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ABSTRACT 

 

 

Plug-in hybrid electric vehicles (PHEVs) benefit from the features of both 

conventional hybrid electric vehicles (HEVs) and electric vehicles (EVs) by 

having a large battery which can be recharged when plugged into an electric 

power source. PHEVs are creating much interests due to their significant potential 

to improve fuel efficiency and reduce emissions particularly for daily commuters 

with short daily trips. PHEVs would be the next generation of vehicles in the 

market before full electrification of vehicles becomes mature. The aim of this 

research is to find the most efficient energy management strategy (EMS) to 

control the energy flow in the powertrain components of PHEVs. The simulations 

are conducted on a serial drivetrain model; however, the presented approach for 

EMS of PHEV in this thesis is equally applicable for other available hybrid 

architectures. The thesis also gives a review of control approaches that are 

exclusively applicable for the EMS of PHEVs. 

The implementation of globally optimal energy management strategies is only 

feasible when an accurate prediction of driving scenario is available. There are 

many noise factors which affect both the drivetrain power demand and the vehicle 

performance even in identical drive-cycles. In this research, the effect of each 

noise factor is investigated by introducing the concept of power-cycle instead of 
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drive-cycle for a journey. A practical solution for developing a power-cycle 

library is introduced to improve the accuracy of power-cycle prediction.  

PHEVs employ a rechargeable battery as an energy source alongside a fuel 

source. Consequently, in PHEVs the engine temperature declines due to the 

reduced engine load as well as the extended engine off period. It is proven that the 

engine efficiency and emissions depend on the engine temperature. Moreover, 

temperature, as one of the noise factors, has direct influence on the vehicle air-

conditioner and the cabin heater loads. Particularly, while the engine is cold, the 

power demand of the cabin heater needs to be provided by the battery instead of 

the waste heat of the engine coolant. Existing studies on EMS of PHEVs mostly 

focus on the improvement of fuel efficiency based on the hot engine 

characteristics neglecting the effect of temperature on the engine performance and 

the vehicle power demand. This thesis presents two new EMSs which consider the 

temperature noise factor to maximise the performance and the efficiency of 

PHEVs for a predefined journey. First, a rule-based approach to find the best 

charge depleting regime of battery is introduced. The rule-based approach is a 

sub-optimal solution for the control problem but is easily implementable, as it 

requires limited computation effort. The second approach incorporates an engine 

thermal management method, which formulates the globally optimal battery 

charge depleting trajectories based on the Bellman’s principle of optimality. A 

dynamic programming-based algorithm is developed and applied to enforce the 

charge depleting boundaries while optimizing a fuel consumption cost function by 

controlling the engine power as an input variable. The optimal control problem 

formulates the cost function based on two major state variables: battery charge 
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and internal temperature. The algorithm also considers a minimum duration for 

which the engine is allowed to switch from on to off modes preventing the 

concerns associated with the engine transient operation. It is demonstrated that the 

temperature and the cabin heater/air-conditioner power demand, even in an 

identical drive-cycle, can significantly influence the optimal solution for the EMS, 

and accordingly the fuel efficiency and the emissions of PHEVs.  
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CHAPTER 1   

INTRODUCTION 

1.1 MOTIVATION 

Living in the era of increasing environmental sensibility and rise in fuel price 

makes it necessary to develop new vehicles that are more fuel efficient and 

environmental friendly. The oil price has risen almost fourfold since 10 years ago 

and is likely to continue to increase in the future because of shrinking oil supplies 

and surge in demand. Increasing concerns about environmental issues, such as 

global warming and greenhouse gas emissions, boost the feasibility of new 

technologies of green vehicles. Implementation of fuel-economy regulations and 
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ever-tightening emission standards are major technology challenges that all 

automotive manufacturers currently face.   

Electrification of vehicle drivetrains has been a major breakthrough to realise 

the reduction of fuel consumption and emission ambitions without sacrificing 

performance. An electric vehicle (EV) was once considered as a promising 

alternative for a conventional vehicle due to good overall efficiency, low audible 

noise, and zero on-board emissions. Nevertheless, technological and financial 

barriers regarding electrical storage devices such as batteries and super-capacitors 

delayed fully commercialization of electric vehicles. Still, available EVs in the 

market suffer from high cost and rang-anxiety issues. Hybrid electric vehicles as 

the second option (HEVs) have been available in the market since 1997, and their 

market share has improved since then. Plug-in hybrid electric vehicles (PHEVs) 

benefit from the features of both conventional HEVs and EVs. PHEVs have a 

large battery which can be recharged when plugged into an electric power source 

alongside an engine to replenish the battery for long journeys. The features of 

PHEVs are appealing for daily commuters since the larger battery could supply 

energy demand of short journeys and the combustion engine could realise the 

range extension. PHEVs could be a short-term solution before the technological 

barriers for full electrification of vehicles are overcome. 

The highest level of powertrain control in HEVs or PHEVs is an energy 

management strategy (EMS) that interprets the driver power demand for 

drivetrain components. The EMS decides how to distribute the vehicle power 

demand between the electric power path and the conventional mechanical power 

path efficiently. The extra available energy source, the battery charge of PHEVs, 
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adds an extra dimension to the complexity of the EMS control problem compared 

to HEVs in which the engine is the sole source of energy. Therefore, to achieve 

full benefit out of having an extra energy source on-board, a charge management 

strategy should be incorporated into the EMS. The extra energy source also results 

in a decline in the engine temperature due to reduced engine load as well as 

extended engine off periods. It is well known that engine efficiency and emissions 

depend on the engine temperature. Moreover, temperature has direct influence on 

the vehicle air-conditioner and the cabin heater loads. Particularly, while the 

engine is cold, the power demand of the cabin heater needs to be provided by the 

battery instead of the waste heat of the engine coolant. This thesis addresses the 

sensitivity of PHEVs’ drivetrain performance with regard to the temperature 

noise-factor. This research proposes methodologies based on a rule-based as well 

as an optimal control theory method to derive an optimal charge depleting 

trajectory for the PHEV battery. The significance of temperature on the optimal 

EMS of PHEVs is also demonstrated. The resulted charge management coincides 

with the optimal thermal management of the engine for minimum fuel 

consumption, while maximizing the use of the engine waste heat for the cabin 

warming in place of the battery electricity in cold weather.   

1.2 HYBRID ELECTRIC VEHICLES  

Hybrid vehicles benefit from an efficient combination of at least two power 

sources to propel the vehicle. Generally, one or more electric motors alongside an 

Internal Combustion Engine (ICE) or a fuel cell, as a primary energy source, 

operates the propulsion system of HEVs. A battery or a super-capacitor as a 
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bidirectional energy source provides power to the drivetrain, also recuperates part 

of the braking energy dissipated in conventional ICE vehicles. Usually the term 

HEV is used for a vehicle combining an engine with an electric motor. Hybrid-

Inertia, Hybrid-Hydraulic, and fuel cell propulsion systems are also considered as 

members of the HEVs family.     

The main advantages of the HEV drivetrain are as follows:  

 ICE downsizing: Since the peak power demand could be provided by a 

combination of the ICE and the battery, the ICE could be sized for average 

power demand of the vehicle. This reduces the weight and improves the 

efficiency of the ICE when operating at the same load of a larger engine. 

 Regenerative braking: The on-board battery or super-capacitor of HEV can 

be recharged while the electric motor operates in the generator mode 

providing braking force instead of friction brake.     

 Engine on/off functionality: The engine can be turned off when the vehicle 

is at standstill or the vehicle power demand is low. This prevents 

unnecessary engine idling or its operation at low power which is generally 

inefficient.  

 Control flexibility: The additional degree of freedom to provide the 

vehicle power demand from either of the power sources gives the 

flexibility to operate the powertrain components in a more efficient 

manner. 
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A more extensive introduction to HEVs and modern vehicle propulsion 

systems can be found in the literature [1-5].  

1.3 PLUG-IN HYBRID ELECTRIC VEHICLES 

Plug-in hybrid electric vehicles (PHEVs) benefit from the features of both 

conventional HEVs and electric vehicles (EVs) by having a large battery which 

can be recharged when plugged into an electric power source. A PHEV is a viable 

solution to replace some part of the energy used in vehicular transportation with 

electricity, before full electrification of vehicles becomes mature [6]. Moreover, 

PHEVs can eliminate concerns about EVs’ recharging time and range anxiety. 

PHEVs have considerable influence on the shift from fossil fuels to electric 

energy sources for significant part of daily commutes. Hence, according to an 

investigation conducted by Toyota, the accumulative daily travel of around 75%, 

80%, and 95% of vehicles in North America, Europe, and Japan are lower than 60 

km, respectively [7]. The cumulative daily travel in Australian cities is depicted in 

Figure 1.1.  
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Figure 1.1.Cumulative distribution of daily driving distances in Australian cities, courtesy of R. Zito [8]  

The benefits offered by the PHEVs drivetrain have both individual and national 

significance. Using the energy stored in the battery through the utility grid to 

displace part of fuel used for vehicular applications is the major feature of 

PHEVs. This means using a cleaner and between three to four times cheaper 

energy in comparison to petrol [9, 10]. The widespread use of PHEVs whose 

battery-generated energy is sufficient to meet average daily travel needs could 

reduce the petrol consumption between 40 to 50 percent [11-15]. From the 

national point of view, the full penetration of PHEV in society will result in an 

energy dependence shift from petroleum to the sources of electricity generation 

that are generally local industries. Greenhouse gas (GHG) and other air pollutant 

emissions will be shifted from high population urban area to electricity plants 

area. Also, there is an opportunity to produce the electricity from nuclear energy 

or sources of renewable energies [10]. Off-peak charging strategies or more 

sophisticated vehicle to grid technology can help load levelling in electricity 

generation industry which will consequently result in decreasing electricity cost 
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because of reduction in power plant start-up, operation, and maintenance costs 

[12]. However, the battery charging strategies significantly affect the electricity 

consumption from the power generation point of view [16]. 

1.3.1 Extended-Range Electric Vehicle   

Extended-range electric vehicles (EREVs) are PHEVs that can operate on a 

pure electric vehicle (EV) mode. Both the battery and the tractive motor of 

PHEVs are capable of providing maximum tractive and auxiliary power demand 

for the powertrain. The maximum range that can be covered on the EV mode for a 

standard power-cycle is called all electric range (AER) for the specific cycle. The 

market of EREVs is focused on daily commuters who prefer the benefits of 

driving on the EV mode for daily routine travels while enjoying the driving 

without the range-anxiety for longer journeys. 

1.3.2 Definition of operating modes for PHEVs and EREV 

 Charge Depleting  and EV mode 

Charge depleting (CD) refers to a PHEV operation mode in which the 

vehicle drains energy from the charged battery. However, sometimes 

because of the drivetrain restrictions, the engine operation is inevitable. 

The EV mode is a special case of the charge depleting. During the EV 

mode, the engine is turned off and the vehicle only relies on the battery 

energy to cover both the tractive and ancillary loads.  

 Charge sustaining (CS) mode  
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Similar to HEVs, the battery charge is sustained around a predefined 

range. Generally, the CS mode happens when the battery is completely 

depleted to the minimum applicable threshold for the battery state of 

charge (SOC). That is, the PHEV operates like a conventional HEV when 

the SOC reaches the minimum applicable SOC defined for the battery. 

 Blended mode  

In the blended mode, both the engine and the battery provide the 

required power demand for the vehicle. Generally, the control strategy of 

PHEV selects the ratio of the engine to the battery power in a more 

efficient fashion. That is, in comparison the simple CD, a blended mode 

possesses a more intelligent charge management strategy.    

1.3.3 HEV and PHEV powertrain architecture  

The combinations of connections between components of the propulsion 

system define the architecture of HEVs. Conventionally, HEVs are categorized 

into three basic drivetrain architectures: series, parallel, and series-parallel. A 

schematic representation of these three basic architectures is given in Figure 1.2. 

Detailed descriptions of the characteristics of each drivetrain can be found in the 

literature [1-4]. This introduction focuses on the characteristics that distinguish 

between these powertrain architectures for PHEV applications. 
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Figure 1.2. (A) Series drivetrain. (B) Parallel drivetrain. (C) Series-parallel drivetrain [ADVISOR help 

documentation]   
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The series configuration is commonly recognized as an electric vehicle that has 

an engine and a generator to recharge the battery so it is easier to upgrade it to a 

PHEV. The series architecture is a common drivetrain for diesel-electric 

locomotives and ships. The series architecture drivetrain has a sized electric motor 

to coupe the designed vehicle maximum traction power. The increase in power 

capacity of the battery enables the AER and the zero emission operation of the 

series architecture. Since there is no mechanical coupling between the wheels and 

the engine in this architecture, the engine can operate independently around its 

most efficient torque-speed region. However, the well-known drawback of the 

series drivetrain is the conversion of the engine mechanical power to electrical 

and then back to mechanical form in the electric motor. This efficiency chain 

reduces the overall efficiency of the drivetrain. For example, GM Volt is a 64 km 

EREV with a base platform of series drivetrain. Volt benefits from a mode 

changing architecture by employing a planetary-gear-set and two brakes. The 

mechanism enables the vehicle to shift from the series to the series-parallel 

architecture to solve the above-mentioned drawback. In this mode, the engine 

could mechanically transfer power to the final-drive in higher vehicle speeds and 

power demands. Also, it has two different EV modes in which the EV mode is 

shifted from one electric motor drive to two electric motor drives in order to 

reduce the losses associated with high speed operation of the electric motors, 

particularly during cruise operation [17] 

In parallel drivetrain, both the engine and the electric motor can propel the 

wheels directly (see Figure 1.2 (B)). Properly sized electric motor and battery are 

necessary to upgrade a parallel drivetrain to an EREV. In the pre-transmission 
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parallel architecture similar to that of Honda Insight, Civic, and Accord HEVs, a 

small electric motor is located between the engine and the transmission replacing 

the flywheel [18]. It is also possible for a parallel HEV to use its engine to drive 

one of the vehicle axles, while its electric motor drives the other axle. Daimler 

Chrysler PHEV Sprinter has this powertrain configuration. A direct mechanical 

connection between the wheels and the engine eliminates the conversion losses 

from which the series architecture suffers. On the other hand, it reduces the degree 

of freedom of the engine speed control to the transmission ratio selection. 

The series-parallel or power split architecture, the most commonly used 

drivetrain for HEVs, is illustrated in Figure 1.2 (C). Toyota Prius, the most sold 

HEV, Toyota Camry and Highlander hybrids, Lexus RX 400h, and Ford Escape 

and Mariner hybrids benefit from the features of this architecture. The series-

parallel architecture first introduced by Toyota Hybrid System (THS) [19-23]. 

The series-parallel hybrid powertrain combines the series with the parallel hybrid 

architecture to achieve the maximum advantages of both systems. In this 

powertrain, the mechanical energy passes through the power split in two series 

and parallel paths. In the series path, the engine power output is converted to 

electrical energy by means of a generator. In the parallel path, on the other hand, 

there is no energy conversion and the mechanical energy of the engine is directly 

transferred to the final-drive through the power split, a  planetary gear system 

[24]. Generally, similar to the parallel drivetrain, the series-parallel architecture 

does not have a sized electric motor for the maximum traction power demand of 

the vehicle. The pure EV mode is possible for the series-parallel drivetrain; 

however, in addition to the electric motor power capability, there is a mechanical 
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constraint which arises from the planetary gear set dynamics. There is no clutch to 

release the electric motor form the planetary gear-set in the series-parallel 

architecture. Therefore, during the EV mode, the generator speed increases 

sharply proportional to the motor speed with ring to sun gear teeth number ratio. 

One of the generator rolls in the series-parallel drivetrain is engine cranking. 

Therefore, both high speed and torque capability of the generator to start the 

engine is important for high speed EV driving. Toyota Prius PHEV can operate on 

the EV mode up to speed of 100 km/hr [24, 25]. 

Another design for the power split HEV is the Allison Hybrid System also 

known as AHSII [26]. This system is a dual mode system with two planetary gear 

set that is designed by GM and currently is employed for several mid-sized SUVs 

and pick-up trucks.   

1.3.4  Drivetrain compatibility for PHEV applications 

Each HEV architecture, as discussed in Section 1.3.3, has its own benefits and 

drawbacks. The characteristics of each powertrain should be reassessed when the 

battery capacity and the electric motor power are increased in PHEVs. Li et al. 

have compared the series and the parallel drivetrains of simulated mid-sized 

SUVs with completely same-sized components in ADVISOR [27]. Two 

simulations with two different battery capacities resulted in different outcomes in 

term of the overall powertrain efficiency. The first simulation with a 60 Ah 

Nickel-Metal Hydride battery resulted in 11.2% better overall drivetrain 

efficiency for a parallel architecture. This was caused by better efficiency of the 

electric motor operation in propelling and regenerative braking modes of the 
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parallel drivetrain. Another simulation with an upgraded battery to 80 Ah power 

showed that the series powertrain passed all the simulated power-cycle in the 

AER. While the upgraded overall efficiency of the parallel configuration did not 

improve with an upgraded battery, the series powertrain showed 30.5% better 

overall efficiency in comparison to the parallel drivetrain. The series powertrain 

had less pollutant operation while had sluggish acceleration performance due to 

the electric motor and the battery power limitations. The study concluded that 

with limited on-board electric energy, the parallel PHEV overall efficiency and 

the acceleration performance are more than the series drivetrain. However, by 

increasing the battery capacity the series drivetrain is completely preferable [27].  

Jenkins et al. have investigated the correlation between the motor and the 

battery weight/power and the fuel economy of Prius series-parallel HEV in 

ADVISOR [28]. The aim of the investigation was to check the compatibility of 

the series-parallel drivetrain to be changed to a PHEV. Jenkins et al. simulations 

showed that there is a slight fuel economy improvement if the motor is upgraded 

to 75 kW, the motor mass is increased up to 60 kg, while the battery is remained 

unchanged. With an upgraded battery, fuel efficiency improved up to 80%. The 

improvement in the fuel economy of a Prius PHEV, which was recently released, 

is consistent with Jenkins et al. research result in [28].   

Two retrofitted Hymotion Prius and EnergyCS Prius PHEVs were tested in the 

Advanced Powertrain Research Facilities (APRF) at Argonne National Laboratory 

(ANL) in Urban Dynamometer Driving Schedule (UDDS) and Highway Fuel 

Economy Test (HWFET) [29]. Hymotion Prius utilizes a Lithium polymer battery 

parallel to the Prius NiMH battery and EnergyCS replaces the Prius battery with a 
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higher capacity Li-ion battery. The engine in both tests is ignited in higher vehicle 

speeds and remained on less frequently compared with the conventional Prius. 

The operation of Prius PHEV is similar to OEM Prius when the battery is 

depleted. About two third and half of the fuel consumption is replaced by 

electricity in UDDS and HWFET, respectively. Due to the reduction of engine 

load, its efficiency for Prius PHEV were 20% and 24.5% for cold and hot starts, 

respectively. The engine efficiency were 30.8% and 34.1%, respectively for the 

conventional Prius in simulation over the same drive-cycle. The temperature of 

the engine has significant effect on its combustion efficiency and emission. In 

addition, the continual flow of combustion results gases from the exhaust system 

maintaining the catalyst at its operational temperature.  

Freyermuth et al. have compared three PHEV configurations in PSAT [30]. 

The components of a midsize sedan sized to meet the following performance 

criteria: 

 0-60 mph < 9 s 

 Gradeability 6% at 65 mph 

 Maximum speed > 100 mph 

Two different 16 km and 64 km AERs were assumed for sizing of the battery 

for all three architectures. Consequently, sizing of the components was different 

for each architecture to meet the above-mentioned performance criteria. In urban 

driving condition, the series-parallel showed the best fuel economy in comparison 

with the series and the parallel configurations. The parallel drivetrain had 

completely better efficiency for the vehicle with the battery sized for 16 km AER 
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in comparison with the series one, whereas for the vehicle with the battery sized 

for 64 km AER, the parallel and the series performances were almost similar. In a 

highway driving condition, the series-parallel and the parallel architectures 

showed better efficiency in comparison to the series architecture. This is caused 

by the power recirculation described as the drawback of the series architecture. On 

the other hand, the engine efficiency of the series PHEV was the highest, since the 

engine operation is independent of the wheels speed. The series-parallel had better 

engine efficiency in comparison with the parallel architecture. However, because 

of the power recirculation particularly in high vehicle speed, the series-parallel 

drivetrain presents similar overall efficiency to the parallel configuration.  

In summary, to investigate the compatibility of different architectures for 

PHEVs, two parameters should be considered:  

1. EV mode capability and range covered during AER  

Generally unlike the series architecture, the electric motor of the 

parallel and the series-parallel architectures is not capable of providing the 

maximum traction power demand for the vehicle. If an AER is defined for 

a PHEV, both the battery and the electric motor should be sized 

accordingly. That is, the maximum designated speed and gradeability 

should be achievable during AER with power only supplied with electric 

power path. Desirable AER has direct relation to the cumulative daily 

travel in the aimed market. Unused AER hinders the benefits of the PHEV 

drivetrain by imposing the extra cost and weight of the battery. On the 

other hand, the battery capable of short CD or AER, only adds extra 
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weight for a long CS mode operation of the vehicle during longer 

journeys.     

2. Engine load and temperature reduction 

During the blended mode or CD, the vehicle power demand is divided 

between two sources of energy, the battery and the electric motor. That is, 

the engine supplies a fraction of total energy demand of the vehicle. The 

engine efficiency is generally higher for medium to high power demand at 

high torque and medium speed range. Therefore, the engine operation at 

lower loads deteriorates its efficiency. In addition, the lower engine load 

reduces its temperature that leads to lower efficiency and higher emission 

particularly for cold weather operation.  

 Similar to what Li et al. asserted in [27], if the high capacity battery is 

available, the series drivetrain has more positive aspects to upgrade to a PHEV or 

an EREV. Volt GM with a considerable 64 km AER battery capability is selected 

a series drivetrain as a base of its drivetrain. However, to prevent the double 

energy transformation, Volt benefits from a mode shifting mechanism that 

switches the drivetrain to the series-parallel architecture [17]. The series-parallel 

with more complicated configuration has the most efficient CS mode when 

operates as a traditional HEV especially for drive-cycles simulating urban area 

driving. In addition, the planetary gear-set for the series-parallel configuration 

operates as a Continuous Variable Transmission (CVT). In spite of the fact that 

the AER cannot be defined for this drivetrain in high speed where the engine 

ignition is inevitable, still the series-parallel has a very efficient CD mode. 
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Therefore, it can be concluded that for PHEVs with a smaller battery similar to 

Prius PHEV, the series-parallel architecture is a suitable choice.    

The overall performance of PHEVs dramatically depends on the driving style 

and conditions when compared to the conventional HEVs. This is due to the 

added weight of a large battery, when depleted during the AER or CD modes, is 

just an extra weight. Also, the reduced load of the engine leads to its lower 

efficiency when compared to conventional HEVs [25].  

1.4 PATHWAY FOR BETTER FUEL ECONOMY   

Improvements in: (i) well-to-tank, (ii) wheel-to-miles, and (iii) tank-to-wheel 

efficiencies are three possible approaches to reduce the fuel consumption of 

vehicles [1, 2].  

Available techniques to improve the tank-to-wheel efficiency of vehicles are 

listed below: 

1) Hybridization  

2) Engine efficiency improvement 

 Turbocharging and supercharging 

 Direct injection 

 Low friction lubrication 

 Variable valve timing, variable compression ratio  

 Electric accessories (water pump, oil pump, air-condition 

compressor) 

3) Transmission  



  Chapter 1 

18 

 

 Manual transmission 

 Continuous variable transmission (CVT) 

 Electronic continuous variable transmission (ECVT) 

4) Vehicle  

 Aerodynamic improvement 

 Low rolling resistance tires  

 High strength/ low weight alloy and carbon fibre structure  

The engine size has significant effect on the fuel economy of the vehicle. For 

the same power demand from the engine, the efficiency of smaller engines is 

generally higher. The reason is that the oversized engines are chosen for getting 

the maximum power demand of conventional vehicles. Drivability, acceleration, 

gradeability, and towing capacity design targets define the maximum power 

demand of vehicles. For HEVs or especially for PHEVs in which a powerful 

battery and an electric motor are available in the powertrain, depending to the 

architecture, the maximum power demand of the vehicle is supplied with an 

electric energy path in addition of the engine path. A downsized engine only 

provides the average power demand of the vehicle that is significantly lower than 

the designated maximum power capability of the drivetrain. The maximum power 

of the engine is sized equal to the power demand of the vehicle for cruising at 

designed maximum speed.  

This research focuses on the improvement of the tank-to-wheel efficiency, 

assuming a predefined component selection for the propulsion system. The 

opportunities offered by a chosen drivetrain is realised by developing an 

appropriate EMS. In the following notes, the concept of the fuel consumption of 
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the vehicle is reviewed and the important parameters for the efficiency of PHEVs 

are highlighted. 

1.4.1 Efficiency of PHEV components  

The fuel economy and the maximum AER covered by a fully charged battery 

are dependent to the efficiency of each of the PHEV individual components. As 

mentioned before, it is assumed that the components of PHEVs are chosen and the 

aim of this research is to develop an appropriate EMS to maximise the total 

efficiency of the vehicle. This requires a comprehensive understanding of the 

components efficiency to avoid their low efficiency operation region by means of 

the degree of freedom that the hybrid system offers for selection of different 

energy paths.   

Engine efficiency 

The internal combustion (IC) engine is the most popular main source of power 

for vehicles. The term engine in this research mainly refers to the Spark Ignited 

(SI) engines. However, the developed methods in this research are similarly 

applicable to other types of engines like Compression Ignition (CI), two-stroke, 

Wankel rotary, and Stirling engines. Brake Specific Fuel Consumption (BSFC) is 

the term defined to show how efficiently an engine transforms fuel energy to the 

usable mechanical power at the crankshaft. BSFC is defined as the fuel flow rate 

per useful power output and generally is in  unit.  
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 is the fuel flow rate and  is the engine useful power output. The 

efficiency of the engine is defined as the ratio of the engine power to the amount 

of fuel energy supplied. 

where  is the fuel lower heating value. 

The efficiency of engine varies widely with its speed and torque. Among all 

applicable operation points of an engine, the most efficient region of engine 

operation is generally located at the middle range speed and high torque. BSFC 

and efficiency map of a typical engine is depicted in Figure 1.3. Avoiding low 

efficiency regions of the engine is almost part of all HEVs and PHEVs EMSs. The 

EV mode at low vehicle speed and power-boost with electric motor when high 

power required from the drivetrain are well-known approaches to avoid the low 

efficiency operation of the engine for HEVs. 
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Figure 1.3. BSFC and efficiency map of two typical engines [ADVISOR database] 

Electric motor/generators efficiency 

Electric machines in all architectures of HEVs operate in both motor and 

generation modes. In addition to providing tractive force and assisting the engine 

to operate efficiently, one of the major roles of the traction motors is regenerative 
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braking. The efficiency map of the permanent magnet synchronous motor 

(PMSM) of Toyota Prius Gen.1 is depicted in Figure 1.4. The permanent magnet 

synchronous motors are completely dominant options for vehicular traction 

applications since they are well-known low maintenance and high power density 

electric motors. 

 

Figure 1.4. Toyota Prius Gen.1 traction motor efficiency map [ADVISOR database] 

Battery efficiency 

Chemical batteries, super capacitors, and ultrahigh-speed flywheels are 

different Energy Storage Systems (ESS) available for EV, HEV and PHEV 

applications. Recent advancements in the chemical battery technology enable 

marketability of PHEVs and EVs. The energy losses account for power 

recirculation from mechanical to electrical during recharging of the battery by the 
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engine should be considered in the EMS of HEVs and PHEVs. Internal resistance 

and columbic efficiency of the battery are major parameters in the battery 

operation efficiency. Here, battery is modelled as an equivalent circuit of a perfect 

open circuit voltage source in series with an internal resistance (see Figure 1.5). 

The characteristics of the charge reservoir and the internal resistance are a 

function of the remaining charge and the temperature of the battery cell. More 

information about the battery model can be found in Section 3.6.3.  
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Figure 1.5. Equivalent circuit for a battery 

Since the large PHEV ESS benefits from parallel modules, its internal 

resistance compared to the conventional HEVs is significantly lower. Therefore, 

the electrical waste in PHEV battery is reduced accordingly. 

Transmission efficiency 

Mechanical energy losses also occur in geared transmissions and especially in 

hydraulic torque couplers of automatic transmission. Continues Variable 

Transmissions (CVT) sometimes known as Electronically Controlled Continues 
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Variable Transmissions (ECVT) is dominant in power-split type hybrid systems. 

Most of the commercialized HEVs and PHEVs benefit from a planetary-gear-set 

power split system. Geared transmissions generally have very high efficiency. 

Gear ratio is the only controllable parameter affecting the vehicle performance by 

changing the engine or electric machines operation points. This can be controlled 

by part of EMS responsible for selection of the optimum engine to wheel speed 

ratio. 

Power electronics efficiency      

The efficiency of the power electronics has important role particularly for 

PHEVs in which a significant share of the required traction energy is provided 

electrically. In terms of the energy management strategy of PHEVs, there is no 

meaningful control over the power electronics efficiency. The detail of power 

electronics of PHEVs’ converters and inverters is out of the scope of this research. 

1.4.2 Auxiliary loads  

Auxiliary loads have a significant role on energy consumption of vehicles. For 

instance, the air conditioning (AC) required power even outweighs the losses 

accounted for aerodynamic, rolling resistances, or driveline losses. The power 

required for the AC equals the amount of power required to run the vehicle at 

steady state speed of 56 km/hr [31]. Tests show that the AC contributes 37% of 

the emission of the vehicle over the US Supplemental Federal Test Procedure 

[32]. 
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The effect of the auxiliary load is even higher for more fuel-efficient vehicles 

like HEVs and PHEVs. For instance, the Honda Insight fuel consumption is 

increased by 46% when the AC is used. The study by Johnson showed that the US 

uses 27 billion litres of gasoline every year for the AC in vehicles, equivalent to 

6% of the domestic petrol consumption or 10% of US imported crude oil.  [31]. 

Since it is completely likely for HEVs and PHEVs that the engine turns off for 

a long period, many auxiliary loads should be provided electrically by the battery. 

Therefore, the mechanical connection between the engine and the auxiliaries is 

replaced by electrically powered components. Electric water pump, oil pump, 

hydraulic steering fluid pump, brake booster vacuum pump, and AC compressor 

electric motor are some examples. There is a large difference between the HEVs 

and PHEVs auxiliary loads that arises from the very long engine-off mode or the 

AER capability of PHEVs. The engine in HEVs is the sole energy source assuring 

that hot water is always available for cabin heating for cold seasons. However, the 

electric cabin heaters must be employed to satisfy passengers comfort. This adds 

an extra auxiliary load which is conventionally supplied free of cost from the 

engine coolant.  

1.4.3 Energy management strategy  

An energy management strategy is a control rule that is pre-set in the vehicle 

controller and commands the operation of the drivetrain components. The vehicle 

controller receives the operation commands from the driver and the feedback from 

the drivetrain and all the components, and then makes decisions to use proper 

operation point for the drivetrain components. Obviously, the performance of the 
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drivetrain relies mainly on the control quality in which the energy management 

strategy plays a crucial role. This thesis focuses directly on the optimization of 

EMS of PHEVs. Therefore, a complete chapter is dedicated to describe the 

important concepts in the EMS of HEVs and PHEVs. The full literature review on 

the EMSs is outlined in Chapter 2. 

1.5 RESEARCH AIM, OBJECTIVES AND CONTRIBUTIONS 

The main aim of this research is to improve PHEVs’ fuel consumption by 

developing an optimal energy management strategy (EMS) for the vehicles. 

Emissions reduction and saving the state of the health of the battery are also two 

secondary objectives of the research. It is assumed that the architecture and sizing 

of the vehicle components are already chosen. The EMS tries to harness the 

maximum benefit of the drivetrain potentials and specially the extra energy source 

that the grid-charged battery provides. Therefore, a charge management strategy is 

incorporated into the EMS. 

As described in Section 1.4, the pathway for better fuel economy, a 

comprehensive knowledge of different environmental and vehicle internal 

characteristics is required to fulfil the aim of this study. The knowledge of future 

driving patterns for the journey is crucial to benefit optimally from the extra 

energy source available in the battery. The blended mode EMSs are only feasible 

when the driving pattern is known. The driving pattern consists of the drive-cycle 

and a comprehensive knowledge of the environmental impact on the power 

demand and the performance of the vehicle components. Particularly, PHEVs are 

more sensitive to the temperature noise-factor. Temperature alters the power 
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demand of the vehicle when the AC or the cabin heater operation is required. 

Besides, the performance of the vehicle components is influenced by temperature. 

Therefore, the integration of thermal management and the EMS of PHEVs is 

required to address the aim of the research.        

The main contributions of this thesis are outlined as follows: 

 The effects of noise factors on the drivetrain power demand and the 

performance are investigated by introducing the concept of the power-

cycle in place of the drive-cycle for a journey.  

 An applicable solution for developing a library of power-cycles inside the 

vehicle is introduced to potentially make the noise factors predictable.  By 

considering the noise factors and the power-cycle library, the future 

power-cycle is predictable more accurately. 

 The effect of temperature on the performance of PHEV components and 

its significance on optimal energy management strategies are identified 

and discussed. 

 An easily implementable semi-optimised rule-based EMS for a known 

power-cycle is proposed. The effect of the temperature noise factor on the 

engine performance is also considered for the rule-based EMS. 

 A globally optimised EMS based on the theory of dynamic programming 

(DP) is developed. It investigates the effect of temperature on the optimal 

charge depleting trajectory of PHEVs for a predefined journey. The 

optimal charge trajectory coincides with an engine temperature trajectory 

which guarantees the optimal engine operation and maximum availability 
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of engine hot water for cabin heating while satisfying the complete charge 

depleting constraint. 

 A practical approach to employ the optimal charge trajectory for 

calibrating a real-time rule based EMS is proposed. 

1.6 OUTLINE OF THE THESIS  

This thesis is organized as follows: 

Chapter 2 provides a comprehensive literature review on energy management 

strategies of HEVs and exclusively PHEVs.  

Chapter 3 describes the modelling of the vehicle and presents a thermal model 

of the engine required for evaluation of PHEVs performance considering the 

temperature noise factor.  

Chapter 4 introduces different noise factors which influence both the power 

demand of the vehicle and the operation performance of the powertrain 

components. Particularly, the temperature noise factor is highlighted since the 

PHEVs performance is more sensitive to temperature compared to the 

conventional HEVs. In addition, a library based prediction of the future power-

cycle, necessary for optimal charge management of PHEV, is characterized.  

Chapter 5 presents a new rule-based EMS for a known power-cycle. The EMS 

also considers the effect of the temperature noise factor on engine cold-factor 

penalty. 
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Chapter 6 describes the numerical optimization method used to implement the 

optimal EMS. A new EMS with the dynamic modelling approach based on the 

theory of dynamic programming (DP) is introduced. 

Finally, Chapter 7 provides the concluding remarks and suggests the future 

works. 
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CHAPTER 2   

REVIEW ON ENERGY MANAGEMENT STRATEGIES 
FOR HEVS AND PHEVS 

2.1 INTRODUCTION 

In all type of HEVs or PHEVs, an energy management strategy (EMS) must 

determine how to fulfil the power demand of the driver in an efficient manner 

from different energy paths available in the hybrid system. The main objective of 

the energy management strategies is generally the reduction of fuel/electricity 

consumption and emission while considering drivability requirement and 

components operation restrictions and characteristics.  This chapter provides a 
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review on classification of energy management strategies employed for HEVs and 

PHEVs, with an emphasis on the recent literature on the EMS of PHEVs. 

2.2 POWER, ENERGY, AND CHARGE MANAGEMENT STRATEGY  

As described in Chapter 1, an EMS is a control rule that is pre-set in the 

vehicle controller, and that commands the operation of drivetrain components [1]. 

The terms “energy management strategy”, “power management strategy”, and 

“supervisory control strategy” are commonly used in similar context in HEV and 

PHEV literature. Nevertheless, in this thesis two terms “energy management 

strategy” and “power management strategy” are distinguished. In power 

management strategy of conventional HEVs, the controller goal is to maintain 

optimal operation of the powertrain for supplying a specific power demand as 

well as sustaining the battery state of charge (SOC) [33]. In PHEVs, however, the 

large battery has the role of both load levelling and energy source. Therefore, it is 

acceptable if the battery SOC reaches the minimum applicable range. The 

difference between the concepts of energy management and power management 

are more distinguished in PHEVs control strategies as both the engine and the 

battery are the sources of energy unlike HEVs in which the battery energy is also 

supplied by the engine [34]. The available charge in PHEVs’ battery, generally a 

battery, adds more flexibility to the EMS of PHEVs in distributing load between 

the engine and the battery compared to conventional HEVs. A charge 

management strategy should be incorporated into the EMS of PHEVs. The charge 

management strategy in PHEVs defines how to share the available ESS energy 

during a journey to optimally utilize it for improving the performance of the 
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vehicle [35]. On the other hand, power management is generally concerned with 

how to split the drivetrain power demand between the two power sources to 

achieve the best performance in a real-time fashion. 

2.2.1 PHEV operation modes 

Brief description of PHEV operation modes is outlined in Section 1.3.2. The 

charge management of a PHEV is incorporated into the EMS of PHEV, and 

defines the vehicle operation mode. The simplest energy management of PHEVs 

is to run the vehicle on the CD or if possible on the EV mode until the battery 

depletes to a minimum applicable SOC. This stage is referred to as electric vehicle 

(EV) mode and the range covered is named all electric range (AER). 

Subsequently, the vehicle operates like a conventional HEV in the charge 

sustaining (CS) mode to stabilize the SOC. The advantage of the AER followed 

by the CS strategy is the maximum consumption of stored electric energy which is 

relatively cheaper before the vehicle reaches its destination with available 

recharging facilities. 

Another energy management strategy, which is known as blended mode, uses 

both the battery and the engine simultaneously for vehicle propulsion to achieve 

higher efficiency as the available energy in the battery could help provide more 

efficient load levelling in the hybrid system. Different researchers have developed 

different blended mode EMS strategies, since they are considerably related to the 

architecture and the components sizing of a specific PHEV. Specially, in the 

parallel and the series-parallel architectures, the blended mode is inevitable 

because of the drivetrain mechanical restrictions and components sizing [13, 36-
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39]. An appropriate powertrain load split between the battery and the engine 

energy sources is therefore an important issue in developing the blended mode 

strategies, as reaching the destination with surplus electric energy sacrifices the 

benefit of availability of large and expensive battery on-board of PHEVs. The 

schematic illustration of the PHEVs operation modes is depicted in Figure 2.1.  

SOC

Time

CD- Blended Mode
AER- EV Mode

CS Mode

 

Figure 2.1. PHEV operation modes 

2.3 CLASSIFICATION OF ENERGY MANAGEMENT STRATEGIES  

The full classification of the control problem of the EMS for HEVs and PHEVs 

has been outlined in the literature [12, 33, 40-42]. The literature provides a 

number of approaches for the EMS of HEVs, many equally applicable to both 

plug-in and conventional (i.e., non plug-in) HEVs. The number of publications 

about the EMS of PHEVs is relatively lower than that of the HEVs.  The control 

problem for the EMS of HEVs and PHEVs is generally grouped into two 

categories: (i) rule-based controllers and (ii) optimization-based controllers [41]. 
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The classification of control problem formulation for the EMS of PHEVs is 

depicted in Figure 2.2. 

Control approaches for
EMS of PHEVs

Rule Based Optimization Based

Determined Fuzzy LocalGlobalStochasticDeterministic

 

Figure 2.2. Control problem formulation tree for the EMS of PHEVs 

2.3.1 Rule-based controllers  

Rule-based controllers are the most common approaches implemented for the 

EMS of HEVs and PHEVs. State machine models reflected in flowcharts and 

lookup tables are implemented for  deterministic rule-based controllers [43]. 

PHEV operation modes and drivetrain components operation points are selected 

based on a set of rules defined by input variables of the driver power demand and 

feedbacks from the components such as the battery SOC. Typical objectives 

defined by rules are: 

 If there is a torque distribution in the hybrid system, it should result in 

high efficiency 

 Engine low operation efficiency and transient engine operation should be 

avoided 

 Electric energy should supply the low power demand of the vehicle 

 Regenerative braking recuperates the depleted battery whenever possible 



  Chapter 2 

35 

 

 Charge sustaining limits for HEVs and charge depleting limits for PHEVs 

are enforced with the controller    

 Fuzzy controllers are also another rule-based approach for designing the EMS, 

and are more efficient compared to deterministic rule-based controllers [44-46]. 

The main advantage of the rule-based controllers is that they are based on 

engineering intuition and physical tests and are generally easily implementable. 

Unfortunately, the behaviour of the rule-based controllers extremely depends on 

the selected thresholds for change of states or in case of the fuzzy controllers the 

definition of membership functions. The driving condition and the driver 

behaviour could substantially alter the optimal defined thresholds and 

membership functions. A blend of pattern recognition and fuzzy logic was 

proposed by Langari and Won for a HEV [47, 48]. 

2.3.2 Optimization based controllers  

Optimization based controllers are identified based on the mathematical 

modelling approach selected to formulate the HEV or PHEV energy management 

control problem. Optimization based controllers can be classified into two 

branches: local vs. global optimization and deterministic vs. stochastic 

optimization (see Figure 2.2) 

Local vs. global optimization  

Performance and fuel economy of a PHEV depend on its efficiency in all 

segments of a journey. Local optimization approaches have a major drawback that 
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is they cannot find the global optimum solution resulting in non-optimal operation 

of HEVs or PHEVs for the whole journey [2, 25, 33-35, 41]. Particularly for the 

EMS of PHEVs, the optimal charge management requires insight about the 

driving pattern of the vehicle from the beginning to the end of journey. It is 

mathematically possible to find the optimal solution for the EMS of PHEVs if 

accurate information about the trip like drive-cycle and accessories power demand 

is available in advance to formulate the optimal control problem. Indeed, a correct 

formulation of the vehicle model is the perquisite to solve the optimal control 

problem. Using historic driving patterns, GPS, vehicle-to-vehicle, and 

vehicle-to-infrastructure communication facilitate more accurate prediction of 

driving scenario [34, 49-52]. In the absence of any information about the vehicle 

trip, the local optimization approaches are the only viable solutions.  

 Global optimization based controller for EMS   

Dynamic programming (DP) is one of the most well-known and powerful 

optimization tools to solve complex control problems. Dynamic programming is 

known as both a globally optimised and a deterministic energy management 

strategy. Dynamic programing is a globally optimal approach which can find the 

best charge depleting profile, also can act as the benchmark for other EMSs of 

PHEVs.  It gives the best possible solution for the control problem with respect to 

the used discretization of time, state space, and inputs. Dynamic programming 

suffers from the curse of dimensionality, which means that the computational time 

increases exponentially with an increase in state variables. Its key disadvantage is 

the high computational effort which is opposed to its real-time implementation for 

online control of a vehicle [49, 53-60]. Since charge management is only 



  Chapter 2 

37 

 

applicable when the whole journey is considered over optimization horizon, it is 

thus necessary to predict the driving pattern of the vehicle in advance to formulate 

the optimal control problem of the EMS of PHEVs.   

 Local optimization based controller for EMS   

Local optimization methods are somewhat similar to the rule-based controllers 

as only the current operation of the hybrid system is optimised. Since the EMS of 

PHEV should incorporate a charge management strategy alongside an online 

power management strategy, the local optimization based controllers are not 

appropriate to achieve the maximum benefit of having a large battery on board. A 

well-known locally optimised controller approach adopted for on-line control of 

HEVs is equivalent consumption minimization strategy (ECMS) [2, 61-64]. For 

the ECMS, the electricity consumption is converted to an equivalent amount of 

fuel consumption, and then the EMS tries to minimise the equivalent fuel 

consumption in an on-line fashion. The ECMS is a deterministic approach that 

can be derived based on Pontryagin’s  minimum principle introduced in [65].  The 

equivalence based control algorithms evaluate which combination of the traction 

sources is more appropriate for the current power demand. Generally, ECMS is 

developed for parallel hybrid architecture in the literature.  The combined 

equivalent power is defined by Eq. 2-1.  

where   is equivalence factor and  is a penalty defined to prevent frequent 

change of condition like gear shifting or rapid changes of engine velocity. If   
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increases the cost of providing power demand of the vehicle from electric energy 

path rises proportionally compared to the engine energy path. The term 

equivalence factor ,  , comes from the fact that in HEVs all energy comes 

ultimately from the fuel, the battery charge or discharge are translated respectively 

into equivalent fuel consumption or equivalent fuel savings. The knowledge of 

power-cycle is required to tune the equivalence factor,  based on the past and 

future driving condition to satisfy the battery charge trajectory and boundary 

limitations [55, 66]. Another approach is to use a PI controller which changes  

aiming for a given target battery charge. This adapting process of   is also known 

as A-ECMS [67]. The disadvantage of A-ECMS is its sub-optimality compared to 

the global optimal approaches. As the cost function based on the equivalent 

power,  is developed locally, consideration of the slow dynamic phenomena 

like temperature are not practically implementable for this approach.  

Deterministic vs. stochastic optimization  

 Deterministic systems consistently provide a similar output to a set of input 

variables. As mentioned before, DP is a deterministic optimization approach to 

find a globally optimised EMS. Stochastic dynamic programming, however, deals 

with the optimization problems which involve some uncertainty and random 

elements. Stochastic dynamic programming (SDP) is appealing for optimization 

of EMSs over a probabilistic distribution of power-cycles, rather than a single 

cycle [68-74]. Unlike deterministic DP, the optimization process is performed on 

a class of trajectories from an underlying Markov chain power-cycle generator 

rather than a single predefined power-cycle. If this stochastic process is able to 
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well define the journey characteristics, the optimal EMS could be developed 

based on it. Since the process of Markov chain is time invariant, the assumption is 

that the vehicle will continue to drive forever which is not appealing for charge 

management of PHEVs. As described before, charge management has an 

important role in the EMS of long electric range PHEVs. Therefore, SDP suits 

better for HEVs or PHEVs in which the battery and motor are incapable of the 

AER or the EV mode.  

2.4 EMSS EXCLUSIVELY DEVELOPED FOR PHEVS 

In comparison to the literature of the HEVs’ control strategies, there are a 

limited number of publications which investigate the EMS of PHEVs. In the 

following notes, some of the approaches that exclusively address the EMS of 

PHEVs are outlined.   

Gao et al. suggested two different rule-based EV-CS and blended EMSs for a 

PHEV with the parallel architecture [13, 36]. They also suggested a manual 

shifting option between the EV and the CS for driver. In this rule-based strategy, 

the engine is constrained to operate around its efficient region defined by two 

minimum and maximum torque boundaries in the engine efficiency map. The 

engine is controlled as that no surplus energy remains to charge the battery to 

prevent charging and discharging power recirculation wastes. When the required 

torque is higher than the top torque boundary, the remaining power demand is 

supplied by the electric motor. The engine solely propels the wheel if the 

demanded torque from the engine is between the boundaries of the defined 

efficient region. The engine is turned off when the torque demand is below the 
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bottom torque boundary and the vehicle runs in purely in the EV mode. In this 

approach, it is assumed that there is no information available about the trip 

duration and length. Therefore, when vehicle operates in the blended mode, it is 

possible to reach destination with surplus in battery energy for short trips. 

Whereas, the EV-CS EMS uses relatively cheaper battery energy in place to petrol 

for the same trip. Therefore, this approach does not provide higher fuel economy 

for all situations. 

Sharer et al. in [38] simulated and compared four different blended rule-based 

EMSs for a series-parallel PHEV with 16 km AER battery in PSAT for a vehicle 

with similar component sizing of the Freyermuth et al. model explained in 

reference [30]. The four EMSs are named as: 

 Electric vehicle/charge sustaining (EV/CS) 

 Differential engine power 

 Full engine power 

 Optimal engine power  

In “EV/CS” EMS, the engine only turns on when the power demand is higher 

than the available power of the battery until the battery depletes to its minimum 

applicable SOC.  “Differential engine power” EMS is similar to the EV/CS but 

the engine-turn-on threshold is defined lower than the maximum applicable power 

of the battery. In “full engine power” EMS, if the engine turns on it will supply all 

the power demand of the vehicle and no power will be drained from the battery. 

The aim of this strategy is to force the engine to operate at higher loads and 

consequently with higher efficiency. In “optimal engine power” EMS, the engine 
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is restricted to operate close to the peak efficiency point of the engine. For 

different predetermined journey distances, the engine-start threshold can be 

derived and calibrated by simulation. In other words, for longer journeys to 

continue further in the CD mode before entering the CS mode, the engine-turn-on 

threshold should be reduced. The concept behind this EMS is to force the engine 

to operate and ignite in higher average efficiencies during the journey as much as 

possible by saving electric energy for low power demand sections of drive-cycles. 

The simulation results prove that the “differential engine power” EMS has a 

similar overall efficiency with respect to “EV/CS” EMS since the engine 

operation in low loads deteriorates the vehicle overall fuel economy. “Full engine 

power” EMS resulted in the best fuel economy with about 9% improvement even 

more than the “optimal engine power” EMS. Although the engine operates more 

efficiently in the “optimal engine power” EMS, the overall efficiency is reduced 

due to the effect of power recirculation and efficiency chain. The interesting result 

was that the “optimum engine power” EMS produced no significant improvement 

and even sometimes deteriorated the efficiency for some trip distances compared 

to the EV/CS EMS [38].  

The deterministic dynamic programming (DP) approach was employed by 

Gong et al. to force the battery to get fully depleted exactly at the end of journey. 

The global optimization by means of the DP algorithm offered significant 

efficiency improvement in comparison with the EV/CS EMS. As the DP is a 

deterministic approach, the trip information as a priori is required. Therefore, trip 

simulation with GPS and GIS information is introduced in this paper [49]. 
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A stochastic optimal approach for the power management of PHEVs was 

suggested by Moura et al. to optimise a series-parallel drivetrain for a 

probabilistic distribution of many power-cycles, rather than a single one [69]. By 

using a discrete-time Markov chain, the model of power-cycle was predicted. 

Both fuel and electricity costs are considered in the defined cost function. 

Consequently, the benefits of controlled charge depleting were explored.  

As mentioned before, the number of available published works in the field of 

EMS of PHEVs is quite limited. The effect of different noise factors on the EMS 

of PHEVs still has many aspects to explore (see Chapter 4).     

2.5 CONCLUSION 

Among all the existing EMS approaches described in this chapter, two 

different methods, (i) a rule-based/deterministic and (ii) an optimization-based 

/deterministic, are selected in this research. The deterministic approaches are 

selected because one of the major objectives of this research is the optimal charge 

management of PHEVs. Hence, the prediction of power demand pattern during 

the journey is a prerequisite for developing the deterministic methods. In addition, 

to explore the effect of slow dynamic phenomena like temperature on the 

performance of vehicle, deterministic methods are only feasible options. The rule-

based approaches are easily implementable while the optimization-

based/deterministic approaches provide the global optimal solution. The rule-

based/deterministic approach is presented in Chapter 5 and the optimization-

based/deterministic approach is introduced in Chapter 6. 
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CHAPTER 3   

VEHICLE MODELLING 

 

3.1 INTRODUCTION  

In this thesis, vehicle modelling deals with mathematical representation of 

physical reality of longitudinal dynamics of the vehicle. This chapter discusses the 

modelling approach for the vehicle and its powertrain components. The level of 

acceptable approximation in modelling process defines the efficiency of the 

model. The more detailed is the mathematical modelling of the physical 

dynamics, the more complex and timely is the simulation process. The models in 
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this research are defined with the aim of solving the optimal control problem for 

the energy management strategy of PHEVs to improve fuel efficiency and reduce 

emissions. Therefore, the dynamic phenomena that are not related to the energy 

efficiency of the vehicle are neglected. 

In order to evaluate the fuel economy of the vehicle, it is necessary to 

understand the energy flow in different powertrain components of the vehicle. In 

this chapter, first the basics of the longitudinal dynamics of the vehicle is 

introduced, then the characteristics of modelling and sizing of the powertrain 

components are outlined.  

3.2 LONGITUDINAL DYNAMICS OF VEHICLES  

The loads and parameters that affect the longitudinal dynamics of a vehicle and 

its load demand are depicted in Figure 3.1. The dynamic equation of the vehicle 

along the longitudinal direction is as follows: 

where  is tractive effort, is mass of vehicle,  is linear acceleration of 

vehicle along longitudinal direction, are rolling, drag, and grading 

resistances, respectively. The required traction power, , is derived from Eq. 3-1 

as follows: 
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Detailed description of the resistive forces could be found in reference [1].  
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Figure 3.1. Vehicle loads and environmental parameters which affect 

the longitudinal dynamics of a vehicle. 

3.3 METHODS OF MODELLING 

There are three different methods to model the fuel consumption of vehicles. 

Each method has its characteristics, drawbacks, and level of accuracy [2]. 

3.3.1 The average operating point approach 

This approach only gives a first approximation of fuel consumption of the 

vehicle. The key feature is that the engine operation and its fuel consumption are 

modelled by a lumped method. The engine efficiency is assumed constant and 

calibrated based on a datum drive-cycle. The efficiency of all drivetrain 

components, which transfer power in drivetrain, are also defined with a single 

efficiency coefficient. The simplicity of the average operating point approach 
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makes it suitable for preliminary steps of finding fuel consumption and 

performance investigation of vehicles. On the other hand, it has limited capability 

for developing EMS for complex drivetrains like PHEVs in which the efficiency 

of the components is significantly altered during different operation modes. 

3.3.2 The quasi-static approach 

In this approach, each simulation over a drive-cycle is divided into many time-

steps during which it is assumed that the vehicle velocity, acceleration, and any 

other effective input variables remain constant. These time-steps should be short 

enough to satisfy the quasi-static assumption. In this approach, to find the 

efficiency of each component consisting of the engine, the electric 

motor/generators, the battery, and the transmission components, instead of a 

single efficiency coefficient an efficiency map is employed to reach more accurate 

physical modelling. That is, based on the amount and components of power 

(torque and angular velocity for mechanical parts or voltage and current for 

electrical parts) are transferred from each powertrain nodes, the efficiency of each 

component is derived from the efficiency maps for each time-step. 

The quasi-static method is a powerful tool for development and analysis of the 

EMS for all vehicular drivetrains under different levels of complexity with limited 

numerical efforts. The main feature of the quasi-static modelling is its backward 

formulation which requires the knowledge of the driving scenario in advance. 

Therefore, this approach is not appropriate for feedback control or state events 

simulation. In Section 3.4, descriptive characteristics of the forward and the 

backward modelling approaches are explained. 
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3.3.3 Dynamic approach 

This approach is based on the dynamic modelling of any physical phenomena 

by means of state space formulation or mixture of differential and algebraic 

equations. If modelling of the fast-dynamic physical phenomena like combustion 

or emission forming is needed, the dynamic approach is the only feasible solution. 

The dynamic approach is necessary for feedback control analysis like hardware-

in-the-loop simulations. In addition to the complexity of this approach, the high 

computational cost of simulations is another drawback of the dynamic modelling 

approach. 

3.4 FORWARD AND BACKWARD MODELLING 

APPROACHES 

By rewriting Eq. 3-1 another form of the dynamic equilibrium equation can be 

rewrite as: 

Eq. 3-1 and Eq. 3-3 are similar but each of them represents a different 

approach of modelling of vehicular longitudinal dynamics.  

3.4.1 Backward approach   

In this approach, it is assumed that vehicle follows a prescribed route. i.e. the 

drive-cycle is known in advance. Therefore, by using Eq. 3-1 and velocity profile, 

, the tractive force, , can be calculated. The calculated force is then interpreted 
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to torque and angular velocity over the electric motor and the engine considering 

the transmission ratios and wastes. As the calculation flows from force on the 

wheel to downstream components in each time-step, the method is named as 

backward approach. A combination of a quasi-static and backward approach is 

generally a powerful tool for fuel-consumption prediction and development of 

EMSs. Since the backward approach assures exact following of a prescribed 

route, it is useful when the performance of the vehicle over benchmark drive-

cycles defined by authorities is the point of interest.  

Since the backward quasi-static approaches are based on the static steady-state 

efficiency maps, the transient behaviour of the components is neglected in this 

approach.  

3.4.2 Forward approach   

In this approach, on the other hand, simulations start from a driver model. 

Generally, a PID controller as a driver compares the actual and the required 

vehicle speeds and provides the required control input commands. This input 

command is then interpreted by EMS for the powertrain components of the 

vehicle to minimise the error signal. The input commands transforms to torque 

output from the engine and the electric motor. Then, the model based on the 

dynamic Eq. 3-3 derives the real acceleration and velocity. The structure of the 

forward approach makes it suitable for dynamic simulations. 
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3.5 SIMULATION TOOLS 

Fierce competition among automotive manufacturing entities puts significant 

pressure on the companies to introduce new vehicle models to the market as soon 

as possible. Almost all major automotive manufacturers have developed their own 

simulation tools which mostly are unavailable to the public [75]. Mathematical 

modelling has replaced many physical tests required for investigation of vehicle 

performance and fuel consumption. Particularly, when performance comparison 

and component sizing of newly developed HEVs and PHEVs is required, 

simulations based on the mathematical modelling approaches are desirable. 

The Mathworks products, Matlab and Simulink are the most popular platforms 

for modelling of HEVs and PHEVs. Modelica also provides a causal modelling 

language based of which the commercialized Dynasim Dymola modelling 

platform has been developed. Some researches use it for their vehicular simulation 

and modelling [76-78]. 

Advance Vehicle Simulator (ADVISOR) developed in National Renewable 

Energy Laboratory,  and Powertrain System Analysis Toolkit (PSAT) developed 

in Argonne National Laboratory are two dominant simulation tools specifically 

developed for advanced vehicles [79, 80]. Both ADVISOR and PSAT are 

developed in Matlab/Simulink. ADVISOR is an empirical map-based simulation 

tool that combines the vehicle dynamics model with the efficiency map of each 

component to predict the vehicle performance. ADVISOR is a unique 

combination of backward and forward simulation tool which calculates each 

component operation parameters for a known drive-cycle based on the quasi-static 
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assumption [79]. In contrast to ADVISOR, PSAT is a look-forward simulation 

tool that calculates the powertrain states based on the driver input. 

In addition to the commercial simulation and modelling tools, many 

researchers have developed their own modelling tools to incorporate their 

suggested control strategy into the simulation platforms [24, 81-84]. The major 

reason is that the level of complexity of available commercial simulation tools 

like ADVISOR or PSAT makes it hard to incorporate new models or controller 

into them. Comprehensive understanding of the relationship between sub-models 

and significant number of parameters is essential if one needs to incorporate some 

new sub-models or controllers into the commercial simulation tools. In addition, 

the developers of the commercial tools might intentionally restrict access to the 

codes or sub-models. Nevertheless, this level of detailed modelling improves the 

accuracy of simulation as the models are generally verified with physical test 

conducted in well-equipped test facilities.  

3.6 MODELLING APPROACH USED IN THIS WORK    

Two different modelling approaches have been taken for this research. First, 

the vehicle components are sized and modelled in a backward quasi-static 

approach. As explained in the previous section, the backward quasi-static 

modelling approach has beneficial characteristics for investigation of EMSs and 

specially charge management to check the performance of the vehicle for a 

complete journey. To verify the simulations and modelling approach in this 

research, ADVISOR powertrain simulation tool is employed. ADVISOR 

developed by National Renewable Energy Laboratory (NREL) [79]. In 2003 
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(NREL) transferred a license to commercialize ADVISOR to AVL Powertrain 

Engineering, Inc. [85]. ADVISOR provides a trusted, verified, and detail model of 

the vehicle that assures accurate and close to reality simulation results.  

The second modelling method that would be described in details in Chapter 6 

is a dynamic approach based on the theory of dynamic programming. An inverse 

powertrain model analogous to the quasi-static model of a PHEV is formulated as 

an optimal control problem in dynamic programming to find the optimal charge 

depleting trajectory and the EMS of the PHEV. 

3.6.1 Drivetrain architecture and sizing of the sub-models  

A model of EREV is developed for the serial powertrain architecture. The 

basic characteristics of the considered vehicle are given in Table 3-1. The main 

components of the vehicle are illustrated schematically in Figure 3.2. We have 

tried to keep the sizing of the components similar to the published characteristics 

of GM Volt. GM Volt is a 64 km EREV benefiting from a mode changing 

architecture by means of a planetary gear set which can shift the vehicle 

architecture from serial to series-parallel. In this mode, the engine could 

mechanically transfer power to the final drive in higher speeds and power 

demands. Also, it has two different EV modes in which the EV mode is shifted 

from one electric motor drive to two electric motor drives in order to reduce the 

losses in higher speeds and cruise operation [17]. This mode shifting capability is 

not considered in the model of the vehicle used in this thesis, because the aim of 

this research is merely the investigation of the effect of temperature on charge 
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management of PHEVs which can be applied to all PHEVs regardless of their 

drivetrain architecture. 

The reason that an EREV with the series drivetrain is selected for this research 

is that the influence of the temperature noise factor becomes more significant for 

PHEVs with a large battery than those with a small battery. A large battery can 

provide a larger portion of the total energy demand of the vehicle compared with a 

small battery. When more electric energy is used instead of fuel to support the 

wheel power demand, the engine would undesirably run cooler. Also, long EV 

modes are major characteristics of EREVs which leads to the long cool-down 

periods. Therefore, sensitivity of EREV to temperature noise factor is the worst 

case scenario affected by temperature noise factor if a blended mode EMS is 

operating the vehicle. Accordingly, this research focuses on the serial EREVs 

having a large battery.  

 Moreover, the operation of the power split hybrid vehicles is highly influenced 

by the dynamic of the planetary gear set. Therefore, this constraint leads to a 

lower degree of freedom for the engine operation associated with the wheel power 

demand. For instance, due to the dynamic restriction, the Prius PHEV cannot 

operate in the EV mode at speeds higher than 100 km/hr. Also, it is necessary to 

turn the engine on even at lower speeds if the maximum traction power, which is a 

combination of electric motor and engine power, is required.  
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Table 3-1 Powertrain model specifications 

Vehicle  
Type: 

Weight: 

Small 

1700 

Engine 

Type:  

Displacement 

Maximum Power  

Peak Torque 

Petrol, 4 cylinder 

1 lit  

41 kW @ 5700 rpm  

81 Nm @ 3477 rpm 

 

Motor/Generator1 

Motor/Generator2 

Type: 

Maximum Power 

Maximum Power 

AC induction 

124 kW  

54 kW 

Battery  

Chemistry 

Nominal Voltage of a Cell 

Nominal Capacity 

Max Capacity @ 20 ˚C 

Number of Cells in series  

Number of module in Parallel 

Energy Capacity 

Li-Ion 

10.67 

6Ah 

7Ah 

25 

10 

16 kWh 
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Figure 3.2. Schematic of the serial EREV components with a 

combined electric/engine-coolant cabin heater 
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Each subsystem in the model of the vehicle connects to others and transfers 

information and power components (torque and rotational speed mechanically or 

voltage and current electrically). The EMS controls the vehicle energy balance to 

satisfy drive-cycle power demand. A block diagram of the series HEV 

architecture is depicted in Figure 3.3. 

Engine

zBattery Pack

Accessories
load

Power bus

GeneratorExhaust system

EMS

Electric MotorFinal DrivewheelVehicle loadsDrive cycle

Air conditioning
or cabin heater
power demand

 

Figure 3.3. Block diagram of the series HEV architecture  

3.6.2 Internal combustion engine 

The engine model accepts inputs of torque and speed requested by the vehicle 

controller and upstream drivetrain components. The engine fuel consumption and 

emissions are calculated based on lookup tables derived from verified engine 

dynamometer tests. The engine dynamometer test generally runs on hot engines. 

That is, before the engine fuel consumption and emission data are collected for a 

predefined table of torques and speeds, the engine warms up to its coolant 

thermostat steady temperature. The efficiency map of the engine used in the 

EREV model is shown in Figure 3.4.  
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Figure 3.4. Engine efficiency map [ADVISOR database] 

Eq. 3-4 defines the engine efficiency. The dynamometer tests are used to 

measure engine angular velocity, , torque, , and fuel mass flow rate, 

 . 

Eq. 3-4 

where  is the lower heating value of fuel.  

Effect of temperature on engine efficiency and emission   

As discussed in Chapter 1, the performance and efficiency of PHEVs are more 

sensitive to temperature due to longer engine off periods and lower engine power 

load. Therefore, it is necessary to consider this physical phenomenon into the 

engine model. The effect of temperature accounted for change in the performance 

and efficiency of the engine could be considered by adding cold engine efficiency 
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maps to engine model or mathematically formulating the cold-factor efficiency 

penalty. The first option requires forced cold operation of the engine during 

dynamometer tests and repeating them for adequate range of operation 

temperatures. This option is more accurate as the engine efficiency is a dependent 

function of its temperature, torque, and speed. However, this requires repeating 

expensive tests to fully define the engine temperature correction factors. 

In a mathematical modelling approach, the cold-to-hot engine fuel and 

emissions penalties for SI engines have been investigated by Murrell et al. [86]. 

The correction factor is incorporated based on normalised engine temperature 

factor, , which is related to the engine cooling system thermostat set point, 

, and the coolant temperature, : 

Eq. 3-5 

where temperature is in centigrade degrees. The fuel and emissions are then 

computed as follows based on, γ, and the engine performance in hot operation: 
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In case the complete efficiency map of an engine is available for different 

operation temperatures, it is possible to use lookup tables instead of the 

abovementioned formulation. The only required temperature to define the cold-

factor penalty is the engine coolant temperature which is assumed to be equal to 

the internal engine temperature, . A multi node lumped-capacitance thermal 

network model, depicted in Figure 3.5, is defined for the engine thermal model 

based on ADVISOR model. The generated heat in the engine cylinder, 

considering the mechanical shaft output and the part removed via exhaust, is 

dissipated among the thermal model nodes based on the heat transfer equations as 

follows. The parameters definition are listed in Table 3-2.   

`

Cylinder Interior/ Engine Block
Exterior /

Engine Accessories Hood Ambient

cylT
iT

xT
hT

ambT

coolantT

Coolant
Flow
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Subscripts
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r – Radiation

EngQ

 

Figure 3.5. Schematic illustration of the engine thermal model [ADVISOR] 

Eq. 3-7
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Eq. 3-8

Eq. 3-9

Eq. 3-10

Eq. 3-11

Eq. 3-12

Eq. 3-13

Eq. 3-14

Eq. 3-15

Eq. 3-16

Eq. 3-17



  Chapter 3 

59 

 

Eq. 3-18

Eq. 3-19

Eq. 3-20

Eq. 3-21

Eq. 3-22

Eq. 3-23

The exhaust mass flow rate, , and temperature, , are also derived from 

the lookup tables available from engine dynamometer tests. The exhaust 

temperature and mass flow rate, similar to the engine efficiency map, are 

tabulated for each engine speed, , and torque, . The accuracy of heat 

transfer modelling is quite dependent on how different constants are defined for a 

specific engine. Therefore, empirical approaches are employed to accurately fine 

tune these constants. In this thesis, the required coefficients are derived from 

ADVISOR database.  
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Heat transfer coefficient, , defined by Eq. 3-19, is the most important 

parameter for simulation of convectional heat transfer equations:  Eq. 3-13,  Eq. 

3-16, and Eq. 3-18. The heat transfer coefficient is computed by using known heat 

transfer coefficients for a given experimental conditions.  For a given temperature 

difference, T of 1000oC,  from natural convection is 6 [W/m2K].  In 

addition, for airflow with speed of 48 km/hr, , from forced convection is 60 

[W/m2K].  A minimum of  was set to a natural convection level at 6 

W/m2K.  For natural convection over an arbitrary shape, the Nusselt number, , 

is related to the Rayleigh number,  by the following equation [87]: 

Eq. 3-24 

Eq. 3-25 

 

Eq. 3-26 

For forced convection over a cylinder, the Nusselt number, , is related to 

the Raynods, , and Prandtl, , numbers by the following equation [87] : 

Eq. 3-27 
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Eq. 3-28 

where, , is kinematic viscosity and  is thermal diffusion rate. Therefore: 

Eq. 3-29 

Thus, the equation for the heat transfer coefficient used in the model is given 

by Eq. 3-19. The same formulation is also used to define the heat transfer 

coefficient of electric motor. 

Table 3-2. Definition of parameters used for engine thermal model 

 Heat flow rate  

 Temperature  

 Exhaust gases  thermal heat capacity  

 Cylinder to interior of engine thermal conductivity coefficient   

 Interior to exterior of engine thermal conductivity coefficient  

 Efficiency of the cabin heater heat exchanger  

 Hot water flow rate of the cabin heater  

 Water thermal heat capacity  

 Emissivity factor 

 Stefan–Boltzmann constant  

 Area  

 Surface area  

 Engine emissivity factor 

 Convectional heat transfer coefficient of air   

 Mass [kg] 

 Air velocity around engine assumed half of the vehicle speed [m.  
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3.6.3 Battery model  

The battery model accepts a power request, usually from the power bus, and 

returns the available/actual power output of the battery, the battery voltage and 

current, and the battery State of Charge (SOC). The battery is modelled with an 

equivalent circuit with a perfect open circuit voltage in series with a resistor (see 

Figure 1.5). The battery open circuit voltage is a function of the SOC and the 

temperature of the battery. The battery resistance is a function of temperature, 

charge, and direction of current in charging/discharging modes. The dependency 

relationships could be devised empirically in battery test facilities. In this 

research, the data from a 6 Ah SAFT Li-ion battery is used from within the 

ADVISOR library (see Table 3-1). 

The amount of charge that battery can store is considered to be constant, and 

the battery voltage exposure is subject to a minimum voltage limit.  The 

coulombic efficiency of the battery, which is also a function of temperature, 

defines the amount of charge that is required to replenish the battery after 

discharge. Charging of the battery is limited by a maximum battery voltage limit. 

The characteristics of the battery which consists of 10 parallel modules of 25 

serial SAFT battery cells are shown in Figure 3.6. The enormous instantaneous 

power capability of the battery shows the sizing of the battery is mainly affected 

by the energy capacity of the battery rather than its power capacity. The energy 

capacity of the battery is designed to let the vehicle cover 64 km of all electric 

range when depleting from 90% to 35% SOC (similar to the GM volt 65% SOC 

swing window) over the repeated UDDS drive-cycle. The number of parallel 

modules also significantly reduces the internal resistance of the battery which 
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increases the efficiency of the battery accordingly. As the maximum power of the 

electric motor is 124 kW, and the battery nominal voltage is 267 V, it is 

practically impossible to increase the battery current roughly over 500 A. Hence, 

the efficiency of the battery never goes lower than 90%.  

As described above, the battery model calculates the battery SOC in response 

to the requirements of the power bus.  The power loss is computed as losses 

plus losses due to Coulombic efficiency. The Coulombic efficiency of the battery 

is 96.8%, 99%, and 99.2% for 0˚C, 20˚C, and 41̊C, respectively. The coulombic 

efficiency can be calculated for other temperatures by using interpolation.  
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Figure 3.6. Battery characteristics (25 series, 10 parallel battery cells) [ADVISOR database] 
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Current calculation  

Calculation of current is required for each power demand from the battery to 

update the charge of the battery in each simulation time-step. The output/input 

power of the battery are:  

Eq. 3-30 

By using Kirchhoff's voltage law:  

Eq. 3-31 

Using Eq. 3-30 and Eq. 3-31 : 

Eq. 3-32 

The power is assumed positive when the battery discharges power to the 

drivetrain. Rewriting Eq. 3-32, a quadratic equation is derived for the battery 

current based on known parameters:  

Eq. 3-33 

There are two solutions to find the current for this equation, but the larger 

solution is not considered because it would require larger current, and thus a lower 

terminal voltage, to produce the same power.  
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Eq. 3-34 

Thermal model 

A thermal model is required to predict the internal temperature of the battery 

while the vehicle is driven. The design of cooling system of the battery also 

affects the thermal model of the battery. Here, similar to ADVISOR model, an air 

cooled battery is assumed for the battery as the cells are cylindrical. In contrast, 

the battery cells of the GM Volt are flat and rectangular. The schematic of the 

thermal model around the battery cells is shown in Figure 3.7. 
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Figure 3.7. Schematic of the battery thermal model [ADVISOR] 



  Chapter 3 

67 

 

The effective thermal resistance is calculated from two parts of conductive 

resistance, , and convectional  resistance, .  

Eq. 3-35 

Eq. 3-36 

where  

Eq. 3-37 

Therefore, the heat flow rate to the case of the battery is: 

Eq. 3-38 

Then the battery core temperature, which is necessary to define internal 

resistance, open circuit voltage, and columbic efficiency of the battery can be 

derived from Eq. 3-39: 

Eq. 3-39 

The thermal model of the battery is also required to check the effect of EMS on 

its core temperature which accounts for battery aging. 
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3.6.4 Electric motor/generator 

Electric motor/generator model translates a torque and speed requests from 

transmission to an electric power request from power bus. Since the motor 

operates in generator mode during regenerative braking, the name motor/generator 

is selected for this sub-system. This model considers losses, dynamics of motor 

inertia, and maximum torque capability of motor at each speed. The efficiency 

map of the motor/generator, similar to the engine, could be derived empirically 

with dynamometer tests (see Figure 3.8). The generator model, which directly 

transforms the engine mechanical power to electricity, is assumed to have 95% 

constant efficiency. If the efficiency map of the generator is available, the quantity 

of the map could be multiplied by the engine efficiency map as both the engine 

and the generator operate at similar torque and angular velocity. The result map is 

named genset efficiency map.   

 

Figure 3.8. Electric motor efficiency map [ADVISOR database]  
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The electric motor power request from the power bus can be calculated with 

Eq. 3-40:  

Eq. 3-40 

In a backward approach, the motor torque, , and speed, , are inputs of the 

model to define the required power from the power bus. In the power bus, the 

scalar summation of motor and accessories power demand and power available 

from the generator is requested from the battery model.      

3.6.5 Transmission and final drive 

Generally, the role of transmission is more important for conventional or 

parallel hybrid electric vehicles. For the series powertrain, a single ratio 

transmission is employed to transfer the electric motor torque to the final drive 

and wheels. The effects of inertia and gear surface losses could also be considered 

in the model. These effects are also modelled empirically via lookup tables that 

are mapped for each input torque and speed. In this model, gearbox ratio is 6.67 

and the effect of losses is neglected. 

3.6.6 Wheel and axel 

The wheel and axel model transmits torque and angular velocity requested by 

the vehicle model to the final drive model. Friction wastes in the bearing and 

inertia of the wheel and axel are also considered in the model. Tyre slip model 

defined with lookup-tables based on maximum tractive force that tyres can 
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transform. The acceleration and deceleration rates defined in drive-cycle modelled 

in this research are limited. Therefore, slip never happens in our research 

simulations.     

3.6.7 Vehicle model 

The vehicle model calculates the resistive forces along the longitudinal 

direction, rolling, drag, and grading resistances respectively. The 

tractive force is calculated using Eq. 3-1. The average speed of the beginning and 

the end of each time step is used for the calculations.  

Rolling resistance 

Rolling resistance is a function of rolling resistance coefficient, , the 

normal load of the wheel, , and the road slope, α . 

Eq. 3-41 

The surface condition of the road also affects the rolling resistance coefficient. 

Here, 

Eq. 3-42 

Road grade 

The road grade force is simply calculated with the following equation: 
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Aerodynamic load 

The effect of both aerodynamic load components, shape drag and skin friction, 

is formulated into a single drag coefficient, . The drag coefficient could be 

found empirically in wind tunnels for each vehicle. The drag force, , is related 

to air density, , and vehicle velocity,  V: 

Acceleration load  

The acceleration load is calculated from the following equation:  

where, , is the duration of time step and,  and , are speeds at the end and 

beginning of the time-step, respectively.
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3.7 CONCLUSION 

In this chapter, different modelling and simulation approaches available in the 

literature were introduced. The modelling method selected for this research was 

also outlined and different vehicle components model are discussed. Two 

different modelling approaches: (i) backward quasi-static and (ii) dynamic 

approach based on the theory of dynamic programming are selected to simulate 

the performance and efficiency of the vehicle. Specifically, the effect of 

temperature on the performance of the engine is modelled as a cold-factor penalty. 

This helps simulate the effect of temperature noise factor on the efficiency of 

PHEV.  The second dynamic modelling approach would be discussed in details in 

Chapter 6. The vehicle components are sized to simulate an EREV with 64 km 

AER capability. 
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CHAPTER 4   

NOISE-FACTORS AND 
POWER-CYCLE PREDICTION  

 

4.1 INTRODUCTION  

Since the knowledge of driving scenario as a priori has been proven essential 

for the globally optimal energy management approaches, drive-cycle simulations 

have been carried out in several existing works. Especially, for the PHEV blended 

mode energy management strategies, the knowledge of driving scenario helps the 

charge management of the battery during the journey. The knowledge of travel 
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distance or preferably drive-cycle would change the way the stored electric energy 

in the battery is allocated during the journey to optimise the fuel consumption. 

Gao et al. suggested a manual shifting mode between the EV and CS modes to 

somehow affect the knowledge of future driving pattern [13]. That is, the driver 

can shift to the EV mode for low speed in congested city driving and return back 

to the CS or a moderate CD modes for high speed in highway driving. Having the 

journey distance information, Sharer et al. calibrated engine-ignition power 

thresholds for different journey distances and concluded that the basic information 

on trip distance can decrease the fuel consumption [38]. Gong et al. suggested that 

it is possible to improve the control strategy of PHEV and implement a 

deterministic DP EMS, if the trip information is determined as a priori by means 

of recent advancements in intelligent transportation system (ITS) based on the use 

of global positioning system (GPS) and geographical information system (GIS) 

[49]. A model predictive control approach was used in test vehicles equipped with 

telemetric system [88, 89]. The controller of a HEV calibrates the ratio of the 

charge/discharge of the battery by means of the traffic information and road grade 

in a method suggested by Deguchi [90].  

This chapter introduces an applicable solution to predict the driving scenario 

before the journey starts. Additionally, the noise factors affecting the power 

demand of the vehicle are categorised. A comprehensive knowledge of the noise 

factors guarantees accurate prediction of the driving pattern.   



  Chapter 4 

75 

 

4.2 POWER-CYCLE AND NOISE FACTORS 

As explained above, development of the optimal EMSs requires power-cycle 

information in advance, especially for the charge management of PHEVs in a 

blended mode operation. However, the drive-cycles are inadequate to predict the 

realistic power demand of the vehicle. The reason is that apart from the vehicle 

velocity profile, several other noise factors can affect the vehicle power demand. 

Therefore, a control strategy only based on the drive-cycle cannot provide a 

correct solution and might even deteriorate the performance of the vehicle. The 

benefit of having a large battery on-board could be sacrificed by reaching the 

destination with surplus electric energy. That is, a blended mode EMS could 

deteriorate the performance of a PHEV when compared with a simple AER-CS, if 

defined based on an inaccurate driving scenario prediction. Consequently, it is 

necessary to accurately define a power-cycle that can predict the vehicle required 

power consisting of both the traction and accessories power demand. 

Noise factors affecting the power demand and performance of different 

components of a PHEV, as well as the velocity trajectory need to be taken into 

account to predict a realistic power trajectory. These noise factors consist of (i) 

traffic diversity and aggressive driving, (ii) road grade, (iii) wind, (iv) battery 

aging, and (v) ambient temperature. These noise factors can significantly alter the 

power demand even in identical journeys and drive-cycles. Besides, the 

performance of the vehicle components might be altered in different ambient 

temperatures and by aging. Especially with aging of the vehicle, the battery 

degradation reduces the available electric energy on-board of a PHEV. These 

noise factors are non-negligible parameters which have been completely neglected 
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in the current HEV and PHEV energy management strategy literature. To develop 

a robust blended mode EMS with an optimised charge management strategy, a 

comprehensive understanding of these noise factors is required. 

4.2.1 Power-cycle library 

The target market of PHEVs is daily commuters with short to medium range of 

driving. Since the majority of drivers use their vehicles on the same routes on a 

regular basis, each PHEV could calculate and store its own power-cycle in both 

time and spatial domains, and use it for implementing its energy management 

strategy. To develop a power-cycle library, each vehicle would log its own real 

power demands for routine commutes such as home-work, home-shopping 

centres, etc. Then, the energy management strategy is defined based on the power-

cycle library. Figure 4.1 illustrates the required inputs for developing a power-

cycle library in a series PHEV architecture. As the drive-by-wire control method 

is completely dominant in PHEVs, logging the required electric power by motor, 

battery, generator, and electric accessories is applicable. To develop a specific 

power-cycle library which is selected by the driver such as home-work, the data 

logger stores velocity, power to/from the electric motor, generator, battery, and 

different accessories specially AC in both time and spatial domain utilizing a 

GPS. Ambient, cabin, battery, and engine coolant temperatures are logged as well 

for future processes of noise factors affecting performance of vehicle and Air-

conditioning/cabin heater load changes. 

. 
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Cabin/Engine temperature
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Figure 4.1. Required inputs for developing the power-cycle library 

PHEVs employ an in-built control strategy defined by OEM, normally an 

AER-CS similar to what has been designed for GM Volt. However, for the known 

power-cycles, which would be defined later on by each vehicle owner, a more 

sophisticated energy management strategy would be implemented. The power 

demand information can be repeatedly stored in the low cost memory devices and 

updated whenever necessary to account for stochastic factors over time. The 

logged power-cycle based on the real commute history can be used to reasonably 

predict many stochastic factors. Still, good understanding of the noise factors is 

essential to predict a realistic power-cycle based on the vehicle power-cycle 

library and update it on-line even during the journey.  
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4.2.2 Noise factors  

The noise factors can potentially modify the power demand and alter the 

performance of a PHEV. The proposed power-cycle library method that could 

help in the prediction of the noise factors is explained in the following. 

Effect of traffic diversity and aggressiveness factor on velocity 

According to Eq. 3-2, vehicle velocity is the most important factor for 

prediction of different traction power components. One of the major advantages of 

power-cycle library over the drive-cycle prediction methods is that the prediction 

of velocity is more accurate considering driver behaviour and various road traffic 

conditions in a specific journey. In particular, for daily commutes such as home-

work which mostly occur during the rush hours, the drive-cycle modelling based 

on maximum speed limits, employed in references [49, 91], would be far from 

reality. The chance of stopping when the vehicle reaches traffic lights also alters 

the power-cycle during deceleration and acceleration or by the accessories’ power 

demand during stop time.  

The power-cycle library inherently considers the aggressiveness factor of 

different drivers that affect the power demand during accelerating or braking. This 

means that the power-cycle library could save driver’s name and define an 

aggressiveness factor for each driver. The term  in Eq. 3-2 is the 

power required for acceleration or braking. 
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Road grade 

The road grade considerably alters the power demand of the vehicle. In 

reciprocal journeys, any downhill part would be uphill in return. Correct 

allocation of electric energy for downhill or uphill parts of the journey would 

improve the efficiency and the battery health in mountainous areas. By means of 

using a GPS which provides elevation information, it is possible to predict road 

grade power for a journey in advance. 

Wind 

The crosswind speed against the vehicle movement raises the power demand of  

the vehicle especially in high speed driving at highways; hence, the drag force 

increases with the square of velocity. For instance, the drag force at 100 km/hr is 

around 30% higher with 20 km/hr crosswind.  

Eq. 4-1 represents the drag force which is a function of both vehicle and wind 

speeds, , vehicle frontal area, , drag coefficient, , and air density, . 

Based on the daily wind speed and direction forecasts and the journey speed 

and direction saved in the power-cycle library, Eq. 4-1 can predict the effect of 

daily wind velocity on vehicle power demand. 
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Temperature and change in aerodynamic force 

Even change in air density can cause discrepancy for the power demand 

prediction as it changes around 25% between temperatures  and . 

This change is proportional to the same drag force change according to Eq. 4-1 . 

Temperature and engine and catalyst converter operation  

It is well known that cold engine operation increases fuel consumption and 

pollution of the vehicle [92, 93]. For instance, the hydrocarbon and carbon 

monoxide emissions increases by 650% and 800% respectively at , 

compared to the standard certification values at . The low ambient 

temperature raises lubricating oil viscosity and thus results in higher mechanical 

losses during engine cold start. In addition, combustion is affected due to lower 

ignitability of the fuel mixture. The low ambient temperature can also delay the 

three-way catalyst (TWC) activation, which is one of the most important reasons 

accounted for high emissions at cold start. The full operational temperature of 

TWC is around . The research on EURO4 emission compliant vehicle 

shows that for similar and even more aggressive than ECE 15 urban driving cycle, 

the lubricating oil temperature increases form the ambient temperature of 

 to the full warmed up value  in about 15 minutes, and it takes 

100 seconds for upstream and 200 seconds for downstream of TWC to reach 

 [93]. The issue of cold start and warm-up period is even more significant 

for HEVs and PHEVs. When the vehicle is controlled by a blended mode charge 

management strategy, the engine on/off shifting occurs more frequently, and the 
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engine cools down when vehicle operates in the EV mode. The all electric range 

followed by the charge sustaining mode EMS for EREVs intrinsically solves this 

issue as the operation of EREV is similar to that of a HEV during the CS mode. 

Cold engine operation, however, should be investigated when dealing with the 

blended mode EMS. The cold engine fuel consumption penalty, cold-factor, is 

formulated in Section 3.6.2.  

Temperature and battery performance 

Battery thermal management is the current state of the art in battery designing. 

Temperature affects both performance and aging process of the battery. Battery 

have minimum operational temperature since their performance is degraded 

significantly in low temperatures. A plugged in battery is kept warm enough so 

that it can be used immediately. However, if the battery temperature goes below 

the minimum operational temperature, the engine should run until the battery 

warms up even if the battery is fully charged. On the other hand, high temperature 

significantly accelerates the aging and the degrading of battery, and the battery 

cooling system causes parasitic loads. From the energy management point of 

view, the effect of temperature on battery performance is significant when the 

operation is compared for summer or winter extreme temperatures. However, the 

power-cycle library based energy management provides the performance 

characteristics of battery in the specific time of the year. An important benefit of 

the library control approach is the flexibility to define effective energy 

management strategy regardless of different environmental and geographic 

condition. 
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Temperature and air-conditioning/cabin heating power demand 

Unlike conventional vehicles in which the compressor of the air conditioning 

system is connected mechanically to the engine, a separate electric motor propels 

the compressor in PHEVs and most of HEVs. The AC can be considered as the 

most significant auxiliary load in a vehicle. As an example, the power demand of 

the AC compressor is equivalent to the vehicle when driving steadily at 56 kph 

[31]. The fuel economy of a vehicle drops substantially when the AC compressor 

load is added. This effect is even larger for high fuel economy vehicles. AER 

would be considerably reduced in PHEVs since the compressor is powered by the 

battery. A 3 kW accessory load will decrease AER on a repeated EPA Urban 

Dynamometer Driving Schedule (UDDS) by 38% [94]. During hot soaking which 

means parking in the open on a sunny and warm day, the interior temperature 

could easily exceeds 70°C. Through the initial surge cooling interval, the 

compressor of compact and mid-sized vehicles consumes around 2.9 kW to 3.4 

kW respectively [95]. However, to avoid initial surge if the PHEV is connected to 

the grid, it is possible to use external electricity to start the AC or heater system in 

appropriate times before the journey starts. This opportunity simultaneously 

provides comfort and saves valuable battery energy. 

The required power for the cabin heater and safety related demister is another 

issue in PHEVs when there is no hot water available from the engine coolant 

during the EV mode. It is necessary to devise a parallel electric heating system to 

warm up the cabin similar to electric vehicles. Using electric energy for heating is 

huge waste in comparison with engine coolant free energy. Heat pumps are not 

applicable for automotive heating applications because of the evaporator heat 
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exchanger limitations. Thus, resistive electric heaters should be employed. 

Assuming the absolute difference between the comfort and ambient temperatures 

is identical for both the AC and heater operations. The heater electric power 

demand is almost twice that of the AC because the electric power demand of the 

AC compressor is equal to the required cabin cooling power divided by the 

coefficient of performance (COP) of the refrigeration cycle. 

With such a large AC and even more for heater power demands, any EMS 

neglecting the effect of AC and heater would not be accurate. Ambient 

temperature, humidity, soaking time and direction of sun shine, the colour of 

vehicle, clouds, amount of fresh air required for ventilation, metabolic heat load 

and clothing of passengers, and even the driver perception about comfort 

temperature are the effective factors in AC and heater power demand. To predict 

the power demand of the AC and heather, the lumped method for cabin 

mass, , and specific heat capacity, , is considered in energy balance 

Eq. 4-2 and Eq. 4-4 for the cabin control volume. Positive direction of heat 

transfer is selected towards the cabin. 
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and 

where the passengers’ metabolic heat load, , is affected by the number 

of passengers. Solar radiation load, , is related to sun radiation heat 

flux, , and the incidence surface, S. For convectional heat transfer, , 

heat transfer coefficient, h, behaviour is very complex and varying regarding 

vehicle and wind speed. A is effective area of convection heat transfer. Fresh air 

mass flow rate, , causes ventilation heat load, , which is related to 

the air specific heat capacity, , consisting both air and its water content [96, 

97]. If dehumidification is necessary, the dehumidification load, , 

is related to condensed water mass rate,  , water latent heat vaporization, 

, and water specific heat capacity, . COP is coefficient of performance of 
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the AC. Eq. 4-2 can be simplified to Eq. 4-4  when a warming function is 

required. 

Prediction of all the parameters that can affect the AC power demand in a 

drive-cycle is complex, particularly when the passenger perception plays an 

important role. The power-cycle library could capture the general trend of the AC 

or heater operation requirements of a specific driver for a specific commute. 

Having access to a library of AC power demand for a routine commute, the AC 

power demand would be easier to derive based on lookup tables and simpler but 

more accurate equations.  

For a routine commute, we can assume that for Eq. 4-2 and Eq. 4-4,  

remain unchanged, as we can assume that the driver perception about 

the comfort temperature is unchanged. Although S, A, h change with the vehicle 

speed and the direction of route against the sun, but we can assume these 

parameters change in a repeatable manner for a specific journey. For a desired 

cabin temperature, to predict the everyday AC power demand, the only remaining 

variables are ambient temperature, humidity, and sun radiation heat flux for the 

specific day. With a developed library of AC or heater power demand by means 

of interpolation methods, the trend of required power demand of the AC or heater 
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are predictable with enough accuracy as required for the charge management of 

PHEVs. 

Battery aging 

State of health of the battery determines the amount of on-board available 

electric energy that PHEV could allocate for a specific power-cycle. The PHEV 

battery duty cycle is one of the most aggressive one that battery may encounter 

[98]. The battery life is dependent upon both storage and cycling. Capacity 

degradation and resistance growth have been shown to be dependent on a number 

of operational parameters. The following equation shows how the cycling, and the 

storage time affect resistance [99]: 

where t is storage time, and  is number of cycles. Coefficients   

and  are a function of the given state of charge swing, , 

battery cell temperature, , and voltage exposure, . 

There are two mechanisms described for the capacity fade. Lithium loss is the 

dominant mechanism during storage, and isolation of the active sites is dominant 

during cycling [99]. Lithium capacity, , and active sites capacities, , are 

defined by the following equations. The minimum of them would be the actual 

capacity, .  are constant values derived from experiments. 
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The impedance growth and the capacity fade due to the elevated voltage and 

temperature are inevitable. For instance, a battery stored in 35°C would have 

around 6% higher Lithium capacity loss in comparison to the same battery stored 

at 20°C after 5 years [99]. Since a PHEV may be used under different 

geographical locations with various climates, and depending on the 

aggressiveness of the driving pattern, the state of health of each battery would be 

different during the effective life of a PHEV. The EV mode followed by the CS 

mode EMS would not be affected by this noise factor. The only difference that the 

driver would notice is that the shift from the EV to CS modes occurs earlier 

compared to an ordinary vehicle for identical journeys. However, for the blended 

mode EMS, the real available battery energy is one of the initial input data for the 

controller. The power-cycle library could save the available energy of battery each 

time it is used. As a result, the slow dynamics of the battery aging is intrinsically 

considered inside the controller based on the power-cycle libraries. 

4.3 CONCLUSION 

The blended mode energy management strategies are efficient choices for 

energy management of plug-in hybrid electric vehicles (PHEVs). Development of 
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an optimal energy management strategy including an appropriate battery charge 

management requires the knowledge of the vehicle power demand trajectory in 

advance. Other than the speed-time profile, i.e. drive-cycle, there are many noise 

factors which affect both the drivetrain power demand and the vehicle 

performance. Therefore, the term power-cycle was defined in this chapter. In 

addition, the noise factors that could potentially alter the power demand of the 

vehicle even in identical journeys were discussed. These noise factors consist of 

driver aggressiveness factor, traffic, road grade and environmental conditions like 

temperature, humidity, wind, and sun radiation heat flux.  

Due to the nature of noise factors, power-cycle prediction and their interaction 

with the performance of the vehicle, the effect of these factors for each PHEV 

should be investigated individually. The power-cycle library concept proposed in 

this chapter helps achieve more accurate power-cycle prediction for repetitive 

commutes of PHEVs owners. The library of power-cycles provides a basic 

knowledge of power trajectory in both time and spatial domains. This helps 

prediction of the velocity and grade trajectory of any selected route with 

acceptable precision. Then, it is necessary to update the power-cycle before each 

journey for changes accounted for environmental disturbances like temperature, 

humidity, sun radiation, and wind.     
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CHAPTER 5   

ENERGY MANAGEMENT OF PHEVS: 
A RULE-BASED APPROACH 

5.1 INTRODUCTION  

It has been demonstrated that the blended mode or the controlled charge 

management strategies are efficient choices for energy management of plug-in 

hybrid electric vehicles [13, 36-39]. In this chapter, a rule-based EMS is 

introduced to demonstrate the benefits of having access to the proposed power-

cycle library described in Chapter 4. The EMS also considers the effect of the 

temperature noise factor on engine cold-factor penalty. The model of a series 

EREV capable of 64 km AER, described in Chapter 3, is employed to investigate 
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the developed EMS. Simulations are carried out to compare the performance and 

efficiency of the vehicle controlled by an AER-CS EMS against the rule-based 

blended mode EMS.   

5.2 AER-CS ENERGY MANAGEMENT 

As explained in Section 2.2.1, the easiest operation mode of PHEVs is the EV 

mode followed by the charge sustaining  mode, when there is no information 

available about the future driving pattern. 

Here, the controller in the EV mode utilizes the battery energy up to the 

minimum applicable battery SOC, and during the CS mode a rule based power 

follower strategy is defined to sustain the battery SOC. The vehicle modelling and 

component sizing of the PHEV was described in Chapter 3. The rules for the 

power follower strategy are listed below and the Figure 5.1. gives a graphical 

representation of the rules. 
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Figure 5.1. Schematic representation of power follower rules   
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The rules employed for this controller are:  

 Engine is kept off until the battery charge reaches minimum applicable 

SOC (AER rule). 

 Engine may be turned off if the battery SOC reaches the defined high 

limit (here 32%). 

 Engine may be turned on again if the power required by the vehicle gets 

high enough (here 7.2 kW). 

 Engine may be turned off again if the power required by the vehicle gets 

low enough (here 6 kW). 

 Engine may be turned on if the battery SOC gets to a defined low limit 

(here 28%). 

 When the engine is on, its power output tends to follow the power 

required by the vehicle, accounting for the losses in the generator so that 

the generator power output matches the vehicle power requirement. As 

the wheel and engine speeds are independent, the engine torque and 

speed are selected based on the designed curve or confined optimal 

operation line (see Section 5.2.1).  

 The engine output power may be adjusted by the SOC bringing the SOC 

back to the centre of its operating range. 

 The engine output power may be kept above a minimum value (here 6 

kW). 

 The engine output power may be kept below a maximum value (which is 

enforced unless the SOC gets too low) (here 26 kW). 
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 The engine output power may be allowed to change no faster than a 

prescribed rate (+2 and -3 kW/s).  

 If engine turns on, it is kept on for at least a prescribed time,  

(here 60 s). 

During engine-on, the battery only provides the power shortage required by the 

vehicle when the engine inertia or the power follower rate limiter rules cause a 

difference between the powertrain required power and the engine available power. 

Also, when very high power demand (more than 26 kW) is required, the battery 

compensates the power deficit. The battery SOC range between 0.28 to 0.32, 

defined in the Figure 5.1, are adequate for the vehicle operation like a 

conventional HEV when the battery is depleted to minimum SOC of 0.3. The 

engine power output range between 6 kW to 26 kW is defined as if the engine 

efficiency is constrained into the 0.3 contour depicted in the engine efficiency 

map of Figure 3.4. The 1.2 kW difference between, 6 kW and 7.2 kW, vehicle 

power demand thresholds to switch the engine on/off, engine power change rate 

limiter, and minimum engine on time are defined to prevent unsteady and 

transient operation of the engine.           

5.2.1 Confined optimal operation line 

The engine-generator operation is independent of the vehicle speed in the 

series architecture. Therefore, the engine-generator can operate over its optimal 

operation point for any required power. The combination of these optimal 

operation points defines a line in the engine-generator brake specific fuel 

consumption (BSFC) map called confined optimal operation line (COOL). (see 
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Figure 5.2). Therefore, a bijective function can be defined between the engine 

power demand,  and fuel consumption. That is, for each engine power 

demand only one fuel consumption rate could be defined as the engine torque and 

speed are restricted to COOL.     

 

Figure 5.2. Confined optimal operation line [ADVISOR database] 

When the limits of minimum 6 kW and maximum 26 kW are enforced by the 

rule-based vehicle controller, most of the engine operation points are located into 

the contour with lower than 283 g/kWh BSFC in Figure 5.2 .     

5.2.2 Driving scenario 

To compare an AER-CS energy management with the suggested EMS, a 

typical work-home commute which is longer than AER is simulated. This journey 

starts with a UDDS, then continues with a HWFET and ends with another UDDS. 

The return journey is the mirror of the drive-cycle. This drive-cycle is based on 



  Chapter 5 

94 

 

the idea that the driver starts the car in a suburban area and after driving on a 

highway arrives to a downtown urban area where the destination elevation is 

around 400 meters higher than the start point. Then, the vehicle returns back to 

complete the 80 km journey. Figure 5.6 (a) shows the speed and elevation of the 

vehicle in the defined cycle. The power-cycle in Figure 5.6 (b) consists of both 

traction and accessories such as air conditioner power demand. 

5.3 PROPOSED RULE BASED BLENDED MODE EMS 

The difference between the total energy demand in the power-cycle and the 

available battery energy is equal to the required energy from the engine/generator 

or the energy share provided by fuel. The series drivetrain has the advantage of 

blending both the battery and the engine power independent of the powertrain 

required load and the vehicle speed. It is possible to use the engine as a power 

source anywhere in a journey to provide its share in total energy demand of a 

power-cycle. However, the amount of engine energy share should be anticipated 

in advance by means of the power-cycle prediction method described in Chapter 

4. Fuel consumption in the series PHEV architecture with an AER-CS strategy 

only depends on the engine/generator performance during the end of power-cycle 

when the vehicle operates in the CS mode. With the knowledge of the power-

cycle, it is possible to find efficient sections to get the engine energy share. These 

sections should be long enough to prevent complications associated with the 

transient operation. In the following, a three-step procedure to define a controlled 

charge management strategy is described. This procedure considers the engine 

temperature as one of the most important noise factors on the engine performance. 
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Intentionally, to have a fair comparison between the AER-CS and the proposed 

blended mode energy management, the power follower strategy for the vehicle 

controller, and also the regenerative braking rules are kept unchanged. The only 

difference is more efficient charge management that is defined with the proposed 

EMS compared to the AER-CS. 

The suggested EMS is developed in a three steps (i) step 1: Hot engine 

efficiency cycle, CD1 strategy, (ii) step 2: Engine warmth conservation, CD2 

strategy and (iii) step 3: Engine cold start investigation, CD3 strategy (see Figure 

5.3). Since a deterministic approach is chosen for the rule-based EMS, the first 

perquisite to implement the method is the knowledge of the power-cycle and 

available charge in the battery. In the first step, it is assumed that temperature 

noise factor does not affect the performance of the vehicle. As a result, the hot 

engine efficiency map is used to develop the charge management strategy. In the 

second step, however, the engine thermal model is employed to explore the effect 

of the temperature noise factor. Finally, the last step investigates the possibility of 

elimination of excessive cold start-warm up in the reciprocal commutes if it 

secures more efficient operation of the vehicle.            



  Chapter 5 

96 

 

 

Figure 5.3. Three-step rule-based blended mode EMS 

5.3.1 Step 1: Hot engine efficiency cycle, CD1 strategy 

With the knowledge of the power-cycle, efficiency cycle can be derived 

assuming that the engine is on, hot, and controlled by the power follower strategy 

rules over the power-cycle. Since frequent engine on/off is not pleasant, the 

smoothed power-cycle with averaging span of 60 seconds equal to the minimum 

engine-on-time , in power follower strategy is used for 

developing the efficiency cycle. For the required powers higher than maximum 

efficiency point, here 15.3 kW, the efficiency cycle is manipulated to the fixed 
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maximum efficiency (see Figure 5.6 (b)). The corresponding efficiency of each 

power demand could be found from COOL. 

The reason to smooth the power-cycle is that the accurate power-cycle 

prediction is practically impossible. However, with the approach described in 

Chapter 4, a power-cycle with enough accuracy could be predicted to define the 

trend of required power in a journey. In addition, an accurate trend prediction is 

more appealing for energy management purposes as it deals with slow dynamic 

parameters like a large battery SOC and temperature.  

Efficiency line 

A known efficiency cycle is explored for sections with steadier, longer, and 

higher efficiency during the journey to acquire the engine energy share from. 

Codes have been developed to find the horizontal efficiency line shown by the 

dash-dot red in Figure 5.6 (b). The position of the efficiency line over the 

efficiency cycle is defined such that the amount of energy delivered by the engine 

in the shaded sections of the equivalent power-cycle in Figure 5.6 (b) becomes 

equal to the required engine energy share to complete the journey with a 

minimum applicable battery SOC. A minimum 60 seconds engine-on mode is 

considered in this procedure. Generally, high efficiency sections coincide with 

high power demand in power-cycle. Although power higher than the maximum 

efficiency point of the engine reduces the engine efficiency, it is worth to select 

them for the engine-on mode to reduce the load over the battery. In other words, 

when the required power from the engine is between the most efficient point at 

15.7 kW, and the maximum allowed power defined by rules of the power follower 
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controller at 26 kW, logically these sections are acceptable for the engine 

operation. The shift of the engine operation from the end (CS mode) to the high 

power demand sections of the journey reduces the maximum power required from 

the battery that is beneficial for its state of health. The first step is named Charge 

Depleting 1 (CD1). The schematic illustration of the step one is depicted in Figure 

5.4 and the flowchart of the finding the efficacy line is given in Figure 5.5. 

The CD1 over the defined power-cycle mostly selects the first section of the 

journey for the engine operation while the drive-cycle is similar in both go and 

return journeys. The reason is the slope of the road which significantly increases 

the power demand of the vehicle (see Figure 5.6 (b)). Logically, the engine energy 

share is allocated in high speed sections of each side of the cycle. There is one 

section, around t=4900, where the efficiency is higher than the efficiency line but 

is not selected for the engine operation. The reason is that the section is shorter 

than minimum engine on time threshold, 60 sec.   

When the engine-on sections are defined with CD1, to implement it in the 

vehicle controller, the rules of power follower are manipulated. The rule “Engine 

is kept off until the battery charge reaches minimum applicable SOC (AER rule) 

is eliminated, as this rule enforces the AER-CS EMS for the PHEV. The rules 

which enforce charge sustaining  at minimum applicable SOC are also 

manipulated to keep the battery SOC constant during the engine-on sections 

( , , …) defined by CD1. Therefore, the vehicle operation in the CS 

mode moves to the engine-on sections instead of concentrating at the end of 

journey.   
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Figure 5.4. Schematic illustration of Step 1  
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Figure 5.5. Flowchart of the process to find the position of the efficiency line in CD1 
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5.3.2 Step 2: Engine warmth conservation, CD2 strategy 

Since the efficiency cycle in Step 1 is formulated based on the hot engine 

efficiency map, it does not consider the effect of temperature on the engine 

performance. Cold engine operation during the shifting between the EV and the 

engine-on modes at CD1 is a point of concern. The engine thermal model is a 

prerequisite to determine the effect of the cold engine operation. The engine 

thermal model, described in Section 3.6.2, is employed to investigate the effect of 

temperature on the engine performance.  

The first question that needs to be answered when considering the effect of the 

engine temperature on the performance is to investigate whether it is more 

efficient to select the engine-on sections only based on the hot engine efficiency 

cycle, or to choose these sections more concentrated to conserve the engine 

warmth. To answer this question, the longest engine-on sections selected in CD1 

are chosen in each side of the go and return journeys as there is a cool-down 

period at the middle of the journey. The nearby sections with less than 60 seconds 

engine-off interval are also added to the two longest sections at each side. It is 

obvious that these longest sections would be selected for engine operation even 

when the engine temperature noise factor comes to account. In other words, the 

engine-on sections might concentrate around the longest sections if it is more 

efficient to run the engine in lower efficiency cycle region (derived from hot 

engine assumption) but in higher temperatures. It is assumed that temperature is 

constant and equal to the thermostat set temperature during the chosen sections. 

That is, the cold-factor from Eq. 3-6 for the longest section of the engine-on is 

one. Applying the engine temperature code, coolant temperature and consequently 
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cold-factor penalty for fuel consumption would be calculated for both sides of the 

journey (see Figure 5.6 (c)). The engine temperature code should be run in both 

forward and backward directions to calculate the cold-factor in both sides of the 

longest engine-on sections. A new efficiency cycle is developed by dividing the 

hot engine efficiency cycle by the cold-factor derived for each point of the 

journey. The horizontal efficiency line approach described in CD1 and flowchart 

of Figure 5.5  is repeated on the newly developed efficiency cycle to find the new 

engine-on sections. As shown in Figure 5.6 (d), there is no significant change in 

the engine-on sections for the first part of the journey but for the return journey, 

the engine-on sections are closer to one another. Step 2 has an important role 

when the ambient temperature is low, thus, the engine thermal model predicts a 

higher cold-factor. The simulated journey is assumed to occur in 30˚C and 35˚C 

ambient temperature for a go and return journey, respectively, simulating a 

summer day morning and afternoon commute. The power demand of the AC is 

also added to the power cycle. The summer day simulation is intentionally 

selected to emphasize on the effect of the EMS on battery temperature which 

would be discussed in Section 5.4. The second step is named Charge Depleting 2 

(CD2). 

5.3.3 Step 3: Engine cold start investigation, CD3 strategy 

Since CD1 and CD2 select engine-on sections in both go and return journeys, it 

is necessary to investigate the effect of the extra cold start engine operation. It 

may be more efficient to run the engine only in one side of the trip even in lower 

engine efficiency cycle sections and avoid the second engine cold start. First, the 
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side with the higher engine-on sections from CD2 is selected which logically 

provides larger share in the engine energy demand. Similar to the Step 1, the 

aforementioned efficiency line procedure is repeated to cover all the engine 

energy demand from only one side of the journey assuming that the vehicle 

operates in the EV mode for the return journey. The hot engine operation 

efficiency of the newly added sections, with darker colour in Figure 5.6 (e), is 

compared with the other side CD2 engine efficiency while the cold-factor penalty 

is considered. It is assumed that the efficiency of the newly added sections is 

equal to that of the hot engine because at least one cold start is inevitable. The 

engine thermal model code is again used to derive the cold-factor for the second 

part of the journey with extra cold start operation. If the hot efficiency of the 

newly added sections is higher than the cold start engine operation of the other 

side, the engine-on sections in CD3 will be set in the energy management strategy 

otherwise the CD2 sections remain unchanged. In the simulated power-cycle, 

CD3 is more efficient. The coolant temperatures of the engine in all three steps are 

depicted in Figure 5.6 (f). The summation of the shaded area in all three steps is 

equal to the engine energy share. That is, the charge management defined by each 

three steps, CD1, CD2, and CD3 only decides where to allocate the secondary 

energy source of EREV, battery energy. Here unlike the AER-CS, the battery 

energy is allocated for the return journey instead of the beginning of the journey.   
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Figure 5.6. (a) 

Defined mirrored 

drive-cycle and 

elevation. (b) Power 

and equivalent 

efficiency cycle and 

efficiency line in CD1. 

(c) Engine coolant 

temperature and 

cold-factor for CD2. 

(d) Power and 

equivalent efficiency 

cycle modified by 

cold-factor and 

efficiency line in CD2. 

(e) Power and 

equivalent efficiency 

cycle and efficiency 

line in CD3. (f) 

Coolant temperature  

in CD1, CD2, and 

CD3 
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5.3.4 EMS for the cold weather  

The power demand of the cabin heater in cold weather during AER is a 

significant electric load when there is no hot water available from the engine 

coolant. For a similar difference between the comfort and ambient temperatures, 

the heater power demand is even higher than that of the AC because the AC 

power demand in compressor is divided by the COP of the AC refrigeration cycle. 

In the AER-CS energy management strategy, the hot water is only available 

during the CS mode. However, with the knowledge of power-cycle and prediction 

of the heater power demand, it is possible to define an appropriate blended mode 

EMS that keeps the engine hot for much longer sections or even the whole 

journey. That is, it might be globally more efficient to run the engine more 

frequently in lower power, and consequently in lower efficiencies but use its 

coolant as the energy source for the cabin heater. As an illustration, for the 

minimum engine power, 6 kW, defined by power follower controller, the engine 

efficiency is 0.27. If the typical 2.5 kW required heater power is provided by 

coolant instead of battery, the engine efficiency increases up to 0.38 which is even 

higher than the maximum efficiency of the engine. With the knowledge of the 

power-cycle, the engine required energy, and the heater power demand during a 

specific cycle, it is possible to find an appropriate amount of power demand from 

the engine, and select the engine-on positions to reach maximum efficiency. To 

address this question, an optimization-based EMS is proposed in Chapter 6. 
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5.4 RESULTS 

Table 5-1 compares the vehicle performance in three steps of the suggested 

blended mode EMS strategies against that of the AER-CS energy management 

strategy. The fuel consumption is reduced by around 4.7% in the specific defined 

power-cycle. The engine operation points are shown in Figure 5.7. It is clear that 

in the CD3 EMS, the engine operates more efficiently in higher loads without any 

manipulation in power management rules. The variations of engine performance 

and fuel economy in CD1, CD2, and CD3 show the significance of the engine 

temperature noise factor. This effect could be even more significant when the 

ambient temperature is low.  

The other major benefit of the proposed blended mode approach is the 9.6% 

and 126% reduction in the amount of energy that flows from and to the battery, 

respectively. Reduction in power recirculation eliminates the battery 

charging/discharging losses and slows down the aging of the battery which is the 

most valuable part of the PHEVs. The power recirculation occurs in the low 

drivetrain power demand when the surplus of the minimum engine power (here 6 

kW) is stored in the battery. The battery current and accordingly its temperature 

are declined when the engine propels the vehicle in the most vigorous part of a 

power-cycle. It has been proven that the temperature is one of the major 

parameters which deteriorates the battery state of health (see Section 4.2.2). The 

SOC history, the battery temperature, and the average current in both the AER-CS 

and CD3 EMSs are compared in Figure 5.8. When the performance of the battery 

in AER-CS and CD3 is compared, it can be observed that the waste of energy in 

the battery is reduced by 43%. This reduction is caused by the decrease in the 
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battery temperature and the elimination of the power recycling in the CS mode in 

a shallow SOC. Both the shallow SOC and the high temperature increase the 

internal resistance of the battery. The economic impact of the suggested EMS 

could be even more significant on the state of health of the battery when 

compared to the amount of saved fuel. An accurate state of health modelling and 

extensive physical tests are required to quantify the benefits of temperature and 

current reduction that is out of the scope of this research.  

 

Figure 5.7. Engine operation points in the efficiency map. (a) AER/CS strategy. (b) CD3 strategy 
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As mentioned before, to have a fare comparison, the power-follower rules in both 

suggested EMS and AER-CS strategies are similar. That is, the fuel reduction 

recorded in Table 5-1 is only achieved by the charge management. The simplicity 

of the suggested approach makes it a completely applicable EMS for vehicles 

such as GM Volt, since the power management strategy is not changed by this 

approach. The only input to the vehicle is when to shift from the EV mode to the 

CS mode during a journey with a simple GPS feedback. Even the driver can make 

the decision of shifting from the EV mode to the CS mode like the input button 

designed for the GM Volt sister vehicle, Opel Ampera. 
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Table 5-1. Performance comparison of the AER-CS and the rule-based blended strategies 

Parameter AER-CS CD1 CD2 CD3 
Compare AER-CS 

with CD3 [%] 

 

Go* Return** Sum*** Go Return Sum Go Return Sum Go Return Sum 
 

Modified for 

final SOC=0.3 

Fuel consumption [Lit] 0 2.043 2.043 1.690 0.332 2.022 1.676 0.345 2.020 1.957 0.000 1.957 -4.39% 1.951 -4.70% 

Engine Energy in [kJ] 0 65173 65173 53914 10584 64498 53465 10991 64456 62430 0 62430 -4.39% N.A.  

Engine Energy out [kJ] 0 19763 19763 17098 3194 20292 16962 3344 20306 19773 0 19773 0.05% 19715 -0.25% 

Engine Efficiency [%] N.A. 30.32 30.32 31.71 30.18 31.47 31.73 30.42 31.51 31.67 N.A. 31.67 4.26% N.A.  

Battery Energy in [kJ] 1135 6211 7346 1826 1232 3058 1761 1213 2974 2185 1068 3253 -126% N.A.  

Battery Energy out [kJ] 35987 10826 46813 20438 21580 42018 20503 21419 41922 18256 24449 42705 -9.62% N.A.  

Battery Loss [kJ] 394 195 589 178 218 396 178 214 392 161 253 414 -42.3%   

Final SOC (Initial 0.85) 0.3651 0.3041 0.3041 0.5938 0.3099 0.3099 0.592 0.3112 0.3112 0.6297 0.3049 0.3049 0.27% 0% = 58.3kJ 

*the go column presents the change of the investigated parameter in the first part of the commute, ** the return column presents the change of the investigated 

parameter in the second part of the commute after cool-down period, and *** the sum column presents the change of the investigated parameter during the whole journey 
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Figure 5.8. Battery SOC history, current, and temperature in both the AER-CS and the CD3  
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5.5 CONCLUSION 

The blended mode energy management strategies are more efficient for the 

EMS of PHEVs. When the blended mode EMS is defined for a PHEV, shifting 

between the engine-on and off modes is frequent. Therefore, engine temperature 

plummets while the engine is turned off. When the engine is running at 

temperature lower than designated thermostatic temperature, its performance and 

efficiency deteriorates.  

A power-follower rule-based EMS operates the vehicle in an AER-CS EMS for 

a simulated power-cycle. The same control rules also employed to operate the 

vehicle in the developed blended mode EMS to have a fair comparison. In other 

words, any reported improvement in the fuel economy of the vehicle is only the 

result of the more efficient charge management of the vehicle rather than the 

power management strategy. Based on the power-cycle of the simulated driving 

scenario, an efficiency cycle was developed by assuming that the vehicle operates 

based on the power follower rules, and the engine operates on confined optimal 

operation line (COOL). To define a blended mode EMS, the efficiency cycle was 

investigated in a three-step procedure to find the best sections to provide the 

required engine energy share. The cold-factor calculation by means of the engine 

thermal model was employed during the evolution of the efficiency cycle in the 

last two steps of the strategy, CD2 and CD3. The effect of the second cold-start of 

the vehicle for journeys with long cool-down periods was also investigated in the 

last step of the EMS, CD3.  
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The simulation results for the modelled series PHEV, which has similar 

specifications to GM Volt, show that the suggested CD energy management 

strategy improves both the vehicle fuel economy and the battery health by 

eliminating the significant power recirculation, reducing the battery load, and 

accordingly its temperature. 
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CHAPTER 6  

OPTIMAL INTEGRATED THERMAL AND 
ENERGY MANAGEMENT OF PHEVS 

6.1 INTRODUCTION 

The rule-based controller for EREV that considers the cold-factor fuel 

consumption penalty and the cold start of the engine in the blended mode EMS 

was introduced in Chapter 5. The rule-based controllers are practical, simple to 

implement, and as explained in Section 5.4, the benefit of them is notable. In this 

chapter, a new EMS with the dynamic modelling approach based on the theory of 

dynamic programming (DP) is introduced to address three important aspects of 

EMS of PHEVs. First, the method, based on DP, establishes a mathematical 
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optimal solution of the modelled control problem. That is, if the modelling 

process is in accordance to the physical reality of the control problem, the result 

of the process could be accounted as the optimal benchmark for all other control 

approaches. In practice, it is impossible to reach the limit found by the optimal 

control theory; however, it is worth to access the benchmark solution. Second, the 

DP method is appealing because the result is a global rather than a local optimal 

solution. This is ideal for the charge management of PHEVs for known power-

cycles. The last but not the least reason is by adding a temperature as a state 

variable into the optimal control problem formulation, it is possible to address the 

optimal solution for the engine thermal management, and the battery charge 

management, synchronously. This solution finds the best engine thermal 

management to maximise the engine hot operation as well as the availability of 

hot water from the engine coolant for the cabin heating propose. 

In this chapter, first an introduction to the basics of the theory of dynamic 

programing is given. Then, the formulation of the control problem and the 

required cost function for the optimization process are discussed. Finally, the 

results of a warm and a chilly day simulation, employing the suggested blended 

mode EMS, are compared with those the conventional AER-CS strategy.               

6.2 OPTIMAL CONTROL AND DYNAMIC PROGRAMMING 

The objective of optimal control is to determine the control signals that satisfy 

the physical constraints and also minimise (or maximise) a performance criterion 

[100].  
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6.2.1 Mathematical modelling for dynamic approach  

The basic part of any control problem is to mathematically model the process. 

The main objective of modelling is to find the simplest mathematical description 

of the process which sufficiently describes dynamics of the system to all possible 

inputs. A system is described by ordinary differential equations in state variable 

form, where:   

are state variables and 

 

are control inputs, and the system could be described with n first order differential 

equations: 

 

 

 

 

By defining the state vector  and input control vector  the state 

equation can be written [100]: 

Eq. 6-1 
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6.2.2  The performance measure or the cost function  

In order to evaluate the performance of a control system quantitatively, it is 

necessary to define a performance measure or a cost function that the optimal 

control method tries to minimize. Therefore, the aim of the control problem is to 

find an admissible control  to follow, and admissible  to minimise the cost 

function: 

Eq. 6-2 

is called an optimal control and an optimal trajectory.  

6.2.3 The principle of optimality  

Dynamic Programming is based on Bellman’s principle of optimality: 

“An optimal policy has the property that no matter what the previous decision 

(i.e., controls) have been, the remaining decisions must constitute an optimal 

policy with regard to the state resulting from those previous decisions”[100, 101] 

In the discrete time format:  

Eq. 6-3 

where  is the state vector,  is the vector of control variables, and  is the time 

index.  

The performance index or cost function in discrete time format is: 
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Eq. 6-4 

where  is an instantaneous cost which is a function of the state and control input 

at each intermediate time  Based on the principle of optimality, discretization of 

states and time, and by finding the minimum instantaneous cost for all admissible 

input variables, the optimal input variable could be found for each time step with 

recursive loops. For more information please refer to references [100, 101]. 

6.3 EMS OF PHEVS AND DYNAMIC PROGRAMMING 

As explained in Chapter 1, an intelligent charge management as a part of the 

EMS is required to get the maximum benefits out of the energy stored in the 

PHEV ESS. Dynamic programing (DP) is a global optimal approach which can 

find the best charge depleting profile, also can act as the benchmark solution for 

PHEVs’ online EMSs. It represents the best possible solution of the control 

problem with respect to the used discretization of time, state space, and inputs. Its 

main disadvantage is the high computational effort which opposes a real-time 

implementation for the online control of a vehicle. With an acceptable estimate of 

power-cycle described in Chapter 3, however, DP can help find the optimal 

charge depleting trajectory for a known driving pattern. That is, DP could be run 

off-line before the journey starts to find the best SOC and engine temperature 

trajectories, and also to calibrate the real-time EMS of PHEVs. Using external 

sources via cloud-computing could be a feasible solution to overcome this 

computational burden. The online approaches like equivalent consumption 
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minimization strategies (ECMS), model predictive control, stochastic dynamic 

programming, and heuristic strategies are locally optimal approaches which 

cannot predict the optimal charge depleting strategy and engine thermal 

management, accordingly.  

6.3.1 Vehicle model 

An inverse powertrain model analogous to the PHEV model described in 

Chapter 3 is formulated as an optimal control problem in dynamic programming 

to find the optimal charge depleting trajectory and EMS of the PHEV. Based on 

the principle of optimality suggested by Bellman, the optimal path from any of its 

intermediate steps to the final states corresponds to the terminal part of the entire 

optimal solution [2, 49, 100, 102, 103]. For the series powertrain architecture, the 

states are the battery charge, , and the engine internal temperature, , and 

duration of engine operation since last start, , and the control vector is the 

engine power, . In the discrete time format and using Eq. 6-3 : 

Eq. 6-5 

Eq. 6-6 

Eq. 6-7 

Electric power equilibrium at the power bus, depicted in  Figure 3.2, could be 

expressed in the form of Eq. 6-8. Power-cycle, the right side of Eq. 6-8, consists 
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of the electric motor power, , and accessories loads, , and the heater 

power demand, . When the engine is warm enough, , the heater 

power demand, , could be supplied by the engine waste heat. As a 

prerequisite of DP modelling, it is assumed that the power-cycle is predicted 

based on the approach described in Chapter 3. 

Eq. 6-8 

where ,  ,  are ESS power, generator efficiency, and engine power 

respectively. 

There are some simplification assumptions for the battery subsystem of the DP 

model of the vehicle compared to the model discussed in Chapter 3. First,  it is 

assumed that the resistance of the battery is independent of the SOC of the 

battery. Moreover, the effect of temperature on the battery resistance is neglected. 

Therefore, the battery thermal model is not considered. Dynamic programming 

suffers from the curse of dimensionality. That is, adding each state variable 

increases the computational load exponentially. Therefore, clever simplification 

could limit the required computational effort to make the process reasonably 

accurate and implementable in practice. Assuming that the ESS model is a perfect 

open circuit voltage source in series with an internal resistance, and using Eq. 6-8 

and Eq. 3-34 the relation between the state, , and the input variable, , is 

described by Eq. 6-9. The motor power demand, , the accessories excluding 

cabin heater power demand, , and the cabin heater power demand, , 

are fed into the DP model from the simulation results of the quasi-static model 
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over the same power-cycle. In a series drivetrain, as the electric motor is the sole 

vehicle traction provider, the control strategy does not affect the motor power 

demand of the vehicle. Therefore, the results could be used in a dynamic approach 

as well. The battery nominal voltage, , and resistance, , are kept similar to 

quasi-static simulation. 

Eq. 6-9 

Using Eq. 6-5 and Eq. 6-9, the relation between the state, , and the input 

variable, ,  in discrete format is:  

 

Eq. 6-10 

In this modelling, the simulation time step, , is assumed to be 1 second.  

The internal engine temperature state, (k), is dependent on the input variable, 

, with the heat transfer equations described in the engine thermal model. 
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Similar equations that were described in Section 3.6.2., in discrete time format are 

employed in the coding environment of Matlab instead of Simulink. Therefore, 

temperatures at each nodes of the engine thermal model  of  Figure 3.5 can be 

represented by following equations:  

Eq. 6-11 

Eq. 6-12 

Eq. 6-13 

 

Eq. 6-14 

The last state variable, , which is the duration of  the engine operation 

before the last start is defined to prevent the frequent transitions between the 

engine on and off modes. There is a threshold designed for minimum 

duration, , that engine is kept operating. A lock inside the code prevents 
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the engine to turn off before the minimum engine on time threshold. In this study, 

the threshold is defined as 10 second.   

Eq. 6-15 

The optimization problem in discrete format is to find the control input, , to 

minimize a cost function which represents the fuel consumption from the initial 

time, , and states, , to the final time, , and states, .  

From Eq. 6-4 in which the , the fuel cost function can be 

defined as: 

Eq. 6-16 

where L is an instantaneous cost which is hereby defined as fuel consumption. It 

is possible to add emission and its correspondent weighting factor to the cost 

function.  and  are admissible PHEV states and control inputs, respectively, 

which are defined based on the operational restrictions of the battery and the 

engine-generator.  could be defined as non-zero when the final SOC is 

a soft constraint. The soft constraint means that the final SOC is acceptable in a 

range rather than a fixed predefined SOC. Hence, a penalty to compensate the 
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charge deviation should be considered. For HEVs with smaller battery, and for 

short drive-cycle simulation, this might be useful which is not the case here.   

6.3.2 Initialization of DP approach 

As described in Section 5.2.1, the engine-generator operation is independent of 

the vehicle speed in the series HEVs’ architecture. Therefore, the engine-

generator could operate over confined optimal operation line (COOL). (see Figure 

5.2). Therefore, a bijective function can be defined between any engine power 

demand,  and fuel consumption.  

In the dynamic programming initialization phase, the heater power demand can 

be supplied by either the engine waste heat or electricity. Accordingly, two 

corresponding change of charge against fuel consumption, 

, are calculated for each time step by using COOL, Eq. 6-10, 

and power-cycle.  and  define instantaneous 

cost for any possible change in the state variable, , regardless of second 

state variable, . In other words,  and  

define a one-to-one correspondence function between fuel consumption and 

change of charge for each point of power-cycle for two cases of heater power 

demand provided electrically or from engine waste heat respectively. Obviously, 

for implementation purposes in Matlab, coding environment   

and  are saved in vector format for each time-step.  
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6.3.3 Cost-to-go matrix 

By implementing a forward DP approach, a cost-to-go matrix, J, is defined 

recursively from the initial time-step via discretising the charge of battery and 

time defined by the duration of drive-cycle. Any node on the cost-to-go matrix 

represents the minimum cost to reach that specific charge and time from the 

beginning of the journey. The time discretisation is , and the charge 

discretisation in this simulation is  . With the selected sizing of the 

battery, the total charge capacity is: 

Eq. 6-17 

Eq. 6-18 

The initial and final charges, as well as the maximum and minimum change of 

charge in each time-step are used to determine the possible maximum and 
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minimum charges of each time-step. This reduces dimensions of the recursive 

loops for calculation of the cost-to-go matrix to the irregular hexagon shown in 

schematic cost-to-go matrix in Figure 6.1. When the initial and final charges are 

known, there are limited possible paths available in the cost-to-go matrix which 

connects them. Indeed, maximum and minimum applicable charges of the battery 

define the extremum horizontal boundaries. Two forward and backward 

calculations are required to find the other four inclined boundaries. In forward 

calculation, both maximum and minimum charge start from initial predefined 

charge for the first column. For the next step, maximum and minimum possible 

charge correspond to the charge of the battery if the engine operates at maximum 

power or turns off, respectively. On the other hand, in the backward approach, 

both maximum and minimum charge starts from final predefined charge for the 

last column. For the next step backward, maximum and minimum possible charge 

correspond to the charge of battery if engine turns off or operates at maximum 

power, respectively. Eq. 6-20 and Eq. 6-21 represent forward and backward 

calculation of the maximum and minimum charges in each step. The boundaries 

of the possible charges in irregular hexagon in Figure 6.1. are defined by Eq. 6-22.  
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In summary, only all possible paths from the initial to the final SOC are 

investigated instead of finding the cost-to-go matrix for all the discretised charges 

and times. This could significantly reduce the calculation time for large battery 

and for drive-cycles longer than the AER of PHEVs.  
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Figure 6.1. Graphical representation of cost-to-go matrix 

Based on the Bellman’s recursive equation approach, the cost function, Eq. 

6-23 is solved by an interpolation method to find the minimum cost to reach a 

specific node from all possible charges of the previous time step considering both 

minimum engine-on-time and cold-factor. Cold-factor relates the cost function to 

the second state variable, , using Eq. 6-25. Also, minimum engine-on-time 

defines the minimum duration that the engine is permitted to turn off again after it 

starts. This prevents excessive transient operation of the engine which is generally 

associated with low efficiency and high emission. All possible charges, , costs, 

, and fuel consumptions,  and   , are shown in vector format 

in Eq. 6-23. The engine on-time, , defining duration of the engine 



  Chapter 6 

128 

 

operation, and the engine internal temperature, , derived from the thermal model 

of the engine, are also calculated and saved for each node. Two inequality 

functions in Eq. 6-23 define the condition for supplying the heater power demand 

by the engine waste heat and prevent the engine to turn off before a minimum 

engine-on-time threshold. For each node of the cost-to-go matrix, the index of the 

ascendant node defining the optimal path to the specific node is also saved. This is 

required to identify the initial conditions for cost, , thermal model, 

, engine on time,  for forward cost-to-go calculations and 

also to find the SOC trajectory in the backward phase of DP. The schematic 

calculation of cost-to-go for each node is depicted in Figure 6.2. 
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Eq. 6-23 

Based on the thermostat engine temperature set point, , and the coolant temperature, , which is assumed equal to the engine 

internal temperature, , from Eq. 6-12 where temperature is in centigrade degrees. : 

Eq. 6-24 

Eq. 6-25 
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Figure 6.2. Schematic calculation of cost-to-go for each node 

After completion of the cost-to-go calculation, in the backward calculation 

stage, optimal charge, temperature, fuel consumption, and engine power 

trajectories are calculated. The flowchart of the DP code is shown in Figure 6.3. 

The calculation of each time step charge limits and vectorization of the algorithm 

have improved the performance of the code and the simulation time for the PHEV 

battery size and the long drive-cycles. 
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Figure 6.3. Flowchart of the developed dynamic programming code 



  Chapter 6 

132 

 

6.3.4 Forward DP instead of backward DP 

Generally, dynamic programming is known as a backward approach. That is, in 

case of energy management strategy of HEVs and PHEVs, the calculation of cost-

to-go matrix starts from the end of journey back to the initial point. There are two 

main reasons that make it necessary to use forward instead of backward DP. First, 

the initial conditions at the end of the journey are unknown, thus the thermal 

model equations cannot be solved in a backward manner. In the engine thermal 

model, the engine mass is lumped to four temperatures, cylinder, ,  engine 

interior, , engine exterior, ,  and hood temperature, . If a backward 

approach is selected, the initial conditions of the heat transfer equations are 

unknown at the end of the journey. In addition, when the coolant reaches the 

thermostat temperature, the radiator heat transfer rate, , as an extra 

unknown, is added if the thermal model is to be solved backward. Therefore, it is 

impossible to form the cost-to-go matrix with backward approach if the 

temperature as a state variable is considered.  

6.4 SIMULATION RESULTS  

To prove the significance of temperature on the optimal EMS of PHEVs, two 

80 km driving scenarios simulating warm and chilly days are defined. Simulations 

conducted to find the optimal battery charge and engine power trajectories using 

the developed DP code. The results are compared against those of the AER-CS 

and DP EMS methods which neglect the cold-factor, engine cold start, and 

heater/AC power demands. The name “DP with cold-factor” is selected for the 

developed dynamic programming-based method proposed in Section 6.3. The 
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formulation of “DP without cold-factor” is similar, but does not consider the 

engine temperature as a state variable in the control problem. Therefore, for the 

“DP without cold-factor”, the cost function in Eq. 6-23 is defined without 

considering the cold-factor and the heater power demand inequality function. To 

show the real fuel consumption, the cold-factor multiplied by the cost. The cold-

factor is not considered in the minimization function (see Eq. 6-26) of “DP 

without cold-factor”.     

Eq. 6-26 

 

6.4.1 Driving scenario 

The drive-cycle represents a typical work-home commute which starts in a 

suburban area, characterized by UDDS, then continues on a highway, simulated 

by HWFET, and finally arrives to downtown urban area, UDDS. Destination 

elevation is around 400 meters higher than the starting point. For the warm day 

driving scenario, vehicle stops during working hours and the engine cools down to 

the ambient temperature. The return journey is the mirror of the defined driving 
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scenario but the acceleration and deceleration are kept identical. The reason is that 

by simple mathematical mirroring of the cycle all accelerations are replaced to 

braking and vice versa. To keep the power required for acceleration similar to 

initial journey, acceleration and deceleration should be kept similar. The drive-

cycle of both chilly and warm days is similar, yet to show the significance of the 

heater power demand regardless of the effect of cool-down period in the middle of 

the journey, a continuous 80 km journey without a cool-down period is simulated. 

1.5 kW power demand and COP of 2 for AC refrigeration cycle are assumed for 

the warm day; therefore, for a similar 10 K difference between cabin comfort, 

20˚C, and ambient temperatures, the heater power demands is defined as 3 kW for 

the chilly day. The initial power surge and fluctuations during journey are 

neglected. The simulation results for the warm and chilly days are depicted in 

Figure 6.4 and Figure 6.5, respectively. The fuel consumption information is 

given in Table 6-1 and Table 6-2.  

Figure 6.4 demonstrates the simulation results of three EMSs for the warm day 

commute over the drive-cycle, and the elevation profile depicted in Figure 6.4 

(A). “AER-CS”, blended mode “DP without cold-factor”, and blended mode “DP 

with cold-factor” are three different EMSs which are compared in this simulation. 

The corresponding power-cycle of the journey is shown in Figure 6.4 (B). The 

engine power trajectory for the AER-CS simulation is illustrated in Figure 6.4 (C). 

During AER, the engine is maintained off until the charge sustaining  time, , 

when the battery charge reaches the minimum applicable SOC. To have a fair 

comparison with other blended mode EMSs, the DP without cold-factor is used to 

find the engine power trajectory during the CS mode only for the period of  to 



  Chapter 6 

135 

 

. Therefore, while the result is optimal for only the CS duration, it would not be 

a global optimal solution for the whole journey.  

The restriction of having the AER at the beginning of the journey is relaxed to 

develop a blended mode EMS. The DP without cold-factor is employed for the 

whole journey; hence, the engine power trajectory follows the profile illustrated in 

Figure 6.4 (D). The DP without cold-factor finds the global optimal solution for 

the control problem if it is assumed that the hot engine efficiency map is 

acceptable for whole journey. Due to the elevation profile, the vehicle power 

demand is generally lower in return section of the journey. The DP without cold-

factor, unlike the AER-CS, allocates most of the battery energy to the return 

journey and selects the engine-on sections where the wheel power demand is 

generally higher. Therefore, power recirculation is prevented by supplying the 

wheel power demand directly from the engine instead of recharging the battery 

when power surplus is available. Although similar code is used for both the CS 

section and the DP without cold-factor EMS simulations, the fuel consumption is 

reduced by around 2% via the global optimal charge management. That is, the 

blended mode EMS allocates battery electric energy more efficiently than the 

AER-CS which consumes all of the battery energy during AER.  

The engine coolant temperature trajectories shown in Figure 6.4 (G) prove that 

the hot engine operation is not an accurate assumption for EREVs in which the 

battery supplies significant share of the vehicle required energy. This requires 

modification in the DP formulation to consider the effect of temperature as a state 

variable as explained in Section 6.3.  Employing the DP with cold-factor, the EV 

mode completely shifts to return journey and all engine-on sections are 
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concentrated before the cool-down period. This eliminates the second cold start 

warm-up procedure which leads to cold engine operation and consequently the 

cold-factor penalty. The DP with cold-factor selects the first section of the 

commute for the blended mode operation, as the battery energy is adequate to run 

the downhill return journey in the EV mode. The overall engine efficiency for the 

whole journey is higher when one extra engine warm-up is eliminated. That is, the 

effect of warmer engine operation overcompensate the reduction of the vehicle 

efficiency because of the engine operation in the lower power demand when 

compared with the DP without cold-factor. Our proposed “DP with cold-factor” 

approach improves the fuel economy of the vehicle by 3.2% compared with the 

AER-CS EMS. Therefore, it improves the performance of the DP without cold-

factor by 1.2%. This result simulates inaccuracy of relying on the DP without 

cold-factor for PHEVs with large battery as the optimal EMS benchmark. In 

addition, as described in the introduction section, the cold operation of the engine 

and catalyst converter has a major role in the emission of the vehicle. Therefore, 

the environmental impact of the emission reduction by elimination of the second 

cold-start may outweigh the amount of fuel saved. According to the simulation 

conducted in ADVISOR, the HC, CO, and NOx emissions are reduced by almost 

27%, 11%, and 17% respectively compared to the AER-CS simulation (see Table 

6-1).  
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Figure 6.4. Simulation 

results for a warm day 

with 1.5 kW constant 

AC power demand and 

cool-down period at 

t=3500 (A) drive-cycle 

and elevation profile, 

(B) power-cycle, (C) 

engine power trajectory 

of AER-CS EMS, (D) 

engine power trajectory 

of  blended mode EMS 

by DP without cold-

factor, (E) engine power 

trajectory of blended 

mode EMS by DP with 

cold-factor, (F) battery 

SOC trajectories, (G) 

engine coolant 

temperature 

trajectories, and (H) 

fuel consumption 

trajectories 
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Table 6-1. DP and ADVISOR simulation results for warm day 

 Fuel 

Consumption 

HC 

[gr/km] 

CO 

[gr/km] 

NOx 

[gr/km] 

Engine 

Efficiency 

Final 

SOC 

DP Simulation 

warm day 

 AER-CS 1885.4 [gr] N.A. N.A. N.A. N.A. 0.35 

 1) DP without  clod-factor 1847.3 [gr] N.A. N.A. N.A. N.A. 0.35 

 2) DP with cold-factor 1824.5 [gr] N.A. N.A. N.A. N.A. 0.35 

 Improvement  (case 1 compared to AER-CS) -2.0 *    [%] N.A. N.A. N.A. N.A. 0 

 Improvement  (case 2 compared to AER-CS) -3.2      [%] N.A. N.A. N.A. N.A. 0 

ADVISOR Simulation 

warm day 

 AER-CS 2137.8 [gr] 0.100 0.379 0.179 0.301 0.346 

Blended EMS, following DP with cold-factor charge trajectory   2010.0 [gr] 0.073 0.336 0.148 0.309 0.349 

 Improvement/change [%] -6.0     [%] -27 [%] -11.4 [%] -17.3 [%] 2.5 [%] 0.9 [%] 



   Chapter 6 

139 

 

The engine operation trajectories of the AER-CS EMS of a full electric cabin 

heater vehicle and a vehicle in which the heater power is supplied by both the 

battery and the engine waste heat are compared in Figure 6.5 (B-C). The 

significant 34% improvement in the fuel economy could be realised by employing 

the waste heat of the engine like conventional vehicles. Based on the author’s 

knowledge gained at 2011 Frankfurt motor show, the GM Volt cabin heater is an 

all-electric, while Opel has solved the issue for the Ampera models. The engine 

power path shown in Figure 6.5 (D) is derived based on the DP EMS with cold-

factor for a vehicle with both engine coolant and electric heater. Figure 6.5  (F) 

illustrates how the optimal EMS found by the DP with cold-factor tends to keep 

the engine warm for longer duration to provide the cabin heater power demand 

free of cost. Indeed, holding the temperature not exactly at the thermostat 

temperature comes at a cost of a reduction in engine efficiency defined by the 

cold-factor. The optimal EMS based on DP compromises between maximum 

availability of the hot water from the engine by distributing engine-on sections 

during the journey and the effect of cold-factor on the engine efficiency. Referring 

to Table 6-2, for ADVISOR simulation, 14% improvement in the fuel economy is 

achieved, while the engine efficiency is reduced by 3% because of the operation at 

temperatures below thermostat set-point. That is, the amount of fuel saved by 

keeping the engine warm outweighs the drawback of its operation at not exactly 

the thermostat temperature set-point. When heater operation is required for cold 

weather, the DP with cold-factor method finds the optimal trajectory of state 

variables, ESS charge and accordingly the engine internal temperature, to 

minimise the fuel consumption cost function. It is interesting how the optimal 
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method still selects a short EV mode at the end of the journey. Since the energy 

demand of the heater is directly related to the duration of the journey, as well as 

the ambient temperature, its influence on the optimal EMS of PHEVs is more 

significant for cold weather, long journeys, and especially for low power demand 

city drive-cycles. Although the wheel power demand of the vehicle in both 

simulations of warm and chilly days is similar, the final optimal charge depleting 

and EMS for different temperatures and AC/heater power demands are 

significantly different. The warm day simulation shows how a cold-factor might 

affect the optimal EMS to concentrate engine operation before the cool down 

period for the defined driving scenario. On the other hand, the combination of the 

effect of cold-factor and the desirability of keeping the engine warm for the cabin 

heater purpose distributes the engine operation sections throughout the journey for 

the chilly day simulation. While for warm weather operation keeping the engine 

temperature close to thermostat temperature is the dominant parameter to achieve 

optimal overall efficiency, for the chilly day simulation, the availability of hot 

water for the cabin heater dominates, thus avoiding the electric heater operation. 
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Figure 6.5. Simulation 

results for a chilly day 

with 3 kW constant 

heater power demand 

without a cool-down 

period (A) drive-cycle 

and elevation profile, (B) 

engine power of AER-CS 

EMS of a vehicle with all 

electric heater (C) engine 

power of AER-CS EMS, 

heater power demand is 

supplied by engine waste 

heat if ˚C (D) 

engine power of CD EMS 

with cold-factor and 

heater power demand, 

heater power demand is 

supplied by engine waste 

heat if ˚C  (F) 

coolant temperature 

trajectories (G) fuel 

consumption trajectories 
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Table 6-2. DP and ADVISOR simulation results for chilly day 

 Fuel 

Consumption 

HC 

[gr/km] 

CO 

[gr/km] 

NOx 

[gr/km] 

Engine 

Efficiency 

Final 

SOC 

DP Simulation 

chilly day 

 1) AER-CS All electric heater 2667.2 [gr] N.A. N.A. N.A. N.A. 0.35 

 2) AER-CS both engine coolant and electric heater 1754.7 [gr] N.A. N.A. N.A. N.A. 0.35 

 DP with cold-factor  1434.4 [gr] N.A. N.A. N.A. N.A. 0.35 

 Improvement  (DP compared to case 1) -34.2   [%] N.A. N.A. N.A. N.A. 0 

 Improvement  (DP compared to case 2) -18.3    [%] N.A. N.A. N.A. N.A. 0 

ADVISOR Simulation 

chilly day 

1) AER-CS All electric heater 2784.8 [gr] 0.162 0519 0.194 0.307 0.349 

 2) AER-CS both engine coolant and electric heater 1892.6 [gr] 0.139 0.440 0.142 0.298 0.350 

 Blended EMS, following DP with cold-factor charge trajectory   1628.4 [gr] 0.136 0.415 0.132 0.289 0.354 

Improvement/change  (Blended EMS compared to case 1 ) -41.5   [%] -16.1[%] -20.0[%] -32.0[%] -5.9 [%] 1.4 [%] 

Improvement/change  (Blended EMS compared to case 2 ) -13.9   [%] -2.2  [%] -5.7  [%] -7.0  [%] -3.0 [%] 1.1 [%] 
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Simulations also show another interesting result that is the engine power has 

limited fluctuations around the most efficient engine operation point regardless of 

the changes in the power demand (see Figure 6.6). This implies that the optimal 

operation of the vehicle dominantly depends on the engine efficient operation. 

Since the large PHEV ESS benefits from parallel modules, its internal resistance 

compared to the conventional HEVs is significantly lower. Therefore, the 

electrical waste in PHEV ESS is reduced accordingly.  

 

Figure 6.6. A superimposed selected section of Figure 6.4(B) and (D) 

6.5 REAL-TIME IMPLEMENTATION 

Although the DP approach could not be implemented in a real-time control of a 

vehicle, the optimal charge depleting trajectory for a known driving scenario 

could help calibrate the EMS in an online fashion. That is, the real-time EMS tries 

to implement the same optimal charge management by following the charge 

trajectory found by the DP approach. Particularly, the DP approach can suggest 

the best sections of the journey to run on the pure EV mode for EREV. The 



 

144 

 

charge trajectory should be followed based on a position feedback from the 

vehicle in a journey instead of the time domain using a GPS. In the following, it is 

described how effectively only the knowledge of optimal charge trajectory 

regardless of the type of real-time EMS could significantly improve the 

performance of PHEV. 

The rule based power follower described in Section 5.3 controls the vehicle in 

ADVISOR simulation tool for the same driving scenario explained in the previous 

section. The ADVISOR model is manipulated to simulate the heater and AC loads 

and the effect of heater cool-down on engine thermal model. Also, the vehicle 

control unit is redesigned to sustain the ESS SOC around charge depleting 

trajectory derived from the DP approach by using a feedback control. The results 

are shown in Figure 6.7, Table 6-1, and Table 6-2. By following the charge 

trajectory found by DP with cold-factor, however, the battery to engine energy 

ratio during the journey is remained similar to the DP optimal trend. This results 

in almost a similar engine temperature trajectory. The slight deviation between the 

temperature trajectories of DP with cold-factor and the simulations is a result of 

the difference between the engine operation trajectories and the difference 

between the heater cooling effect on engine thermal model of the DP and 

ADVISOR. Due to discretization, the heater power demand is defined step-wise 

for the DP model which shifts at a defined threshold. Yet, the heater cooling effect 

on engine thermal model of ADVISOR is defined by a linear equation so the 

cooling effect continues for all temperatures.  

The amount of fuel saved for the chilly day simulation proves the significant 

drawback of using only electric heater. Improvement in fuel efficiency of vehicle 
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could be even considerably increased for extreme low temperatures. Besides, the 

emission reduction is another positive aspect of an EMS considering temperature 

noise factor; particularly, when an unnecessary cold-start/warm-up of the engine 

and catalytic converter is eliminated.      

 

Figure 6.7. (A) Comparison of the coolant temperature trajectories in ADVISOR and DP with cold-

factor simulations for (A) Warm day (B) Chilly day 

6.6   CONCLUSION  

The influence of the temperature noise factor on the optimal energy 

management strategy of PHEVs was demonstrated in this Chapter via developing 

a Dynamic Programming-based approach. DP based on Bellman’s principle of 

optimality derives the optimal charge depleting trajectory of the battery. This 

coincides with the optimal thermal management of the engine for minimum fuel 

consumption, while maximizing employing engine waste heat for cabin warming 

instead of the battery electricity. The simulation results prove that temperature 

considerably changes the optimal EMS and accordingly fuel consumption and 

emission of PHEVs even for identical drive-cycles. A practical approach to 
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implement the result of the optimal EMS for calibrating a real-time EMS that 

addresses the realistic disturbances of real world driving was also proposed.  
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CHAPTER 7  

CONCLUSION AND FUTURE WORK 

7.1 CONCLUSION 

This thesis focused on optimisation of energy management strategy for plug-in 

hybrid electric vehicles. The energy management strategy tries to control the 

energy flow in the powertrain components of PHEVs to find the most efficient 

energy path to provide the vehicle power demand. Unlike HEVs in which the 

engine is the sole source of energy, grid charged battery alongside the engine adds 

an extra energy path to provide vehicle power demand in PHEVs. Therefore, a 
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battery charge management strategy is incorporated into the EMS of PHEVs to 

fully harness the benefits of the extra energy source.   

All available approaches, implementable for the EMS of PHEVs, were 

categorised in Chapter 2. Among them, two different methods: (i) a rule-

based/deterministic, and (ii) an optimization-based/deterministic were selected to 

be investigated in this research. The deterministic methods tackle the control 

problem globally (i.e. for the whole journey). Hence, they are suitable choices for 

addressing the optimal battery charge management. The rule-based approaches are 

easily implementable while the optimization-based approaches can be used as 

optimal solutions. 

Different modelling and simulation methods available in the literature were 

introduced in Chapter 3. The method selected for this research was also outlined 

and different vehicle components models were discussed. The vehicle components 

were sized to simulate an EREV with 64 km AER capability similar to GM Volt. 

The battery energy source reduces the engine load and during the EV mode engine 

is turned off for long periods. Therefore, the engine is more likely to operate cold 

compared with conventional HEVs. This leads to lower engine efficiency and 

higher emission. In addition, while the engine is cold, the power demand of the 

cabin heater needs to be supplied by battery. An engine thermal model and a cold-

factor fuel consumption penalty were incorporated into the vehicle model to 

investigate these phenomena. Existing studies on the EMS of PHEVs mostly 

focus on the improvement of fuel efficiency based on hot engine characteristics 

neglecting the effect of temperature on the engine performance and vehicle power 

demand. 
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The implementation of globally optimal energy management strategies based 

on the deterministic approaches is only feasible when an accurate prediction of 

power-cycle is available. Many noise factors affect both drivetrain power demand 

and vehicle performance even in identical drive-cycles. In Chapter 4, the effect of 

each noise factor was investigated and the power-cycle library was proposed to 

improve the accuracy of the power-cycle prediction. A library of power-cycles 

provides the required information about the journey in both time and spatial 

domains, which helps to predict the power-cycle affected by the environmental 

noise-factors before a journey starts. PHEVs employ an in-built control strategy 

defined by OEM, normally an AER-CS similar to what has been designed for GM 

Volt or Toyota Prius PHEV. However, for known power-cycles, defined later by 

each vehicle owner, a more sophisticated energy management strategy would be 

implemented.  

Chapter 5 introduced a blended mode rule-based EMS for the modelled 

vehicle. A driving scenario was simulated and fuel economy of the vehicle with a 

conventional AER-CS EMS was compared against that of the suggested rule-

based EMS. Based on the power-cycle of the simulated driving scenario, an 

efficiency cycle was developed. The efficiency cycle was investigated in a three-

step procedure to find the best sections to provide the required engine energy 

share. One of the characteristics of the blended mode EMS is frequent shifting 

between the engine-on and off modes. Therefore, the effect of the engine cooler 

operation on its performance should be investigated. The cold-factor calculation 

by means of the engine thermal model was employed to modify the efficiency 

cycle in the last two steps of the EMS. Moreover, the effect of the second cold-
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start of the vehicle for journeys with long cool-down periods was also 

investigated. The result of the EMS was a sub-optimal solution that defines the 

best section of the journey to shift from the EV to CS mode. The rule-based 

approach is a practical and easily implementable approach due to the limited 

computational effort required.  

In Chapter 6, optimal EMS control problem was formulated by using the 

dynamic programming method. One input variable, engine power, and three state 

variables, battery charge, engine internal temperature, and engine operation time 

were employed for formulating of the control problem. The cost function of the 

dynamic programming method correlates fuel economy of the vehicle to all these 

three state variables. The optimal battery charge depleting and the engine 

temperature trajectories secure globally optimal fuel economy for a prescribed 

journey with specific environmental conditions. The proposed approach also 

maximises the usage of the engine waste heat for cabin warming instead of the 

battery electricity in cold weather conditions. The simulation results proved that 

temperature considerably changes the optimal EMS, and accordingly the fuel 

consumption and emissions of PHEVs even for identical drive-cycles. A practical 

approach to implement the result of the optimal EMS for calibrating a real-time 

EMS was also proposed.  

The simulations show significant improvement in the fuel efficiency of PHEVs 

with integration of the engine thermal management and EMS. Around 4.7% 

improvement in the fuel economy is achieved by the rule-based EMS, described 

in Chapter 5, according to the simulation of a warm day commute. The power 

recirculation, one of the major reasons for the battery degradation, is also reduced 
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significantly so that the amount of battery charging energy is declined by 126% 

during the commute simulation. Since the suggested EMS forces the engine to 

provide the required power of the drivetrain in the most vigorous part of the 

journey, the battery energy is consumed during a longer period and logically at 

lower power. Therefore, the maximum current and battery temperature, one the 

major reasons for battery degradation, are also declined accordingly. The 

deterministic optimal method, described in Chapter 6, provides even better results 

compared to the rule-based EMS. 6% and 13.9% improvement in the fuel 

economy of the vehicle in warm and chilly day simulations are recorded 

respectively.   

7.2 FUTURE WORK 

Some potential future directions that merit further study are listed as follows:  

 As described in Section 3.6.2, the cold-factor fuel consumption is 

formulated mathematically based on the internal combustion engine 

coolant temperature. Sensibility of the engine efficiency to its internal 

temperature is not uniform at all speeds and torques. Therefore, the best 

way to formulate the engine efficiency at each specific speed, torque, and 

temperature is via engine dynamometry tests. In other words, it is more 

accurate to rely on the efficiency maps of the engine at different 

temperatures rather than using a single variable cold-factor function. This 

helps avoid specific torque-speed operation points that are more sensitive 

to cold engine operation during the transitional warm-up procedure. 
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 Prediction procedure of power-cycle with the aim of the power-cycle 

library was described in Chapter 4. As discussed, power-cycle can be 

predicted individually for each vehicle. In case of availability of a PHEV, 

it is possible to equip it with required sensors, schematically shown in 

Figure 4.1. As control by wire is completely dominant in PHEVs, there is 

not any expensive equipment required for this purpose. This helps 

evaluate sensitivity and accuracy of the power-cycle prediction process in 

real-world operation condition. 

  In case of availability of a PHEV like GM Volt, Opel Ampera, or Prius 

PHEV, the performance of the suggested rule-based EMS can be 

evaluated easily. As explained in Chapter 5, the rule-based EMS defines 

the best sections to operate in the EV or CS modes for a journey. Since a 

manual EV mode selection is available in these vehicles, it is possible to 

manually select the EV mode sections based on the rule-based EMS 

suggestions.   

 Here the optimization procedure cost function is only defined based on 

fuel consumption. However the cost function could be defined based on 

both fuel economy and emission. Since fuel consumption and emission 

do not follow similar dynamic, reduction of fuel consumption could 

result in an increase in emission and vice versa. The thermal dynamic of 

the catalytic converter is also should be modelled in optimisation process. 

The appropriate weighting factors should be defined to compromise 

between emission and fuel consumption. 

  



  Bibliography 

153 

 

BIBLIOGRAPHY 

[1] M. Ehsani, Y. Gao, S. E. Gay, and A. Emadi, Modern electric, hybrid 

electric, and fuel cell vehicles : fundamentals, theory, and design: CRC, 

2005. 

[2] L. Guzzella and A. Sciarretta, Vehicle propulsion systems: introduction to 

modeling and optimization, Second ed.: Springer, 2007. 

[3] C. Mi, M. Abul Masrur, and D. W. Gao, Hybrid electric vehicles: principles 

and applications with practical perspectives: John Wiley & Sons, 2011. 

[4] I. Husain, Electric and Hybrid Vehicles: Design Fundamentals, Second ed.: 

CRC Press 2010. 

[5] J. Barnes, M. v. Walwijk, and C. Saricks, Hybrid and electric vehicles: The 

electric drive gains momentum : Progress towards sustainable 

transportation: International Energy Agency, 2007. 



  Bibliography 

154 

 

[6] J. Tollefson, "Charging up the future," Nature, vol. 456, pp. 436–440, Nov. 

2008. 

[7] M. Yamamoto, "Development of a Toyota plug-in hybrid vehicle," in SAE 

World Congress & Exhibition, Detroit, MI, USA, 2010. 

[8] R. Zito, "EVs and Travel Behavior change," Institute for Sustainable 

Systems and Technologies -Transport Systems, Adelaide 2010. 

[9] IEEE-USA Board of Directors. Position Statement: Plug-in Electric Hybrid 

Vehicle [Online]. Available: 

http://www.ieeeusa.org/policy/positions/PHEV0607.pdf 

[10] X. Yu, "Impacts assessment of PHEV charge profiles on generation 

expansion using national energy modeling system," in IEEE Power and 

Energy Society General Meeting - Conversion and Delivery of Electrical 

Energy in the 21st Century, 2008, pp. 1-5. 

[11] IEEE-USA Policy Position Statement. National Energy Policy 

Recommendation [Online]. Available: 

http://www.ieeeusa.org/policy/energyplan/files/2009.pdf 

[12] S. G. Wirasingha, N. Schofield, and A. Emadi, "Plug-in hybrid electric 

vehicle developments in the US: Trends, barriers, and economic feasibility," 

in IEEE Vehicle Power and Propulsion Conference 2008, pp. 1-8. 

[13] Y. Gao and M. Ehsani, "Design and control methodology of plug-in hybrid 

electric vehicles," presented at the IEEE Vehicle Power and Propulsion 

Conference, 2008. 

[14] IEEE-USA Board of Directors. (15 June 2007, 15/09/2009). Position 

statement: plug-in hybrid electric vehicle Available: 

http://www.ieeeusa.org/policy/positions/PHEV0607.pdf 

[15] IEEE-USA Policy Position Statement. National energy policy 

recommendation [Online]. Available: 

http://www.ieeeusa.org/policy/energyplan/files/2009.pdf 



  Bibliography 

155 

 

[16] Y. Li, "Scenario-based analysis on the impacts of plug-in hybrid electric 

vehicles' (PHEV) penetration into the transportation sector," in IEEE 

International Symposium onTechnology and Society, 2007, pp. 1-6. 

[17] M. Miller, A. Holmes, B. Conlon, and P. Savagian, "The GM "Voltec" 

4ET50 multi-mode electric transaxle  " presented at the SAE World 

Congress & Exhibition, Detroit, MI, USA, 2011. 

[18] H. Ogawa, M. Matsuki, and T. Eguchi, "Development of a power train for 

the hybrid automobile - the Civic hybrid," presented at the SAE World 

Congress & Exhibition, Detroit, MI, USA, 2003. 

[19] S. Sasaki, "Toyota's newly developed hybrid powertrain," in Proceedings of 

the 10th International Symposium on Power Semiconductor Devices and 

ICs  1998, pp. 17-22. 

[20] D. Hermance, "Toyota hybrid system," presented at the SAE TOPTEC 

Conference, Albany, NY, USA, 1999. 

[21] J. Liu, "Modelling, configuration and control optimization of power-split 

hybrid vehicles," Doctor of Philosophy Mechanical Engineering, University 

of Michigan, 2007. 

[22] Toyota. (22/08/2012). Toyota hybrid synergy drive Available: 

http://www.toyota.com.au/hybrid-synergy-drive#how-hybrid-works 

[23] Ford. (22/08/2012). Ford hybrid electric vehicle Available: 

http://www.ford.com/technology/electric/howevswork/?tab=HybridEV 

[24] M. Shams-Zahraei, S. A. Jazayeri, M. Shahbakhti, and M. Sharifirad, "Look-

forward longitudinal dynamic modelling for a series-parallel hybrid electric 

vehicle," International Journal of Electric and Hybrid Vehicles, vol. 1, pp. 

342-363, 2008. 

[25] M. Shams-Zahraei and A. Kouzani, "A study on plug-in hybrid electric 

vehicles " presented at the TENCON IEEE Conference, Singapore, 2009. 



  Bibliography 

156 

 

[26] A. G. Holmes, Klemen, D., Schmidt, M. R., "Electrically variable 

transmission with selective input split, compound split, neutral and reverse 

Modes," US Patent 6,527,658 B2, issued Mar. 4, 2003. 

[27] X. Li and S. S. Williamson, "Efficiency and suitability analyses of varied 

drive train architectures for plug-in hybrid electric vehicle (PHEV) 

applications," presented at the IEEE Vehicle Power and Propulsion 

Conference, Harbin, China, 2008. 

[28] S. Jenkins and M. Ferdowsi, "HEV to PHEV conversion compatibility," in 

Vehicle Power and Propulsion Conference, 2008, pp. 1-4. 

[29] J. Wu, A. Emadi, M. J. Duoba, and T. P. Bohn, "Plug-in hybrid electric 

vehicles: testing, simulations, and analysis," in Vehicle Power and 

Propulsion Conference, 2007. VPPC 2007. IEEE, 2007, pp. 469-476. 

[30] V. Freyermuth, E. Fallas, and A. Rousseau, "Comparison of production 

powertrain configuration options for plug-in HEVs from fuel economy 

perspective," presented at the SAE World Congress & Exhibition, Detroit, 

MI, USA, 2008. 

[31] V. H. Johnson, "Fuel used for vehicle air conditioning: A state-by-state 

thermal comfort-based approach," presented at the SAE World Congress & 

Exhibition, Detroit, MI, USA, 2002. 

[32] J. Rugh, Howard, R., Farrington, R., Cuddy, M, "Innovative Techniques for 

Decreasing Advanced Vehicle Auxiliary Loads," in Future Car Congress, 

Crystal City, VA, USA, 2000. 

[33] F. R. Salmasi, "Control Strategies for Hybrid Electric Vehicles: Evolution, 

Classification, Comparison, and Future Trends," IEEE Transactions on 

Vehicular Technology vol. 56, pp. 2393-2404, 2007. 

[34] M. Shams-Zahraei, A. Z. Kouzani, and B. Ganji, " Effect of noise factors in 

energy management of series plug-in hybrid electric vehicles," International 

Review of Electrical Engineering, vol. 6, pp. 1715-1726, 2011. 



  Bibliography 

157 

 

[35] M. Shams-Zahraei, A. Z. Kouzani, S. Kutter, and B. Bäker, "Integrated 

thermal and energy management of Plug-in hybrid electric vehicles," 

Journal of Power Sources, vol. 216, pp. 237-248, 15 October 2012. 

[36] Y. Gao and M. Ehsani, "Design and Control Methodology of Plug-in Hybrid 

Electric Vehicles," IEEE Transactions on Industrial Electronics, vol. 57, pp. 

633-640, 2010. 

[37] J. Gonder and T. Markel, "Energy management strategies for plug-in 

Hybrid Electric Vehicles," presented at the SAE World Congress & 

Exhibition, Detroit, MI, USA, 2007. 

[38] P. B. Sharer, A. P. Rousseau, D. Karbowski, and S. Pagerit, "Plug-in hybrid 

electric vehicle control strategy: comparison between EV and charge 

depleting options," presented at the SAE World Congress & Exhibition, 

Detroit, MI, USA, 2008. 

[39] Z. Bingzhan, C. C. Mi, and Z. Mengyang, "Charge-depleting control 

strategies and fuel optimization of blended-mode plug-in hybrid electric 

vehicles," IEEE Transactions on Vehicular Technology, vol. 60, pp. 1516-

1525, 2011. 

[40] P. Pisu and G. Rizzoni, "A comparative study of supervisory control 

strategies for hybrid electric vehicles," IEEE Transactions on Control 

Systems Technology, vol. 15, pp. 506-518, 2007. 

[41] S. G. Wirasingha and A. Emadi, "Classification and review of control 

strategies for plug-In hybrid electric vehicles," IEEE Transactions on 

Vehicular Technology, vol. 60, pp. 111-122, 2011. 

[42] S. G. Wirasingha and A. Emadi, "Classification and review of control 

strategies for plug-in hybrid electric vehicles," presented at the IEEE 

Vehicle Power and Propulsion Conference, 2009. 

[43] H. Banvait, S. Anwar, and C. Yaobin, "A Rule-based energy management 

strategy for plug-in hybrid electric vehicle (PHEV)," in American Control 

Conference, 2009, pp. 3938-3943. 



  Bibliography 

158 

 

[44] H.-D. Lee and S.-K. Sul, "Fuzzy-logic-based torque control strategy for 

parallel-type hybrid electric vehicle," IEEE Transactions on Industrial 

Electronics, vol. 45, pp. 625-632, 1998. 

[45] N. J. Schouten, M. A. Salman, and N. A. Kheir, "Fuzzy logic control for 

parallel hybrid vehicles," IEEE Transactions on Control Systems 

Technology vol. 10, pp. 460-468, 2002. 

[46] B. M. Baumann, G. Washington, B. C. Glenn, and G. Rizzoni, "Mechatronic 

design and control of hybrid electric vehicles," Transactions on 

Mechatronics, IEEE/ASME vol. 5, pp. 58-72, 2000. 

[47] R. Langari and J.-S. Won, "Intelligent energy management agent for a 

parallel hybrid vehicle-part I: system architecture and design of the driving 

situation identification process," IEEE Transactions on Vehicular 

Technology, vol. 54, pp. 925-934, 2005. 

[48] J.-S. Won and R. Langari, "Intelligent energy management agent for a 

parallel hybrid vehicle-part II: torque distribution, charge sustenance 

strategies, and performance results," IEEE Transactions on Vehicular 

Technology, vol. 54, pp. 935-953, 2005. 

[49] Q. Gong, Y. Li, and Z.-R. Peng, "Trip-based optimal power management of 

plug-in hybrid electric vehicles," IEEE Transactions on Vehicular 

Technology, vol. 57, pp. 3393-3401, 2008. 

[50] M. Shams-Zahraei and A. Z. Kouzani, "Power-cycle-library-based Control 

Strategy for plug-in hybrid electric vehicles," presented at the IEEE Vehicle 

Power and Propulsion Conference Lille, France 2010. 

[51] Q. Gong, Y. Li, and Z.-R. Peng, "Optimal power management of plug-in 

HEV with intelligent transportation system," presented at the IEEE/ASME 

International Conference on Advanced Intelligent Mechatronics 2007. 

[52] Q. Gong, Y. Li, and Z.-R. Peng, "Trip based optimal power management of 

plug-in hybrid electric vehicles using gas-kinetic traffic flow model," 

presented at the American Control Conference, 2008. 



  Bibliography 

159 

 

[53] A. Brahma, Y. Guezennec, and G. Rizzoni, "Optimal energy management in 

series hybrid electric vehicles," presented at the American Control 

Conference, 2000. 

[54] C.-C. Lin, H. Peng, J. W. Grizzle, and J.-M. Kang, "Power management 

strategy for a parallel hybrid electric truck," IEEE Transactions on Control 

Systems Technology vol. 11, pp. 839-849, 2003. 

[55] S. Kutter and B. Baker, "Predictive online control for hybrids: Resolving the 

conflict between global optimality, robustness and real-time capability," 

presented at the IEEE Vehicle Power and Propulsion Conference 2010. 

[56] U. Zoelch and D. Schroeder, "Dynamic optimization method for design and 

rating of the components of a hybrid vehicle," International Journal of 

Vehicle Design, vol. 19, pp. 1–13, 1998. 

[57] L. V. Perez, G. R. Bossio, D. Moitre, and G. O. Garcia, "Optimization of 

power management in an hybrid electric vehicle using dynamic 

programming," Mathematics and Computers in Simulation, vol. 73, pp. 

244–254, 2006. 

[58] L. Johannesson and B. Egardt, "A novel algorithm for predictive control of 

parallel hybrid powertrains based on dynamic programming," in Fifth IFAC 

Symposium on Advances in Automotive Control, Monterey, USA, 2007. 

[59] L. Johannesson and B. Egardt, "Approximate dynamic programming 

applied to parallel hybrid powertrains," in Proceedings of the 17th IFAC 

World Congress, Seul, Korea, 2008. 

[60] S. Kutter and B. Baker, "An iterative algorithm for the global optimal 

predictive control of hybrid electric vehicles," in Vehicle Power and 

Propulsion Conference (VPPC), 2011 IEEE, 2011, pp. 1-6. 

[61] G. Paganelli, S. Delprat, T. M. Guerra, J. Rimaux, and J. J. Santin, 

"Equivalent consumption minimization strategy for parallel hybrid 

powertrains," in IEEE 55th Vehicular Technology Conference, 2002, pp. 

2076-2081 vol.4. 



  Bibliography 

160 

 

[62] A. Sciarretta, M. Back, and L. Guzzella, "Optimal control of parallel hybrid 

electric vehicles," IEEE Transactions on Control Systems Technology, vol. 

12, pp. 352-363, 2004. 

[63] C. Musardo, G. Rizzoni, and B. Staccia, "A-ECMS: an adaptive agorithm 

for hybrid electric vehicle energy management," in 44th IEEE Conference 

on Decision and Control and 2005 European Control Conference. CDC-

ECC '05., 2005, pp. 1816-1823. 

[64] M. Koot, J. T. B. A. Kessels, B. de Jager, W. P. M. H. Heemels, P. P. J. van 

den Bosch, and M. Steinbuch, "Energy management strategies for vehicular 

electric power systems," IEEE Transactions on Vehicular Technology, vol. 

54, pp. 771-782, 2005. 

[65] L. S. Pontryagin, The mathematical theory of optimal processes: Wiley 

1962. 

[66] L. Serrao, S. Onori, and G. Rizzoni, "ECMS as a realization of Pontryagin's 

minimum principle for HEV control," in American Control Conference, 

2009, pp. 3964-3969. 

[67] C. Musardo, G. Rizzoni, and B. Staccia, "A-ECMS: An Adaptive Algorithm 

for Hybrid Electric Vehicle Energy Management," in IEEE Conference on 

Decision and Control, Seville, Spain, 2005. 

[68] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein, "A stochastic 

optimal control approach for power management in plug-In hybrid electric 

vehicles," in Proceedings of the 2008 ASME Dynamic Systems and Control 

Conference, 2008. 

[69] S. J. Moura, H. K. Fathy, D. S. Callaway, and J. L. Stein, "A stochastic 

optimal control approach for power management in plug-in hybrid electric 

vehicles," IEEE Transactions on Control Systems Technology, vol. 19, pp. 

1-11, 2010. 

[70] I. Kolmanovsky, I. Siverguina, and B. Lygoe, "Optimization of powertrain 

operating policy for feasibility assessment and calibration: stochastic 



  Bibliography 

161 

 

dynamic programming approach," in Proceedings of the American Control 

Conference, 2002, pp. 1425-1430 vol.2. 

[71] J. Liu and H. Peng, "Modeling and control of a power-split hybrid vehicle," 

IEEE Transactions on Control Systems Technology, vol. 16, pp. 1242-1251, 

2008. 

[72] C.-C. Lin, H. Peng, and G. J. W. , "A stochastic control strategy for hybrid 

electric vehicles," in American Control Conference, 2004, pp. 4710-4715 

vol.5. 

[73] L. Johannesson, "Predictive control of hybrid electric vehicles on 

prescribed routes," Doctor of Philosophy Department of Signals and 

Systems, CHALMERS UNIVERSITY OF TECHNOLOGY, 2009. 

[74] L. Johannesson, M. Asbogard, and B. Egardt, "Assessing the potential of 

predictive control for hybrid vehicle powertrains using stochastic dynamic 

programming," IEEE Transactions on Intelligent Transportation Systems, 

vol. 8, pp. 71-83, 2007. 

[75] P. Struss and C. Price. (2003) model-based systems in the automotive 

industry. AI Magazine. 17-34.  

[76] M. Tiller, Introduction to Physical Modeling with Modelica: Springer, 2001. 

[77] Modelica Association. (2000, 1/08/2012). Modelica - A unified object-

oriented language for physical systems modeling. Available: 

https://modelica.org/documents/ModelicaTutorial14.pdf 

[78] L. Glielmo, O. R. Natale, and S. Santini, "Integrated simulations of vehicle 

dynamics and control tasks execution by Modelica," in IEEE/ASME 

International Conference on Advanced Intelligent Mechatronics 2003, pp. 

395-400 vol.1. 

[79] T. Markel, A. Brooker, T. Hendricks, V. Johnson, K. Kelly, B. Kramer, M. 

O’Keefe, S. Sprik, and K. Wipke, "ADVISOR: a systems analysis tool for 

advanced vehicle modeling," Journal of Power Sources, vol. 110, pp. 255-

266, 2002. 



  Bibliography 

162 

 

[80] Argonne National Laboratory. PSAT. Available: 

http://www.transportation.anl.gov/modeling_simulation/PSAT/ 

[81] W. Gao, S. Neema, J. Gray, J. Picone, S. Porandla, S. Musunuri, and J. 

Mathews, "Hybrid powertrain design using a domain-specific modeling 

environment," in Vehicle Power and Propulsion Conference 2005, pp. 423-

429. 

[82] B. K. Powell, K. E. Bailey, and S. R. Cikanek, "Dynamic modeling and 

control of hybrid electric vehicle powertrain systems," IEEE Control 

Systems, vol. 18, pp. 17-33, 1998. 

[83] K. L. Butler, M. Ehsani, and P. Kamath, "A Matlab-based modeling and 

simulation package for electric and hybrid electric vehicle design," IEEE 

Transactions on Vehicular Technology, vol. 48, pp. 1770-1778, 1999. 

[84] G. Rizzoni, L. Guzzella, and B. M. Baumann, "Unified modeling of hybrid 

electric vehicle drivetrains," IEEE/ASME Transactions on Mechatronics, 

vol. 4, pp. 246-257, 1999. 

[85] NREL. Transferring NREL's advanced vehicle simulator to industry. 

Available: http://www.nrel.gov/vehiclesandfuels/success_advisor.html 

[86] J. D. Murrell, "Emission simulations: GM Lumina, Ford Taurus, GM 

Impact, and Chrysler TEVan," J. Dill Murrell and Associates, LLC., Saline, 

MI1996. 

[87] A. F. Mills, Basic heat and mass transfer: Irwin, 1995. 

[88] E. Finkeldei and M. Back, "Implementing a mpc algorithm in a vehicle with 

a hybrid powertrain using telematics as a sensor for powertrain control," in 

IFAC Symposium on Advances in Automotive Control, University of 

Salerno, Italy, 2004. 

[89] M. Back, S. Terwen, and V. Krebs, "Predictive powertrain control for hybrid 

electric vehicles," in IFAC Symposium on Advances in Automotive Control, 

University of Salerno, Italy, 2004. 



  Bibliography 

163 

 

[90] Y. Deguchi, K. Kuroda, M. Shouji, and T. Kawabe, "HEV charge/discharge 

control system based on car navigation information," in JSAE Spring 

Conference, Yokohama, Japan, 2003. 

[91] Y. Bin, Y. Li, Q. Gong, and Z.-R. Peng, "Multi-information integrated trip 

specific optimal power management for plug-in hybrid electric vehicles," 

presented at the American Control Conference, 2009. 

[92] G. W. Taylor and S. Stewart, "Cold start impact on vehicle energy use," 

presented at the SAE World Congress & Exhibition, Detroit, MI, USA, 2001. 

[93] H. Li, G. E. Andrews, D. Savvidis, B. Daham, K. Ropkins, M. Bell, and J. 

Tate, "Study of thermal characteristics and emissions during cold start 

using an on-board measuring method for modern SI car real world urban 

driving," SAE International Journal of Engines, vol. 1, pp. 804-819, 2008. 

[94] R. Farrington and J. Rugh, "Impact of vehicle air-conditioning on fuel 

economy, tailpipe emissions, and electric vehicle range," presented at the 

Earth Technologies Forum, Washington, D.C., 2000. 

[95] M. A. Lambert and B. J. Jones, "Automotive adsorption air conditioner 

powered by exhaust heat. Part 1: conceptual and embodiment design," 

Proceedings of the Institution of Mechanical Engineers, Part D: Journal of 

Automobile Engineering, vol. 220, pp. 959-972, 2006. 

[96] H. Khayyam, A. Z. Kouzani, and E. J. Hu, "Reducing energy consumption of 

vehicle air conditioning system by an energy management system," 

presented at the IEEE Intelligent Vehicles Symposium, 2009. 

[97] H. Khayyam, A. Z. Kouzani, E. J. Hu, and S. Nahavandi, "Coordinated 

energy management of vehicle air conditioning system," Applied Thermal 

Engineering, vol. 31, pp. 750-764, 2010. 

[98] T. Markel, K. Smith, and A. Pesaran, "Improving petroleum displacement 

potential of PHEVs using enhanced charging scenarios," presented at the 

EVS-24 International Battery, Hybrid and Fuel Cell Electric Vehicle 

Symposium, Stavanger, Norway, 2009. 



  Bibliography 

164 

 

[99] K. Smith, T. Markel, and A. Pesaran, "PHEV battery trade-off study and 

standby thermal control," presented at the 26th International Battery 

Seminar & Exhibit, Fort Lauderdale, FL, 2009. 

[100]  D. Kirk, Optimal Control Theory An Introduction Mineola, New York: 

Dover Publications, 2004. 

[101]  F. L. Lewis, D. Vrabie, and V. L. Syrmos, Optimal Control, 3 ed.: Wiley, 

2012. 

[102]  L. Serrao, "A comperative analyses of energy management strategies for 

hybrid electric vehicles," Doctor of Philosophy The Ohio State University, 

2009. 

[103]  S. Bradley , A. Hax , and T. Magnanti, Applied mathematical 

programming: Addison-Wesley Pub. Co., 1977  

 

 



  Appendices 

165 

 

APPENDIX A.  

NOMENCLATURE 

    Effective area of convection heat transfer 

    Vehicle frontal area 

AC    Air condition 

AER   All electric range 

BSFC   Brake specific fuel consumption 

    Battery charge 

COOL   Confined optimal operation line 

COP   Coefficient of performance 

CD    Charge depleting  
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CS    Charge sustaining mode 

    Number of battery cycles 

   Battery actual capacity 

    Air specific heat capacity 

   Lumped cabin specific heat capacity 

    Coefficient of drag 

    Battery defined lithium capacity 

    Thermal heat capacity 

   Battery active sites capacities  

    Water latent heat vaporization 

   Water specific heat capacity 

DP    Dynamic programming 

 Experimental constant values for battery aging 

formulation 

ECMS   Equivalent consumption minimization strategies 

Eng    Engine  

EMS   Energy management strategy 

EREV   Extended range electric vehicle  

ESS    Energy storage system 

EV    Electric vehicle 

 Experimental constant values for battery aging 

formulation 

    Fuel 

    Flow rate   
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    Drag force resistance 

    Grading resistance 

    Rolling resistance 

    Coefficient of rolling resistance 

    Traction force of vehicle 

 Fuel converter (engine) cooling system thermostat 

set point 

GIS    Geographical information system 

GPS   Global positioning system 

    Heat transfer coefficient 

HEV    Hybrid Electric Vehicle  

HWFET   Highway fuel economy test 

    Battery current 

    Sun radiation heat flux 

    Infinity 

    Cost function 

    Index for time discretization 

    Instantaneous cost 

    Fuel lower heating value 

    Mass  

    Vehicle mass 

    Mass flow rate 

  Minimum engine on time  
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   Lumped cabin mass 

   Fresh air mass flow rate  

   Condensed water mass rate 

 Number of possible change of charge in each 

time-step  

    Normal load on front wheels 

    normal load on rear wheels 

    Nusselt number 

 PHEV   Plug in hybrid electric vehicle 

     Engine power  

     Prandtl number 

    Ambient pressure  

   Air-conditioning compressor power demand  

    Traction power of vehicle 

     Rate of thermal energy 

   Air-conditioning convection heat load   

h    Air-conditioning dehumidification heat load  

   Rate of heat absorption by evaporator  

h    Cabin heater heat rate  

   Air-conditioning metabolic heat load 

   Air-conditioning radiation heat load 

   Air-conditioning ventilation heat load 

     Battery internal resistance  
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     Rayleigh number 

     Raynods number 

S    Incident surface for radiation heat transfer 

   Surface area 

 SOC   State of charge 

 t    Time 
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    Thermal radiation 

   Radiator 

    Thermal conduction coefficient 

   Thermostat set point 

    Engine exterior 

    Initial time 


