occurs when the angle subtended by the sensors at the target is
2 (ie.S{PS, =  =2).

Proof. With no loss of generality consider two sensors, one xed at the origin (Sq =
[0 0] )and the other on the x-axis (S; = [Xs2 0]"). The target is at P(Xp;yp) as
shown in Figure 3.4. The Fisher information determinant for this case is,

( pr32)2
(X3+ ya)[(Xp X s2)2+ y3]
By maximizing the (3.6.2) with respect to Xsp, it can be shown that, det(l x(p))
maximizes when,

1
det(Ix(p) = — (3.6.2)

2.4 2
X ¥,

. (3.6.3)

Xs2 =

This proves that the optimal geometry occurs when the angle subtended by the
sensors at the target is =2. ]
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3.6.2 Uniform Linear Arrays(ULA)

Theorem 3.6.3. Consider N sensors on a given line that are b distance away from
the target in R?. With equal distance between consecutive sensors (Figure 3.5), the
optimal localization of the target occurs for the x, which maximizes the following
Fisher information determinant,

RS (e dx)? .
det(l«x(p)) = _?‘,-=2 [0+ Bl ] (3.6.4)
where
N 1 |
c= —
and
N 1 _
d= —— 1

Proof. Transforming (3.4.3) into Cartesian co-ordinates and rearranging leads to
(3.6.3). 0

Corollary 3.6.4. For two range sensors, the optimal sensor target geometry occurs
when the angle subtended by the sensors at the target is = (ie.SiPS, = 2).

Proof. Consider the sensor-target geometry shown in Figure 3.4. Using (3.4.3), the
Fisher information determinant for this case is,

Vo(Xs2 X )T

det(I x(p)) = :
X (Xp Xs1)?+ X2 (Xp Xg2)°+ X2

(3.6.5)

It can be shown that the maximum of (3.6.4) occurs when

2 2
_ Xpt Yp XpXst,
X32 - .
Xp Xs1

When this relationship holds for the optimal sensor target geometry, the angle
subtended by the sensors at the target is =2. O
This result agrees with the geometrical relationships obtained in [11], where they
prove that, for two range sensors, the optimal sensor-target geometry is unique and
occurs when the angle subtended by the sensors at the target is =2. This result

agrees with [106].
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3.6.3 Fixed Non-Uniform Linear Arrays(FNULA)

Consider N number of linear sensors (S¢;Sp; ;::: ;Sy) are employed to localize
a target (P) 2 R2. One sensor is xed at the origin. Transforming (3.4.3) into
Cartesian co-ordinates, it can be shown that the Fisher information determinant

for this case is,

X bkS; Sk 2
kS PkkS, Pk

1
det(I+(p)) = — (3.6.6)

s
where b is the distance between the target and the linear array whilst S =

ffi;jggis de ned as the set of all combinations of i and j with i;j 2 f1; ::;Ng
and j >i, implying jSj= '\2' .
Finding the optimal sensor separation becomes an (N  1)-dimensional opti-

mization problem and further studies can be carried out.

3.6.4 Non-Uniform Linear Arrays(NULA)

Suppose that a target (P) 2 R? is to be localized using N number of inline sensors
(S1;Sy; ;:::;SN). transforming (3.4.3) into Cartesian co-ordinates, it can be shown

that the Fisher information determinant for this case is,

X bk Sk %
kS, PkkS, Pk ’

det(I+(p)) = i4 (3.6.7)

where band S carries the same meaning in the above section. Here in this case
too nding the optimal sensor separation leads to an N -dimensional optimization

problem which requires further studies.
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Figure 3.7: Variation of Fisher information determinant value with the distance
between two adjacent sensors of ULA for di erent number of AoA sensors (one
sensor xed).

3.7 Simulations

3.7.1 AoA-only linear sensor arrays

Consider a sensor-target geometry as depicted in Figure 3.3, where sensor Sy is  xed
at the origin and the other sensors (S,,Ss, ...Sy) are free to be located on the x-
axis with equal distance from each other. The target is at P = [3 4]". Figure 3.7
shows the variation of the Fisher information determinant value with the distance
between the sensors for di erent numbers of sensors.

It can be seen from the Figure3.7, that when the number of sensors are increased,
the Fisher information determinant value increases and the inter-sensor distance

decreases for optimal localization which is unique for a given number of sensors.
Two adjustable sensors

Consider sensors Sy and S, are located anywhere on the x-axis (Figure 3.4). The
target is at P = [3 4]". The variation of the Fisher information determinant value
with the positions of the two sensors is depicted in Figure 3.8 and the corresponding

contour plot in Figure 3.9. It can be seen that the Fisher information value is
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P P
maximized when Xg1 = &33 and Xg» = 9“; 3(Corollary 3.5.4). When Xgq and Xg»

attain these values, the geometry of the sensor-target con guration is an equilateral

triangle. (ie. kS; Sok= kS; Pk = kS, Pk).

ULA with multiple adjustable sensors
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Figure 3.10: Variation of Fisher information determinant value with the distance
between two adjacent sensors of ULA for di erent number of AoA sensors (All
adjustable).

As illustrated in Figure 3.5, all the sensors are equally separated by x distance
and the distance to the target from the line on which the sensors are placed is 4.
The variation of Fisher information determinant value with respect to x is depicted
in Figure 3.10 for di erent numbers of sensors.

It can be seen from the gure that when the number of sensors are increased,
the Fisher Information determinant value increases and the distance between the
sensors decreases for optimal localization while it is unique for a given number of

SENsors.

3.7.2 Range-only linear sensor arrays

Consider a sensor-target geometry as depicted in Figure 3.3, where sensor Sy is
xed at the origin and the other sensors (S,,Ss, ...Sy) are located anywhere on

the x-axis keeping the same distance from each other. The target is at P = [3 4]".
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Figure 3.11: Variation of Fisher information determinant value with the distance
between two adjacent sensors of ULA for di erent number of range sensors (One
sensor xed).
Figure 3.11 shows the variation of Fisher information determinant value with the
distance between the sensors for di erent number of sensors.

It can be seen from the gure that when the number of sensors are increased,
the Fisher information determinant value increases and the distance between the
sensors decreases for optimal localization while it is unique for a given number of

sensors.
Two adjustable sensors

As depicted in Figure 3.4, sensors Sq and S; are located anywhere on the x-axis. The
target is at P = [3 4]". The variation of the Fisher information determinant value
with the locations of the two sensors is depicted in Figure 3.12 and the corresponding
contour plot in Figure 3.13. It can be seen that the Fisher information value

maximizes when Xg¢ and Xgp satisfy (3.6.4)(Corollary 3.6.5).
ULA with multiple adjustable sensors

Consider a sensor-target geometry as illustrated in the Figure 3.5, where all the

sensors are equally separated by X distance and the distance to the target from
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Figure 3.14: Variation of Fisher information determinant value with the distance
between two adjacent sensors of ULA for di erent number of range sensors (All
adjustable).
the line on which the sensors are placed is 4. Variation of the Fisher Information
determinant value with respect to X is depicted in Figure 3.14 for di erent number
of sensors.

It can be seen from the simulation that when the number of sensors increases,
the Fisher information determinant value increases and the distance between the
sensors decreases for optimal localization which is unique for a given number of

SENnsors.

3.8 Summary

This chapter provides a characterization of optimal sensor-target geometry for lin-
ear arrays of AoA and range sensors in passive localization problems in R?. The
potential localization performance of unbiased and e cient estimator is used for
these characterizations. The chosen measure of the localization performance (the
area of the uncertainty ellipse) has an explicit and measurable connection between
the sensor-target geometry. We have mainly discussed two generic problems of

fully adjustable linear sensor arrays and the case of an array, where the sensors are
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free to be moved with respect to a xed sensor. Cramer-Rao lower bound and the
corresponding Fisher information matrices are used to analyze the sensor target
geometry for optimal localization.

By increasing the bias, the mean-squared error(or the variance) of an estimate
can be reduced [127]. The relationship between the bias and the variance have been
extensively studied in [125,128,129]. These works are helpful in understanding the
bias-variance trade o . The results shown in these studies can be utilized to extend
the results obtained in our study for more practical estimation algorithms such as
maximum likelihood.

The results obtained in this chapter is useful in arranging the AoA or Range
sensors in a manner which can signi cantly improve recursive localization perfor-
mance. The analysis provided here is also related to optimal path planning and
trajectory control of mobile sensors for localization, e.g see [15,109, 111].

It should be noted that only the single target scenario is discussed in this chapter,
but the multiple target localization can also be explored using the same concept
presented.

The perfect knowledge of the emitter position should be available in the the-
oretical development for determining optimal sensor placement. Even though in
practical applications this information is not available, a rough estimate of the
likely region of the emitter is su cient in determining the sensor positions to ob-
tain improved localization results. In some practical applications, size of the sensor
and the restrictions to the size of the array should be considered. Hence the results
of this chapter can be utilized to establish guidelines for linear sensor placement

leading to improved performance.



Chapter 4

Ghost Elimination 1n
Time-Delay-of-Arrival and
Time-of-Arrival Measurements

Data association problem or ghost formation is a phenomena which can be found
in many multi target localization and tracking systems. When tracking multiple
targets with relatively lesser number of sensors, the ghost formation occurs when
incorrectly assigning ghost targets to real targets and vice versa. Limited number of
spatially distributed sensors restrict the recovery of real target positions uniquely
from the signals received at each sensor. At this instance, the number of combina-
tions of the received measurements exceeds the number of real targets and some of
these combinations refers to non existing targets. These particular virtual targets
are denoted as ghosts. This chapter mainly discusses about the solution to the data
association problem in TDoA and ToA based localization systems. It also addresses

the unique solution region for minimal TDoA measurements.’

1Please note that some of the material presented in this chapter is accepted for publication
in: S.C.K. Herath, P.N.Pathirana, B.T Champion and and S.W.Ekanayake, Localization with
Ghost Elimination of Emitters Via Time-Delay-of-Arrival Measurements, IEEE 6th International
Conference on Information and Automation for Sustainability (ICIAFS 2012)
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Time-Delay-of-Arrival systems

Developing an accurate and e cient method to localize a signal sources has drawn
signi cant attention in the recent past. Among numerous techniques, one very use-
ful method of localization is based on measuring the di erence in the ranges from
a particular emitter to sensors whose locations are known. In our approach, an
array of sensors located at known positions in RN are used to measure the signal
arrival time transmitted from an emitter whose position is desired to be known. The
time-delay-of-arrival (TDoA) of the received signal is calculated and converted to
the corresponding range di erence by multiplying it by the velocity of signal prop-
agation in the medium. However, in practical applications, the measurements are
corrupted with noise and the sensor positions are often not precisely known. Local-
ization based on TDoA technology is currently applicable in numerous applications
including radar, sonar, navigation and sensor networks [112{115].

Generally in TDoA systems, the localization of an emitter is carried out by
processing signal arrival-time measurements at three or more sensors in R? and
four or more sensors in R3. In the absence of noise and interference, the arrival-
time measurements at two sensor positions are combined to produce a relative
arrival time that, restrict the possible emitter location to a hyperbola in R? (Figure
2.3)and a hyperboloid in R3, with the two sensor positions as foci. Position of the
emitter is estimated from the intersections of two or more independently generated
hyperbolas in R?, and in R3, from the intersections of three or more independently
generated hyperboloids [26]. In these limited measurement cases, two hyperbolas
or three hyperboloids can have either one or two points of intersection. In these
instances there are some regions in the space which gives an unique solution to an
emitter location [130]. The geometry of this space is related to the sensor geometry.
This unique solution region gradually reduces with the increasing measurement

error. Position estimation ambiguity occurred by two points of intersection may be



Chapter 4. Ghost Elimination in Time-Delay-of-Arrival and

Time-of-Arrival Measurements 52
et ' ' C(tla t2'3 t3)
B, o e ARG
@ Scnsor
S2 B(t, 1, 13') ‘ Emitter
- @) N
(fz, fz') O Ghost
C'(tl's t25 t3v)
A(ty, 1, 13)
S3
[ ]
(t3, t3') D’(fl', b, 13)
M
[ ] D(tl, tz', t3’) O
t, 1)

Figure 4.1: Ghost formation in TDOA measurements

resolved by using a priori information about the position or by using an additional
sensor to construct a hyperbola/ hyperboloid.

The ghosts are formed when the time of arrival of two or more di erent emitters
are used in combination to nd emitter locations. As depicted in Figure 4.1, for
R?, sensors Sy, S, and S; receive the time-of-arrival measurements (t;; t?: i21;2;3)
from emitters, A and A° respectively. Considering all the combinations of the

measurements to localize the emitter positions, ghosts form at B, B® C, C% D and

D°
Time-of-Arrival systems

Range from an emitter to a sensor can be measured form the time-of-arrival(ToA)
of the signal [131{133]. Localization based on ToA technology is currently appli-
cable in many applications including mobile cellular networks, intelligent transport
system (ITS), electromagnetic radar and acoustic-based systems [131{146].

As the time-of arrival (ToA) can be measured accurately by using wide band
or ultra wide band (UWB) signals and advanced signal processing technologies, a
number of algorithms consider localization using distance measurements between
each pair of neighboring sensors [92,96,98]. Time-of-arrival (ToA) systems, gener-

ally localize an emitter by processing signal arrival-time measurements at two or
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more sensors in R? and three or more sensors in R3. The arrival-time measurement
at a sensor restricts the possible emitter location to a circle in R? and a sphere
in R3 with the sensor as the center. Position of the emitter is estimated from the
intersections of two or more independently generated circles in R?, and in R3, from
the intersections of three or more independently generated spheres.

Di erent types of data-association algorithms are provided for numerous mea-
surement technologies for multi sensor-multi target scenario [72,75,147]. This chap-
ter provide a discussion, which infers that the need for such elaborate techniques
may not be necessary in many instances, including the simulation scenarios in [72]
and [75]. Importantly, we show how the data-association problem can be removed
through exhaustion.

Theoretical conditions are provided in this chapter for unique localization of
emitters in the presence of the often overlooked ghost node problem that is found
when attempting to nd the locations of multiple emitters in RV using time-of-

arrival measurements from multiple sensors located in RN.

4.1 Time-Delay-of-Arrival systems

4.1.1 Localization of an emitter

Lets consider an emitter (T) in ND space, N + 1 number of sensors with t; + ?'0
denoting the signal arrival time at sensor i. Here, ?'0 . 1is the bound of the
error. The arrival delay with respect to the reference sensoris  ti;,p = t; to+ Z; i =
1;2;:::;N. Here ;= io 8 and 2 . The corresponding range di erence
isdi = ¢ tijo= oty to+ ), where cis the velocity of signal propagation. Let
the spatial coordinate vectors be: Xo = [Xo Yo Zo]' = [0 0 0]", xi = [X; Vi z]" and
X = [Xs Vs Zs]", where Xg is the reference sensor position, x; is the it" sensor position
and the unknown emitter position is x. The range between the it" sensor and the

emitter can be written as, Rjs = kx; xk. The distance between the reference
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sensor and the emitter is Rg = kxk. Then the path di erence can be written as,
d = Ris Rs+ i, which yields xTx + dRs R ;= 1 kxik® ().
For a general case of N + 1 sensors, following matrices can be de ned as z =
Ikxak® (2 kxnk® (B NPT, S=[Xq::Xn],d=[d::dy] and
= [ 1:: n]" where, X; = [Xi Xo]". In matrix notation Sx = z (d )Rs

1

and solving for emitter position, x = STS STz sTs ST(d )Rs.

When not all range di erences are measured to the same accuracy, a weighting

matrix Ry n 18 in order. Then,
2= sTR' 'S "sTR 'z s8R 'S 'STR 'd )R (4.1.1)

De ne the new vectors,

a= STR 'S "STR "z=[aa as] (4.1.2)

and

b= STR 'S "STR "d )=1[b b by (4.1.3)
Then, 8 = a bR; and the estimation for the source position R is obtained as

2 3 2 3
Xs a1 b']RS

= 8yf-8a bRI (4.1.4

Zg az bsRs

Substituting x in Ry = kxk, the following quadratic equation can be obtained,

ARZ+ 2a"bRs+a'a=0 (4.1.5)
where A=b'b 1.
4.1.2 Analysis on the solution area

In R3 space, if at least four sensors are not coplanar and there is a subset of tree

sensors which are not collinear, then the matrix S has full rank and it is possible to
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solve the quadratic equation in (4.1.5). However, depending on the sensor-emitter
con guration, (4.1.5) will lead to two possible solutions. It can be shown that
(4.1.5) leads to an unique solution if A<0 and in R? plane and R? space, at least,
3 and 4 sensors are not collinear, respectively [130, 148]. Also, it can be shown
that, generally, 3 and 4 non-collinear sensors are needed for unique localization of
a target in R? plane and R3 space, respectively, but an additional sensor is needed
for both cases to resolve the ambiguity in some situations.

Theorem 4.1.1. The unique solution region for minimum number of TDOA mea-
surements in RN is given by, \
N (4.1.6)
8 ;k ky <2
where N isthe N-dimensional region for A<0.

Proof. A in (4.1.5) can also be written as,

1 T 1
A= SR !s sTR '(d ) SR s SR !(d ) 1

h ith i
Ifc- STR'S 'STR' SR 'S 'SR ', further simpli cation will lead to
A=@d HYcd ) I (4.1.7)

A = 0is an equation of an ellipse in R? and ellipsoid in R3 respectively. A < 0 is the
region inside the ellipsoid which corresponds to the unique solution region in RN.
Region bounded by the intersection of all the ellipsoids k k; < 2 corresponds to
the region in RN which always guarantees a unique solution for the emitter position.
Then it can be stated that for minimum number of TDoA measurements, the unique
solution region in RN is given by (4.1.6). ]

4.1.3 Maximum bound for the error for a unique solution
region
When the error bound increases the unique solution region given by (4.1.6) de-
creases. Then there is a maximum bound for the error ( ) before which, there is a
unique solution region for an emitter for given sensor positions. occursat K K.,
T

N —
for g 4\ <2 = fg.

At this instant d = [0;:::0]y . Hence (4.1.7) becomes
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C 1= 0: (4.1.8)
Since C is a symmetric matrix, using eigen decomposition,
y'QTCQy 1=0 (4.1.9)

where Q is an orthogonal matrix with the columns which are eigen vectors of

Candy=Q ' . Now (4.1.9) can be written as

y'Dy 1=0 (4.1.10)
where 2 3
D = 2
0 0 N W N

i;i 2 f1;2;:::;Ngare the eigen values of C.
Above (4.1.10) refers to a rotated ellipsoid of (4.2.8) where the principal diag-

onals conside with the coordinate axes. Then the minimum distance between the

origin and the ellipsoid is given by p;—k Hence, the at the minimum shift,
1

.
Kk =Q 0 xip pl— i 0 (4.1.11)

k K

Then
(4.1.12)

For a given sensor con guration if < |, there is a region in which a unique
solution can always be guaranteed.
The results obtained can be used to localize emitters in a given region with

minimum number of sensors with known error bound.
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A<0

y—direction

A>0

x—direction
Figure 4.2: Unique solution area for R?

Figure 4.2 depicts the unique solution area for three time-of-arrival sensors po-
sitioned in R? at [0 0]";[1 0]" and [3 4]". Figure 4.3 shows the corresponding
transformed area, which is an ellipse.

A unique solution region for R® is shown in Figure 4.4, where the sensors are
positioned at [0 0 0]";[1 00]";[0 1 0] and [1 1 1]7. The corresponding transformed
region is depicted in Figure 4.5. In Figure 4.6, the unique solution regions for

= 0:3251  0:3251 0:2380]" and = [0:3251 0:3251  0:2380]" are shown. It
can be seen that these two regions marginally touch each other at this error bound

which agrees with our analysis.
4.1.4 Data association in TDoA measurements
Let us denote the following

number of emitters
T; jth emitter
ti; time-of-arrival measurement at s; from T;

tij.ioj0 time di erence of arrival (tj;; - tiojo)
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Figure 4.3: Transformed solution area for R?

In this section, we consider the general problem involving q+ 2 or more sensors

in g dimensions where = 2 or = 3. The emitters are assumed to be synchronized

For a given emitter, a system of N q + 1 sensors provide N TDoA measure-
ments that in the noiseless case are described by tjjigo = ti; tjojo. True time
di erence for a particular emitter and two sensors occurs if and only if j = j% In
all the other cases(j 6 j9, the time di erence measurements will lead to ghosts or

unrealistic emitter positions.

4.1.5 Ghost elimination

De nition 4.1.1. Ghost: A solution to (4.1.5) which is not overlapping with any
real emitter.

Assumption 1. Any combination of 4 sensorsin the eld is not collinear. This
assures that the matrix s is full rank for all the combinations.



Chapter 4. Ghost Elimination in Time-Delay-of-Arrival and
Time-of-Arrival Measurements 59

. A<O

A\ Sensor positions

z-direction

y—direction ’ : x—direction

Figure 4.4: Unique solution region for R®

Assumption 2. In (4.1.5), A > 0 for any combination of 4 sensors and any
emitter. So, 5 sensors are needed for unique localization of any emitter.

Proposition 4.1.2. In R3, if there are at least ve sensor measurements from
a single emitter (T;) in a measurement set, this will lead to the solution of that
particular emitter (T;) or to a ghost.

Proof. Lets consider a case where p number of emitters scattered over a R3. N
number of sensors are also placed over the same R® and the sensor-emitter geometry
for each sensor is such that they need at least 5 sensors for unique localization.

Then with no loss of generality taking tp1 as the reference measurement a general
vector for d and z can be written as,

2
dyj .01

dyj,01

d= ’ ; 4.1.13
dyj, o1 ( )

dnjy o1

2
2. \v24 2 g2
$rnta Ay
§X2+Y2+22 d5.01

' (4.1.14)
XZ+ y2+ z2 dﬁjkm

2 2 . 2 2
XNt YN T ZN dRjy o
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Figure 4.5: Transformed unique solution region for R®

Lets consider a combination where subscripts jo = jb = j¢ = jgd = je , and
assume that all these refers to the T!" emitter. Now we select this subset and
keeping Tj, as the reference develop Sb, z%and d%matrices.

2 3
Xo Yb %

q0_ gxc Ye zcé; (4.1.15)

2
18x2+ y2+ Z2 dg.
%= 905 ¢ %”Z (4.1.16)
2

and 2

3
d°= gd‘”’ajz; (4.1.17)

This subset will lead to the unique position estimation of the Tjth emitter. So
the initial d and z vectors which contain this subset will yield the Tj”‘ emitter as the
unique solution, if all the combinations are referring to the Tjth emitter (subscripts
jJ1=1]J2=:1:11Jij = i1jNn). If at least two subsets in a set lead to di erent solutions,
the corresponding set will refer to a ghost or non-real solution, then the whole set
can be discarded.

All the subsets in a set will lead to the same solution if and only if all of them
are referring to a single real emitter. ]
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x—direction
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Figure 4.6: Unique solution region for R® with errors

Theorem 4.1.3. Assume that any combination of g+ 1 sensorsin the eld is not
collinear. If the number of emittersin R%is p, the minimum number of non-collinear
sensors required for unique localization of all the targetsis (q+ 1)p+ 1.

Proof. For R% case , when N = (q+ 1)p+ 1 sensors are considered, for any combi-
nation of sensor measurement set, there is at least one combination which contains
(q+ 2) measurements from a single emitter. Using proposition 4.1.2, it can be
shown that the measurement sets which have at least one measurement from a dif-
ferent emitter can be discarded. Hence, N = (q+ 1)p+ 1 number of non-collinear
sensors will guarantee the elimination of all the ghosts. O

Let k be the number of sensor positions that are collinear with each other. Since
the Kk collinear measurements provide no real additional information, they can be
considered as null measurements. The minimum number of sensors, ignoring the

null measurements, required to uniquely localize an emitter eld of p emitters is

(@+ Dp+ k+ 1.

4.1.6 Localization algorithm for TDoA measurements

In the unique localization of every emitter in the eld, sensors must measure the

time of arrival at spatially distinct positions and determine the locations of the
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Measurements from + 2 number of sensors
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'

Find solutions for every combination (with + 2 sensor measurements)
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All combinations in a
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same solution?

v

Eliminate the sets

Take the next sensor measurement

Number of remaining sets
> Number of targets

Yes

[ Localization complete ]

Figure 4.7: Algorithm owchart for unique localization in TDoA measurement tech-
nology

N -fold hyperbola/ hyperboloid intersections at each measurement. The algorithm
stops when the number of targets in the given area is equal to the detected N -fold
hyperbola/ hyperboloid intersections. If the number of emitters in the given area is
not known, a statistical method can be used to estimate it. On the other hand, ifthe
number of N-fold hyperbola/ hyperboloid intersections remains the same over the
consecutive measurements at some stage, one can infer that the intersections that
were found correspond to the true emitter locations. In this case, it is assumed that
the number of emitters is known. In a practical situation, the N-fold intersections
will not perfectly overlap but should fall within some bounded region. The bounded

region can be considered as a virtual point, if the measurements are noisy. Here, in
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this analysis, we have assumed that the measurements are perfect.

The algorithm is brie y described in Figure 4.7.

6
*  Estimation from 5 sensors ®
5 O  Estimation from 6 sensors
4 B Sensor positions
]
c 3 S6
o :
)
T S5 ®
N 4

Y - direction

X - direction

Figure 4.8: Estimation of emitters using ve and six sensors in R3

For the simulations in R3, six TDoA sensors were positioned at (0; 0;0), (1;0;0),
(0;1;0), (0;0;1), (1;1;1) and (2;2;3). Two emitters were located at (4;1;1)and
(4;1;5). First, from the measurements received at the sensors S$¢,S,,S3,S4 andSs,
target locations were estimated. Then the estimation was carried out using all the
sensors (Sq, Sy, S3, Sy, Ss and Sg)(Figure 4.8). Finally, using our algorithm the
real emitter locations were found(Figure 4.9).

The unique localization of two emitters require only six sensor measurements
in R®. It can be seen that the number of measurements does not go near the
maximum bound (9 in R®). The ghost problem will not necessarily disappear at
these measurement as shown in the simulations. This is particularly true when the

number of emitters is large and they are densely distributed in the eld.
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Figure 4.9: Final estimation of emitters in R3

4.2 Time-of-Arrival systems
4.2.1 Localization of an emitter

Lets consider a radiating emitter T; in R3. In general, N number of sensors are
employed to estimate the emitter position. The corresponding range between the
si and the emitter can be written as R;; = ctj; where c is the velocity of signal
propagation. Let the spatial coordinate vectors be: xq = [Xo Yo Zo]' = [0 0 0],
Xi = [Xi Vi z]" and x = [Xs Vs Z]", where Xg is the reference sensor position, X; is
the it" sensor position and the unknown emitter position is x. The range between
the it" sensor and the emitter can be written as, Rjs = kx; xk. The distance
between the reference sensor and the emitter is Rg = kxk. Further expansion will
yield x{'xj = ] kxik® RZ+ R? .
For a general case of N sensors, following matrices can be de ned:z = %[kx1k2

R2 :: kxnk® RIS = [Xq::XnITandd = [1:: 117 where, Xi = [x; xo]". In
matrix notation Sx = z+ dR2. Solving for emitter position x, following preliminary

position estimate can be obtained.
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x= 8TS 'STz+ sTs 'STdRZ (4.2.1)

When not all range di erences are measured to the same accuracy, a weighting

matrix Ry n is in order. Then the above (4.2.1) can be rewritten as

x= STR 'S "STR 'z+ STR 's 'STR 'dRZ (4.2.2)

De ning the new vectors

a= STR 'S 'STR 'z=T[a; a as] (4.2.3)
and
b= STR 'S 'STR 'd=[b b ] (4.2.4)
(10) becomes
x = a+ bR? (4.2.5)

and the source position x is obtained as

2 3
Xs aq + b1R§
X = gysé = Ja+ bLR2E: (4.2.6)
zs a; + bR3

4.2.2 Data association in ToA measurements

Let us denote the following

number of emitters

N number of time-of-arrival sensors
Si ith sensor
T jth emitter

ti; time-of-arrival measurement at s; from T;
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Ri; Range di erence between s; and T,

In this section, we consider the general problem involving three or more sensors
in two dimensions. The emitters are assumed to be synchronized to send signals at

the same time. Each sensor s;, i 2 f0;1;:::;Ng measures the time of signal arrival

The measurements can be written in the matrix form,

2 3
| CP NP

M = : (4.2.7)

where

_ kRik,

(4.2.8)

We assume that there are no measurement errors.

4.2.3 Ghost elimination

De nition 4.2.1. Ghost: A solution to (4.2.6) which is not overlapping with any
real emitter.

De nition 4.2.2. Measurement set: Any combination of measurements selecting
one element from each column of matrix M.

Assumption 3. Any combination of three sensors in the eld are not collinear.
This assures that the regressors matrix s is full rank for any combination.

Proposition 4.2.1. In R3 , if there are at least four sensor measurements from
a single emitter (T;) in a measurement set, this will lead to the solution of that
particular emitter (Tj) or this set will lead to a ghost.

Proof. Lets consider a case where p number of emitters scattered over a R® . N
number of sensors are also placed over the same R? .
Then a general vector for z can be written as,
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% Ksk? R%. °
kxok® R3,
1 .
z= — 5 (4.2.9)
2 8 kxik Rﬁjk
kxnk? R,

where jx 2 (1;2;:::;p).

Lets consider a combination in S;z and d with subscripts jo = jb, = j¢c = jd»
and assume that all these refers to the Tjth emitter. Now we select this subset and
keeping Xz = [Xa Ya Za]' as the reference sensor develop S°and z° matrices.

2 3

Xp Yo 2
SO=4x. y, z9; (4.2.10)
Xd Yd Zd
and

| “kxok? R 2.
2°= _4kxk® RZ.9: (4.2.11)

kxak® R3,

3

This subset will lead to the unique location estimation of the T" emitter. So
the initial z vector which contains this subset will yield the Tj”‘ emitter as the
unique solution, if all the combinations are referring to the Tjth emitter (subscripts
j1=j2=:1:11ji = 1:ijn). If at least two subsets in a set lead to di erent solutions,
the corresponding set will refer to a ghost or non-real solution, then the whole set
can be discarded.

All the subsets in set will lead to the same solution if and only if all of them are
referring to a single real emitter. O

Theorem 4.2.2. Assume that the assumption 1 holds. |f the number of emitters
in R%is p, the maximum number of sensors required for unique localization of all
the emittersisgp+ 1.

Proof. When N = gp+ 1 sensors are considered for any combination of sensor mea-
surement set, there is at least one combination which contains q+ 1 measurements
from a single emitter. Using proposition 4.2.1, it can be shown that the mea-
surement sets which have at least one measurement from a di erent emitter can be
discarded. Hence, it can be concluded that N = gp+ 1 number of non-collinear
sensors will guarantee the elimination of all the ghosts.

L]

Let k be the number of sensor positions that are collinear with each other.
Since k collinear measurements provide no real additional information, they can be

considered as null measurements. The maximum number of measurement positions,
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ignoring the null measurements, required to uniquely localize an emitter eld of p

emitters is gp+ K+ 1.

4.2.4 Localization algorithm for ToA measurements

)
|

Measurement from four sensors (No.1, 2 and 3)

A

A

TOA set estimation

!

Find solutions for every combination (with 3 sensor measurements)

All combinations in a
set lead to
same solution?

v

Eliminate the sets

Take the next sensor measurement

Number of remaining sets
> Number of targets

Yes

[ Localization complete ]

Figure 4.10: Algorithm owchart for unique localization in ToA measurement tech-
nology

In uniquely estimating the position of every emitter in the eld, ToA sensors
must measure the time of arrival at spatially distinct locations and determine the
position of each emitter. The algorithm stops when the number of remaining sets
of measurements equals the number of target emitters in the eld. It is assumed
that the number of emitters is known or may be estimated using statistical meth-

ods. Also, if the number of remaining sets of measurements remains the same over
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Figure 4.11: Estimation of emitter location for four emitters with three sensors

multiple measurements, then it can be inferred that the remaining sets correspond
to the true emitter locations. In this case, it is assumed that the number of emitters
are known. Also, this analysis has assumed perfect measurements (i.e noiseless).

The algorithm is brie y described in Figure 4.10.

To demonstrate the theoretical arguments proposed in this paper, a simulation
was carried out with perfect measurements.

As shown in Figure 4.11, three ToA sensors were positioned at (1;5),(2;7) and
(3;4). Four emitters were located at (3;5),(5;6),(6;3) and (2;6). First, from the
measurements received at the sensors, emitter locations were estimated. Then the
fourth sensor is positioned at (6;7) and the estimation was carried out using all the
sensors. Finally, using our algorithm the real emitter locations were found(Figure
4.12).

In this simulation, unique localization of four emitters require only four sensor
measurements in R? . It can be seen that the number of measurements does not
go near the maximum bound (9 in R? ). The ghost problem will not necessarily

disappear at these measurement as shown in the simulations. This is particularly
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Figure 4.12: Final estimation of emitter locations for four emitters with four sensors

true in a densely distributed eld, with large number of emitters to be localized.

4.3 Summary

A theoretical analysis has been provided in this chapter which is required for unique
localization of an emitter using minimum number of TDoA measurements with
bounded error. Error bounds have been found for both R? and R® after which,
there is no existence of the unique solution region. More complex analysis can be
carried out, specially in the geometry of the sensor positions for robust localizations
based on this discussion.

Unique localization of multiple emitters using TDoA or ToA measurements is
discussed in this chapter. Necessary fundamental requirements to solve the so-
called ghost node problem associated with sensor arrays are speci cally examined.
Importantly, a maximum bound on the required number of sensors to uniquely
localize a given number of emitters in RY was derived. The discussion provides the

groundwork for further studies.



Chapter 5

Tracking with Doppler Radar

Localization and tracking of humans, vehicles or any other moving object is useful
in many defense and commercial applications such as security surveillance, disas-
ter search, rescue missions and urban warfare [3, 55, 56, 147, 149]. Until the recent
pass, radar systems were primarily used for long range localization and tracking and
those systems were very expensive and bulky in design. Due to the growth of the
electronic engineering in recent decades, the cost and the physical size of Radio Fre-
quency(RF) components have reduced dramatically. Therefore, many useful radar
systems can now be realized with a reasonable cost and size; specially for indoor and
commercial applications which were not prominent in the past. One of the close-
range applications of radar known as Through-the-Wall Radar Imaging(T WRI) is
a current research interest which has very useful applications in numerous situa-
tions [59{61, 150].

Among the other radar systems Continuous Wave (CW) radar systems have
attracted signi cant attention due to its simplicity in design and implementa-
tion [151]. Single-frequency-Continuous-Wave (SFCW) radar can measure Doppler
frequency shifts modulated from the moving targets to a higher accuracy. However,

in target range measurements, relatively complex systems derived from CW radar

71
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are currently being employed. These systems are expensive, and require sophisti-
cated hardware systems for implementation. As an example, Frequency-Modulated-
Continuous-Wave (FMCW) radar and pulsed Doppler radar both originated from
the CW radar technique and they are capable of detecting range but poor in clutter
mitigation. As opposed to those systems, CW radar is excellent in clutter suppres-
sion [3]; hence, it can be employed to localize moving targets as the Doppler shift
in frequency provides a natural exclusion of clutter in the Itering [27].

Angle of arrival of a moving target can be measured using the phase di erence
of waves arriving at two receiving antenna elements [3, 62]. In [55], tracking of
moving targets is carried out by a two-frequency Doppler and AoA radar system
where the velocity information of targets are unavailable. Even if the Doppler
modulated signal is used in [56, 152] and [149], only the position information of
the targets is obtained using the phase di erence of the Doppler shifted signal. In
these studies, the distinctive frequencies are only utilized to identify the targets
rather than using the Doppler shift to deduce their velocities. [66] [67] and [68]
consider more complex pulsed radar system while correction of the received Doppler
modulated signal under Gaussian assumptions is explored in [66]. Multi-target
tracking through range and angle measurements are investigated in [67] and [68]
providing comprehensive descriptions based on static optimization techniques.

The time derivatives of displacement is usually employed in systems which re-
quire velocity information of moving targets. This can potentially result in a time
lag in velocity estimation. Specially, for more dynamic targets the accumulation of
errors can be signi cant as the location estimation errors directly in uences the ve-
locity estimations. As opposed to this method, the location and the velocity of the
target can be estimated simultaneously by using CW radar with a dynamic system
model for state estimation. Robustness to system uncertainties and measurement

errors is another advantage of this particular approach. The Doppler frequency shift
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due to the target motion is used in [69] to estimate the target velocity separately,
providing a better estimate with additional measurements and the increased di-
mension of the measurement space. Further non-linearities are introduced in these
type of measurement modeling. For the position measurement only case discussed
in [3,55], converted measurement approach [70] has been employed to obtain a bet-
ter linear formulation. Nevertheless, this has not been the case for Doppler radar
and even in [69], the non-linear measurement equation is linearized with a rst order
approximation equivalent to Extended Kalman Itering in the estimation process.
Specially in systems with large uncertainties, this type of linearizations are known
for accumulation of errors and in some instances divergence can occur in the state
estimation. Therefore, in this chapter a linear formulation for inherently non-linear
Doppler measurements is used exploiting the strength in linear systems theory.
This study considers the case of tracking multiple mobile targets using the re-
ected Doppler modulated signals with two sets of receiver elements kept approx-
imately half a wave length apart’. Notice that two element receiver combination
is considered as a sensor. The sensors are positioned collinear to each other. The
phase di erence of the re ected waves within a single sensor can be used to measure
the AoA of a target with respect to a particular set of elements. Once the AoAs are
known triangulation can be used to nd the target location while the target velocity
can be deduced by measuring Doppler shifts due to the radial velocity component
in the direction of the sensors . Hence, Doppler signal frequency and phase is con-
verted into directional position and velocity measurements in order to be used in

the linear form of a robust Iter which provides estimates of the states (position,

!Please note that the material presented in this chapter was published as a journal paper : P.N.
Pathirana , S.C.K. Herath, and A.V.Savkin , Multi-target tracking via space transformations
using a single frequency continuous wave radar Accepted for publication in Transactions on
Signal Processing in June 2012, and as a conference paper : S.C.K. Herath and P.N.Pathirana ,

Maximum likelihood approach for tracking multiple mobile agents with a moving Doppler radar
system, in ISSNIP 2010 : Proceedings of the 6th International Conference on Intelligent Sensors,
Sensor Networks and Information Processing, pp. 193-198, IEEE, United States
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velocity and acceleration) of the targets recursively.

Maximum Likelithood approach for mobile target tracking with a moving
sensor array

In the automobile industry, multiple mobile target tracking technology can be em-
ployed in a driver alerting systems to assist the driver with helpful information
about the surrounding of the vehicle. Such improved safety functions are now be-
ing introduced to vehicles which reduce the risk of accidents.

Radar technology can be utilized in the context of sensing the surroundings in
automobile safety applications [153{155]. In [154] use of ultra-wideband radar for
short range vehicular applications is investigated while fusing the vision data with
radar information to enhance the detection accuracy has been studied in [155]. [153]

provides a novel Doppler sensor architecture for vehicular applications.
Technical organization

This chapter is organized as follows. First, the basic theory governing the Doppler
radar based tracking is introduced in section 5.1. Two critical practical issues are
discussed in section 5.2 - a formation of ghost targets due to Data association and a
unique occurrence of missing information. These scenarios require special attention
in multiple target tracking, since they can potentially lead to a large number of
sensor elements in the linear receiver. A Theoretical justi cation is provided for
the minimum number of sensor elements in the linear array to completely eliminate
the issues mentioned above.

The solution to the above problems inevitably increases the number of sensor el-
ements of the receiver array. As this is not desirable in most practical applications,
minimum con guration array with two sensors is discussed when introducing our

Iter. Nearest neighbor type minimization is utilized to address the data associa-
tion problem while solution to the missing information is provided by an extended

version of the lter.
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Doppler radar system with the linear sensor array and the dynamic modeling of
the targets is presented in section 5.3. The Robust Linear Filter is introduced in
section 5.4 as the main contribution of this chapter; for the minimal sensor array,
the underlying non-linearly modeled measurements of Doppler radar(both angle and
radial velocity) is addressed in a linear framework. The non-linear measurement
model for the target is rst transformed into a linear separable form with bounded
assumptions on the noise distribution. A model based estimation process is utilized
to obtain the target states such as position, velocity and acceleration concurrently.

Computer simulations together with the hardware experimentation are provided
in section 5.6 to prove the theoretical assertions outlined in this work.

Finally, in 5.7 of this chapter provides a method to track multiple mobile agents
from an array of Doppler sensors mounted on a moving vehicle. Measurement
technique used here is similar to the stationary case discussed earlier(frequency
and corresponding phases of Doppler modulated signals from moving targets). The
vehicle dynamics are taken into account and the maximum likelihood estimation is

used to increase the accuracy in localization.

5.1 Basic theory

Figure 5.1 depicts two nearby scattered waves returning from a mobile target. The
radial velocity of the target toward the sensor can be measured using equation
2.1.1. Due to the relative position of the agent, two antenna elements, Rxq and
Rx, receive these two signals with a path di erence of y°

When d is the distance between the two antenna elements Rx4 and Rx, , and

Ois the Angle-of-Arrival (AOA) of the mobile target,

y’= dsin © (5.1.1)

Then the phase di erence of the two received waves , can be written as,
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Figure 5.1: AoA using two receiving elements

2y (5.1.2)

C

where, . is the wave length of the carrier frequency. Then from (5.1.1) and

(5.1.2), the AoA can be expressed as,

C

2 d

0

= arcsin (5.1.3)

AoA of several mobile agents can be found by Doppler discrimination. As de-
picted in Figure 5.2, two mobile targets scatter Doppler modulated waves on four
antenna elements. X4(t) and X,(t) are the receiving signals on antenna elements

Rx4 and Rx, after demodulation. Then,

X1(t) = k1 sin(2 fd1t + 1) + k2 sin(Z fdzt + 2) (514)
and,
Xz(t) = k1 sin(2 fd1t + 3) + k2 sin(2 fdzt + 4): (515)

In (5.2.4) and (5.2.5), k4 and Ky are the amplitudes of the incoming waves and
it can be assumed that they are constant for both waves due to a very small path

di erence. fgy and fg, are the Doppler frequencies modulated by the two mobile
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targets due to their relative velocity. 4, 2, 3 and 4 are the corresponding phases
at the receiving elements.

Fast Fourier Transform (FFT) is performed on each of these signals. Hence,
the frequency bins and the corresponding phases of each frequency bin is obtained.

Phase di erence of a particular frequency bin 1, can be written as,

1= 1 3 (5.1.6)

ww

L{ LOCATIONS AND VELOCITIES }‘J

Figure 5.2: AoA using four receiving elements for multiple mobile agents

Then, the AoA of the mobile agent is,

?= arcsin 5 1d° : (5.1.7)

From this technique, AoA of multiple targets can be resolved, as long as they

have considerable Doppler separation. AoA of any target i, can be expressed as,

i0= arcsin 5 idc : (5.1.8)

Let's consider two mobile targets having the same radial velocity toward a sen-
sor, and for simplicity, assume that the distance to the target from the sensors is

the same at a particular instance. Then, (8) can be rewritten as,

x1(t) = ksin(2 fat+ 1)+ ksin(2 fgt+ o):
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x1(t) = 2ksin 2 fgt+ ! 2 cos 5 2
x1(t) = Ksin(2 fgt+ ): (5.1.9)
where,
K = 2k L
oS 7
and,
1+t 2

2

It can be seen that the receiver is unable to distinguish between the two signals
and it is perceived as a signal at the same frequency but in a phase, di erent to
either phase of the two incoming signals preventing the AoA estimation using the
phase of the incoming signals.

The optimal linear sensor separation in AoA measurement technique for im-
proved localization of targets is discussed in Chapter 3 which can be integrated
in this study. If the region in which the targets are moving is known, the results
obtained in Chapter 3 can be utilized to position the sensors for better tracking
accuracy. Also, if possible, the sensors can be dynamically adjusted for enhanced

localization performance depending on the rough estimate of the target position.

5.2 Larger antenna array

Consider the situation where a single linear array of sensors are employed to track
multiple targets. Here, a discussion is made on the two main issues that can ad-

versely a ect tracking multiple targets with Doppler radar measurements.

1. Formation of ghost [156] targets: The problem of data association is created
by the di erent Doppler shifts modulated by the targets on receiving elements.
That is the problem of correctly assigning modulating frequency components
and the associated phase di erences among sensors to the corresponding tar-

gets. Particularly when localization and tracking of relatively higher number
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of targets with lesser number of sensors, the data association problem occurs
on the incorrect assignments of ghost [156] targets to real targets and vice
versa. Limited number of spatially dispersed sensors hinders the recovery of
real target locations uniquely from the signals received at each sensor. In this
case, the number of combinations of the received measurements exceeds the
number of real targets and some of these combinations refers to non-existing
targets. These virtual targets are denoted as ghosts. As shown in Figure 5.3
modulation of Doppler frequencies and corresponding bearing measurements
in R? for the case of two mobile targets with two sensors in the linear array

allows two ghost targets to exist.

v X - Target

O - Ghost

Figure 5.3: Angle of Arrival(AoA) and radial velocity measurements

2. Modulation of identical or indistinguishably close Doppler frequencies: Con-
sider the two Doppler bins (collection of frequencies) at the two sensors de-
picted in Figure 5.4 modulated by four di erent mobile targets(A;B;C and
D). Targets modulating frequencies f A;f3;fl and f} with the corresponding

phases 1; &; & and [ in sensor 1, modulate frequencies f2;f3;f3 and

f3 with corresponding phases 3; 3%; 2 and 2 in sensor 2. The radial
velocities of two or more distinct targets can potentially be very close to each

other, hence, the respective Doppler frequencies from those targets modulate

the same(or indistinguishably close) frequency in one sensor preventing the
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resolution of the corresponding frequency and phase components as discussed
in section 5.1. Then the sensor in concern perceived the two signals as a
signal at the same frequency but in a phase di erent to either phase of the
two incoming signals, so the AoA recovery using the phase of the incoming
signals is not possible [19]. When this takes place, at least one Doppler bin
contains number of frequencies which is less than N (number of targets). This
can be considered as an incomplete information since the data from these
sensors cannot be employed in the estimation process. As opposed to that,
in complete information case, all the information is resolvable for all targets,
i.e no overlapping of frequency in the Doppler bins during the entire track-
ing process. it should be emphasized that a fundamentally di erent case of
missing information is considered here, compared to [157] where false alarm
or clutter is characterized by a probabilistic distribution. Missing information
case considered here is based on the target dynamics as this occurs when the
same radial velocity from two or more distinct targets modulate the same
Doppler frequency at the same sensor. The system detects this instance when
the number of measurements is less than the number of targets and hence
independent of any assertions based on probabilistic assumptions. Indeed the
number of targets in the vicinity are assumed to be known in priori. This
is the case with some practical indoor applications such as users connected
to a wireless network or premises with monitored access etc. Evidently, if
the number of targets is unknown, an upper bound for the number of tar-
gets can be used and as measurements are received on the sensors, the absent
targets can be interpreted as missing information [158]. In this case, as the
AoA measurements are not modeled with Doppler signals mathematically, an

arbitrary values can be used for AoA measurements for the Iter to work
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properly. Subsequently, these estimations can be discarded as they are asso-
ciated with missing information. Probabilistic assumptions such as false track
discrimination procedures are employed in a more traditional target tracking
context when the number of targets are unknown [159,160]. These techniques
are computationally taxing. The aggregation of data is eventually expected
to ful Il the probabilistic assumptions, consequently enhancing the tracking
process with an unknown number of targets.

A — Target A U — Target C

(O — Target B O— Target D

A A
Phase Phase

‘ >

>

Frequency Frequency

Sensor 1 Sensor 2

Figure 5.4: Instantaneous frequency and the phase distribution at the two sensors
for four targets

Assumption 1. Following assumptions are made with respect to the target motion,
in line with the de nition of the radar equation which uses the phase di erence of
arriving signals:

1. Motion of the mobile targets are con ned to the positive Y half of the X Y
plane.

2. At any given time targets are not collinear with the sensor array positioned
along the positive X axis.

The proposition given below sates that two distinct targets can potentially mod-

ulate identical Doppler frequencies on maximum number of three sensors. Consider

a set z of mobile targets moving only in the positive Y halfofthe X Y plane and

a linear phase array with a set of distinct sensors positioned along the positive X
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axis. Initially, consider two targets A;B 2 z with each modulating Doppler shifted

frequencies f A ; f 2; LAh and fJ;f2 £ resﬁ)ectively due to their radial veloci-
IS I

ties and de ne, A= f, fAhi and g = fg fgi , where hi denotes the

cardinality of a set and > the transposition.

Proposition 1. Rank[Diag[ a sl] hi 3

Proof. Here, reductio ad absurdum argumentation is utilized as an indirect proofto
assert that if two mobile targets modulate the identical Doppler frequency in four
distinct linear sensors, then the two targets are essentially the same - identical in
position and velocity. Consider a linear array of four sensors S; with i 2 f1;2;3;4g
with the it"sensor at di = (di;0). Ty and T, are two mobile targets with their
locations p;q 2 R?(in the positive Y half of the X Y plane) and the velocities
u;v 2 R? respectively. Hence, their respective radial velocities at the it" sensor: v/
and v}, are given by:
i_uw (i op) Vi 9,
vy = W, e W i 2f1;2;3;4g

respectively. Assume that these two mobile targets have identical radial velocities
on each of the sensors corresponding to i = 1;2;3;4. Then,

u’(di p)_vi(di q)

i 2 f1;2;3;4q: (5.2.1)

In a situation where the target and the sensor array are collinear, the sensors receive
the same radial velocity irrespective of the number of senors and with assumption 1,
we avoid this occurrence. Let rijx = v~ (di q)(d; dy), then the following system
of constraints can be derived for the cyclic groups Sq = (1;2;3) and S, = (1;2;4)
respectively :

X

i(d dy) =0 (5.2.2)

fi;j%gZSl
(G d =0 (5.2.3)

fi;j:kg2S:

h — u’(di p)(kdi gk). h P — _

where, | = kd; pk . Note that fisj:kg2S: Fijk = 0 and fisi:kg2$S, Fijk = 0
are used in deducing the above constraints 5.2.2 ang 5.2.3. Then taking x; = Eg: g';

and gjxk =u” (d; p)(d; dy) for fi;j;kg2 Sy S, and noticing that
X
Gjk = 0;
fi;J%QZ&
gjk = 0;
fisj;kg2S;
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equation 5.2.2 and 5.2.3 can be written as

X
GikX = 0; (5.2.4)
fi;j%gzsl
fij;kg2S;

This result can be interpreted such that for an arbitrary constant p, all the possible
variations of q. Two trajectories in two planes are given by above 5.2.4 and 5.2.5.
xis are independent variables of the planes. Since any two non parallel planes
intersect in a straight line and as all the common points on the line x; = X 8i;j 2
f1;2;3;4Q;i 6 j are on both planes, it can be inferred that the two planes intersect
on this particular line. But taking in to account the de nition of X;, only X, = 1; 8i 2
f1;2;3;4g point is valid(see Appendix I). This infers p = q and hence u = v. From
equation 5.2.2 and 5.2.3 it can be shown that this holds only for four sensors and
for one cyclic group there exists in nitely many solutions for q. U

Proposition 2. The necessary and su cient condition for trackingz mobile tar-
gets using a linear array of sensors avoiding incomplete information and ghost elim-
inationishLi  3™ICy+ hezi + 1.

Proof. Proposition 1 and the ghost elimination results given in [156] are used for
the proof.

Typically, ez i number of frequencies are contained in each Doppler bin associ-
ated with the respective sensor. Using the rst proposition, considering the worst
case scenario, a maximum of 3™ C, number of sensors should be discarded in order
to guarantee that no remaining sensor receives the identical frequency due to two
distinct targets. Moreover ez i + 1 sensors are required to eliminate the ghost tar-
gets [156]. Therefore, the ghost formation problem is solved with 3™'Cy+ hzi + 1
number of sensors in the linear array. This will ensure that there is no ambiguity
in any of the mobile target localizations. ]

Note that a comprehensive analysis on the similar type of ghost elimination for
Time-Delay-of-Arrival (TDoA) and Time-of-Arrival (ToA) systems is provided in
Chapter 4. Data association problem is solved using an exhaustion method in [156]
similar to the approach provided in Chapter 4.

For numerous real world applications, enormous increase in the number of sen-
sors and hence the physical size of the linear array for tracking multiple mobile
targets posses practical limitations(146 sensors are required to track 10 targets and

591 to track 20 targets). The enlargement of the array is not desirable in close
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range or indoor applications. On the other hand, aforementioned problems of in-
complete information and ghosting will be prominent if the number of sensors are
reduced. Therefore, in this chapter, a minimal array con guration of two sensors
is considered for a multiple target tracking scenario addressing these underlying

problems.

5.3 Targets and the receiver dynamic model

State space formulation can be used to depict a dynamic system with multiple
mobile targets and two sensor receiver array. The dynamic system equation is
linear in a Cartesian coordinate system for the kinematic modeling of targets and
a sensor(linear array) [161]. Generally, the measurement models are non-linear in
the state space formulations [54]. In this type of modeling, target kinematics are
taken in to consideration but the mechanical dynamics are not accounted for each
platform.i.e modeling parameters are not used to de ne rotational motion of either
the targets or the receiver unlike in [162]. In [163], a data augmentation algorithm
targeting at such target parameter estimation incorporating an interacting multiple
model for kinematic state estimation is introduced for simultaneous implementation.
A elaborate study of dual body kinematic modeling is given in [161] and a basic
principal approach is proposed in [164] where they only consider the translational
kinematics.

In this study, we consider a point target (or N number of feature points) that
obey a linear dynamic model such as those studied in [54]. In this model, arbitrary
number of point targets can be included and since each point is tracked indepen-
dently,object rigidity is not required. However, the ghost formation problem (also
known as the feature point association problem) [161] exists in practical applications
for tracking multiple point targets which is described in section 5.5. Considering

only the translational e ects is su cient for the case of radar based tracking with
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a stationary receiver which employs a linear dynamic model.

Let N = hz i and with respect to the phase array based coordinate system, the
location, velocity and acceleration components in each X;Y direction of the it tar-
get in each of the traditionally denoted X;Y directions be [x} x,]” 2 R?,[x5 x},T" 2

R? and [xL; X5]” 2 R2? respectively.

Then we can de ne the state x' = [x} x, xj xi, xt xi]” 2 R® and x =
[x' xN>T 2 R® such that it evolves according to

x(k)= Ax(k 1)+ Bw(k): (5.3.1)

Here k = 0;1;2;:::, where A and B are suitably de ned system and noise transition

matrices [161] respectively, which can be given as,

A = Diag| I;
B = Diag| I;
2 k2 k2
I, Kkslo ?SIZ 7512
= § O, I, kilz §; = 7 ksl 23 (5.3.2)
02 02 12 I2

Here, uncertain target maneuvers and additive system uncertainties are modeled
by w(k) 2 R?N while ks denotes the sampling time. |, and O, indicate 2 2 di-
mensional |dentity and zero matrices respectively. Any a priori knowledge of target
maneuvers is not assumed in this study and these are considered as system uncer-
tainties while the full target state is estimated online. The derivation of estimation
algorithm is quite general and it allows a large class of linear dynamic models to be
included.

Remark 1. The coordinate basisisfound rst by positioning sensor 1 at the origin,
and sensor 2 a distance d > 0 apart from sensor 1(Figure 5.3)on the positive X
axis. These two sensors de ne a horizontal axis from which the angle subtended by
the target is measured for the AoA.
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5.4 Linear robust Itering with nonlinear Doppler
radar

The frequency and phase measurements of the Doppler signals that re ected back
from the mobile targets are used to nd the radial velocities and angle measurements
in the underlying approach. While the frequency o set from the carrier frequency
is directly proportional to the target radial velocity toward the sensor, the phase
di erence between the two elements in the sensor is used to nd the AoA.

Consider the i" target which modulates two frequencies f{! and f§ on each of
the two sensors which correspond to radial velocities and AoA values given by V; ¥
and /\' g , respectively. Next, the measurement model for the it" target is outlined
and the corresponding measurement conversion technique along with the robust
linear Iter which we derive as the state estimator are presented.

The corresponding measurement noise are given by ; and ; fori = 1;2 and \
A" denotes the noisy measured variables. Then, considering the measurement for

the it" target,

2 x! x' x! xI 3
2 —S——= T 1
(x)+ (1)’
(k) (o) X
yw)—g %00 7 _ (4% (%) : (5.4.1)
arcsin p—22—— + |

(x})2+(x3)?
arcsin lez—i + 5
(d x1)?+(x})?

with,9 = ¢1 9N - providing the true measurements for all N targets. Following
converted measurement form can be used to write the noisy locations (X};%}) of

(x};x5) and the noisy directional velocities (X5; ®}) of (x5; X},):
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2 3 2 dsin( L+ 2)cos( i+ 1) 3
XH sin(L L+ o)
N dsin( 1+ 1)sin( b+ 2)
2 sin(L b+ o)
_ : (5.4.2)
38 (vi+ 1)sin( L+ o)+ (vi+ o)sin( i+ 1)
sin( '1 '2+ 1 2)
X|4 (Vi1+ 1)COS( i2+ 2)+ (Vi2+ 2)C03( i1+ 1)

sin( 3 3+ 1 2)
Here, as d is a known constant(distance between the sensors), we remove the bias
such that X1 = Xq(noisy) d which will be added subsequent to the estimation
process. Bounded errors assumed for the angle and velocity measurement . i.e
jij jj fori=1;2andjjj jv J'J forj = 1;2 where 2 [0;2 Jand 0 < 1
are given constants and j | indicates absolute value operator. The fractional noise

upper-bound is indicated by . Then,

2 3 2 d!1!2sin( L)cos(})
R tosin( L 1)
i !1lzsin( '1)S|n('2)
' R d Pasin( 1 1)
m', = ; (5.4.3)
38 (vi+ Desin( )+ (vh+ o) asin( )
Lssin( ] %)
Xi4 (vi+ 1)l ocos( )+ (vi+ o) icos( |)
Pssin( D 1)
with the following condition
«
1 1 i=1;2
Ccos ! = (5.4.4)
cos 2 i=

1s satis ed.

Remark 2. As the error variations are identical for both sin and cos terms, the
same variablei.e ! ; is used for the representation (See the Appendix I1).
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T mNT 2 R™, awell-de ned system

For the case of N targets, taking m = [m
of converted measurement equations comprising noise input processes is considered.
Now assume that the target motion is given by (5.3.1) where the matrix A is non-
singular. Let 0 < pp 1 be a given constant and the following assumptions are
satis ed by the system initial condition x(0), noise w(K) and the actual measure-
ment noise ; and ; 8i 2 f1;2g.

Assumption 2. The following inequalities with probability py simultaneously hold:

ji Qb il dviisi2fiegi2([;  ;N] (5.4.5)

X1
(x(0)  x0)"N(x(0) x0)+  w(k)Q(w(k) : (5.4.6)
0

Here a given initial state estimate vector isdenoted by xo. N = N> andQ = Q~ are
given positive de nite weighting matrices while > 0 is a given constant associated
with the system. T > 0 denotes a given time.

The following Riccati di erence equation [1, 165] is involved in underlying solu-

tion to the state estimation problem,

h i
F(k+ 1) B B>S(k)B+ Q 11§>S(k)/ﬁ;
h i

A

S(k+1) = A>S(k) A F(k+1) +C>Uk+ 1)C K’K;
N:

S(0) = (5.4.7)
where A , A and B , A "B. We also de ne
2 3
4+ 0 0 0 0O
0O - 0 0 00O
C, ; (5.4.8)
0O 0 3 0 00
0O 0 0 4 00
2 3
47 0 0 0 0O
0O - 0 0 0O
K, X (5.4.9)
0O 0 3 0 0O
0 0 0 4 00
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where,
cos2 (1+ cos* ) (1+ ) (1 )cos cos2
1= 27 5 ; = 4= + ;
2 cos 2cos2 cos 2
~ _cos2 (1 cos*H)  (+) (1  )cos cos2
! 2 2 cos? 3 % 2cos2 cos 2

A set of state equations are considered as follows,

(k+1) = hA F(k+ 1)|> (k) + C*V(k+ Dm(k + 1);
(0) = Nxg;
gk+1) = gk)+mk+ 1)"W(k+ 1)_m(k+ 1)
k)’ B hﬁ>S(k)}§ + Q(k)l 'g (k);
9(0) = xjNxg: (5.4.10)

Remark 3. Notice that the appropriately de ned matrices U; V; W are utilized to
account for the incomplete information case discussed in section 5.5.2. For the
complete information case, the matrices are evaluated to identity matrices.

The state equation (5.4.10) and Riccati equation (5.4.7) can be regarded as a
robust implementation of the standard linear Kalman Filter [166] for uncertainties
which obey Assumption 2, e.g. see [51,165,166]. Now the main result of this section

can be introduced.

Theorem 1. Let 0< py 1 be given, and suppose that Assumption 2 holds. Then
the state xt of the system (5.3.1) with probability p  py belongs to the €llipsoid

8 9
< x7 2 RN : =

Er,  Kk(S(T)ixr S(T) = (T)k? (5.4.11)
: N :

N}

where
, (M”SM) ' (T) g(T)
and the equations (5.4.10) de ne (T) and g(T). Also, we require + 0.

Proof. It follows from (5.4.3) and (5.4.5) that,
%(K) = ixi(k) + ni(k); (5.4.12)

(5.3.1) and the inequalities,
jni(k)j  ~jxi(kj; (5.4.13)
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hold together with (5.4.6) to a probability p po. Hence, (5.4.13) suggest that
m (k) = Cx(k) + n(k); (5.4.14)
where n(k) , [n1(k) na(k) nz(k) ng(k)]” and the condition
kn(k)k? Kk Kxk?; (5.4.15)

holds together with (5.4.6) to a probability p po, where k k indicates the vector
norm. From (5.4.6) and (5.4.15) we obtain the following sum quadratic constraint
that should be satis ed,

(x(0)  x0)”N(x(0) xo)+
5wk Q(kw(k) + kn(k+ 1)k?
+ ¢ KKxK% (5.4.16)

with probability p po. Now it follows from Theorem 5.3.1 of [51], p. 75 (see
also [165]) that the state x(T) of the system (5.3.1), (5.4.14) belongs to the ellipsoid
(5.4.11) with probability p po. O

The centroid of the bounded ellipsoidal set which is given by ® = S(k) ' (k)

can be used to nd a point value state estimate. By diagonalizing matrices( ; )

as follows, the worst error in the estimates can be obtained:

e L OO
S(k): = T U (5.4.17)
Here, = [0 pﬁ 0 2 RN with a = max[_,a, where g is the spectral

radiusof '.  and denote diagonal matrices of appropriate dimensions. The
centroid (k, the state estimate) and the end points of the major axis(k ) of the
ellipsoid can be illustrated as in gure 5.5 for each iteration together with the

corresponding uncertainty ellipse that provides the actual bounds of the uncertainty.

Therefore it can be proved that when the relevant uncertainties obey Assumption
1, the estimation errors are bounded in a probabilistic sense. A large class of non-
linear and dynamic process noise characteristics can be accommodated in the sum

quadratic constraint given in Assumption 1. As the Gaussian noise is bounded
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Figure 5.5: Uncertainty ellipse in RLF estimation

within the rst standard deviation to a probability of pp  0:68 and within two
standard deviations to a probability of pg 0:95 etc, no generality is lost by
considering uncertainties satisfying Assumption 2. That is, initial condition errors
and Gaussian measurement process form a special case of Assumption 1 which
belongs to a larger class of uncertainties. in this study, the Doppler radar problem
is solved in the linear domain and the algorithm used permits very large potential
initial errors. No such proofs available for the extended Kalman Iter (EKF) or
the majority of other approaches that utilizes some form of Taylor-series based
approximations. The novel contribution in this study is that the fact that we
can prove bounded tracking performance for Doppler radar based tracking with

arbitrarily large initial condition errors.

5.5 Linear array with two Sensors

The number of sensors in the array a ects the physical size of the antenna which
plays a crucial role in improving the practicality of the underlying approach, spe-

cially in close range applications. Data association problem occurs when the number
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of sensors to obtain the minimum physical dimensions. Figure 5.6 depicts the AoA
and radial velocity measurement scheme in a minimum physical dimension sensor
array.

Mobile agent v
u, (Radial velocity) N u, (Radial velodity)

- N = - N
. N . N
’ \ ’ \
' \ / \
! 1
1
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| D) i |
! Local osdilator AD AD i
e ﬁ # . i
i ! : l :
N and radial velocity( u1 )/ \[ DOA( ,) and radial velocity(u,) |
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Figure 5.6: AoA and radial velocity measurement scheme in a Sensor array

5.5.1 Data association with complete information

In this complete information case an assumption is made that each sensor receives all
the (N) measurements distinctively. During the entire tracking time the frequencies
are easier to distinguish at each sensor as they are not very close to each other.

Doppler frequency at the receiver is directly related to the radial velocities and
the corresponding AoA measurements of the targets. Let radial velocity and corre-
sponding AoA measurement at sensor 1 and 2 be Ly = f(¢; A1 (O AQ“ )g and
L, = f(od; "); :(0N; "N)g respectively. Then the assignments should be made
on each ( %; §)2 Ly to( 5 1) 2 Ly so that these measurements correspond to
the same target - data association problem.

Letsde netheset S=f =1 1 1 L U ;N Y F T

(% ®2Lyand (% P2Luf i by 46 f ) L 4 jg8ij2[; N
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Notice that the cardinality, jSj = N!. The actual physical distribution of the
targets is given only by a one combination or only one element of S. The other
combinations regarded as ghosts.

For =117 23 & 3% 55 % 53 3 % 4T 2 Sandlet
IYi Yd Yd YT = f(CY; L 4 ). Measurement conversion shown in equation
5.4.2 denoted as f .

Therefore $ Y =[] Y, Y)Y, Y/ Yivivy, YNYNYNYNP isa

one-to-one mapping. Let

"Y'k#“Y'k kY'#
. | | 1 + |
gr- 1 i DrieYs (5.5.1)

Y, (k) Yok 1)+ ksY,
and then,

X
:min  KE'k; (5.5.2)
28

i=1
should correspond to the combination of the real target locations and hence elim-
inate all the ghost targets. That is; for the real targets, the two consecutive state
estimates(converted measurements) are closer than the ghost targets. ghost targets
do not behave according to the estimated measurements and dynamics considered;
only the real targets.
In practical applications, maintaining the same order of measurements in the
Itering process is crucial. This is illustrated graphically as given in gure 5.4.
When the Doppler frequencies are not very close to each other, and maintained in
that form, the ordering(of Y) is maintained and does not pose any complexities
in the Itering process. If the modulated frequencies overlap, then the scenario
described as incomplete information occurs (at least for a small duration) as the
radial velocities of the targets and the corresponding angles are not resolvable at
these particular instances. Obviously, the problem becomes challenging when the

modulated frequencies cross each other due to the dynamics of the targets and
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prevent keeping the order of the states corresponding to the relevant targets in the
Itering process; but, the above minimization addresses this directly.
These searches are of O(N) and for this particular 2D case, the solution is

essentially in the nearest neighbor form for the linear case.

5.5.2 Data association with incomplete information

Multiple targets can provide the modulated frequency on any one of the two sensors.
This results in inaccurate or irretrievable information and should be considered as
missing information for that instant. That is y(t) is incomplete or not available for
that time interval t. Let M(t) = [M '(t) M 2(t) M N ()T be a given vector
for t = 1;2; - T such that M7 2 f0; 1g, for i = 1, 4N . Then the matrix
M, [M(1) M(T)T, is considered as the incomplete matrix. With M ', let us

de ne two sequences of matrices :

E(t) = DiagM '(t) M (%) M N ()]

E)= MMM MNOP; (5.5.3)
where M '(t) + MI(t) = 1.

U;V and W are provided to account for the incomplete information in the Riccati

equation 5.4.7 and 5.4.10, [51].

U= EWE;
V= EW; (5.5.4)
W= | EEE)'E>:

Remark 4. For the case of complete information, E is the zero vector and E is the
identity matrix. This ensures that U;V and W are evaluated as identity matrices
as stated in section 5.4.

In a practical application, the modulated velocities of two di erent agents are

required to be close to the velocity resolution for this incomplete information to
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occur. Using the standard Doppler shift equation ( f = %fo where f is the fre-

quency resolution, " is the velocity resolution, ¢ denotes the speed of light and f

is the carrier frequency) " can be obtained. Actually, j¥i(k)  ¥L(K)j distin-
guish distinct targets. Target dynamics which do not obey this expression should
be regarded as missing information and this will be triggered by the absence of

measurements.

5.6 Illustrative examples

The practical relevance of this approach is illustrated by a computer simulation and

a hardware based experiment in an indoor setting.

5.6.1 Fictional simulation data

In the ctitious simulation scenario four mobile targets are tracked using Doppler
radar measurements. Table 5.1 provide simulation parameters. Comparison be-
tween the Extended Kalman Filter(EKF) and the Robust Linear Filter(RLF) is
made to show the strength of the underlying approach which is based on linear for-
mulations. Both EKF and RLF are initialized using a Gaussian distribution with
a mean at the ideal value and a standard deviation of 0.02 radians. The EKF is
known to be diverging without correct initialization. The EKF parameters(Qg and
Rg) are tuned fairly accurately. Assuming the initial error statistics are known to
the tracking system, the initial covariance of the EKF is also tuned . That is, for
the EKF parameters, the perfect knowledge of all the relevant error statistics is
assumed and tuned around these true values to get the best possible performance.
In contrast, for the RLF the identity matrix for both the initial and process noise
weightings is used. and are taken as two times the standard deviations of
corresponding Gaussian measurement noise.

Actual and estimated trajectories of four maneuvering targets for the case of
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Table 5.1: Simulation Parameters

Input Value Comments
W1 [0:03 0:077° Target 1 Accel. Input
W) [0:01  0:08] Target 2 Accel. Input
W3 [0:15 0:017° Target 3 Accel. Input
Wy [0:15 0:01]° Target 4 Accel. Input
vi,i2f1;2g vi = 0:5 Gaussian Meas. Noise 1
i,12fl;2g vi = 0:5 Gaussian Meas. Noise 2
[Nr; Qr] |[10 *ls; 10 °1,] I | Robust Filter Parameters
[Re; Qe] [10 815 104 1 EKF Uncertainty
Weightings
T @ ts 10s @ 0:15s Track Duration
and Periodicity

EKF and RLF are illustrated in Figure 5.7 and 5.8 respectively. Figure 5.9 depicts
the actual velocity and the estimated velocity of the four targets for the case of
RLF while the accelerations are given in gure 5.10. The tracking error(kk  xKk)
for the robust linear Iter and the EKF is illustrated in Figure 5.11 where the sig-
ni cance of the initial uncertainty for EKF is manifested. Due to the advantage in
the underlying linear approach, the identical error in the initial condition(position
and velocity) is instantly corrected by the RLF. The proposed linear robust I-
ter basically utilizes the measurement conversion technique which is essentially a
computation of 2D coordinates of a target in a closed-form manner. Actually, this
robust estimator exhibits excellent performance. As opposed to the RLF, no com-
putation of the 2D coordinates of the target is contained in the EKF and it is based
on linearization and Taylor series type approximations. Specially in systems with
large uncertainties, this type of linearizations causes accumulation of errors and in
some instances divergence can occur in the state estimation.

As depicted in Figure 5.12, converted measurements provided in equation (5.4.2)
are essentially Itered through the linear Iter e ectively.

Some insight into the worst case measurement bounds is given by the end points

of the major axis (R shown in gure 5.5) of the uncertainty ellipse relevant to each
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measurement generated for a target as shown in gure 5.13 in a 500 trial Monte
Carlo simulation. In gure 5.14, the relationship between the system performance

with the measurement noise intensity is depicted.
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Figure 5.7: The actual and the EKF estimated trajectories of four targets.
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Figure 5.8: The actual and the RLF estimated trajectories of four targets

Figure 5.15 and 5.16 depicts the performance of the modi ed version of the
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Figure 5.10: The actual and the RLF estimated accelerations of four targets

linear robust Iter for the incomplete information scenario. Missing some measure-

ments in the tracking interval can be a common occurrence in a practical multi-

target Doppler radar application. This can be acute when the identical Doppler
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Figure 5.12: Converted measurements ltering in RLF

frequency(within the resolution) modulates at the same sensor from two distinct
mobile targets. As illustrated in gure 5.15, the identical Doppler frequency is
modulated by two targets at sensor 1. For this particular instant, modi ed version
of the linear lIter (equation 5.5.3 is used and 5.5.4) in comparison to the predicted

velocity from the previous measurements for the missing instance. As evident in
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250
q

200

RMS error
@
o

-
o
o

50

0
10 15 20 25 30 35 40
SNR/(dB)

Figure 5.14: Measurement noise € ect on the performance

gure 5.16, a better estimation accuracy is produced by the modi ed version of the

Iter with incomplete information correction.

5.6.2 Real experimental data

A Doppler information acquisition system ( gure 5.6) is set up to capture the re-

ected Doppler signal from a person moving in a well de ned path in an indoor
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Figure 5.16: Linear Robust Filtering with incomplete information

setting. The receiving elements and sensors (one sensor is composed of two anten-
nas elements) are positioned 6cm and 0.5m distance from the other similar device
respectively along the X axis as depicted in the gure 5.18. 2.4GHz continuous
wave RF at 12dBm is transmitted through the signal generator.

There ected signals are captured by four low-cost, o -the-shelfintegrated boards
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(AD8347) which are quadrature (or I/ Q) receivers. Each receiver comprises of low-
noise ampli er (LNA), I/ Q mixers, gain control, and baseband ampli cations. Spe-
cial analog ltering (as in the superheterodyne conversion) is not required as this
chip allows a direct conversion from RF to baseband.

Then the 14-bit NI USB-6009 is used for analog to digital conversion. Next The
digitized data is collected by the computer. DFT is performed on the data using
Cooley-Turkey algorithm to nd the Doppler frequencies and corresponding phase
di erences to measure the AoA of the object at each time step. 10* measurements
are acquired for 200 point FFT with a succeeding frequency resolution of 0.1Hz and
a calculated SNR of 34dB which is typical of a 2.4GHz band with surrounding IEEE
802.11 wireless LAN and personnel area networks employing Bluetooth enabled
devices [167]. Indeed, the assumption on the noise model suits this type of noise
and uncertainties which do not have a clear and elegant mathematical model [168].

In order to track a moving target the experimental setup depicted in gure 5.17
is used. The actual path and the estimated path of the person are shown in gure
5.18. The estimation error from the converted measurements and the estimation
error for the Itered case is depicted in gure 5.19. A signi cant initial error is

provided to demonstrate the e ective convergence noticeable with the RLF.

A/D Converter

Figure 5.17: The experimental setup for tracking a person
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Figure 5.19: The estimation error of the four targets

5.7 Maximum Likelihood Estimation(MLE) based
approach for moving sensor platform

In this section, we consider the case of tracking mobile targets with a linear sensor

array mounted on a moving vehicle. The array is assumed to be placed at the



Chapter 5. Tracking with Doppler Radar

104

front bumper of the vehicle. The dynamics of the vehicle must be incorporated in

accessing the state of the moving targets.

5.7.1 Vehicle dynamics

Lets consider the velocity pro le of the bumper of a vehicle when it is making a

turn on a radius R [169]. As shown in Figure 5.20 , when the speed at the position

P is U%and the angle it makes with a line drawn along the vehicle is o, the velocity

vector at that particular point is,

2 3 2 3
g Ug g g U%in o
US U%os o
where,
VR
0_ u.
U R
u0 = arctan

R, + x0 ’

v

(5.7.1)
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— I -
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and,

P
Ri= (R + x92+ b

(0 (.0

) (.0
Figure 5.21: Tracking a target when the sensors are mounted on a moving vehicle

Consider the Figure 5.21. u%,;u%; and ul; are the velocity components at the
points A; B and G along x direction respectively. ugA; USB and Uge are the velocity
components at the points A;B and G along y direction respectively. The signal
generator is at G(g;0) and ¢ is the bearing of agent with respect to G. For this

dynamic case the state of the target without measurement errors can be written as,
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2 2 . .
gsin g cos A pPsin A cos B
X sin( B8 A)
(9 psin asin g
y sin( g A)
= (5.7.2)
u V3 sin_a V3 sin g
X sin( 8 A)
Vv{ cos v3 cos
uy A - B B A
sm( B /_\)
where,
Ve =va (Wpcos a+ USA sin A+ udgcos g+ USG sin g)
and

0 _ 0 0 o 0 0 o :
Vg = VB (U COS g+ Uygsin g+ UygCos g+ UygSin g):

Now we consider the case where the angle measurements are corrupted with zero
mean Gaussian noise, hence the Maximum likelihood based approach is provided

to increase the localization accuracy.

5.7.2 Maximum likelihood for AoA-only location estima-
tion

O

(1.1)

Figure 5.22: Sensor target locations and measurements

AoA-only localization problem can be formulated as follows in R2. Let x =

(Xt;¥t)" be the target position vector to be estimated from bearing measurements
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= (1; 2;::5 N)T, where (0)T denotes vector or matrix transposition. The target
AoAs are measured from xed N number of sensors at known positions or from
sensors xed to a moving platform where the trajectory of the platform is known.
The sensor coordinates are denoted by Xs = (Xs;Ys), Which associate with the
measurement 4,(S 2 1;:::;N). The problem geometry is shown in Figure 5.22.
The angle measurements consist of the true bearings , corrupted by additive noise
= ( 1, 2;:05 N)T, which is assumed to be zero mean Gaussian with N
covariance matrix S = diag( ?; 2;:::; 2). Thus the problem is described by the

nonlinear equation,

= g(xy) t+ (5.7.3)
where,
9(xt) = (G (X0); 15 G (X))
and

On(Xt) = arctan( yn= xn);

Xn Xt Xn;

yn =Yt Yn; Nn= 125N
The Cramer-Rao Lower Bound on the covariance of any unbiased estimator for

this problem is given by

C=1(gS 'go ™ (5.7.4)

The derivative, gx = @=@ evaluated at the true target position is then
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where,

2 _ 2 2 . — 1N -
rk— Xk+ yk> k— 1,...,N.

N is the number of sensor positions.

The Maximum Likelihood estimator is useful due to its properties guaranteed by
a well known theorem of estimation theory. The theorem states that, if the number
of measurements is large enough, the ML estimator is unbiased and its covariance
achieves the CRLB under mild regularity conditions. When the measurement noise

is Gaussian with zero mean, the ML estimator of the target location X, is given by

AML = argmianFM L(X; )j (5.7.5)

where, the cost function, Fy | (X; ) has the form

1
FuiL(x; )= E(Q(X) 'S Y(gx) )

Above (5.7.5) involves a nonlinear least-square minimization, which can be per-

formed by the Newton-Gauss iterations:

Rier =R+ (S "g) 'S ' g i= 1525 (5.7.6)

An initial estimate, Xg is required for (5.7.6) which is close enough to the true
minimum of the cost function. Such an initial estimate may be available from
prior information. A simple (but suboptimal) procedure can also be used to obtain
an initial estimate. The partial derivatives involved in (5.7.6) are evaluated at
the current estimated position, Xj. A number of 2-4 iterations are su cient for

convergence in real implementations.
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Simulation result in Figure 5.23 shows the tracking of two mobile agents using
three Doppler sensors mounted linearly on the bumper of a vehicle which are 0.5m
apart. Figure 5.24 depicts the same dynamic system with four Doppler sensors
mounted linearly. The mean squared error of the two systems are compared in
the Figure 5.25 and it can be seen that the system with the four Doppler sensors
performs better than the system with three sensors. The estimation accuracy will
increase as the number of of sensors increases. This is due to the fact that, if the
number of measurements is large enough, the ML estimator is unbiased and its

covariance achieves the CRLB under mild regularity conditions.
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Figure 5.23: MLE for Doppler-radar tracking with three sensors

5.8 Summary

In this chapter a linear state estimator is derived with provable performance limits
for radar based target tracking. Here, nonlinear Doppler frequency modulation
and associated angle of arrivals are used as measurements. A completely linear
algorithm is provided using a novel measurement conversion method that does

not use Taylor-series type approximations. Mathematically rigorous proof of the



Chapter 5. Tracking with Doppler Radar 110

25 T
20k - - - Estimated paths of agents |
—— Real paths of agents
““““ Paths of the sensors
c 15 B
§el
©
g
._IE
> 10+ i
Starting positions e
of agents . e
5 L ‘. . i
Starting positions
of four sensors
0 L L L L L L L
-4 -2 0 2 4 6 8 10 12

x—direction
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Figure 5.25: Variation of error with time for three and four sensors

boundedness of the Itering error is an important contribution of this technique.
Extended Kalman Iter does not provide such results.

A linear sensor array is considered here and the mathematically justi ed nec-
essary and su cient condition in tracking multiple mobile targets is derived. The

ghost formation problem is considered and removal of such targets is addressed
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while restricting to the minimal con guration in the sensor array as an alterna-
tive to increasing the number of sensors in the array. The linear approach for the
complete information case is also modi ed to account for the case of incomplete
information. The theoretical assertions are veri ed via physical experimentation in
addition to a ctitious simulation scenario.

Also, tracking multiple mobile targets with a Doppler radar sensor array mounted
on a moving vehicle has been studied in this chapter. Similar to the stationary case,
Doppler frequencies modulated from the mobile targets on the single-frequency-
continuous-wave radar are captured by the linear sensor array and analyzed in
order to estimate the positions and velocities of the targets. As the measurements
corrupted by noise lead to poor localization, the maximum likelihood estimation
(MLE) is employed to enhance the estimation accuracy. The theoretical derivations
are veri ed using computer simulation.

For small number of samples maximum likelihood estimates can be heavily bi-
ased and the optimality properties may not apply. Also, the choice of starting values
in uences the maximum likelihood estimation. Model based estimators, such as ex-

tended Kalman Iter can be incorporated for better estimation in further studies.
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Concluding Remarks

This thesis has led to number of potential research directions in Doppler radar based
tracking and sensor fusion in AoA, range,TDoA and ToA measurement techniques.
Summary of the di erent research aspects studied in the dissertation is given in
this chapter in the form of an application case study in close range tracking. The
real world application value to the study is provided by linking it to the seemingly

standalone research outcomes.
Through-Wall-Radar (TWR)

Through wall tracking of human activities is an emerging eld of interest due to the
increasing demand in the applications of defense and commercial systems ranging
from urban warfare to rescue operations. Tracking of human movements inside a
building enhances the chance of successful law enforcements or military operations
minimizing casualties. The radar system introduced in this thesis can be modi ed
to track humans through the wall.

In such real world applications, the state of the target should be estimated
robustly in real time. Ultra wide band (UWB) radar seems popular in these appli-
cations with resolution of the order of centimetres have been reported in [28{34].
The prominent disadvantage of these systems is the degradation of the accuracy
in measurements due to the dispersion and signal loss as the waves are traveling

through some wall materials such as concrete.

112
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Human activity can be recognized by analysing the micro-Doppler e ects [35].
Micro-Dopplers are generated from non-rigid-body motions of human limbs and
contain valuable information related to human gait recognition. Using a higher
frequency the radar system discussed in our study can be modi ed to obtain the
micro-Doppler e ects of moving limbs.

A coherent wave propagation model is needed in the context of Doppler-based
continuous wave radar for through wall tracking. This model would address all the
factors such as material type, thickness of the wall and homogeneity of the material
and they should be included in the estimator so that more reliable readings can be
obtained. The signal propagation patterns for di erent wall materials should be
classi ed with their dispersion and loss e ects. Antenna arrays can be designed to
capture the returning wave e ectively if the wave propagation model through the
particular wall material is known. This radar system should have the capability
to adjust in di erent circumstances, for example walls with di erent materials or
thickness and also be portable and easy to handle by the operator.

As discussed in our study, robust linear Itering can be utilized to get a better
approximation to the actual trajectories of the moving humans behind the wall since
the waves contains some noise with the required information. Gait recognition can
be carried out by further analysis of the micro-Doppler returns from the moving

human body parts.
For automobile applications

Modern cars are equipped with reverse sensors, reverse cameras and blind-spot
sensors for the safety of the vehicle and passengers. One of the main requirements
in these designs is to identify the dynamic nature of the surroundings of the vehicle
in real time. Camera systems are seemingly good candidate for this application but

they inherently posses the following disadvantages,
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Not reliable in rainy/ snowy conditions
Not reliable at night as sudden ashes of lights may cause fatal misjudgments

Not reliable when the clutter in the eld of view increases

As opposed to the camera systems, radar systems have advantages such as,

Can suppress the clutter when the correct type of Radar is used( As an ex-

ample Doppler radar for moving target detection)

Environmental e ects such as rain and snow can be minimized signi cantly

Reliable at night or gloomy conditions

Not a ected by sudden light changes
Optimal sensor separation

In this thesis, optimal sensor separation for linear arrays employing AoA-only and
range-only measurements is discussed. The Cramer-Rao lower bound for the un-
biased estimators is utilized for the study and several important results have been
derived. In practical applications, these results can only be used as a guide for
sensor positioning as the estimation accuracy is a ected by the bias and e ciency
characteristics of the employed estimator.

The bias and the variance (mean-squared error) has an inversely proportional re-
lationship [127]. Extensive studies on this scenario are carried out in [125,128,129].
By incorporating the bias-variance trade o given in these studies, the results ob-
tained in our study can be further extended for more practical estimation algorithms
such as maximum likelihood.

The results obtained in Chapter 3 can be employed to arrange the AoA-only or

Range-only sensors in a manner which signi cantly enhances recursive localization
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performance. This analysis is also useful in practical applications such as optimal
path planning and trajectory control of mobile sensors for localization [15,109,111].

For simplicity, single target scenario is analysed in this study. The same concept
proposed here can be further extended for the multiple target localization. In gen-
eral, overall optimal sensor placement for multiple targets will provide suboptimal
positioning for individual targets.

The exact position of the target should be known in the theoretical analysis
in determining the optimal sensor placement. Even though in practical situations
this information is not readily available, a rough estimate of the likely region of the
target is su cient in nding the sensor positions to obtain enhanced localization

results.
Time-Delay-of-Arrival and Time-of-Arrival systems

The unique localization of a target with minimum number of TDoA measurements
is analysed in Chapter 4. The measurement error is assumed to be bounded. The
limiting error bounds have been derived for both R? and R® after which, the unique
solution region cease to exist. It has been shown that the sensor geometry in uences
the limiting error bound. This study can be further extended, specially in the
geometry of the sensor positions for robust localizations.

When it comes to multiple target localization, the data association problem
is prevalent. The study provides an analysis on unique localization of multiple
emitters using TDoA or ToA measurements. For a given number of targets to be
uniquely localized, the maximum bound on the required number of sensors in RY
is derived. This analysis provides the groundwork for further studies in TDoA and

ToA based localization.
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Final remark

Several application scenarios which use the aspects of this research is presented
in the above section. However, there can be many other potential applications
which could utilize the theories provided in this study either partially or completely.
Although a major part of this thesis provides a solid foundation to a Doppler
radar based close-range tracking using robust linear Itering, there exists many
potential future work which will undoubtedly enhances the application value to
the underlying work. Among them, real-world implementation of the though-wall

tracking of humans with gate recognition is signi cant.



Appendix I

Consider arbitrary constants x; 2 R%i 2 f1;2;3g; 2 R*, and y; 2 R? arbitrary

variables.

Proposition 3.

kXi Y1k__

= 8i2f 1;2;3g and x; 6 x;; for i6 ] ) =1
kXi ka
Proof.
kXi y1k _ . A )

This can be given as,
(1 HxTxi 2x7y1+2 X7y + yiy 2yIyy= 0 8i2fl;2;396.0.1)

Considering, i = 1;2,

(1 D(xi+x2)+2 %2 2y1= 0 (6.0.2)
and considering, i = 1;3,

(I (it x3)+2 %, 2y1= 0 (6.0.3)
Hence, as y4 is not a function of x; and x, & x3, = 1(only the positive sign is
considered as per the de nition of the magnitude). ]
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Figure 6.1: Trajectories of X;;i 2 f1;2;3;49 as per equation 5.2.4 and 5.2.5



Appendix II

Consider the following two trigonometric equalities

sin( +v)= !sin(); (6.0.4)
cos( +v)= ! cos(); (6.0.5)
with a given > 0.
Proposition 4. Then, 8 2 [0; =2],andv jj 9! :cos ! 0013 )

Proof. Writing the expressions 6.0.4 and 6.0.5 in the form of,

P 2

sin(v)= !sin cos sin 1 ! Zsin® ; (6.0.6)

Y

sin(v)= ! sin cos cos 1 ! 2cos? ; (6.0.7)

respectively. Consider the positive valued one as function f and the negative val-

ued one as function g. If the maximum/minimum value of f and g denoted by

fmax=min(! ) and QGmax=min respectively,

q
2 1 & > >
fmax=min(! ) = > p -
: 1 2 1>1 >cos ;
S q
1 &5 L<t< 1
gmax=min(! )= > p '
1 ! 2 1<! < cos
Therefore the proof follows immediately. ]
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Figure 6.2: Error Variation of f with !

Due to the symmetric nature around the y axis, the corresponding expressions
6.0.6 and 6.0.7 represents identical error variation. The error variation of f for !

is illustrated in the gure 6.2.
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