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Abstract

S
CHEDULING under bounded or interval-based uncertainty presents its own challenge

due to the lack of information describing the data between the lower bound and the

upper bound. This challenge arise when the distribution or membership function of the

problem are not defined. Bounded uncertainty causes a trade-off between the optimality

and the certainty of the estimated value for the objective function of the scheduling prob-

lem. Relaxing the uncertainty constraint of the scheduling problem will lead to an accurate

estimate for the objective function with a high margin of uncertainty. On the other hand,

optimising the objective function considering the uncertainty constrain, will lead to an in-

accurate estimates with a low margin of uncertainty.

Researchers have tackled the problem of scheduling under bounded uncertainty, many

of the proposed techniques use the mixed integer linear programming (MILP). MILP min-

imises the bounded uncertainty if the problem is formulated as a system of linear equations.

As some scheduling problems cannot be formulated as a system of linear equations, they

cannot be solved using MILP. Such problems are usually formulated and solved using the

branch and bound heuristics or the meta-heuristic techniques. Here the need arises for an

algorithmic extension that can minimise the impact of bounded uncertainty on the results.

The objective of the proposed research is to minimise the impact of bounded uncertainty

of the input parameters on the estimated output cost function for the heuristic and meta-

heuristic algorithms. The uncertainty of the estimated objective function is measured by
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the distance between the upper bound and lower bound of the optimal interval value. The

distance of the optimal interval is compared to the distance between the two estimates of

the objective function using the upper and lower bound. Such an objective is considered a

preventive scheduling technique as it reduces the uncertainty impact before it happens.

This research introduces the concept of performing the calculation on interval inputs,

then approximating the final result instead of approximating the uncertain input before per-

forming the calculations. The proposed methodology analyses the scheduling algorithm,

extends it to do the arithmetic and logic operations using intervals rather numbers and es-

timate the final result. This methodology uses program slicing and interval programming

techniques including interval arithmetic, interval algebra and interval logic.

By extending Bratley’s algorithm, the uncertainty impact on the objective function is

reduced by 7.2%. The extended interval-based Hodgson’s algorithm minimised impact of

bounded uncertainty by more than 12%. Extending McNaughton’s algorithm minimised

the uncertainty by 7.1%, but the result was not guaranteed to be optimal. The uncertainty

reduction percentages vary according to the input data. The margin of uncertainty minimi-

sation is directly correlated with the distance between the upper and the lower bounds of

the input data as well as the number of overlaps between intervals.

According to the stated research, experiments and results, it is concluded that interval

programming can reduce the impact of bounded uncertainty on objective functions accord-

ing to the number of tasks, the uncertainty ranges, the number of interval overlaps. The

proposed research minimised the impact of bounded uncertainty of the input parameters on

the estimate of the objective function. The methodology has great potential in fundamental

and applied research. Fundamental research extensions include the integration with sen-

sitivity analysis, using affine arithmetic. Applied research extensions include integration

with prediction intervals-based systems, adding functional observers to the algorithms to

ensure that the uncertainty range does not diverge or inflate.
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Research Contributions

This research contributes to the algorithms science by minimising the impact of bounded or

interval-based uncertainty on the scheduling algorithms in a preventive way by extending

the algorithm in a way that copes with the uncertain nature of the input parameters. The

contribution of this research can be summarised in the following three points:

1. Introduced the concept of executing the algorithm using the uncertain variables, then

deciding how to resolve the uncertainty in the decision making stage using the fi-

nal uncertain result. Such concept maintains the uncertainty of the variables at its

level or less, as it minimises the impact of uncertainty changes happening due to the

algorithm execution, such uncertainty changes include the uncertainty propagation,

divergence, inflation and cyclic drifts.

2. Proposed a new methodology that uses interval programming and program slicing to

extend any algorithm to be able to run using the interval-based input parameters. The

new methodology can minimise the total uncertainty of the end result and maintain

the optimality of the cost function. The interval-based extensions can be applied to

any scheduling algorithm, including the heuristics and meta-heuristics.

3. Applying the new concept and methodology to three different scheduling algorithms.

the results of the three algorithms with the interval-base extension outperformed the
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results of the same three algorithms using numerical calculations or point estimates.

The marginal enhancement of the results varies between 0% and 22% according to

the problem and the data nature. The marginal enhancement was never less than

zero, which implies that the worst case scenario returns the same performance as

numerical or point-based estimates without any extra complexity in performance.
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Chapter 1

Introduction

1.1 Overview

Uncertainty is the lack of accuracy and lack of preciseness in any estimated or calculated

value that may act as input or output of any system. It is usually results from the lack of

information and sometimes from overwhelming with information that may confuse the de-

cision maker. It has multiple definitions and perceptions in different perspectives including

physics, weather, market, language, and many other domains, but in all cases it is a matter

of decision making.

Uncertainty is considered one of the famous challenges meeting any decision maker as

it leads to the risk of a wrong decision by assuming some wrong values as correct ones.

The risk can be reduced by paying extra costs in some domains such as market uncertainty,

industrial uncertainty. The risk can also be reduced by considering the worst case scenarios

in the planning such as in supply chain, cargo or traffic. It is important to consider that some

risks are not tolerable or acceptable, such as human related or medical risks, especially that

the cost will not be just wasted money or time. Decision makers want to minimise the

uncertainty to zero, if possible, or at least minimise its effect on the objective function.

Uncertainty in engineering domain is usually formulated using one of four paradigms

1



1.1 Overview 2

including:

1. Logical uncertainty (Logical Ambiguity)

2. Mathematical uncertainty (Arithmetic Intervals)

3. Probability uncertainty (Confidence Intervals, Credible Intervals)

4. Fuzzy logic

Logical uncertainty is the multiple interpretation of the same item leading to confusion,

especially in human related domains such as language processing and information retrieval.

Uncertainty is considered logical if the problem is represented in propositional logic or in

rule-based format with multiple rules applying to the same problem leading to multiple

solutions that might be not correct. This problem is usually named as ambiguity. To min-

imise the ambiguity issue, the rule induction process should induce exact rules matching

to the desired scenarios to be covered. On the other hand, this leads to less coverage and

less flexibility of the logical system (e.g. information retrieval). Some researchers integrate

rule-based systems with probability to minimise the ambiguity.

Uncertainty is represented in mathematical calculations by the term precision, espe-

cially in a floating number related processing, considering how many decimal places are

needed to provide accurate enough result. The term precision can easily be represented by

intervals as 3.547 are in the interval [3.54, 3.55]. Usually 3.547 is approximated to 3.55

which accepts margin of error equals 0.003, but in sensitive systems when approximation

is applied to many values it leads to effective deviation of the final results. Here arises the

importance of interval processing.

Mathematical uncertainty can be minimised either by minimising the interval size (if

possible) for every interval input to the system, or to implement the optimisation techniques

using interval arithmetic and interval algebra. Intervals can be represented as number range
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where x value is not known exactly but known within lower and upper limits xl and xh

(xl, xh). Another presentation for the interval is the centre (mean) and error (radius) of the

interval (m, r).

Although the interval contains the x value for sure, it is difficult to say where exactly

x is located inside the interval, so it is not recommended to select specific value or even

crop the range to smaller range assuming that it will make it less certain with specific

percentage, on contrary it may exclude the exact value from the interval, which may lead

to wrong answers. The main advantage of applying interval programming is to minimise

the overall interval result.

Bounded form: is a formulation that uses only the upper and lower bounds of the

uncertain parameters. It is used when there exist no enough information describing the

uncertainty nature and when there is no historical data to build any kind of distribution or

regression. The uncertainty factor is described by interval θ ∈ [θmin, θmax] or |θ̂−θ|≤ ε|θ|,
where θ is real value, θ̂ is the estimated value, and ε>0 is the error range or uncertainty

measure. Dealing with bounded form should be managed by interval computation, interval

arithmetic and interval algebra.

Probability description: is a formulation of the uncertainty as distribution built accord-

ing to previous data representing the history of this problem, which is known as “frequentist

probability” and represented as confidence intervals. Uncertainty can also be formulated

based on the predicted data of the future, which is known as “Bayesian probability” and

presented by credible intervals or prediction intervals. This problem can be solved by many

techniques such as Monte Carlo, regression analysis or simulation techniques in order to

minimise uncertainty source.

Fuzzy logic is a form of multi-valued logic dealing with reasoning, which is fixed or

relative represents uncertainty on its membership function. It depends on the membership

function that models who certain a specific value is totally true or partially true or totally
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false.

Fuzzy uncertainty can be an extension to the logical uncertainty by increasing number

of logical values. It can also be mapped to probabilistic uncertainty as the probability cares

if the random sample inside or outside the distribution. Meanwhile, fuzzy distribution gives

additional factor of how much the sample belongs to the distribution.

Fuzzy description: is similar to probability formulation with difference that it has mem-

bership function, so it is considered as adding one more dimension to probability curve for

how sure does that value belongs to this set, so it is considered as abstraction of probability.

Fuzzy is different than probability that the area under the curve can be more than 1, and

it can have part of the curve as uniform value and another parts of the curve as distribution,

it all depends on the membership function. Handling fuzzy-based uncertainty is divided

into two parts, first is similar to bounded form where the membership function is uniform,

and second part will be handled similar to probability distribution in curve based areas of

membership functions.

In the standard set theory, the value of the statement can be determined by the Boolean

membership function A(x) represented in equations 1.1, 1.2 and 1.3.

(1.1)μA(x) =

⎧⎪⎨
⎪⎩
1 iff x ∈ A

0 iff x /∈ A

Fuzzy theory accepts membership function A(x) between 0 and 1 for continuous values:

(1.2)μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 iff x ∈ A

0 iff x /∈ A

p; 0<p<1 if x partially belongs to A
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(1.3)μA(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 iff x ∈ A

0 iff x /∈ A

1− (ax−θ)
Δθ

if θ< ax < θ + Δθ

1.2 Motivation

1.2.1 Scheduling importance

Scheduling is a famous decision making problem that targets allocating different resources

to different tasks. The most frequent resources to be allocated are the time, money, human

resources and machines. The importance of the scheduling algorithms arises in case the

resources are limited. Such shortage of resources leads to a need for better utilisation of

every resource in order to optimise the objective function [1–3].

Scheduling has important role in different domains including project planning, produc-

tion lines, supply chains, bus schedules, traffic estimation, bank queues, chemical plants,

electricity load balancing [4–6], CPU process and memory management and medical re-

source allocation including operating rooms, intensive care units and emergency rooms

[7–9]. Airports is a another example of scheduling importance; as the number of runways

is limited, and the number of aircrafts willing to land is high, which requires accurate al-

location of time slots, in which the aircraft plane will use a specific runway and how long

will it use such runway [10–12].

Every scheduling problem has a set of variables that is used for the formulation and the

optimisation algorithm. Such variables represent the properties of each machine and the

relations between them. These variables also represent the properties and dependencies of

the tasks or the jobs processed on each machine. The properties of each task include the

processing time, the release time, the setup cost, the due date, the actual completion time,
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the deadline, the weights, and the dependencies [13, 14].

The objective can be a single function or multiple functions that should be satisfied to-

gether. The objective function can be either minimization or maximization problem. The

objective functions of scheduling problems can be optimising the make-span, the maxi-

mum lateness, maximum tardiness, total setup cost, total setup time, total flow time, total

completion time, total earliness, total tardiness, number of tardy (late) jobs, total weighted

completion time, weighted number of tardy jobs, total weighted earliness or total weighted

tardiness.

Scheduling problems are categorised according to the given properties for the tasks,

the properties of the machines, the constraints and the objective function [13, 15]. The

properties of the task can be static if they are all defined from the beginning of the schedul-

ing process till the end. The task properties can also be dynamic, where the properties

of the task can change at runtime or any new task can be assigned to a machine at the

runtime [16, 17].

The properties of the machine include the number that can be single machine or multiple

machines. Another property is the relation between the machines as sequential or parallel

processing in case of multiple machines. Another factor for categorization is the certainty

of the input when all conditions are assumed to be known, which is a deterministic problem.

If the input is not certain or there exist uncertainty in the properties of the tasks or the

properties of the machines, The model is considered stochastic [13–18].

1.2.2 Scheduling algorithms

There exist many techniques and algorithms used to achieve the scheduling objectives or to

optimise the cost function for different scheduling problems according to the nature of the

problem. Some of the famous algorithms used in solving many problems are:
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1. Simulated Annealing: is an optimisation technique for NP-complete problems such

as traveling salesman. It uses probability to find an approximated global optimum

for the cost function in the search space. Such heuristic is mainly useful in discrete

search space

2. Tabu Search: is mathematical technique that enhances the local search performance

using memory structures describing visited solutions then mark the potential solu-

tions as taboo.

3. Genetic Algorithms: is a heuristic search technique that imitates the evolution pro-

cess. Such heuristic is usually used to create good enough solutions to optimisation

problems using techniques inspired by evolution, such as inheritance, mutation, se-

lection, and crossover.

4. Ant Colony Optimisation: is a probabilistic technique that constitutes some meta-

heuristic optimisations to solve complex computational problems that can be reduced

to finding routes through graphs.

5. Beam Search: is an optimisation of best-first search that reduces its memory require-

ments, such heuristic algorithm tracing the graph by expanding the most promising

node within a limited set.

6. Constraint Programming: is form of declarative programming that states the con-

straints as relations between variables.
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1.2.3 Scheduling uncertainty

Scheduling uncertainty is a challenge faces every decision maker in different domains and

leads to state assumptions leading to risks of failure or costs of risk avoidance and insur-

ance. For example, airport flight lags cause cost as the limited availability of runways leads

to tight schedule of landing waiting and take off actions, any unexpected changes in such

schedule will lead to extra waste of cost and time. Another example is intensive care rooms

in hospitals, which are usually limited and needed and its estimates are usually not trusted,

as you can never state for sure when will the patient need intensive care and for how long.

Simulation, forecasting and prediction helps a lot in decision making with one concern

that its data are not certain, they are just estimates with some margin of error represented

by math, probability or fuzzy logic. By applying scheduling on the predicted values, which

are not certain, it will not give fully trusted schedules or plans.

Early trials to formulate the scheduling problem focused mainly on the discrete-time

scheduling formulation, as the time axis is divided into a sequence of ranges of equal

duration. This is mentioned by Bassett et al. [19] and Kondili et al. [20]). Recently a

many researchers have focused on finding efficient techniques and algorithms to deal with

continuous-time representation. After the continuous time representation is formulated,

many alternatives have appeared to reduce the computational complexity of the resulting

model.

The scheduling process differs according to the given information for each task and

each resource including the release date, due date and the processing time. Many re-

searchers assumes the nature of the input data to be deterministic. This assumption is true

within simple systems or digital systems, such as CPU process scheduling. On contrary,

the certainty of given information in real vary according to situation and problem nature.

The lack of certainty (uncertainty) results from uncontrollable parameters or unknown
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parameters that affect the problem itself. e.g. Flight control with weather factor, or traffic

scheduling with runtime sudden crashes. The recent researchers studying the scheduling

under uncertainty try to find a paradigm or methodology to reduce it in systematic way, in

order to find an optimal solution with minimum uncertainty providing the optimal, reliable

and feasible schedule.

1.3 Problem statement

The main challenge with bounded uncertainty of the input data is the lack of information

between the lower bound and the upper bound for each interval, especially that the interval

does not have any function describing the nature of the uncertainty. Such challenge lead to

search for alternative solutions similar to the interval perturbation, multiple estimates and

assumption of a specific value [21–24] .

Interval perturbation tries all possible values inside each interval. This technique guar-

antees to try all possible solutions until the optimum solution is found. Although this

technique finds the optimum solution, extensive processing is required, as it executes the

algorithm number of times equal to the multiplication of the distance between the bound-

aries for each interval.

In case the number of intervals is limited, interval perturbation can be applicable, but

the processing time grows exponentially by every task added to the problem. Each interval

is divided to a number of steps with a specific size, which is another factor affecting the

interval perturbation. The step size affects the total number of steps, which affects the

results optimality and the processing time. Reducing the step size increases the number of

steps, which affect the performance and the optimality [25–28].

Another solution for the bounded uncertainty is the multiple estimate for the objective

function. The first estimate uses the lower bound and the second estimate uses the upper
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bound, then take the average. The problem with this technique is the inflation of the un-

certainty, where the execution of the algorithm using the lower bound may lead the first

estimate to go lower and the upper bound to go higher. This will result to increase the

distance between the final lower estimate and final the upper estimate, which increases the

uncertainty of the result and the difficulty of decision making.

The third technique used to solve the bounded uncertainty is to assume any specific

value between the lower and the upper bound. This is the most simple way to execute any

algorithm with uncertain input, but it implies the risk of the deviation between the estimated

value and the optimum value.

1.4 Objective

The proposed research focuses on the mathematical formulation of uncertainty, which is

based on intervals. interval-based uncertainty can be identified as tolerance intervals or

prediction intervals or bounded representation. The only available information regarding

the bounded uncertainty is the upper and the lower bounds of every interval. To reduce the

interval-based uncertainty on heuristic and meta-heuristic algorithms, the algorithm should

use the interval arithmetic and logic as replacement to the standard operations defined in

the standard scheduling algorithms.

To update a scheduling algorithm to use interval input rather numerical input, each

interval can be summarised to a selected number from it according to one of the following

options:

1. Estimate on lower bounds

2. Estimate on upper bound

3. Random value from each interval
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4. midpoint of each interval

Selecting a number at the beginning of the calculations means neglecting the potential

uncertainty propagation or the effect of uncertainty in the calculation. By performing fur-

ther calculations the deviation or the drift from the optimal solution increases. This can be

verified by solving the problem with the lower bound selection and upper bound selection,

then compare the solutions. The difference between the two solutions represents the total

uncertainty.

The premises here is that if the algorithm is applied on the interval as one unit, it will

give overall better performance than applying it on a selected number from the interval.

To apply the algorithm on interval basis, each of interval operations and interval algebra

should be identified in order to implement the algorithm using the newly defined operators.

The basic operations identified by interval arithmetic are:

• Addition: [a, b] + [c, d] = [a+ c, b+ d]

• Subtract: [a, b]− [c, d] = [a− d, b− c]

• Multiply: [a, b]× [c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

• Division: [a, b]÷ [c, d] = [min(a/c, a/d, b/c, b/d),max(a/c, a/d, b/c, b/d)]

• Boolean comparisons

The proposed concept is applied by extending the Matlab toolbox “Torsche”, which is

developed by Sucha et al. [29]. Extending the toolbox allowed it to support the interval

operations including the interval arithmetic and interval logic as well as the functions using

them such as sort and search. Bartley’s algorithm, Hodgson’s algorithm and McNaughton’s

algorithm have been implemented on interval basis using the toolbox Torsche and changed

the code to accept the added functionality.
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The three algorithms used the sort functionality, which is re-implemented to support

interval comparisons according to interval algebra by James Allen [30–33]. A compari-

son between two intervals depends on four criteria, which are lower bound, upper bound,

median and radius. one of the challenges is when the lower bound of interval I1 is less

than the lower bound of interval I2 but upper bound is higher. Sometimes, scheduling al-

gorithms need a special purpose sorting algorithm according to the context. For example,

if the due-date is the variable to sorted, the sort can be applied on the upper bound, and if

the release-date is the variable to be optimised, it should be sorted on the lower-bound.

To evaluate the algorithm performance; The scheduling algorithm is applied using num-

ber arithmetic on lower bound and upper bound, then calculate the cost function in the two

cases, then measure the difference to know the level of uncertainty. The less the distance

between the lower and upper bound of every interval leads to more certain and accurate

result of the problem optimisation. Then apply the same algorithm using interval arith-

metic and calculate the objective function then measure the distance again to identify the

certainty/uncertainty level.

1.5 Scope and limitations

The proposed research focuses on how to minimise the impact of bounded uncertainty

on scheduling algorithms. The methodology starts by analysing the scheduling algorithm

using program slicing in order to find the possible trajectories of the algorithm. Second

the uses interval programming is used to extend the algorithm, which imply using interval

arithmetic and interval logic.

To emphasize the success of the methodology, three experiments have been performed

using three algorithms, one of them used real life data and the other two used generated

data. The results of each algorithm are analysed and correlated with the input in order to
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find out the factors affecting the performance in terms of uncertainty nature and the nature

of the problem.

Although there exist many uncertainty formulations, this research focus only on the

bounded uncertainty, which is formulated mathematically using intervals. Other types of

uncertainty including the logical ambiguity, probabilistic distributions and fuzzy represen-

tation are out of the scope of this research. The other formulations of uncertainty can be

the future research.

Scheduling uncertainty is taken as case study for extending the algorithms to deal with

uncertainty. In this research, only preventive scheduling is studied. Corrective scheduling

is not studied as it needs to consider runtime factors similar to runtime type identification

and runtime performance tracking, which are out of the scope of this research.

1.6 Thesis outline

The thesis outline is organised as follows: The second chapter is a literature and critical

review of uncertainty formulation, scheduling techniques and scheduling under uncertainty

solutions. The second chapter covers in the first section the uncertainty definitions, its tax-

onomy, sources and management strategies. The second section in the review chapter de-

scribes in brief the different formulations of scheduling problems, scheduling classification

and scheduling challenges in terms of complexity and uncertainty. The third section de-

scribes the preventive scheduling under bounded uncertainty, as the preventive scheduling

is sub-class of scheduling techniques and bounded uncertainty is sub-class of quantitative

uncertainty. The third section also describes different techniques to minimise the impact

of bounded uncertainty on the scheduling algorithms, such as interval perturbation, mixed

integer programming and combinatorial with the critical review of each.

Chapter three explains the proposed methodology to minimise the impact of bounded
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uncertainty on scheduling algorithms and how it can be applied on any scheduling algo-

rithm including heuristics and meta-heuristics. The chapter describes how the methodology

used the program slicing to decompose the algorithm and used the interval programming,

interval arithmetic and interval logic to extend the algorithm to be compatible with interval

input parameters.

The fourth chapter shows how the proposed methodology reduced the impact of the

bounded uncertainty on Bratley’s algorithm. The chapter explained the unextended numerical-

based algorithm, and then it explained how to extend it according to the proposed methodol-

ogy that is explained in chapter three. The effect of the interval programming is emphasised

by many experiments, which used the extended interval-based algorithm and compared the

results with the numerical-based algorithm.

Chapter five shows how the proposed methodology reduced the negative impact of

bounded uncertainty on the objective function of Hodgson’s algorithm. The chapter started

by describing an example of Hodgson’s algorithm usages, such as scheduling the aircraft

landings. The review of the uncertainty, scheduling and scheduling under uncertainty have

been stated in sections 5.3 and . The problem formulation has been discussed in the sec-

tion 5.4. Section 5.5 describe in details the proposed methodology and how it is applied

to Hodgson’s algorithm. The rest of the chapter explains the experiments, the results and

discuss the criteria affecting them.

The sixth chapter explains another scheduling algorithm, which is McNaughton’s algo-

rithm. First, the standard non-extended numerical-based algorithm is stated, then the pro-

posed methodology is applied, then the extended interval-based algorithm is stated. Many

experiments have been performed to compare the results in terms of optimality and un-

certainty between the two algorithms. The experiments, results and conclusion showed up

that the extended interval-based algorithm reduced the total uncertainty with minor effect

on optimality.
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Chapter seven states the conclusion of the whole research, it also discusses the differ-

ent criteria affecting the proposed methodology and states the conclusion of the research.

Chapter seven also states in details the potential of the proposed research and how it can be

extended in the future work.



Chapter 2

Scheduling under Uncertainty

2.1 Uncertainty Review

2.1.1 Overview

Uncertainty has many definitions according to the context. The most common ones in the

engineering sector are defined by Mavris and Delaurentis [34] as “uncertainty is the lack

of knowledge (either in information or context), that causes model-based predictions to

deviate from reality” or “as any unpredictable change in the runtime environment causing

disruption in the execution and the results of the system” by [35] or as “the dissimilarity be-

tween the amount of information required to execute a task and the amount of information

already infatuated by some distribution” [36].

The concept of uncertainty is discussed and stated first by Socrates and Plato. Philoso-

phers doubted whether scientific knowledge, no matter how elaborate, sufficiently reflected

reality (Kant, 1783) [37]. They realised that the insight into the mysteries of nature is di-

rectly proportional to the awareness of the limits of the knowledge of how “things as such”

are (Kant, 1783) [37, 38].

16
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According to the context of decision making in scheduling process, which is an optimi-

sation problem, the uncertainty can be defined as “the dissimilarity between the expected

values at setup time and the actual values at runtime that may happen because of lack

knowledge or misleading information or error in the model-based predictions”.

Many optimisation problems have been solved mathematically, which gave an impres-

sion that the result is accurate and certain. Meanwhile many problems cannot be modelled

mathematically due to complexity issues. Such issue created the need for modelling, sim-

ulation, numerical analysis and statistical solutions. Those techniques gave good enough

results to solve the problem with a specific margin of error. The existence of such error

margin changed the objective function to be multiple objective first is to optimise the cost

function and the second is to minimise the error margin.

Recently, the concept of the uncertainty became well known, because of the nature of

the new problems such as human will or the weather simulation or even any systematic

disruption in factory machine such as electricity cut-offs. The causes of the problem can be

parametric at the setup time or sudden at the runtime. The usual mathematical modelling,

statistical modelling or numerical analysis cannot deal with such problems effectively to

eliminate such uncertainty or its root causes. The current target now is to estimate it and to

minimise its impact on the objective function.

According to Van der Sluijs [39], the fundamental and permanent nature of some uncer-

tainties includes the epistemic and the unpredictable uncertainty (aleatory) and ambiguous

uncertainty [40–42].

Epistemic happens because of the lack of knowledge, it is also considered as cognitive

or informational uncertainty. In such case, the understanding of the problem exist and

knowable but it is incomplete, which is called in management ”Known unknown”.

On the other hand, unpredictable uncertainty is also known as variable, Ontological or
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ontic uncertainty. It describes an unknowable or unexpected action or behaviour. The un-

predictable uncertainty is related to the randomness of nature similar to society dynamics,

human behaviour, economic, cultural changes or technological disruptions [43].

Ambiguity is defined as the multiple understanding for the same term, which causes

confusion to the decision maker. To consider all possible understandings the cost will

be so high. Denying some of those understandings increases the risk of excluding the

correct decision or choosing the wrong answer. Such ambiguity happens because of the

usual variations of the values, goals or interests. It may also happen because of epistemic

differences regarding the best way to manage the system functions [44–47].

The uncertainty concept has been classified according to multiple criteria similar to the

causes, the uncertainty nature, formulations and the impact. Those classifications will be

discussed in detail in this chapter within the following sections.

Every uncertainty problem has its own characteristics and has its context and scenar-

ios, which can be decision making problem, future prediction, history analysis, human

behaviour, society trends, information retrieval or natural phenomena. Many researchers

discussed specific problems considering their uncertainty, its nature and the available in-

formation that can be used to minimise the impact of uncertainty.

One of the main sources of system uncertainty is the nature including climate changes,

animal behaviour, water currents and ecosystems [48–50]. The behaviour of the natural

systems has limited predictability because most of the factors are not controllable and does

not have a well-known model similar to the solar system [48]. Natural system has cyclic

drift uncertainty, where a specific factor change at runtime, then it propagates to all other

environmental factors, which may affect again the first factor. The limited knowledge and

control caused all modelling and simulation techniques for the natural systems to have big

margin of error as well as great uncertainty [48].
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Figure 2.1: Types of uncertainty as stated by Brugnach et al. [40]

including examples and the nature of each example as

incomplete knowledge or multiple knowledge frames

Uncertainty and Risk Analysis

Uncertainty is highly correlated with risks. Some researchers claim that uncertainty is a

cause of the risk. Other researchers say they correlation does not imply causality and both

of uncertainty and risk happens because of the same reason, which is the lack of information

or lack of control on runtime factors. Such lacks lead the planner or the decision maker

to state assumptions to be able to take the decision. The assumption by its nature is not

guaranteed to be correct as it may fail to match the reality; such failure is the cause of the

risks [51].
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Risk analysis process is to estimate risk, its causes and find out how to avoid or min-

imise such risk. In the case of risks resulting from uncertainty, the decision maker can

minimise the risk by minimising the uncertainty. National legislation, industry standards

and company guidelines often require that, if possible, a quantitative evaluation of the un-

certainties should be presented as part of the analysis results [52]

Mehr, et al. defined risk as uncertainty [53]. The degree of risk is measured by the

probable variation of actual experience from expected experience. The lower the probable

percentage of variation, the smaller the risk. Magee stated that “The uncertainty of the

happening of an unfavourable contingency has been termed risk. Risk is present when

there is a chance of loss” [54]. He also mentioned that “The various factors contributing

to the uncertainty are termed hazards. Ordinarily there are many separate hazards that

contribute to the chance or possibility of loss that attach to any particular object or person.

The sum total of the hazards constitutes the risk”, which imply that uncertainty by itself

does not necessarily lead to risks [55].

Uncertainty Propagation

Uncertainty propagation is another challenge with uncertainty where uncertainty causes

more uncertainties or increases the margin of uncertainty. Uncertainty propagation happens

in reality where a small change causes bigger change in a way similar to butterfly effect

or a growing snowball. The weather forecasting is a good example, where the uncertainty

of temperature causes uncertainty of atmospheric pressure, which causes uncertainty in

winds strength and direction, which might have clouds and cause rain, which will reduce

the atmosphere temperature [56–58].

Uncertainty propagation can also happen in modelling and simulation according to the

used equation or algorithm. For example, bounded uncertainty is formulated as numerical
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Figure 2.2: The classification of the relation between uncertainty and

risks considering the different views regarding the relation

between them including independence, correlation and

causality

intervals I = [a, b] if the equation uses In the interval will be [an, bn] and the distance

between an and bn will be extended. Such extension between the boundaries will increase

the margin of the risk and the difficulty of decision making [59].

Researchers proposed many techniques to solve uncertainty propagation most of them

are either preventive or corrective. The preventive techniques eliminate or minimise the

source of the uncertainty if possible by stating assumptions that make the uncertain vari-

able non-expandable. For example, to take the mean in case of statistical uncertainty or

taking the upper or the lower bound in the case of bounded uncertainty. Although such

methodology solves the propagation issue and gives accurate results, the probability of
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giving incorrect results is high. [60–63]

Figure 2.3: The propagation of uncertainty through mathematical

models within a decision support context as stated by

Oberkampf et al. [64]

The corrective techniques track the performance of the algorithm at the run time and

monitor the uncertain variables to check if the uncertainty increases or not. In case the un-

certainty increased, the system or the algorithm should be tuned to maintain an acceptable

level of uncertainty. The figure 2.3 explains the propagation of uncertainty through math-

ematical models in a decision support context and how it can be solved using the iterative

tuning [65–68].
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2.1.2 Uncertainty Management Strategies

Many researchers developed and still developing different strategies, methodologies and

techniques to deal with the uncertainty challenges, which vary according to the problem

nature and context. The proposed solutions are grouped into multiple categories; each

category can solve specific problems within specific domains.

First category has one strategy that is to ignore the uncertain factor implicitly or explic-

itly for the time being, it is called wait and see approach. Such technique can be comple-

mented with thinking and implementing instant solution when the problem happens in the

runtime. Though this is not a desirable solution but it is used for the rare events similar

to catastrophic force majeure including volcanos, earth quakes, wars and nuclear explo-

sions [40].

Second category is to generate the missing knowledge causing the uncertainty and this

includes three strategies. First is the uncertainty assessment that is usually used within sci-

entific, academic and research domains in order to get better understanding for the uncer-

tainty within the researched problem. Uncertainty assessment includes uncertainty identi-

fication, uncertainty classification, uncertainty quantification, uncertainty propagation and

uncertainty prioritization. [40, 43, 44, 69, 70].

Another strategy of knowledge generation is to reduce the epistemic uncertainty. This

is can be applied by gathering more related data or by developing uncertainty indicators

or by performing multiple experiments with different data or configurations. Quantitative

modelling and simulation and qualitative assessment and expert opinions help in reducing

epistemic uncertainty [40, 42–44, 71].

The third strategy for generating knowledge as solution for the uncertainty is to study

different scenarios in a way similar to the what-if analysis. Such study considers the per-

formance of different solutions and strategies within various possible future scenarios that
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may happen. The main consideration with this solution is the number of possible scenarios

with complicated problems similar to scheduling and combinatorial. [40, 42, 72].

The third category of uncertainty management strategies is to interact with uncertainty

causes and to try to eliminate them. This strategy is useful with human related systems as

human being is one of the considerable uncertainty causes in many systems. This category

involves communicating uncertainties, persuasive communication, dialogical learning, ne-

gotiation and oppositional mode of action [39, 40, 42, 44, 46, 73–81].

Fourth category is to cope with the uncertainty by preparing for the worst case scenario.

The target of such strategy is to limit any possible negative consequences, which is called

“damage control”. The main drawback with such scenario is the high cost of the wasted

opportunities. The coping strategy is usually used in critical decision similar to surgery

where any risk may waste a human being life [40, 75, 82].

Table 2.1: A list of uncertainty management strategies with

their description according to Raadgever et al. [83]

Category Strategy Description

Ignoring Ignoring

strategy

Implicitly or explicitly ignoring uncertainty for

the time being. This wait and see approach

may be complemented with thinking up and

implementing strategies in the timeframe of an

unfolding potentially damaging event.
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Knowledge

Generation

Uncertainty

assessment

Strategy often used in the academic world to

get a better grip of uncertainty. E.g.

uncertainty identification, uncertainty

classification, uncertainty quantification, model

uncertainty propagation and uncertainty

prioritisation.

Reduction of

epistemic

uncertainty

Strategy used to reduce epistemic uncertainty

by developing indicators and monitors, data

gathering, experimentation, quantitative

assessment modelling, qualitative assessment,

integrated tools and expert opinions.

Scenario study The performance of the alternative strategy is

tested under several consistent and plausible

pictures of how the future may unfold.

Interaction Communicating

uncertainties

communicating uncertainties from scientists to

other actors in a policy debate allows other

actors to co assess the quality of technical

expertise and co produce the relevant evidence.

Communication may also be aimed at raising

awareness among actors.

Persuasive

communication

Convince others by presenting your perspective

as attractive and worthwhile.
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Dialogical

learning

Understanding one another’s perspectives

better through open dialog and by encouraging

learning on all sides. Several authors advocate

forms of dialogical learning as good strategy to

reduce ambiguity, as it may lead to mutual

understanding, trust and support for

management action, or at least reduce

resistance against actions. It may require a well

founded process design and the involvement of

facilitators and mediators.

Negotiation Reaching a mutually beneficial and integrative

agreement that makes sense from multiple

perspectives.

Oppositional

modes of action

Distancing and avoiding each other or trying to

impose your perspective upon others by force.

Coping

strategies

Preparing for

the worst

Limiting potential negative consequences

(controlling damage) of the worst case

scenario, which means being conservative or

precautious.
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Adopting robust

solutions

Adopt strategies that perform well under

multiple scenarios. This may mean adopting

multiple measures or diversifying solutions to

ensure that one or more will be effective under

each of the possible scenarios.

Developing

resilience

Developing “the capacity of a system to absorb

recurrent disturbances, such as natural

disasters, so as retreating essential structures,

processes and feedbacks”.

Adopting

flexible

solutions

Choosing flexible management strategies,

which can be adapted to future changes. This

may include adopting measures that are

feasible within the timeframe of an unfolding

potentially damaging event and that prevent or

mitigate damage.

2.1.3 Uncertainty Classification and Taxonomy

Uncertainty is categorised usually according to its predictability into aleatory and epis-

temic. Aleatory is the unpredictable uncertainty, which happen because of sudden dis-

ruption. It is known within the project management context as “unknown unknown” as

the planner or the decision maker cannot even realise that such uncertainty exist or such

disruption may happen. On the other hand, Epistemic uncertainty is predictable as it re-

sults because of either missing or confusing knowledge. Epistemic uncertainty is described
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within project management context as “known unknown”, where the missing information

is already known to be missing, which lead to extra risks [84].

Aleatory uncertainty represents the variations related to the environment or the phys-

ical system under study [85–91]. Aleatory uncertainty problems are usually formulated

using probability distributions, especially when there exist enough experimental data. The

main challenge with probabilistic aleatory uncertainty is when the distribution is random

or uniform as the first provides confusing information and the second distribution does

not provide any useful information to deal with them. Aleatory uncertainty is objective,

stochastic and usually irreducible.

Epistemic uncertainty is a predictable uncertainty that happens because of missing the

information describing the system or the environment. Such term also refers to the missing

knowledge and information in any phase or activity through the modelling, simulation or

runtime process [92–95]. This implies that increasing the knowledge and information will

lead to minimise the predicted uncertainty in system performance.

As lack of knowledge is the main reason for the epistemic uncertainty, many researchers

tackled this issue from different perspectives similar to reliability analysis, design optimi-

sation, risk assessment and decision making. Epistemic uncertainty is usually described as

subjective uncertainty, reducible uncertainty or state of the knowledge uncertainty.

The term “Epistemic quantities” refers to the variables that have fixed values at the

analysis, modelling and simulation time, but this fixed value is unknown. Sometimes, epis-

temic uncertainty is used to refer to the parametric uncertainty or the scientific uncertainty

in the model - also known as model uncertainty because of their limited data, Information

and knowledge.

Epistemic uncertainty can be a parametric uncertainty, where the estimates of the pa-

rameters are not known exactly or accurately. Epistemic uncertainty can also be model
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Figure 2.4: Classification of uncertainty according to its predictability

incompleteness, non-determinism in applying the model, or vagueness in engineering esti-

mates, and ambiguity in the interpretation of results produced by a model [64].

Although epistemic uncertainty is totally different than aleatory uncertainty according

to definition, in reality there exist common area and some similarities, which make the

differentiation between them is a bit difficult. Both of aleatory and epistemic uncertainty

are concerned with parameters, but in epistemic case the parameter is predictable. So, the

researchers of the probability risk assessment proposed to divide the epistemic uncertainty

into three main categories:

1. Model uncertainty, which can be structural uncertainty or behavioural uncertainty.

Structural uncertainty is usually formulated using geometric modelling and behavioural

uncertainty is usually formulated using algebraic models. Model uncertainty can be

categorised to; (1) Fuzziness or vagueness of the model understanding (i.e., does the
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model include or cover all the variables that can affect its results significantly), (2)

Vagueness of the characteristics of the model, which refers to the relational uncer-

tainties and the used descriptions in the model. Sometimes, the variables are known

and well described in the model, but the relationships between them are not well

stated.

2. Parametric uncertainty, where the parameters are known and predictable. It includes

possible inaccuracies that happen because of the small datasets. It also includes un-

certainties in the judgments of the experts regarding the parameter values, especially

when the recorded data are limited.

3. Completeness uncertainty, where some of the significant properties, parameters or

relationships are not included or not studied in the uncertainty analysis or the risk

analysis. Completeness uncertainty is different than modelling uncertainty as it oc-

curs at early stages in the uncertainty analysis or risk analysis. Completeness un-

certainty is usually categorised to (1) Contributor uncertainties that consider if all

serious risks and important accident have been covered and (2) Relationship uncer-

tainty that check if the relations between all contributors and all variables have been

considered.

2.1.4 Sources of Uncertainty

Uncertainty occurs in systematic models, mathematical models and the experimental mea-

surements according to the problem nature and its context. The source of the uncertainty

can be any factor affecting the reliability, the behaviour or the results of the model. The

main sources of the uncertainty are parameter uncertainty, model structural uncertainty,
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algorithmic uncertainty or experimental uncertainty. Some researchers consider the para-

metric variability and interpolation uncertainty, but parametric variability is considered as

predictable parameter uncertainty and consider the interpolation uncertainty as algorithmic

uncertainty.

Parametric Uncertainty

The uncertainty of the input parameters causes model uncertainty in terms of stability,

reliability or accurateness of the results. The term parameter can refer to input parameter

or configuration parameter or dependency parameter. The most famous example of such

uncertainty is Heisenberg uncertainty where physicist cannot determine the speed of the

electron and its location in same time. Another example is the exact speed at specific time

for any wind or water current dependent system similar to aircrafts, wind farms, sail boats

and free-fall experiment of a feather [96].

The main issue with parametric uncertainty is the uncertainty propagation and diver-

gence. In other terms, if the uncertainty propagates as indicated in figure 2.3 by affecting

the other variables in the system and converting them from certain to uncertain, it will lead

to either instability of the system or inaccurate results. Such instability and inaccuracy are

function of the uncertainty magnitude as well as the propagation factor. Also, if the uncer-

tainty of the input parameter diverges along with the system performance, the final result

will be very uncertain, which will cause high risk or incorrect decision [97–102].

As most of the complex systems in engineering, physics, business and economy are

modelled using mathematics; most of the parameters are formulated as variables that affect

the model with different levels [103, 104]. The effect of every parameter in the model

behaviour and results is usually measured using sensitivity analysis [105, 106].
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Sensitivity analysis help in determining, which parameters need more research to in-

crease the knowledge base. Sensitivity analysis also helps in determining which parameters

are useless or not effective for the model behaviour and results. Sensitivity analysis also

detects to which extent the parameter uncertainty affects the output uncertainty. It also

measures the correlation between input parameters and output, which help in understand-

ing and developing the model [105–109].

Sensitivity analysis are applied through five main steps as follows: (1) Formulating the

problem and building the model; (2) Defining the parameter variables and determine the

dependent and independent ones; (3) Assigning probability density function to every input

variable; (4) Build up a matrix using random sampling methods a in order to calculate the

output vector; (5) Evaluate the effect and the correlation of each input/output pair [96,110,

111].

Sensitivity analysis can be applied using many techniques according to the constraints

and the settings of the problem and the model. The most frequently used techniques are:

1. One variable at time (OAT)

2. Local methods

3. Regression analysis

4. Variance-based methods

5. Screening

The main constraints and settings controlling which method to be selected are (1) Com-

putational expenses (2) Correlated inputs (3) Linearity versus non-linearity (4) Model in-

teractions (5) Multiple outputs and (6) The given data.

As there exist many approaches to execute the sensitivity analysis, most of them have

been developed to solve a specific problem with specific constrains. According to the



2.1 Uncertainty Review 33

mentioned constrains and the stated techniques, the process of sensitivity analysis consists

of the following four steps:

1. Quantify the uncertainty in each input (e.g. ranges, probability distributions). Note

that this can be difficult and many methods exist to elicit uncertainty distributions

from subjective data.

2. Identify the model output to be analysed (the target of interest should ideally have a

direct relation to the problem tackled by the model).

3. Run the model a number of times using some design of experiments that is dictated

by the method of choice and the input uncertainty.

4. Using the resulting model outputs, calculate the sensitivity measures of interest.

In some cases this procedure will be repeated, for example in high-dimensional prob-

lems where the user has to screen out unimportant variables before performing a full sen-

sitivity analysis.

Model Structural Uncertainty

Model uncertainty happens due to inadequacy or biasness or discrepancy in the structure

of the model. Such uncertainty happens due to missing knowledge regarding the compo-

nents of the system and the relation between these components. The structural uncertainty

depends on the ability of the system to describe the different real life situations accurately.

The main sources of uncertainty in modelling, simulation, prediction or forecasting

have been stated to be (1) Input parameters (2) Model conceptual structure and (3) runtime

disruptions. Some researchers stated uncertainty in the model context, model assumptions,

expert judgment and indicator choice [43].
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Figure 2.5: Sensitivity analysis and uncertainty analysis within a

simulation model

The model is defined by Refsgaard et al. as an abstraction and conceptual interpretation

of a real soft or hard structure [112]. Any mismatch between the real structure and the

modelled one and any incompleteness in the model usually cause uncertainty in terms of

model stability, reliability, performance and output.

The main issue facing researchers in modelling uncertain reality is the lack of useful ob-

servations in time and space, the transportation, the environment and eco systems are good

examples. To work around this issue, researchers use techniques similar to extrapolating the

unobserved features, forecast or predict the future behaviour as in eco systems [113–117].

Assessing structural uncertainty can be performed using several strategies according to

the nature of uncertainty that can be incompleteness, inadequacy or lack of information.

Such strategies are categorised to interpolation, which is used when the needed data exist
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Figure 2.6: The uncertainty of the model structure according to data

availability

or the extrapolation that is used when there is no enough data. Each of the two technique

cover specific cases as declared in figure 2.6

Klemes defined a test scheme, where the interpolation is used when the split-sample

test is applicable [118,119]. He stated that extrapolation is used in case there is no data for

the studied output variable, which is known as proxy-basin test.

Uncertainty interpolation is used when there is enough historical data to predict the

missing data with a relatively small margin of error. In such case, a calibration is performed

using a sample of the existing data to make sure that the model parameters are optimised.

Afterwards the predictions are compared against the rest of the existing data, as a step to

measure the deviations. Such deviations are considered the model’s conceptual error. This
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error can be used later on to re-optimise the model structure parameters.

There are many techniques or strategies to apply interpolation to solve structural or

conceptual uncertainty. One of them increases the parameter uncertainty to a level equals

to the omitted error of the model structure similar to Van Griensven and Meixner [120].

Another approach is estimating the structural uncertainty and its effects on the predic-

tions of the model. Such approach assumes that the uncertainties from different sources

are additive, regardless the difference of the nature or the causes. Such assumption is de-

batable as the combination of uncertainties is non-linear due to relation between variables,

input parameters, configuration and system structure. Such relations can be interaction,

dependencies and correlations especially if the system is based on artificial intelligence or

heuristics.

The second assumption is that the differences between the predicted values and the ob-

served values are always result of a structural error and excluding other types of uncertainty

similar to parametric errors or runtime disruptions and excluding the error in the reality ob-

servation. Radwan et al. [121], uses statistical analysis and of the residuals between the

model prediction and the observation to estimate the total predictive uncertainty.

Vrugt et al. [122] present another stochastic approach that is based on a simultaneous

parameter optimisation and data assimilation with an ensemble Kalman filter. By speci-

fying values for measurement error and a so-called stochastic forcing term, representing

structural uncertainty, they are able to estimate the dynamic behaviour of the model struc-

ture uncertainty.

Uncertainty extrapolation is used when the model structure error cannot be estimated

because of the shortage of the needed data. Extrapolation of the model can be applied by

analysing other similar conceptual models that have been used for similar system structure.

Then develop, build, generate and tune the old model, taking into consideration the expert
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elicitation and pedigree analysis.

Multiple conceptual models approach is also called scenario based modelling, alterna-

tive or competitive conceptual modelling. Such approach uses a readymade model and

upgrades it according the considered scenarios when upgrading the conceptual model. The

uncertainties of the model input and the model parameters should be analysed, then mea-

sure the deviation between the predicted results of the model and the actual results to esti-

mate the model structure uncertainty.

The idea of using alternative or competing candidate model structures is used in mod-

elling the water quality [123]. It has also been used in flood forecasting by Butts et al. [124]

and In groundwater modelling-based on different geological interpretations [125–127]. The

alternative modelling is also used frequently in the climate change modelling [128].

Van Straten and Keesman [129] noted that good performance at the calibration stage

does not guarantee correctly predicted behaviour, due to non-stationarity of the underlying

processes in space or time. Butts et al. [124] found that exploring an ensemble of model

structures provides a useful approach in assessing simulation uncertainty. Hjberg and Ref-

sgaard [130] concluded that the larger the degree of extrapolation, the more the underlying

conceptual model dominates over the parameter uncertainty and the effect of calibration.

Expert elicitation can be used as a supporting method for alternative conceptual mod-

elling to analyse uncertainty. It is a structured process to elicit subjective judgments and

ideas from experts. It is widely used in uncertainty assessment to quantify uncertainties

in cases where there is no or too few direct empirical data available to infer uncertainty.

Usually the subjective judgment is represented as a probability density function reflecting

the experts degree of belief.
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Expert elicitation aims to specify uncertainties in a structured and documented way, en-

suring the account is both credible and traceable to its assumptions. Typically it is applied

in situations where there is scarce or insufficient empirical material for a direct quantifica-

tion of uncertainty. An example with use of expert elicitation to estimate probabilities of

alternative conceptual models is given by Meyer et al. [131].

Expert elicitation can also be used to generate ideas for alternative causal structures

(conceptual models) that govern the behaviour of a system. Techniques used in decision

analysis include group model building [132] and the hexagon method [133] but these tech-

niques usually aim to achieve consensus. From the point of view of model structure uncer-

tainty, these elicitation techniques can perhaps be used to generate alternative conceptual

models.

Pedigree analysis idea came from Funtowicz and Ravetz [134], who note that statistical

uncertainty in terms of inexactness does not cover all relevant dimensions of uncertainty,

including the methodological and epistemological dimensions.

To promote a more differentiated insight into uncertainty they propose to extend good

scientific practice with five qualifiers for quantitative scientific information: numeral unit,

spread, assessment, and pedigree (NUSAP).

By adding expert judgment of reliability (assessment) and systematic multi-criteria

evaluation of the processes by which numbers have been produced (pedigree), NUSAP

has extended the statistical approach to uncertainty (inexactness) with the methodological

(unreliability) and epistemological ignorance dimensions.

By providing a separate qualification for each dimension of uncertainty, it enables flex-

ibility in their expression. Each special sort of information has its own aspects that are key

to its pedigree, so different pedigree matrices using different pedigree criteria can be used

to qualify different sorts of information.
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Early applications of pedigree analysis of environmental models have focused on pa-

rameter pedigree, using proxy representation, empirical basis, methodological rigor, the-

oretical understanding and validation as pedigree criteria. Later on, pedigree analysis has

been extended to assessment of model assumptions and problem framing [135, 136].

Runtime or Behavioural Uncertainty

Another type of uncertainty is the runtime uncertainty or behavioural uncertainty. This

happens when the system is running and sudden unexpected event happens that affects the

performance of the system. Such event is called disruption or disturbance in engineering

domain and is called exception in computer science and information technology domain.

One example is when a lightning strikes electricity tower, it is totally unexpected but it can

affect factories, hospitals and electric trains. Another example is when a problem is solved

using cloud computing and the internet connection is down.

Such unexpected events can be solved using reactive or corrective actions after the

accident happens as it is so difficult to predict if such disruption can happen and when.

Recent researchers uses hybrid technique where they try to predicate if such event will

happen and get prepared for when it happens. The most famous example for the hybrid

techniques is the ambulance, where they take specific spots within the city so they can

access any location then go to the hospital within a very short time. The density of the

ambulance cars and the distance between them enhances the performance in terms of the

needed time to transfer the patient. The runtime uncertainty become more challenging

when the event are not frequently happening such as the tsunami and the cyclone.

Other Uncertainty Sources
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Algorithmic Uncertainty usually refers to the numerical uncertainty, which comes from

numerical errors and numerical approximations per implementation of the computer model.

Many models are too complicated to be solved exactly, accurately and complete. For exam-

ple the finite element method or finite difference method may be used to approximate the

solution of a partial differential equation, which causes numerical errors. Other examples

are numerical integration and infinite sum truncation that are necessary approximations in

numerical implementation.

Experimental Uncertainty happens because of the observation error, which comes from

the variability of experimental measurements. The experimental uncertainty is inevitable

and can be noticed by repeating a measurement for many times using exactly the same

settings for all inputs/variables.

Completeness Uncertainty describes the missing parts in the process of modelling and

simulation, which can be missing structural component or missing parameter or missing

variable. Such uncertainty happens because of the lack of information or optional neglec-

tion of some details due to the cost of money or time. Increasing the level of modelling

details causes facing more uncertainty and more accurate results.

The most well-known example of completeness uncertainty is the calculation precision

in terms of the number of decimal points that will be used in the calculation. Increasing

the number of decimal points for the variables will result in a very accurate output but

with relatively huge computation and processing time. If the variables are approximated

to integer numbers, the algorithm will be faster with easy calculation but with inaccurate

results.

Some researchers consider the completeness uncertainty as structural uncertainty. This

is true to some extent, but modelers should consider the completeness uncertainty of the
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variables, parameters, environmental factors and processing. This implies that structural

completeness uncertainty is a special case of the general completeness uncertainty.

Scheduling is a decision making process for allocating limited amount of resources

to multiple tasks or jobs within a specific environment and constraints. If the available

resources are much more the needed amount by all tasks at any time, there will be no need

for scheduling. The main target of scheduling is to allocate a specific resource to each job

at a specific time slot, in order to optimise the objective function. Scheduling is needed in

many domains similar to manufacturing, supply chain, queuing and traffic control.

The resources and tasks can take many different forms including machines in a produc-

tion line, airport gates or runways, construction crew, CPU in a computing. The tasks or

jobs can be operations in an operating room, assembly in production process, landings or

takeoffs of aircrafts in an airport, milestones in a development project, running computer

instructions in parallel environment, and so on. Every job can have a specific priority, re-

lease time, actual starting time and a due date. The objective function of the scheduling

process can also take many different forms. One objective can be minimising the total

completion time of all tasks or jobs. Another objective can be minimising the total number

of tasks or jobs completed after their planned due-date.

Most of the manufacturing systems, production systems, supply chains, transportation,

traffic, processing units and information technology environments depend heavily on se-

quencing and scheduling algorithms.
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2.2 Scheduling Review

2.2.1 Scheduling Problems Formulations

Scheduling is described technically as the process of ordering a set of tasks or jobs in a

sequence that optimises the objective function or the cost function. Every job has multiple

properties including the release time, processing time, due date, deadline, dependency and

pre-emption. Some or all of the job properties are known before generating the schedule

and using it in run time. The environment of the problem is usually stated in the problem

formulation as well. Scheduling environment describes the machines properties and the

constraints. Every scheduling problem must have an objective function that can be single

or multi objective. The triplet of the parameters, environment and the objective function

are usually described as α | β | γ.

Every scheduling problem has a number of jobs; each job has a set of properties that

describe the job itself or the relation between the job and its peers. The main properties

describing the job are the release date, processing time, due date and the weight. Such

properties are usually known at setup time, but sometimes they change at runtime due to

some disturbance or disruption. Such change causes the system to be dynamic rather static.

The second factor describing the scheduling problem is the environment in terms of

number of machines and constraints. The environment of the problem can have single or

multiple machines, sequential or parallel, same speed or different speed related or unrelated

machines and always up or temporary working. The constraints can be on the job level

or on the machine level. The constraints can be the pre-emption, precedence, sequence

dependent setup times, batch processing and eligibility criteria.

Scheduling objective is the cost function to be optimised as minimisation, maximisa-

tion or constraint satisfaction. The solution of the problem can be optimum if it is solvable



2.2 Scheduling Review 43

in time, which happens if the problem is computationally Turing reducible in polynomial

time. Any problem can be Turing reducible if it is deterministic polynomial (P) or non-

deterministic polynomial (NP) excluding the non-deterministic polynomial complete prob-

lems and the non-deterministic polynomial hard problems.

The solution of the scheduling problem can be optimal if it is solved using heuristics.

Heuristics and meta-heuristics are used when the problem is not solvable in time because

of being NP-Complete or NP-hard. Such techniques finds a feasible solution for the prob-

lem, but the solution is not necessarily the best or the optimum. Scheduling objective

functions vary according to input parameters and constraints. It can be any of the follow-

ing make-span, maximum lateness, total completion time, total weighted completion time,

total tardiness, total weighted tardiness and weighted number of tardy jobs.

2.2.2 Scheduling Classification and Taxonomy

Sequencing and scheduling problems can be formulated in different ways and can be solved

using different techniques. Many classifications for scheduling techniques have been pro-

posed by many researchers in order to find out the best formulation and technique for any

scheduling problem [137–140]. One of the most recognised and accepted ways to classify

scheduling problems is the number of machines, which affects sequential and parallel clas-

sification too. Another classification criterion is the behaviour of machines, which specifies

if the problem is deterministic or stochastic. A third criterion is the behaviour of the pa-

rameters, which make the problem either static or dynamic [137, 141].

Scheduling problems also can be classified based on its complexity and what is the

best technique to solve such problems. The main classes are polynomial solvable problems

and nondeterministic polynomial hard problems (NP-hard). polynomial solvable problems

can be solved using polynomial time algorithms. NP-hard problems can be solved using
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Figure 2.7: The taxonomy of the scheduling techniques for the

distributed resource management scheduling problem

consists of interacting classes and policies presented by

Casavant and Kuhl [142]

either the exact approaches including branch and bound and dynamic programming or the

approximation and heuristic approaches. The figure 2.8 explains the complexity-based

classification of scheduling problems. The table 2.9 refers to some scheduling problems,

which are solvable in polynomial time, including the problem formulation as α | β | γ as

well as the algorithm complexity and the references. The table 2.10 states some scheduling

problems that are nondeterministic polynomial and solved using exact methods, heuristics
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and meta heuristics.

Figure 2.8: Classification of the scheduling problems based on the

complexity and the solution techniques

Deterministic and Stochastic Scheduling

The behaviour of the machine at the runtime is one of the criteria used for classifying

scheduling problems, as it can be either predictable or unpredictable. The predictable be-

haviour of the machine along the schedule life time makes the problem deterministic unless

there exit some constraints that increases the complexity. If the behaviour is not predictable

the scheduling problem needs a stochastic solution [143–145].
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Figure 2.9: Polynomially solved scheduling problems as stated by Edis

2013 [14]

Deterministic Scheduling Deterministic scheduling is used for the problems that can be

solved at design time, using a sequence of known steps, in order to find an optimal or near-

optimal solution. Such problems do not have any have infrequent mapping of the setup

time on the single or the multiple machines at runtime [137, 145].

Deterministic scheduling uses stepwise techniques and branch and bound algorithms, it

does not use any randomization techniques. The stepwise branch is divided into the pruning

of solution space and the iterative classes. The branch and bound approach is considered

as a recursive solution, it can be adaptive or rigid.

An example of the pruning techniques is the partitioning technique that divides the

overall problem into smaller sectors based on specific rules, for example, the operations are
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Figure 2.10: A set of complicated scheduling problems, which are

solved using exact, approximation, heuristic and

meta-heuristic techniques as stated by Emrah B. Edis

2013 [14]

partitioned to critical path and noncritical path ones [146]. The Integer Linear Program-

ming (ILP) is an example of the iterative techniques. ILP is used to analyse the constraints
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through polyhedral theory that determines the scheduling polytope to be solved [147]. The

solver class provides the actual solver of the formulated problem, such as a Mixed Inte-

ger Linear Programming Solver (MILP) [148]. The mentioned techniques are efficient in

solving the scheduling problems that are sufficiently decreased in size, have a largely linear

solution space, and require a guarantee on optimality.

The adaptive class defines the recursive techniques, which are capable of self-training

and self-learning. They start from an initial state and they indicate when and how the ap-

plied process is modified and when it converges to the near-optimal solution. For example,

some adaptive deterministic techniques use neural networks [149], which are composed of

the net topology, the node characteristics, and a set of training rules indicating the initial

weights and their adaptation [150].The performance of each technique varies according

to the problem to be solved [151] and according to the effectiveness of the deterministic

technique’s nature to this type of problem [152].

Many of the scheduling problems are considered deterministic similar to total comple-

tion time, number of tardy jobs, total earliness and lateness, maximum lateness, multiple

objectives on one machine, makespan with sequence dependent setup time, batch process-

ing, flowshop, jobshop and openshop problems [153, 154].

Stochastic Scheduling Scheduling problem is considered stochastic if its behaviour is

not predictable at run time due to changes in the task parameters or machine performance.

The stochastic techniques start from an initial state and use probabilities and randomness

to determine the next state, which is potentially closer to the near-optimal solution. The

next state generation iterates until some termination criteria are met. These usually indi-

cate that the obtained solution has reached the near-optimal one or that the search for a

better solution is too costly, whereas the gained quality is too low; accordingly, the pro-

cess terminates. The way of generating subsequent states and which objective function
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is minimised determines the quality of the obtained solution. The main techniques used

for stochastic scheduling are tabu search, simulated annealing, Pareto-optimal and genetic

algorithms [137].

The need for stochastic models arises with the lack of knowledge either in the input

parameters or the constraints. Such lack of knowledge can happen in the processing times,

the release dates or the due dates. The unknown variable is usually represented as random

variable of some distribution. The actual estimate of the variable (e.g. the processing

time) becomes known by the processing completion; the actual value of the start date or

the completion time becomes known only time when the task is finished. Distributions

and density functions of the random variable for the uncertain variables may take many

forms. The describing function can be either probability or membership or mathematical,

it can be represented as continuous function over specific intervals or as a discrete function

with concentration at specific points, which imply that the describing function cannot be

differentiated by time [155, 156].

Stochastic scheduling problems includes problems with arbitrary processing, priority

queues, work conservation, Poisson releases, parallel make-span, parallel total comple-

tion time, parallel make-span with pre-emption, parallel total completion time with pre-

emption, flow shop with variable storage and flow-shop with blocking.

Although stochastic models are used for any scheduling problem with instability of the

behaviour, it is usually used for the instability in machine or processor performance due to

any sudden disruption or disturbances. Meanwhile the fluctuations in the input parameters

are usually handled in the phase of the data preparation [157–159].
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Static and Dynamic Scheduling

The scheduling system is called static when the number of the available jobs does not

change by time. Sequencing and scheduling problems depend heavily on sorting algo-

rithms, which implies the static problems will be easier to solve as the ranking and ordering

process will be done once and does not need to be changed by every new job appear in the

job list [160].

Although most of the scheduling problems in real life should be modeled as dynamic

problems, static models can be used to formulate the dynamic problem after simplifying it

by relaxing some constraints. Static models contributes frequently in finding the heuristic

principles that can help in the dynamic situations.

Many researchers simplify the complicated dynamic scheduling problems to be static

problems with a relaxed environment as a step to find the complicated solutions. They use

it as a heuristic base to provide a base plan that can be dynamically updated later [160,161].

For example, airport schedules are planned in advance in a static way, but the sequence of

departures and arrivals is subject to dynamic scheduling in reality.

The system is called dynamic, when new jobs appear over time, or the properties of

the jobs change through time. Dynamic environments usually face inevitable unpredictable

real-time events, which may cause a change in the scheduled plans. Such change in the

plans makes a previously feasible schedule turn into infeasible. Dynamic problems are

usually correlated with uncertainty, so it is categorised to three main categories: completely

reactive scheduling, predictive-reactive scheduling, and robust pro-active scheduling [155,

162–166].

Real-time scheduling events, also known as schedule disturbances, have been cate-

gorised to two main categories as follows [164, 166–168]:

• Job-based: sudden urgent jobs, cancelled jobs, changes of due-dates, early or late
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arrival of any job, change in priorities, change in weights and changes in processing

time.

• Resource-based: machine breakdown, unavailability or failure of any tool, operator

absence, loading limits, delay in the arrival and shortage of materials.

Dynamic scheduling can be solved using many techniques according to the problem

formulation. One of the ways to solve dynamic scheduling problem is to decompose it

into a series of static problems that can be solved by using classical scheduling algorithms.

Another approach is to use heuristics such as the right-shift scheduling [162, 169, 170], the

match-up scheduling [171,172] and the dispatching rule-based rescheduling by [173,174].

A third approach is to use meta-heuristics including tabu-search, simulated annealing and

genetic algorithms [162, 175, 176]. A fourth approach is to use multi-agent technique with

its different architectures similar to autonomous and mediator architectures, [177–180].

Finally, to use artificial intelligence techniques such as knowledge-based systems, neural

networks, case-based reasoning, fuzzy logic, and Petri nets.

Sequential and Parallel Scheduling

Scheduling problems are classified according to the number of the machines used and the

relations between those machines. The scheduling problem can be of one or multiple ma-

chines. Most of the scheduling problems consist of multiple machines. Nevertheless many

scheduling problems are formulated using a single machine as a step to solve the schedul-

ing problems with multiple machines. Such simplification technique is useful with dynamic

and stochastic scheduling problems [181, 182].

Most of the multiple-machine-based scheduling problems can be either sequential or

parallel. Sequential scheduling can be represented as a queue with a single path of depen-

dencies were machine number n + 1 depends on machine number n. The main concerns
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Figure 2.11: Classification of scheduling problems based on setup time

and cost [181]

with sequential scheduling is the release time, due-date and the deadline as well as any

runtime disturbances. A sequence usually corresponds to a permutation of the n jobs or

the order, in which jobs are to be processed on a given machine. One of the well-known

problems with sequential processing is to optimise the traveling sales man problem, other

sequential processing problems include the sequence dependent setup times, flowshop with

sequence dependent setup times, flowshop with dependencies, jobshop with sequence de-

pendent setup times, jobshop with dependencies and batch processing [141, 181].

On the contrary, parallel scheduling has multiple paths of execution and possible de-

pendencies and different rate of production. Some other factors affect parallel scheduling

similar to load balancing, pre-emption, dependencies and batch processing.

Parallel machines can be:

• Parallel identical machines

• Parallel machines with different speeds



2.2 Scheduling Review 53

• Unrelated machines in parallel

Every parallel scheduling problem is identified by a set of characteristics that determine

how to formulate the problem and what is the most suitable technique to solve it [182]:

1. Number of added resources and their types.

2. Effect of the extra resources on the processing times for every machine, considering

that:

• The total processing time decreases by increasing amount of the additional re-

sources allocated to every single machine (speeding-up)

• The resource requirements of the jobs are fixed with a known priori.

3. How the resources will be allocated, static or dynamic:

• Static: Each machine can use a predetermined amount of the static extra re-

source.

• Dynamic: Different machines can use the additional resources during the sched-

ule by switching the allocation.

4. Job-machine assignment that can be either pre-specified or unspecified

2.2.3 Scheduling Challenges

Scheduling problems face many challenges that make finding the optimum solution is dif-

ficult rather impossible. Such challenges lead many problem solvers to find the optimal

solutions, which are good enough with acceptable known margin of error. The main chal-

lenges facing the scheduling problems are the computational complexity and the uncer-

tainty. Computational complexity makes the problem unsolvable in time or solvable with
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a margin of error using heuristics. Uncertainty of the scheduling problem creates uncer-

tainty of the output, extra computational complexity, additional risks, additional cost or all

of them combined.

Computational Complexity

Scheduling problems have different formulations according to the objective formulation,

the given parameters and the environment variables and constraints. The complexity chal-

lenge appears with mathematical solutions in formulating the complicated problems. An-

other kind of complexity happens with branch and bound algorithms, where the algorithm

has high order of magnitude leading to huge processing time. The third type of complexity

is in predicting the solution behaviour in stochastic and agent-based problems

Scheduling problem can be solved using standard mathematics similar to linear algebra

or integer programming. Mathematical techniques can find the optimum solutions but it

cannot solve all scheduling problems. Formulating the complicated scheduling problems

mathematically is difficult, especially if we considered the precedence, constraints, pre-

emption and the dependencies.

Scheduling problems can also be solved using branch and bound algorithms including

state space search and heuristics. The problem with branch and bound solution is trans-

forming the problem to mathematical combinatorial in the basic cases where the branch se-

lection and pruning is either depth first or breadth first. Mathematical combinatorial takes

very long time for processing if the number of tasks or jobs is more than 20 as its number

of iteration is estimated by factorial (20) and its complexity curve grows rapidly in what is

known by combinatorial explosion. In other words the order of magnitude of the standard

branch and bound algorithms is exponential, assuming worst case scenario. Branch and

bound algorithms have been combined with heuristics that can determine which branches
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Figure 2.12: Classification of the scheduling problems based on the

complexity and the solution techniques

are more likely to have the solution and which branches to be pruned. Merging heuristics

with branch and bound algorithms make the solution optimal rather than optimum.

The third approach to solve scheduling problems is the meta-heuristics techniques and

machine learning. This approach includes genetic algorithms, neural networks, simulated

annealing and agent-based programming. The challenge with this approach is the difficulty

of predicting the system behaviour, estimating the order of magnitude and training the

system. Such techniques need lots of training with different datasets that can be either real

or generated, provided that the data covers the real problem scenario or its distribution.
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Figure 2.13: Open scheduling problems by Allahverdi [181]. These

problems were reported as having unknown computational

complexity in the latest literature. Open problems with

respect to strong NP-hardness are marked with an asterisk,

assuming a reasonable encoding scheme (see Garey and

Johnson, 1979) for each problem, i.e., if the problem

formulation explicitly states that there are k parameters

equal to a, all these parameters are encoded with two

numbers k and a.

Scheduling under Uncertainty

As mentioned in the section 2.1, uncertainty is a challenge facing every decision maker.

Two factors affect the uncertainty of the problem. The first factor is the level of details that
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is covered by the problem formulation including the parameters, environment, constraints

and the objective. Such factor can be relaxed to some extent according to decision maker

needs. The second factor is the problem nature in terms of dynamicity, stochasticity and

parallelism. Dynamicity changes the parameter values at run time. Stochasticity looks for

best solution through a set of local optimal values. Parallelism causes the same effect of

dynamicity or stochasticity if the outputs of the machines are not predictable.

Most of the researchers try to solve scheduling problems under uncertainty constraints

either by preventive or reactive techniques. Preventive techniques are used for scheduling

with predictive uncertainty, it targets eliminating the cause of uncertainty or minimising its

impacts on the results or the cost functions. Reactive techniques are used with dynamic

and stochastic scheduling; it tries to rebuild the schedule at the runtime in order to recover

the uncertainty consequences.

Scheduling problems are concerned with generating the schedule at the setup time and

revising the schedule at the run time [183]. Scheduling generation is used as a predictive

mechanism that specify the plan baseline in terms of the start and completion times of every

task or job, according the given requirements and constraints. On the other hand, schedule

revision is considered reactive or corrective mechanism, as it monitors the schedule at the

runtime and changes it when unexpected events happen [156].

Karabuk and Sabuncuoglu divided the scheduling approaches into online and offline

scheduling [184]. Scheduling is offline when all the available jobs are scheduled at once

for the whole future plan. Meanwhile, the scheduling is online if the resources are allocated

at the run time once the decision is needed.

Reactive scheduling is the process of modifying or changing the generated schedule at

the run time in order to adapt with unexpected event, it is also known as corrective schedul-

ing. The mentioned disruptive events can be machine breakdown, rush order arrivals or or-

der cancelation. Reactive scheduling is usually used with unpredictable uncertainty, where
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there is no information prior to runtime detection of the uncertain variables that might be

used for protective action [156].

On the other hand, preventive scheduling can minimise the uncertainty resulting from

the parametric changes similar to processing times, prices and products demand. Predictive

uncertainty can be achieved using historical data and forecasting techniques, by deriving

the missing information that describe the behaviour of the uncertain parameters. Such

predictions or forecasting can take the form of parameter ranges, statistical distributions,

fuzzy membership or stochastic distribution.

Preventive scheduling builds the baseline plan considering the predictive uncertainties,

such plan should be realised in runtime assuming no disruption or disturbances happened.

Preventive scheduling is considered the basis for the plan support activities as the com-

mitments are stated according to the generated schedule. For preventive scheduling, the

following approaches are distinguished: stochastic-based approaches, robust optimisation

methods, fuzzy programming methods, sensitivity analysis and parametric programming

methods [156].

Most of the scheduling techniques assume the completeness and the accuracy of the

information used to solve the problem. The recent researchers target generating a feasible

baseline schedule, optimising the objective function and considering the uncertainty and

the risk factors. The current contributions in scheduling under uncertainty are sparse due

to the different natures and formulations of uncertainties as declared in section 2.1.

Many techniques have been used to minimise the impact of uncertainty on scheduling

optimisation. The most suitable varies according to the scheduling problem nature and

the uncertainty nature. The most frequently used techniques are stochastic scheduling, dy-

namic programming, fuzzy scheduling, robust optimisation and sensitivity analysis [155].

1. Stochastic scheduling: The problem is formulated as a multi-stage decision process,
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then select the activities to be started at random decision points through time accord-

ing to the scheduling policies such policies are based on the observed past experience

and the priori knowledge of the processing time distributions. Such technique has the

disadvantage that it cannot explicitly generate a pre-schedule that can be used as the

baseline plan for making advance commitments.

2. Dynamic programming: It is used to solve stochastic multimode problems by deter-

mining the resource allocation vectors for the project activities in order to minimise

total expected cost. Dynamic programing relies on the assumption that uncertainty

is inherent in the work contents of the tasks rather than their duration.

3. Fuzzy scheduling: It uses membership functions describing the activity or the task

duration, which needs historical data to build the membership function at the begin-

ning. Such fuzzy uncertainty is captured as an instance belongs to a fuzzy set or

member of a specific fuzzy range. Fuzzy scheduling can be used to develop the base-

line schedules as preventive action; it can also be used for reactive scheduling after

developing the set of fuzzy rules describing what to do in case disruption happened.

4. Proactive robust scheduling: It is a redundancy-based techniques similar to buffer

insertion approach, which is the fundamental ingredient of Goldratt’s critical chain

methodology (Goldratt, 1997). Such methodology did not give great results due to

the severe oversimplifications, meanwhile it acted as eye-opener for other techniques.

The generation of robust multi-resource baseline schedules in combination with ef-

ficient and effective reactive schedule repair mechanisms constitutes a viable area

of future research. Whereas numerous reactive scheduling mechanisms have been

developed and tested in real-time machine scheduling environments, the field is in

need for further research aimed at their implementation and validation in a project

scheduling environment.
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5. Sensitivity analysis has been frequently used in the area of scheduling under uncer-

tainty to seek answers of question similar to “What if . . . ?” or to support the decisions

based on the what-if scenario analysis. It has been also used to measure the effect

of the parameters and the input variables on the system in terms of uncertainty and

constraint satisfaction, which will help to simplify the problem as a step to solve it.

2.3 Preventive Scheduling under Bounded Uncertainty

2.3.1 Combinatorial approach

The problem of scheduling uncertainty can be solved using the combinatorial approach by

considering all the possible combinations of the starting points and ending points of every

uncertain interval parameter, then calculate the minimum or the maximum displacements

[7,8].

The combinatorial approach assumes that the displacement surface is a monotonic func-

tion the input interval parameters [7]. The displacement surface consists of a 2D line

due to the uncertainty of one parameter only. The curve increases monotonically be-

tween the lower bound to the upper bound of the parameter interval. This implies that

if f(a1, a2, . . . , aN) represents a monotonic displacement surface with a specific degree of

freedom as a function of N uncertain parameter ai(i = 1, 2, . . . , N) then

(2.1)fmin ≤ f(a) ≤ fmax

where
(2.2)fmin = min

r=1,2,...,2N
(fr)

(2.3)fmax = max
r=1,2,...,2N

(fr)

(2.4)fr = f(ai1, a
j
2, . . . , a

k
N), i = 1, 2, j = 1, 2, k = 1, 2;
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and

(2.5)a(l)m =

⎧⎪⎨
⎪⎩
max(am), if l = 1.

min(am)1, if l = 2.

A recent approach uses the same concept of combinatorial approach is the fuzzy finite

element method [6] where the magnitude of the uncertainty is defined using the α-cut, in

which the interval bounds for the ith uncertain input parameter ai are re-stated as:

(2.6)αa0i + (1− α) min(ai) ≤ ai ≤ αa0i + (1− α) max(ai)

where α is a parameter that belongs to the interval [0,1] and is used to define the uncer-

tainty degree. a0i is the crisp value of the uncertain parameter.

The main challenge with the combinatorial approach is the tradeoff between the prob-

lem formulation and the solution complexity. The simple scheduling problems with small

uncertainty margin and monotonic displacement can be solved using such approach in non-

deterministic polynomial time. Unfortunately, many of the scheduling problems are not

simple and the uncertainty margin is not small and the displacement functions are not al-

ways monotonic, which imply the solution become NP-hard. So, there is a need for other

techniques to solve the scheduling problem in optimal rather optimum way.

2.3.2 Interval Perturbation

Interval perturbation analysis depends on calculating the possible change to the displace-

ment that happens when a small change occurs to the uncertain parameter. The value of

the ith parameter is described by a0i. Calculating the impact of perturbing the uncertain

parameter on the cost function requires to formulate the objective function considering the

displacement of the perturbed parameter. Such displacement is represented in terms of the

displacement of the unperturbed variable (i.e. when a = a0).
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The perturbed displacement is represented as u0+Δu = u(a0+Δa), such that u0 is the

displacement of the unperturbed variable. The vector denoting the change to the objective

function is Δu, and Δa is the vector denoting the change of the vector of the uncertain

input parameter [185].

Interval calculations can be used to manipulate the results to obtain approximate upper

and lower bounds for each entry of the objective vector Δu [186]. The main disadvantage

of this approach is that the interval computations performed are based on the numerical

form and take no account of the actual structure. Consequently, the uncertainties resulting

from the interactions between the input parameters and the scheduling variables are ne-

glected. This implies the existence of uncertainty regarding the absolute accuracy of the

calculations. Despite this, the method has been shown to be useful in producing accurate

bounds for a number of simple linear systems [186, 187].

Qiua studied interval perturbation for anti-optimisation of the structures with large non-

random parameters [187]. He found that the interval perturbation around the midpoint of

the interval can minimise the impact of the input parameter uncertainty on the model struc-

ture [188]. he also concluded that when uncertainty of the interval parameter is large, the

perturbation technique is not effective as the interval parameter is not infinitesimal quan-

tity [187].

Guo-jian introduced the concept of using sub interval perturbation for the finite element

analysis with uncertain interval parameters. Guo-jian found that the subinterval perturba-

tion method is effective by numerical simulation [189]. The speed of computing is fast

when the number of elements, which have interval parameters is few and high precision

is gained. But for the large number of elements, which have interval parameters, how to

improve computational efficiency remains an interesting problem.

The research of McWilliam [185], Qiua [187] and Guo-jian [189] showed up that inter-

val perturbation is good for simple problems with linear formulation and small uncertainty
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ranges. Meanwhile many of the scheduling problems are complex, non linear and use

heuristic and meta-heuristic techniques, where the interval perturbation is not useful or

effective, especially if the range of uncertainty is huge.

2.3.3 Mixed Integer Linear Programming

MILP is used to solve linear programing scheduling problems that are constrained in terms

of coefficients or the objectives as inequalities. MILP can solve the scheduling problems

under bounded uncertainty constraints as long as the problem can be formulated as sys-

tem of linear equations. On the other hand it cannot solve scheduling problems, which

have been formulated mathematically as non-linear problems or which have been solved

using heuristics and meta-heuristics and this leads to us MINLP. Some researchers tried

to solve nonlinear scheduling problems under uncertainty using MINLP but they did not

achieve optimal schedule with uncertain output. No body provided a feasible methodology

to formulate the problem or solve it in non deterministic polynomial time.

The MILP optimisation that is formulated in Pantelides et al. (1995) [190] generates

schedules where the outcome of any scheduling decision can be determined exactly. Robert

Gonzalez used operating parameters, such as station processing times, are specified to take

a single value [191]. Because this scheduling information is known in advance, the sched-

ule with the best outcome can be identified. This resulting schedule will generally have

very good utilisation of resources.

However, these schedules are only predictive in nature. That is, they are created assum-

ing the world will realize precisely the processing and travel times and resource availabili-

ties given in the problem statement. Sometimes, the operational environments are dynamic,
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with potential unanticipated variations and events, which make the generated schedule de-

pendent on predicted outcomes may be unreliable. Furthermore, in our scheduling formu-

lation several assumptions are embedded in the solution.

Xiaoxia Lin et al. proposed a robust optimisation approach to solve the problem of

scheduling under bounded uncertainty [192]. This approach uses MILP as extension for

the robust optimisation methodology used for linear programming problems that is devel-

oped by Ben-Tal and Nemirovski (2000) [193]. Lin et al. showed that MILP approach

produces robust solutions, which are immune to bounded uncertainties in both the coef-

ficients and right-hand-side parameters of the inequality constraints. The application of

this approach covered many problems of scheduling with uncertain parameters similar to

processing times, market demands, and/or prices of products and raw materials.

The standard mixed-integer linear programming (MILP) problem is formulated as:

(2.7)

min
x,y

/max
x,y

cTx+ dTy

such that
Ex+ Fy = e
Ax+By ≤ p
x ≤ x ≤ x
y = 0, 1

Where the uncertainty arises from both the coefficients and the right-hand-side param-

eters of the inequality constraints, namely, alm, blk and pl. The objective function is con-

strained by the feasibility of the following inequality.

(2.8)
∑
m

almxm +
∑
k

alkyk ≤ pl

The optimal solution of an MILP program may become infeasible, that is, one or more

constraints are violated substantially, if the nominal data is slightly perturbed. The ob-

jective here is to develop a robust optimisation methodology to generate reliable solutions
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to the MILP program, which are immuned against uncertainty. This robust optimisation

methodology was first introduced for Linear Programming (LP) problems with uncertain

linear coefficients by Ben-Tal and Nemirovski (2000) [193] and is extended in this work

to MILP problems under uncertainty. Two types of uncertainty are addressed: (i) bounded

uncertainty and (ii) bounded and symmetric uncertainty.

Figure 2.14: Flowchart for using sensitivity analysis for minimising

uncertainty as described by Jia and Ierapetritou,

2004 [194]

Discrete-time models results in difficult MILP problems in terms of complexity and
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processing time. Many techniques have been proposed targeting to increase the efficiency

of the solution according to the problem nature [195]. Such techniques include:

1. Reformulation that reduce the gap between the optimal solution and its linear pro-

gramming relaxation counterpart, for example, Yee and Shah (1998) [196] reformu-

lated the constraints of the batch-sizing according to the variable aggregation/disaggregation;

2. Adding cut constraints, which are redundant but reduce the region of integer infeasi-

bility, such as those proposed by Dedopoulos and Shah (1995) [197].

3. Interfering the branch and bound solution algorithm, for instance, Shah et al. (1993)

[198] developed techniques to reduce the size of the relaxed LP and perform post

analysis of the solution at each node of the branch and bound tree, Dedopoulos and

Shah (1995) [197] proposed techniques to fix variables to values implied during the

branch and bound procedure.

4. Decomposing the large and complex problems into smaller sub-problems, for exam-

ple, Bassett et al. (1996) [199] proposed many approaches for time-based decom-

position and Elkamel et al. (1997) [200] developed an algorithm that uses both of

temporal decomposition and spatial decomposition.

2.3.4 Quadratic Programming

Quadratic programming is a special case of non-linear programming, where the objective

function f is quadratic and the constraints are represented in the functions h and g [202,

203]. The h function represents the equality constraint and the g function represents the

inequality constraint. Both of the constraint functions h and g are linear in x ∈ Rn. The

quadratic programming problem are usually formulated as
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Figure 2.15: Uncertainty analysis using multi parametric linear

programming by Jia and Ierapetritou [201]

(2.9)

Minimise f(x) = 1/2xTBx− xT b
over x ∈ Rn

subject to A1 x = c, A2 x ≤ d,
wehere
B ∈ Rn×n is symmetric,

A1 ∈ Rm×n, A2 ∈ Rp×n

Although quadratic programing can find the optimal solution within the interval con-

straints, it cannot neutralise the uncertainty of the other parameters affecting the model such

as B, b, A1, A2. One of the solutions to optimise a quadratic problem with uncertain pa-

rameters is to extend the parameters to be interval-based, which is another extension to the

proposed work but for another algorithm. The new formulation of the quadratic problem

after the interval extension will be as follows:
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(2.10)

Minimise f(x) = 1/2 xT [B−, B+]x− xT [b−, b+]
over x ∈ Rn

subject to [A−
1 , A

+
1 ]x = [c−, c+], [A−

2 , A
+
2 ]x ≤ [d−, d+],

where
[B−, B+] ∈ Rn×n is symmetric,

[A−
1 , A

+
1 ] ∈ Rm×n, [A−

2 , A
+
2 ] ∈ Rp×n

Quadratic programming optimises interval-based constraints but does not optimise interval-

based parametric uncertainty.

2.4 Summary

Scheduling under uncertainty is a challenging problem as it increases the difficulty of deci-

sion making, it also increases the complexity to the problem formulation and solution and

sometimes it makes the problem not solvable in time. Tackling this problem requires to

understand the uncertainty challenge as well as the scheduling problems.

This chapter stated in the first main section a general review on uncertainty, which is

defined as “the dissimilarity between the amount of information required to execute a task

and the amount of information already infatuated by some distribution”. Uncertainty prop-

agation happens when uncertain parameter affects another parameter to make it uncertain

as well. Although uncertainty is highly correlated with risks, some researchers argue that

such correlation does not imply causality.

The first section also stated the most frequently used strategies to manage uncertainties,

which can be (1) Ignoring the uncertainty, (2) Generate the missing knowledge, (3) Interact

with existing uncertainty, (4) Coping with the uncertainty and its impact. Every strategy

has multiple techniques to deal with uncertainty within different contexts.
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The uncertainty classification or taxonomy is important to solve any uncertainty related

problem, it has been discussed in section 2.1.3. Uncertainty can be categorised to either

aleatory or epistemic. Aleatory uncertainty is unpredictable, but can be represented by

statistics. On the other hand, the epistemic uncertainty is the result of the missing informa-

tion, but it is predictable to some extent. Epistemic uncertainty is classified according to its

predictability to model uncertainty, parametric uncertainty and completeness uncertainty.

The sources and the causes of the uncertainty in any system should be identified as a

preliminary step to solve the problem, either by eliminating the root cause or by minimising

its impact. The different sources and causes are mentioned in details in section 2.1.4.

Understanding the scheduling problems and techniques is the second step to resolve

the challenge of scheduling under uncertainty. Section 2.2.1 stated the formulation of the

scheduling problems including the given input parameters, the objective function and the

environmental conditions and constraints. The formulation of the scheduling problem af-

fects directly the possibility of solving it in a deterministic polynomial time rather being

NP-complete or NP-Hard.

Classifying the scheduling problem helps in determining the best technique to solve

the problem as well as solving the problem under uncertainty constraint. Any scheduling

problems is usually classified according to one of three main criteria, as it can be determin-

istic or stochastic problem, static or dynamic, single machine or multiple machines, which

can be either sequential or parallel. All the mentioned criteria affect the formulation of the

problem and complexity of the solution especially after adding external constraints, such

as the parametric uncertainty.

Scheduling challenges are stated in 2.2.3 as the problem complexity and the problem

uncertainty. The problem complexity can be solved by relaxing the constraints or by us-

ing heuristics and meta-heuristics to find the near optimal rather optimal solution. The
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uncertainty challenge creates the dilemma of selecting the optimal value with high uncer-

tainty or the non-optimal value with low uncertainty. The uncertainty challenge implies

that minimising the uncertainty impact will make the decision making much easier.

Studying the uncertainty and the scheduling was an important step to build a robust

methodology that can minimise the impact of the interval-based bounded uncertainty on the

scheduling algorithm in a preventive way. Meanwhile, there exist few techniques used to

solve the same problem such as mixed integer linear programing and interval perturbation

and combinatorial approach, these approach are stated in details in section 2.3.



Chapter 3

Proposed Methodology

3.1 Overview

As the literature review declared, minimizing the negative effect of the scheduling uncer-

tainty is a challenging issue. Many researchers developed different approaches to solve

such a problem. Every approach is used for a specific problem with a specific uncer-

tainty nature with different input parameters. The proposed methodology is considered

a preventive scheduling techniques, which uses interval programming including interval

arithmetic [204–208], interval algebra [209, 210] and interval logic [211–215] to extend

the scheduling algorithms to be able to minimise the impact of bounded uncertainty.

The proposed methodology creates a new algorithm out of the old algorithm. The new

algorithm will be able to minimise the impact of bounded uncertainty on the objective func-

tion. The ability to minimise the uncertainty impact varies according to the nature of the

problem and the nature of the algorithm. So, The proposed methodology consists of three

main phases, uncertainty analysis, algorithm extension and feasibility verification. The

first phase is to formulate the uncertainty objective function and to analyse the standard

numerical-based algorithm. This phase is called algorithm uncertainty analysis. The sec-

ond phase is to define how the numerical-based, logical-based and conditional instructions

71
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will be extended to accept the interval-based, interval-logic and interval-inequalities-based

instructions. Then extend the algorithm to use them. The third phase is to verify that the

algorithm give more certain results than the numerical-based one. The verification can be

performed using either real collected data from the problem domain or it can be performed

using generated data with a specific distribution that match the nature of the data in a spe-

cific problem. Once the three phases are implemented and the algorithm is extended, the

extended algorithm can be used to generate the optimum schedule. It is important to notice

that there is no optimal schedule in case of uncertain input parameters, which imply that

the solution will be optimum rather optimal. The three phases are declared in figure 3.1.
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Figure 3.1: The flow chart illustrates the five steps of the proposed

methodology, starting by analyzing the uncertainty of the

algorithm, then check the feasibility of using such

algorithm and finally generate the schedule using either

interval programming or numerical programming.



3.2 Formulate Uncertainty Objective Function 74

3.2 Formulate Uncertainty Objective Function

Minimizing the impact of uncertainty on the objective function can be formulated as a

composite function consisting of uncertainty function of the objective function similar to

the formulation of Zhang et al. for real-time optimisation [216] and Williams for adaptive

management [217]. Such formulation is stated in the equations 3.1, 3.2. Let f(x) represents

the objective function to be optimised and u(f(x)) represents the uncertainty function to be

minimised. u(f(x)) will be calculated as function of f(x) using different estimates of the

input x, x−, x+, [x−, x+] and ((x− + x+))/2 . It will consider the difference between the

estimates of the objective function at the upper and the lower bounds during the calculation.

(3.1)ub(f(x)) = |f(x+)− f(x−)|

(3.2)uI(f(x)) = |f([x−, x+])+ − f([x−, x+])−|

The proposed premises are: In case uI > ub then interval programming will produces

more certain results for this scheduling algorithm. Otherwise; then bisecting the interval or

approximating it numerically will be able to produce more certain results for this schedul-

ing algorithm, where uI < ub. Such premises will be validated in the next 3 chapters,

which are papers explaining the concept and the implementation of interval programming

on three different scheduling algorithms The stated objective function will be estimated

using a significant amount of data that can be either real life data or generated data that

match a specific probability density function. The input data should be analyzed to its main

properties. Such properties should be correlated with the output to know the main criteria

affecting the impact of input uncertainty on the objective function.
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3.3 Define Interval Operators

Scheduling algorithms vary according to the objective function and the input parameters.

Such variation implies that the interval relations used for a specific algorithm will not give

the least uncertain output estimation with another algorithm. To estimate the output of

the algorithm with minimum uncertainty, the interval relations should be defined, takin in

consideration the main three factors affecting any interval, which are the lower bound, up-

per bound and the distance between them. The nature of the relations between different

intervals should be considered, which can be disjoint, overlapping or containing intervals.

Control statements are important component of any algorithm including the scheduling

ones as it is part from any sorting algorithm and it determines which task to be allocated

first. Control statements are the instructions that control the path of the execution of the

other instruction at the run time. Control statements include the conditional statements,

the loops and runtime instruction allocation in case of parallel processing. Any change in

the order of the tasks can make a huge difference in the estimate of the objective function.

Conditional statements use Boolean logical operators to compare any two numbers as in-

equality. Boolean logical operators do not work with interval variables or values, which

require to use either interval algebra by Allen [30, 31] or to define inequality operators

using different relations between the upper bounds, lower bounds and distances.

The nature of every algorithm determines how to estimate the inequality logic. It de-

pends on how far the uncertain variable affects the objective function. The implementation

of the algorithm as either a critical or relaxed problem is another factor that determines the

estimate of the inequality. For example, if the algorithm is implemented in the medical

domain such as an intensive care unit, then it should assume the worst case scenario even

though it may cost more than average in order to eliminate any risk of a human life. If

the same algorithm is implemented to schedule the resources of a personal computer, the
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Table 3.1: The definitions of relations between any two intervals are defined by Allen’s

algebra. The timeline examples represent the relation between the lower bound of the first

interval and the lower bound of the second interval and the relation between the upper

bound of the first interval and second interval, where x− < x+ and y− < y+.
Basic Relation Operator Example End points

x precedes y p xxxx x+ < y−

y preceded by x p−1 yyyy

x meets y m xxxxx x+ < y−

y met by x m−1 yyyyy

x overlaps y o xxxxxxx x− < y− < x+,

y overlapped by x o−1 yyyyyy x+ < y+

x during y d xxxx x+ < y+,

y includes x d−1 yyyyyyyyy x+ < y+

x starts y s xxxx x− = y−,

y started by x s−1 yyyyyyyyy x+ < y+

x finishes y f xxxxx x+ = y+,

y finished by x f−1 yyyyyyyyy x− > y−

x equals y ≡ xxxxxxxxx x− = y−,

yyyyyyyyy x+ = y+

algorithm may assume the best case scenario considering the probability of deadlocks is

minor and its danger is limited.

Allen [30, 31] stated all the possible relations between any two intervals and called

it Interval Algebra. The definition of such relations depends on the numerical relation

between the lower bound of the first interval versus the lower bound of the second interval

and the same for the upper bound. Table 3.1 explains the definitions of interval relations

according to Allen’s algebra. This table shows that any relation between two intervals can

be classified into one of five categories as explained in the next five items and in the figures

3.2, 3.3, 3.4, 3.5.

1. Disjoint interval: where the upper and the lower bounds of the first interval are less

than the upper and the lower bounds of the second interval. In such case the first

interval is smaller than the second interval always.
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Figure 3.2: A plot for two jobs relative to the number line, where the

release time (ri) is certain and numerical-based.

Meanwhile, the deadline is uncertain and interval-based

d1 = [d−1 , d
+
1 ]. In this figure the deadline intervals are

disjoint as d+1 < d−2

2. Overlapping intervals: where the upper bound of the first interval is between the

lower bound and the upper bound of the second interval. In such case, there exist

two factors controlling the inequality estimate. The first is the percentage of the

overlap. The second factor is the nature of the problem. For example if the urgency

of the task grows exponentially, then the first interval takes higher priority and if the

first interval has a logarithmic curve then second interval will be considered as earlier

interval.

3. Equal intervals: where the upper bound of the first interval equals the upper bound

of the second interval and the same for the lower bounds.

4. Containment intervals: where the lower bound of the first interval is between the

upper and lower bounds for the second interval. The upper bound is between the

lower and upper bound of the second interval. This case is complicated because the

point estimate of the first interval can be larger or smaller than the point estimate

of the second interval. There exist three factors controlling the priority of the two
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Figure 3.3: A plot for two jobs relative to the number line, where the

release time (ri) is certain and numerical-based.

Meanwhile, the deadline is uncertain and interval-based

d1 = [d−1 , d
+
1 ]. In this figure the deadline intervals are

disjoint as d−2 < d+1 < d+2

Figure 3.4: A plot for two jobs relative to the number line, where the

release time (ri) is certain and numerical-based.

Meanwhile, the deadline is uncertain and interval-based

d1 = [d−1 , d
+
1 ]. In this figure the deadline intervals are

disjoint as d+1 = d+2 and d−1 = d−2
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intervals:

(a) The ratio between the distance of the first interval and the second interval, which

is estimated by d1/d2.

(b) The location of the interval inside.

(c) The nature of the problem, urgency curve (linear, exponential, logarithmic or

normal)

Figure 3.5: A plot for two jobs relative to the number line, where the

release time (ri) is certain and numerical-based.

Meanwhile, the deadline is uncertain and interval-based

d1 = [d−1 , d
+
1 ]. In this figure the deadline intervals are

disjoint as d−2 < d−1 < d+1 < d+2

5. The meeting relation is approximated to the overlap relation and the starting and

finishing relations are both approximated to containment relations.

For any two disjoint intervals, the interval with minimum upper and lower bound comes

first because the upper bound of the first interval is less than the lower bound of the second

interval (I+1 < I−2 ). This implies that in case the first interval action happened as late as it



3.4 Extending Scheduling Algorithms 80

can, it will be preceding the action of the second interval even if it occurred as early as it

can.

For any two overlapping intervals, the nature of the problem and the urgency curve of

every interval should be considered. If urgency curve increases by time, the first interval

gets higher priority in sorting, which means it will be considered as the smaller number

even if the interval started after. On the Other hand if the urgency curve decays of time,

the latest interval gets higher priority. For linear functions, the priority can be estimated

by comparing the slopes. For the non-linear curves, the priority can be estimated using

numerical integration between the lower bound of the interval and the upper bound.

3.4 Extending Scheduling Algorithms

Scheduling algorithms consist of a sequence of primitive operations including arithmetic

and logic operations as well as conditional statements and loops. In order to upgrade the

algorithm, the steps that affect the uncertainty of the objective function should be specified

then changed as needed, which can be applied in three main steps as follows: The first step

is to specify if the instruction code should be changed. It is important to make sure that

the code of this instruction is uncertain and is affecting the objective function. In case of

arithmetic and logic operations, uncertainty of the instruction can happen if it depends on or

uses an uncertain an input parameter or an uncertain variable or an uncertain estimate of a

function. The uncertainty of the code can also occur due to conditional statement or loops

that depend on the estimate of uncertain variables. Although uncertian input parameters

affect the uncertainty of instruction, it is not necessary to affect the estimate of the objective

function as the caculations can take a path that uses accurate values due to some conditional

statement.

The second step is to change every uncertain instruction in a way that replace every
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numerical arithmetic and Boolean logic operation with an interval arithmetic and interval

logic operation in order to cope with interval programming. Such replacement can be clas-

sified to three different categories, each of them has different nature and different exeten-

sion equations. The categories and their extension are stated as follows different categories

are stated as follow:

1. The most frequently used arithmetic instruction is the assignment operation, where

a variable is assigned a specific value (e.g. x=5). Assignment operation can also be

assigning a variable to another variable, which is implemented by copying the value

of the right hand side to the left hand side. Such assignment process can be classified

to four categories according to the nature of the left side and the right side, which can

be either a number or an interval as follows:

(a) Assign numerical value to numerical variable. E.g; X = 4.

(b) Assign numerical value to interval variable: Let X be an interval variable where

X = [x−, x+] and y is a numerical variable, where y = 5. The assignment

operation will be as follows: X = y ⇒ x− = y and x+ = y ⇒ X = [y, y]X =

[5, 5]

(c) Assign interval value to numerical variable Let X be a numerical variable where

x = 5 and y is a numerical variable, where Y = [y−, y+] = [2, 12]. The

assignment operation will be as follows: x = (y− + y+)//2 ⇒ x = (2 +

12)//2 ⇒ x = 14

(d) Assign interval value to interval variable Let X be an interval variable where

X = [x−, x+] = [4, 9] and Y is an interval variable where Y = [y−, y+] =

[6, 14]. The assignment operation will be as follows: X = Y ⇒ x− =

y− and x+ = y+ ⇒ X = [x−, x+] = [y−, y+] ⇒ X = [6, 14]
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2. Arithmetic operation is frequently needed in the calculation of the objective function

that will be optimised. It can be addition, subtraction, multiplication or division,

where all are defined by Moore [218]. In case one of the variables is numerical, the

numerical variable should be converted to interval variable or vice versa. Such con-

version depends on the result variable, in which the result of the calculation will be

assigned. The following equations shows how Moore defined the arithmetic equa-

tions:

Let I1 and I2 be two interval variables where I1 = [I−1 , I
+
1 ] and I2 = [I−2 , I

+
2 ]

(a) Addition:

(3.3)I1 ⊕ I2 = [I−1 + I−2 , I
+
1 + I+2 ]

(b) Subtraction:

(3.4)I1 � I2 = [I−1 − I−2 , I
+
1 − I+2 ]

(c) Multiplication:

(3.5)I1 ⊗ I2 = [Min(I−1 × I−2 , I
−
1 × I+2 , I

+
1 × I−2 , I

+
1

× I+2 ),Max(I−1 × I−2 , I
−
1 × I+2 , I

+
1 × I−2 , I

+
1

× I+2 )]

(d) Division:

(3.6)I1 
 I2 = [I−1 , I
+
1 ]× [1/I−2 , 1/I

+
2 ] such that 0

∈ [I−2 , I
+
2 ]

3. Conditional statements depend on the logical estimate of the inequality relation. Such

estimate can be calculated either using interval algebra of Allen [30, 31], which is

used for temporal reasoning, which is stated in table 3.1. It can also be estimated

using the custom interval logical operators that are defined in the previous section.
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The third step is to add observers to every uncertain instruction. These observers estimate

the uncertainty distance before and after the instruction using each of interval bisection

and interval arithmetic. The observer then select the instruction that will make the distance

between the upper bound and the lower bound of the result of this instruction as small as

possible.

3.5 Verifying Algorithm Feasibility

Interval programming affects every scheduling algorithm in a different way. Some algo-

rithms give more certain estimate of the objective function than numerical calculations.

Other algorithms produce the estimate of the objective function with similar certainty or

less certainty than the numerical calculations.

To verify the usefulness of the interval programming in minimizing the impact of

bounded uncertainty of the input data it should be compared to another technique deal-

ing with the same problem, which is the numerical calculation in terms of certainty of the

results and the complexity of the algorithm. Certainty of the results is estimated using the

objective function stated in the problem formulation section in equations 3.7 and 3.8

(3.7)ub(f(x)) = |f(x+)− f(x−)|

(3.8)uI(f(x)) = | f([x−, x+])+ − f([x−, x+])− |

3.5.1 Complexity Feasibility

The complexity of the algorithm can be measured using one of the orders of magnitude

according to Bachmann-Landau notations. These notations include the big Omicron (Big

O), big Omega, big Theta, small Omicron and the small Omega. The most frequently used

one is the big Omicron (Big O) as it describes the limiting behaviour of a function when
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the argument tends towards a particular value or infinity using simpler functions similar to

constant functions, linear, logarithmic function and exponential function. Such limiting be-

haviour is considered the worst case scenario. Big O notation is used to classify algorithms

according to their response to changes in the input size, in terms of the processing time or

working space requirements. f(n)O(g(n)), where f is bounded above by g (up to constant

factor) asymptotically, where |f(n)||g(n)|.k for some constant positive number k

If the certainty of the algorithm is considered regardless the complexity, interval per-

turbation will produce results with the minimum uncertainty. Interval perturbation tries

all possible combinations of the probable estimates of every interval. The only problem

with interval perturbation is its NP-hard complexity as it uses combinatorial optimisation,

which can work on a small number of intervals but its complexity grows exponentially with

large number of intervals and the distance between lower bound and upper bound of each

interval.

3.5.2 Measuring Uncertainty using Different Datasets

In order to know how each algorithm responds to the interval programming extension, the

upgraded algorithm have to be tested the using different datasets and the objective function

should be calculated using lower bound, upper bound and interval values. Compare the

results and calculate the uncertainty measure. To guarantee that the extended algorithm

outperforms its benchmark, which is the numerical bisection or the multiple calculation,

the tests should fulfill as much as possible from the following conditions:

1. The size of the data set should be statistically significant, which can be randomly

generated as in chapter 4 or collected data from practical problem logs as in chapter

5.

2. The dataset should represent the nature of the problem data, which can be uniform
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distribution as in chapter 4 or normal distributions as in chapter 5.

3. The dataset should cover all interval relations mentioned by Allen [30, 32].

4. The tests should be performed on multiple independent datasets and measure uncer-

tainty estimates.

5. The uncertainty estimates should be correlated with different factors affecting the

results including the number of overlaps, interval distances and containments.

Afterwards, if the total uncertainty of the cost function using interval programming was

lower than the total uncertainty estimates using numerical calculations and Boolean logic,

then the extended interval-based algorithm is better for generating the baseline schedule.

3.6 Summary

This chapter explained in details the new methodology that minimises the impact of interval-

based bounded uncertainty on the objective function of any preventive scheduling algo-

rithm. The methodology consists of five sequential steps, starting by decomposing the

algorithm into a sequence of effective instructions using program slicing techniques.

The second step is to analyse the interval relations, which can be disjoint, overlapped,

containing, equal or meeting each other. Afterwards, define the interval operators according

to the preceding interval relation analysis.

Extend the scheduling algorithm by replacing every numerical operation in the effec-

tive instructions with interval operation using the interval arithmetic, which is defined by

Moore. The assignment operations and variable allocation also changes according to the

instruction nature as indicated in section3.4. The Boolean-logic operations will also be

replaced with the new interval-logic operators as defined in section 3.4 .
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To verify the feasibility of the extended algorithm, the objective function should be

tested on multiple datasets that represent the nature of the problem. The feasibility test

measures the uncertainty of the final estimates of the objective function and compares it to

the final estimates of the non-extended numerical-based algorithm, which uses the upper

bound and lower bound as separate values. The uncertainty of the interval-based algorithm

should be less than the non-extended algorithm. The uncertainty of the objective function

is measured by a distance function between the upper bound and the lower bound of the

final estimate.

The extended interval-based algorithm can be used to generate the baseline predictive

schedule after verifying that it minimise the uncertainty of the objective function. Other-

wise, the numerical algorithm can be used. It is important to analyse the criteria affecting

the marginal efficiency of the extended algorithm to identify the exact situations to use

it. Such criteria can be the number of intervals, the relation between intervals, the total

distance between the upper bound and the lower bound.

The next three chapters explain how the proposed methodology is applied to three dif-

ferent algorithms to create the extended versions in order to minimise the uncertainty. The

next chapters also explains the performance of the experiments using different datasets,

they also show up the results, analyse them and explain the different criteria affected such

results.



Chapter 4

Minimising the Impact of Bounded
Uncertainty on Bratley’s Algorithm

Hossny, A.; Nahavandi, S.; Creighton, D.;, “Minimizing Bounded Uncertainty Impact on

Scheduling with Earliest Start and Due-date Constraints via Interval Computation”, in

Emerging Technology and Factory Automation, 2012. ETFA 2012. International Con-

ference on, September 2012.

Bounded uncertainty is a major challenge to real life scheduling as it increases the risk

and cost depending on the objective function. Bounded or interval-based uncertainty pro-

vides limited information describing its nature. It provides only the upper and the lower

bounds without information in between, in contrast to probability distributions and fuzzy

membership functions. Bartley’s algorithm is usually used for scheduling with the con-

straints of earliest start and due-date, which is formulated as 1 | rj, dj | Cmax. The pro-

posed research uses interval computation to minimise the impact of bounded uncertainty

of processing times on Bratley’s algorithm. It minimises the uncertainty of the estimate of

the objective function. The proposed concept is to do the calculations on the interval val-

ues and approximate the end result instead of approximating each interval then performing

numerical calculations. This methodology gives a more certain estimate of the objective

87
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function.

4.1 Introduction

Uncertainty is a major challenge in applying scheduling to real life problems. Scheduling

algorithms optimise the cost function theoretically, as it assumes that input data are exact

and accurate, which leads to exact estimate for the cost function. Such assumption leads to

more risk and more cost as the parametric data in reality are not always accurate, where the

initial estimate of the data can be inaccurate and the parametric data can vary at the runtime.

To increase the accuracy percentage, uncertainty reasons and nature should be identified

and eliminated, otherwise the impact on the objective function should be minimised.

Bratley’s algorithm is used to build the schedule with objective function minimizing the

maximum completion time Cmax and given input includes the release time rj of each task

and the due-date dj of each task [219]. Bratley’s algorithm is a branch and bound algorithm

that uses backtracking a tree of all solution, which makes the problem NP-hard to find the

best solution [220].

This research aims to minimise the impact of bounded uncertainty of the processing

time parameter for each task, which is formulated as mathematical interval where I =

[I−, I+], such that I− represents the lower bound and I+ represents the upper bound, taking

into consideration that the probability distribution inbetween is unknown, which force us to

consider it uniform to ensure equal chance to all values between lower and upper bounds.

The algorithm is implemented using interval computation [221] including interval arith-

metic [218] and interval algebra [33], which is considered as mathematical uncertainty

handling technique [222]. Section 2 introduces scheduling uncertainty basic concepts and

scheduling uncertainty. Section 3 explains the interval computation and shows how to use it

to minimise scheduling uncertainty. Section 4 explains the experiments and results. Section
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5 will discuss conclusions.

4.2 Scheduling Uncertainty

Uncertainty has many definitions varying according to the context, in engineering domain

uncertainty can be defined as the dissimilarity between the expected values at setup time

and the actual values at runtime that occasionally happen because of lack knowledge or

misleading information or error in the model based predictions. Uncertainty can be re-

duced using different techniques according to the problem nature, which can be the nu-

merical approximation, the interval mathematics, the probability distribution or the fuzzy

presentation [222].

Minimizing the uncertainty impact on scheduling process and cost function have been

addressed by many researchers proposing different techniques, which implement one of the

previously mentioned methodologies according to problem nature. These techniques are

classified into two main classes; first is preventive scheduling, which can predict the possi-

ble reasons of uncertainty and eliminate them, second is reactive or corrective scheduling

where the reason of uncertainty is sudden and not predictable which means to wait till the

problem happens and try to fix it at runtime by rebuilding the scheduling partially or totally.

4.2.1 Preventive Scheduling

Preventive scheduling is to generate a flexible schedule that can deal with uncertainty be-

fore it happens according to a previously known uncertain input data. It is also known as

proactive or protective scheduling. The perfect scenario is to absorb the uncertainty of the

input data to evaluate the cost function exactly. Such scenario is not always applicable due

to the problem nature as the optimality of the schedule and the accuracy of the cost function
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estimate are negatively correlated with uncertainty of the data. So, preventive scheduling

tries to minimise the possible deviation of the optimal schedule leading to more accurate

cost estimate with smaller margin of error.

Preventive scheduling has been handled by five main techniques. First is stochastic

scheduling, which transforms the original deterministic scheduling model into stochastic

model treating the uncertainties as stochastic variables [223]. Second is robust optimisation

method, which focuses on obtaining preventive schedules that minimise the effects of dis-

ruptions on the performance measure, and it ensures that the preventive schedules maintain

a high level of performance [224].

A third preventive scheduling technique is the fuzzy programming, which uses heuristic

search for scheduling optimisation. It considers random parameters as fuzzy numbers and

constraints are treated as fuzzy sets. Some constraint violation is allowed and the degree

of satisfaction of a constraint is determined as the membership function of this constraint

[225].

A fourth technique is sensitivity analysis, which analyses the deterministic solutions to

determine the importance of different parameters and constraints and determine the range

of parameters, in which the optimal solution remains unchanged [194].

4.2.2 Reactive Scheduling

Reactive scheduling is a process of modifying the created schedule at runtime to adapt sud-

den change in production environment due to uncontrollable factors causing performance

uncertainty, such as disruptive events or machine breakdowns. Such type of uncertainty re-

sults from lack of information that describes the runtime parameters prior to real execution

of the schedule. So, the preventive techniques are not useful in this case [226].

Many researchers have tackled reactive scheduling that can be summarised in two ways.
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First is to minimise the effect of disruptions on the objective function after their occur-

rences. Second is to recreate the scheduling instantly, which requires resolving the compu-

tational complexity issue as many of scheduling algorithms are infeasible or not applicable

to be recomputed instantly because of their combinatorial nature that makes the problem

complexity NP-Complete or NP Hard [227]. Rebuilding the schedule at runtime can be

achieved partially by fixing or repairing the disrupted part of the schedule if possible. Oth-

erwise the schedule should be rebuilt totally. Such decision depends on the schedule nature

and its level of complication and dependency [227].

4.3 Proposed Methodology

The proposed methodology is to use interval programming including interval arithmetic

and interval algebra as alternative to numerical calculations within the scheduling algorithm

to find less uncertain sequence of tasks to achieve more accurate cost function.

4.3.1 Interval Programming

Interval programming is used to solve the interval-based problems, where the numerical

value is not known exactly and the only available information is the upper and lower

bounds. Interval programming includes interval arithmetic, interval logic and interval tem-

poral relations.

Interval arithmetic is first introduced by Moore to solve system of equations [218]. It

simply uses the interval as a replacement of the number in all calculations and where the

numerical value i belongs to the interval I where I = [I−, I+], some representations use

the notation I = [i − Δi, i + Δi] but this refers to known mean for the uncertainty range

and exact error margin, which is not always available. Interval arithmetic defined a set
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of arithmetic operations as basis for any interval-based equations or algorithms, such that

operations of additions, subtraction, multiplication and division are redefined as follows:

(4.1)I1 ⊕ I2 = [I−1 + I−2 , I+1 + I+2 ]

(4.2)I1 � I2 = [I−1 − I−2 , I+1 − I+2 ]

(4.3)
I1 ⊗ I2 = [min(I−1 × I−2 , I

−
1 × I+2 , I

+
1 × I−2 , I

+
1 × I+2 ),

Max(I−1 I
−
2 , I

−
1 I

+
2 , I

+
1 I

−
2 , I

+
1 I

+
2 )]

(4.4)I1 
 I2 = [I−1 , I
+
1 ][1/(I

−
2 ), 1/(I

+
2 )]

such that 0 /∈ [I−2 , I
+
2 ]

Implementing the interval arithmetic to algorithms determines to which extent the un-

certainty will be decreased. The operations that can decrease the interval range should be

applied at early stages of the solutions. This is mentioned by Maiumder and Rao [228] and

named as interval optimisation.

Interval temporal relations are first identified by James Allen in what is called interval

algebra or Allen’s algebra [31] [30]. Interval algebra identifies relations between time

intervals using 13 basic operations represents the combination of relations between the

lower bounds and upper bounds of the two intervals.

4.3.2 Applying Interval Programming to Scheduling Algorithms

Any scheduling algorithm consists of a set of numerical operations and set of logical com-

parisons, in addition to some algorithmic steps such as assignment operation. To apply the
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Table 4.1: Mapping Allen’s relations between the intervals [x−, x+] and [y−, y+] to standard

numerical relations.
x−y− x+y+ Allen’s Description Logical Relation

< < Less ≺
< < Overlap ≺
< = Finishes ≺
< > Contains ≺
= < starts ≺
= = equal ≡
= > Starts �
> < Contained �
> = Finishes �
> > Overlap �
> > Larger �

interval programming to any scheduling algorithm, every arithmetic operation should be re-

placed by interval arithmetic and every logical comparison should be replaced by interval

algebraic comparison.

Although interval relations have been identified by Allen’s algebra, it cannot be used

directly as replacement to standard numerical comparison in normal algorithms, which

lead to the need to mapping Allen’s interval relations to numerical relations. Different

mappings have been tried targeting to minimise the uncertainty of the cost function until

the best mapping is found as stated in table 4.1

4.3.3 Using Interval Programming to minimise Uncertainty Impact

on Bratley’s Algorithm

Bratley et al. proposed an algorithm to find a feasible schedule for non-preemptive tasks

by minimizing the maximum completion time with given release time and due-date of each

task, which is formulated as 1 | rj, dj | Cmax. The algorithm is classified as branch and

bound, which depends on building a tree of solutions and iterate through it till find the
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best solution, which lead on worst case to nondeterministic polynomial hard (NP-hard)

complexity, specifically at worst case is O(n.n! ).

Bratley’s algorithm starts with empty schedule, by every step it visits new node and

add a task to a partial schedule, then uses the pruning techniques to determine when the

searching process should be stopped. So the current branch should be pruned in one of two

cases:

1. Adding the node causes missing the due-date.

2. Finding a feasible schedule at the current path.

4.4 Experiment and Results

In order to measure the effectiveness of the proposed methodology, the objective function

of such scheduling algorithm should be calculated using the uncertain data inputs. Such

calculation is first performed using the numerical-based algorithm, then performed using

the extended interval-based algorithm. As the objective function is to minimise the Cmax,

So, the cost function will be calculated by the equation 4.5

(4.5)(
n

max
i=0

C−
i +

n
max
j=0

C+
j )/2

Although the cost function looks as average of maximum completion time, it will vary

a lot according to uncertainty complication, which can be disjoint intervals or overlap-

ping intervals or even containing intervals. Disjoint intervals does not affect the schedule

anyhow, which make maxCi equals maxCj and the cost function calculates the average

between the lower and the upper bound, on contrary overlapping and containing intervals

build different schedules causing maxCi not equal maxCj .

The interval-based extended algorithm is tested using 40 different data sets. Each

dataset consists of multiple tasks that vary between 10 and 30 tasks. Each task has some
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certain and accurate properties such as the release time and the deadlines. The processing

time is the uncertain property of each task, where the processing time is estimated as an

interval with lower bound and upper bound [p−i , p
+
i ]. The data is generated randomly using

normal and uniform distributions and the processing time intervals are generated randomly

using the uniform distribution.

The target is to build a schedule that guarantees that all tasks complete processing be-

fore the deadline. Meanwhile, the uncertainty of the completion time should be minimised,

which is estimated by the distance between the upper and the lower bounds of the comple-

tion time.

Table 4.2 lists 12 different datasets with their associated properties including the num-

ber of overlaps between intervals, number of containments, total input uncertainty, the

output uncertainty using interval programming and the output uncertainty using numerical

calculations. The input uncertainty is estimated by the equation
∑

p+j − p−j . The total un-

certainty output is estimated by the equation
∑

C+
j − C−

j . The table shows that 30% of the

data sets gave more certain results with different percentage. The marginal enhancement

of the certainty varies between 2% and 13% according to every dataset’s nature.
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Table 4.2: The effect of interval programming on the schedule as tested on 12 randomly

generated datasets.

Set

Number

Number

of

Overlaps

Number of

Contain-

ments

Total Input

Uncertainty

Interval

Output

Uncertainty

Numerical

Output

Uncertainty

Enhancement

Ratio

1 21 28 510 431 498 13%

2 20 18 466 405 459 11%

3 14 26 386 386 386 0%

4 23 24 562 562 562 0%

5 30 16 628 628 642 2.2%

6 24 20 623 623 623 0%

7 16 6 313 313 313 0%

8 12 6 268 236 260 8.9%

9 17 20 428 428 442 3.3%

10 24 24 613 613 613 0%

11 14 20 332 332 332 0%

12 20 16 631 631 631 0%

An example dataset is listed in table 4.3 including the values of the properties of each

task, including the release-date numerical values, deadline numerical values and processing

time interval values. The release-date is randomly generated using the uniform distribution

with maximum value of 100. The deadline is also generated randomly using uniform dis-

tribution with maximum value of 3,000. The lower bound of the processing time interval is

randomly generated using the uniform distribution, where the value resides between a min-

imum value of 50 and a maximum value of 150. The upper bound of the processing time
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interval is also generated randomly using the uniform distribution, where its value resides

between a minimum value of 100 and a maximum value of 250.

The example dataset has been scheduled using the unmodified Bratley’s algorithm and

the extended interval-based Bratley’s algorithm. The numerical-based results are illustrated

in figure 4.1 and the interval based results are illustrated in figure 4.2. As declared in table

4.3 and the figures 4.1 4.2. The two algorithms minimised the maximum completion time

and achieved the scheduling objective by ensuring that all tasks complete their process-

ing before their deadlines. Meanwhile, the extended interval-based algorithm produced a

schedule with less uncertain estimates than the numerical-based algorithm, in terms of the

start and end time for every task and the total time for all tasks completion.

Table 4.3: The effect of interval programming on the schedule as tested on 12 randomly

generated datasets.
Task

Name

Release

Time

Deadline Processing

Lower

Bound

Processing

Upper

Bound

Numerical-

based

Completion

Time

Interval-

based

Completion

Time

T1 41 2878 63 129 [104, 1156] [104, 170]

T2 72 743 116 214 [535, 648] [400, 741]

T3 93 883 137 212 [807, 860] [760, 1427]

T4 99 2637 78 165 [973, 1836] [838, 1592]

T5 99 468 135 186 [285, 353] [973, 1778]

T6 90 1399 58 139 [670, 1295] [623, 1215]

T7 87 1154 88 167 [895, 1027] [565, 1076]

T8 81 2452 77 168 [612, 1671] [477, 909]

T9 56 518 66 149 [419, 434] [284, 527]

T10 42 2628 114 208 [218, 1503] [218, 378]

The completion time is uncertain and formulated as intervals as it equals to the sum

of the processing time and the release date. The completion intervals of the listed tasks

overlapped each other for 33 times and contained each other for 6 times. The total input
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uncertainty was estimated to be 805 units of time. The numerical-based calculations pro-

duced uncertainty distance of 863 units of time. Meanwhile the interval-based algorithm

produced uncertainty distance of 805 units of time, which is less than the numerical-based

by 58 units of time with marginal enhancement of 7.2%.
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4.5 Conclusion

Scheduling under the constraints of the earliest start time and due-date is one of the famous

problems that uses the branch and bound method. The problem is classified according to

its complexity as NP-Hard problem, which make the MILP, quadratic programming and

combinatorial solutions not applicable. Bratley’s algorithm is used to solve such problem

assuming the data is certain and accurate, but the challenge is how to solve the problem

with uncertain data.

This chapter shows how the proposed methodology is implemented to Bratley’s algo-

rithm. First, the algorithm is analysed, then the interval relations are stated and mapped to

Allen’s relations. The algorithm is extended later to implement interval arithmetic rather

numerical calculation and implement the interval logic rather than Boolean logic.

Multiple experiments have been performed using multiple randomly generated datasets.

The results showed that using interval programming gives more certain results than using

numerical calculations such as midpoint bisection or upper-lower bounds calculations. The

total uncertainty of the results has been measured according to the distance function be-

tween the upper and lower bounds of the final estimate of the objective functions as stated

in the experiments section. The extended algorithm outperformed the standard algorithms

in 30% of the cases with marginal added certainty of 7.2%. The performance of both al-

gorithms was equal for the remaining 70%. In other words, the standard algorithm did not

outperform the extended algorithm at all.



Chapter 5

Minimising the Impact of Bounded
Uncertainty on Hodgson’s Algorithm

Hossny, A.; Nahavandi, S.; Creighton, D.;, “Using Interval Programming to Minimise the

Impact of Bounded Uncertainty on Hodgson’s Scheduling Algorithm”, submitted to Jour-

nal of IEEE Systems, March 2014 (under Review).

Uncertainty of data is an important issue in sequencing and scheduling as it increases

costs and risks. Such issues are usually handled by either preventive or reactive techniques

depending on the problem nature. Bounded uncertainty provides only the upper and lower

bounds around each value without any probability density function or fuzzy membership

function in between. The lack of information between lower and upper bound makes such

probabilistic and fuzzy techniques not useful. This research describes how to use interval

programming to minimise the impact of bounded uncertainty on the schedule. It finds a se-

quence of tasks that optimises the cost function to be more accurate and less uncertain. The

proposed methodology used interval arithmetic and logic instead of numerical arithmetic

and Boolean logic. It introduces the concept that by applying interval calculations on input

parameters then approximating the end result, The result will be more optimal and accu-

rate than approximating the input values before performing the calculations. The proposed

102
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methodology is applied on Moore-Hodgson’s algorithm, the total number of delayed tasks

is decreased by 12%. These results emphasised that the main factor affecting the optimality

is the total number of overlaps per data set.

5.1 Introduction

Most of real life schedules have a percentage of uncertainty depending on the nature of the

problem and its context. One of the reasons of the schedule uncertainty is the inaccuracy in

input parameters such as release time. Another reason is the run-time disturbances, such as

sudden machine breakdown. These inaccuracies or disturbances lead to possible changes

in the sequence or the schedule of tasks. Such changes cause that the cost function cannot

be estimated exactly and the associated error function cannot be stated accurately, or can

be stated with large margin. Thus, decision making becomes more difficult.

To overcome the uncertainty problem, decision makers have one of two options: the

first is to assume an optimistic scenario with no problems; the margin of risk is increased.

The other option is to assume the worst case will happen, requiring extra costs to cover the

expected problems. There are two types of scheduling uncertainty: the first is predictable

such as parametric inaccuracy and can be handled by preventive actions. The second is

unpredictable as it occurs in runtime; it should be handled by an/the instant reaction of

re-scheduling, known as reactive scheduling.

This research aims to minimise the effect of parametric uncertainty on the schedule,

where each parameter is known to be inside a numerical interval with known upper and

lower bounds. The lack of information that describes the bounded uncertainty leads to the

need for interval programming including interval arithmetic and interval algebra. Applying

interval programming in calculations then averaging the final result gives more accurate

results than averaging input data before performing the calculation. The following example
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describes the proposed way to deal with the bounded uncertainty.

Example of the proposed methodology:

1. Assume x = [I−1 , I
+
1 ], y = [I−2 , I

+
2 ]

2. Calculate the cost function using interval algebra: Z = f([I−1 , I
+
1 ], [I

−
2 , I

+
2 ])

3. Averaging the interval (bisecting): result = Z/2

Section 2 shows up a motivating example of the bounded uncertainty and how it affects

the schedules. Section 3 introduces the concepts of uncertainty and scheduling uncertainty.

Section 4 states the formal formulation of the problem using numerical calculations and

interval programming. Section 5 explains the proposed methodology using interval pro-

gramming and shows how it minimises the total uncertainty of the schedule. Section 6

describes the experiments and results. Section 7 summarises the research contribution into

the conclusion and discusses the contribution.

5.2 Motivating Example

Aircraft landing is a good example for bounded uncertainty where the arrival times are

not known accurately. Such inaccuracy results from the uncontrollable factors such as

sudden changes in weather or the unexpected issues at the departure airport. According to

Tavakkoli-Moghaddam [229], the landing process starts by the appearance of the aircraft

at the sky within the range of the radar of the airport. The aircraft sends its information

including the flight number, altitude and speed to the air traffic control tower. Then, the

controller tells the aircraft which runway to use and when exactly to land. Figure 1 displays

the holding pattern and primary and secondary stacks and how they are merged into one

queue as a primary step for landing.
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Figure 5.1: The solid lines describe how the aircraft act in

non-emergency situations when they arrive to the airport

while the runway is not yet available. When an aircraft

arrives, it contacts the tower asking for landing permission.

The tower evaluates the situation of all aircrafts then

prioritises them, formerly it tells the aircraft to join a

specific stack at a specified level until it receives the

permission to land. In most of airports there exist 2

runways but only one is used for landing. The aircraft

landing queue is represented in 2 stacks because of

aerodynamics constraints.

If the airport is crowded or the runway is busy and the aircraft cant land now, it joins a

previously defined holding pattern that keeps it circling around the airport until the traffic

controller tower sends it the signal allowing it to land. Such a holding pattern takes an oval

shape with one side above the runway and the other side away of it. The major airports

with multiple runways use multiple holding patterns with minimum intersection between

them. A recently appeared aircraft joins the holding pattern associated with its runway until
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it gets order of landing from the air traffic controller. The controller decides which aircraft

should land when taking in consideration the emergency cases and the cost of the delays.

As landing of aircrafts is formulated as a scheduling problem with the issue of un-

certainty; it can be minimised using either preventive or reactive techniques or hybrids of

them. The preventive technique uses time ranges or windows to be sure that a specific

aircraft will arrive within its time frame and can never come before it considering dis-

tance, speed and fuel consumption and it will never come after it because of rerouting or

departure issues. The reactive scheduling considers the current situation of each aircraft in-

cluding fuel availability, medical emergencies and delay penalties. In reality, airports build

the landing schedule using hybrid of preventive and reactive techniques. The preventive

technique allocates a time frame for each aircraft that is expected to arrive. The time frame

states the earliest landing time, the targeted landing time and the latest possible landing

time. The reactive technique is applied inside each frame according to the instant need of

each aircraft depending on the priority criteria. Each time frame has many flights that are

expected to arrive within its range. Sometimes the allocated arrival time frames overlap

with each other. Table 1 shows landing schedule in the airport of Heathrow, which have

been used by Beasly et al. in [230] and [231].

5.3 Uncertainty Review

The definition of uncertainty varies according to the application domain, which can be

industrial [232], information technology [233] or managerial [234]. In the scheduling con-

text, uncertainty has been defined as the dissimilarity between the expected values at setup

time and the actual values at runtime. This uncertainty exists because of lack of knowledge

or misleading information or error in the model-based predictions.

Dealing with uncertainty first requires an understanding of the nature of problem then
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Table 5.1: Example of the data used by Beasly et al. [230] and [231] air traffic scheduling

research. Appearance time is the release time, earliest landing is the lower bound of the

landing interval and latest landing is the upper bound of landing interval.
Appearance

Time

(Mins)

Earliest

Landing

(Mins)

Target

Landing

(Mins)

Latest

Landing

(Mins)

Penalty

for Early

Landing

Penalty for

Late Land-

ing

54 129 155 559 10 10

120 195 258 744 10 10

14 89 98 510 30 30

21 96 106 521 30 30

35 110 123 555 30 30

45 120 135 576 30 30

49 124 138 577 30 30

51 126 140 573 30 30

60 135 150 591 30 30

representing it in a model that can minimise the uncertainty or neutralise its effect in the

problem. Bandemer discussed four ways to model uncertainties in engineering domains:

these are (1) numerical approximation, (2) interval mathematics (3) probability theory and

(4) fuzzy theory [222].

The available information that describes the uncertain data can determine which model

should be used. If the only known information is the range around the values with upper

and lower bounds where the distribution in between is uniform, then interval mathematics

techniques will be the most effective. In some cases the probability distribution can be

extracted for the values inside the interval as confidence intervals or prediction intervals. In

such cases probabilistic techniques will better minimise the uncertainty. If the uncertainty

has a known membership function, the fuzzy theory and its techniques can be used. It is

possible to use hybrids of these techniques according to the nature of the problem.

Interval programming has been used in many optimisation problems under uncertainty.

Sun et al [235] used interval fuzzy programming to build a model for environmental man-

agement under uncertainty. Jin et al. [236] used dual interval programming to allocate
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water irrigation under uncertainty. Fan et al. [237] introduced robust interval linear pro-

gramming (RILP) as enhancement for interval linear programming (ILP) to maintain the

robustness of engineering and environmental problems within uncertainty constraints. Liu

et al. used interval linear programming to build risk explicit model to optimise the nutrient-

reduction for a lake within uncertainty [238]. Li and Huang introduced a method using

interval-based possibilistic programming minimise the cost of waste management under

uncertainty [239].

5.4 Problem Formulation

Scheduling a set of tasks according to their due-dates with single resource constraint has

been solved using Moore-Hodgson’s algorithm [218] based on numerical or time point es-

timate. To minimise the impact of bounded uncertainty, the problem is formulated based

on time intervals instead of time points, and then the algorithm is extended to do interval

computation including interval calculation and interval logic. The Algorithm in figure 1

explains the detailed steps of the algorithm using numerical calculations and Boolean logic.
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Data: J = set of all tasks ;

JS = φ, set of scheduled tasks ;

JN = φ, set of delayed tasks ;

pi = processing time of task number i ;

tp = 0, total processing time ;

di = due date of task number i ;

n = number of tasks ;

Result: a set of scheduled tasks that maintain the cost function optimal.

1 Sort all tasks with due date such that d1 < · · · < dn;

2 for i = 1 . . . n do

3 tp = tp+ pi ;

4 JS := JS ∪ Ji ;

5 if tp > di then

6 k = find longest task in JS ;

7 JS = JS − Jk ;

8 JN = JN ∪ Jk ;

9 end

10 end
Algorithm 1: Moore-Hodgson’s algorithm minimises the number of delayed tasks

according to earliest due-date; it applies numerical calculations and Boolean logic on

the time-point estimates.

For the aircraft landing problem, the due-date represents the targeted landing time and

the single resource represents the runway in the airport and the task processing represents

the landing time. Most of aircrafts arrive either earlier or later than the targeted landing

time, which causes the holding pattern stack. This makes building the schedule based on
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the landing time frame will be more useful than building it based on the exact time point

for decision maker, especially if the possible deviations at reality is taken into considera-

tion. This proactive technique that is known as preventive scheduling too is used to handle

predictable uncertainty situations.

The landing sequence problem using exact estimate and excluding any possible uncer-

tainty can be formulated as follows:

Let J set of all aircrafts waiting to land of size N

xi Landing task for aircraft i ∀ xi ∈ J & 0 < i < N

ti Targeted time to land

ai Actual time to land

Ei Early time to land with no penalty

Li Late time to land with no penalty

The objective function is to minimise total number of delayed tasks. For example, the

aircrafts waiting to land in the holding pattern because of the unavailability of the runway.

It is formulated using numerical estimate as:

minZ =
N∑
i=1

f(xi)wheref(xi) =

⎧⎪⎨
⎪⎩
1, if ai > Li.

0, if ai < Li .

(5.1)

The algorithm that is used to optimise this objective function is called Moore-Hodgson’s

algorithm [218]. It is working on two main steps, assuming the set of tasks is named J:

1. Determine the subset of tasks that can be processed on time and name it JS.
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2. Build the schedule from the subsets Js and JN where JN is the set of tasks that cannot

be processed on time (J = JSJN)

To build the schedule based on time intervals, the objective function is formulated as:

minZ =
N∑
i=1

f(xi)wheref(xi) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, if [ai, ai]after[Ei, Li].

1, if [ai, ai]inside[Ei, Li].

0, if [ai, ai]before[Ei, Li].

(5.2)

5.5 Proposed Methodology

The proposed methodology is to upgrade Hodgson’s algorithm to use interval variables,

interval arithmetic and interval logic instead of numerical variables, arithmetic and logic.

Such upgrade will minimise the impact of uncertain inputs on the estimate of the cost

function by making it more accurate. This methodology is called interval programming

that is used to minimise the impact of bounded uncertainty of input parameters. It gave

better results varying according to the problem nature.

First the interval arithmetic and interval algebra are explained then the relational oper-

ators are defined to be used in extending this algorithm to support interval programming

including arithmetic and logic.

5.5.1 Interval Arithmetic

Interval arithmetic has been introduced by Moore-Hodgson [218] and became a widely

used technique to represent mathematical uncertainty where the numerical value is not
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known accurately but the only known values are the upper and lower bounds. Moore pro-

posed the definitions of interval arithmetic operations in 1. 1 to solve system of equa-

tions [228], where it uses the interval as a replacement of the number in all calculations,

where the numerical value i belongs to the interval I such that I = [I−, I+], some repre-

sentations use the notation I = [i−i, i+i] but this refers to known mean for the uncertainty

range and exact error margin, which is not always true.

Interval arithmetic defined a set of arithmetic operations as basis for any interval-based

equations or algorithms, such that operations of additions, subtraction, multiplication and

division are redefined as follows:

I1 ⊕ I2 = [I−1 + I−2 , I
+
1 + I+2 ](1)

I1 � I2 = [I−1 − I−2 , I
+
1 − I+2 ](2)

I1 ⊗ I2 = [min(I−1 I
−
2 , I

−
1 I

+
2 , I

+
1 I

−
2 , I

+
1 I

+
2 ),Max(I−1 I

−
2 , I

−
1 I

+
2 , I

+
1 I

−
2 , I

+
1 I

+
2 )](3)

I1 
 I2 = [I−1 , I
+
1 ][1/(I

−
2 ), 1/(I

+
2 )](4) such that 0[I−2 , I

+
2 ].

As interval arithmetic maintain the properties of the operations such as associativity and

commutativity of addition and distributivity of multiplication. Therefore it can be applied

to matrices as well.

[A][B] = [C] = cij(p× r) (7)

Where [A] = aij = [aij
−, aij+](p× q)

and [B] = bij = [bij
−, bij+](q × r)

and the elements of the matrix [C] are given by:

Cij =
∑

(k = 1)q aikbkj; i = 1, 2, , p and j = 1, 2, . . . , r(8)

Implementing the interval arithmetic to algorithms helps determining to which extent

the uncertainty will be decreased. This implies that applying the operations that decreases

the intervals’ range should be performed at early stages of the solutions. This is mentioned

by Maiumder and Rao [228] and named as interval optimisation.

To apply interval arithmetic in the algorithm, the numerical value of every due-date (di)
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Table 5.2: The definitions of relations between any two intervals are defined by Allen’s

algebra. The timeline examples represent the relation between the lower bound of the first

interval and the lower bound of the second interval and the relation between the upper

bound of the first interval and second interval, where x− < x+ and y− < y+.
Basic Relation Operator Example End points

x precedes y p xxxx x+ < y−

y preceded by x p−1 yyyy

x meets y m xxxxx x+ < y−

y met by x m−1 yyyyy

x overlaps y o xxxxxxx x− < y− <
x+,

y overlapped by x o−1 yyyyyy x+ < y+

x during y d xxxx x+ < y+,

y includes x d−1 yyyyyyyyyy x+ < y+

x starts y s xxxx x− = y−,

y started by x s−1 yyyyyyyyyy x+ < y+

x finishes y f xxxxx x+ = y+,

y finished by x f−1 yyyyyyyyyy x− > y−

x equals y ≡ xxxxxxxxxx x− = y−,

yyyyyyyyyy x+ = y+

will be replaced with a due-date interval ([d−i , d
+
i ]) and replace every landing processing

time value (pi) to its interval representation [pi, pi]. This will change the step number 3 to

be as follows:

tp = tp⊕ Pi =⇒ tp− = tp− + pi, tp
+ = tp+ + pi

5.5.2 Interval Algebra and Temporal Relations

Interval relations are first introduced by James Allen in what is called interval algebra or

Allen’s algebra [32, 240, 241]. Interval algebra defines relations between any two intervals

in timely manner using 13 operations depending on the combination of numerical relations

between the start-time and end-time of the two time intervals as illustrated in table 6.1.
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The proposed methodology used Allen’s algebra for the inequality comparison in Hodg-

son’s Algorithm as it applies interval programming to solve the sequencing and the schedul-

ing problem as follows:

If(tp � di) −→ If(di precedes tp ∨ tp meets di ∨ tp starts di)

Although Allen’s algebra provided a good contribution in time related problems such as

relating dates in data mining and in historical text analysis in the NLP domain, but it does

not provide explicit operations for less, greater or equal relations for numerical intervals. It

is not expressive mathematically and it will not be easy to be used for future algorithms or

problems. This lead to define the meaning of such relations using the interval components

of lower bound, higher bound and distance between them as in the following section.

5.5.3 Defining Non-Temporal Interval Relations

In order to solve the optimisation problems using interval formulation, The definitions of

the non-temporal interval relations including the equality and inequality operators are stated

in the definiitions 5.5.1, 5.5.2 and 5.5.3.

Definition 5.5.1

For any two real intervals I1 = [I−1 , I
+
1 ] and I2 = [I−2 , I

+
2 ] I1 is less than I2 if I−1 < I−2

and I+1 < I+2 I1 is less than I2 if I−1 = I−2 and I+1 < I+2 I1 is less than I2 if I−1 > I−2

and I+1 < I+2 where I−1 , I
+
1 , I

−
2 , I

+
2 R

Definition 5.5.2

For any two real intervals I1 = [I−1 , I
+
1 ] and I2 = [I−2 , I

+
2 ] I1 = I2 if and only if

I−1 = I−2 and I+1 = I+2 where I−1 , I
+
1 , I

−
2 , I

+
2 R,

Definition 5.5.3
Otherwise,I1 is larger than I2
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Such definitions are built by stating all combinations of Allen’s operators and testing

them against a dataset of 1110 tasks then calculate the cost function. Then Allen’s operators

are mapped back to the relational numerical inequality operators considering the lower

bound and upper bound of right hand side and left hand side.

These definitions are stated for this specific scheduling problem and it may vary ac-

cording to the nature of the problem and the dominance of each component of the interval,

which are the start time (lower bound), the end time (upper bound) and the range between

them. For the mentioned scheduling problem, this definition gave the best results.

Sometimes the arithmetic and logic operations are applied to an interval and a number,

which leads to convert one of the operands to the format of other operand either by con-

verting interval into number or converting number into interval. It was preferred to convert

number into interval as ageneralisation, where the lower bound equals to upper bound with

range equals zero.

Definition 5.5.4
Definition 5.5.4 for any number xR,it can be represented as the interval X = [x, x]

After applying the stated definitions on Hodgson’s algorithm that is illustrated in 2, the

new algorithm will be as follows:
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Data: J = set of all tasks ;

JS = φ, set of scheduled tasks ;

JN = φ, set of delayed tasks ;

pi = processing time of task number i ;

tp = 0, total processing time ;

di = due date of task number i ;

n = number of tasks ;

Result: a set of scheduled tasks that maintain the cost function optimal.

1 Sort all tasks with due date such that d1 < · · · < dn;

2 for i = 1 . . . n do

3 tp = tp+ pi ;

4 JS := JS ∪ Ji ;

5 if tp > di then

6 k = find longest task in JS ;

7 JS = JS − Jk ;

8 JN = JN ∪ Jk ;

9 end

10 end
Algorithm 2: Moore-Hodgson’s algorithm minimises the number of delayed tasks

according to earliest due-date; it applies numerical calculations and Boolean logic on

the time-point estimates.
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5.6 Experiments and Results

The proposed experiments compare the interval programming approach with the standard

numerical approach. As the formulation of the objective function is upgraded to use in-

tervals, the algorithm is upgraded to implement the interval arithmetic and logic. The two

algorithms are applied on the same dataset and calculate the two objective functions and

relate them with the factors affecting the intervals including overlapping, containment and

interval ranges.

The data used in this experiment consist of 13 scheduled datasets of 300 aircraft waiting

for landing permission. This dataset is used by Beasly in scheduling aircraft landing in

static case [230] and in solving the displacement problem and scheduling aircraft landings

dynamically [231]. This dataset can be downloaded online from the OR library. The three

tables 5.3, 5.4 and 5.5 show few records of the dataset that have been used in this research

and Beasly’s research as well. The three tables 5.3, 5.4 and 5.5 displays 10 sets, each

one contains 30 tasks waiting to be processed, i.e. aircrafts waiting to land in the holding

pattern as declared in section 5.2. The table states total number of overlaps, total number

of containment happened for each set and summation of interval distances.

The experiments are implemented using the Torsche toolbox, which is developed by

Sucha et al. [241]. The proposed modification on Hodgson’s algorithm is implemented by

a cloning the toolbox then changing the code to cope with the interval arithmetic and logic

instead of numerical arithmetic and Boolean logic. We applied same experiments on both

algorithms, the one that is implemented by Torsche and the newly developed one, and then

the results are compared to find out the optimality of the cost function, which is defined by

the total number of late tasks.

The main factors affecting the schedule optimality within bounded uncertainty are: (1)

Relations between any two intervals, which can be disjoint, overlapped or contained. (2)
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Table 5.3: The ten datasets used in the experiment each have 30 aircraft waiting to land

before the deadline. The datasets contain different arrival times and deadlines for each air-

craft, which affects the number-of-overlaps, number-of-containment, and total-uncertainty-

range. Such differences determine number of late tasks, and margin of enhancement

achieved by interval programming.
Set Num-

ber

Number of

Overlaps

Late Tasks

Using

Intervals

Late Tasks

Using

Bisecting

optimised

Delays

Enhancement

Ratio

1 176 11 13 2 15%

2 177 10 13 3 23%

3 174 9 13 4 30%

4 182 10 13 3 23%

5 49 2 5 3 60%

6 26 1 1 0 0%

7 24 0 0 0 0%

8 34 0 0 0 0%

9 179 9 13 4 30%

10 158 6 10 4 40%

Table 5.4: The ten datasets used in the experiment each have 30 aircraft waiting to land

before the deadline. The datasets contain different arrival times and deadlines for each air-

craft, which affects the number-of-overlaps, number-of-containment, and total-uncertainty-

range. Such differences determine number of late tasks, and margin of enhancement

achieved by interval programming.
Set Num-

ber

Number of

Contain-

ments

Late Tasks

Using

Intervals

Late Tasks

Using

Bisecting

optimised

Delays

Enhancement

1 22 11 13 2 15%

2 24 10 13 3 23%

3 28 9 13 4 30%

4 10 10 13 3 23%

5 34 2 5 3 60%

6 0 1 1 0 0%

7 0 0 0 0 0%

8 20 0 0 0 0%

9 20 9 13 4 30%

10 64 6 10 4 40%
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Table 5.5: The ten datasets used in the experiment each have 30 aircraft waiting to land

before the deadline. The datasets contain different arrival times and deadlines for each air-

craft, which affects the number-of-overlaps, number-of-containment, and total-uncertainty-

range. Such differences determine number of late tasks, and margin of enhancement

achieved by interval programming.
Set Num-

ber

Summation

of Interval

Distances

Late Tasks

Using

Intervals

Late Tasks

Using

Bisecting

optimised

Delays

Enhancement

1 9,063 11 13 2 15%

2 9,694 10 13 3 23%

3 9,685 9 13 4 30%

4 9,454 10 13 3 23%

5 6,479 2 5 3 60%

6 4,935 1 1 0 0%

7 4,881 0 0 0 0%

8 6,550 0 0 0 0%

9 9,689 9 13 4 30%

10 10,693 6 10 4 40%

Distance between lower bound and upper bound of each interval. So, the correlation factor

between the number of overlapping intervals and the optimised delays is calculated and

it output a score of 0.81. The number of delayed tasks using interval-based algorithm is

compared versus the number of delayed tasks using numerical-based algorithm considering

the number of overlaps happened in each set and the result is represented in figure 5.2. It

is noticeable that the number of delayed flights jumps up then down for the number of

overlaps 80, this happens because flight delays are not dependent on number of overlaps

100% because correlation is less than 1 and there exist other factors affects the delays.

The second factor affecting the schedule optimality within bounded uncertainty is the

containment of the interval. So, the correlation between this factor and the optimised delays

is calculated and it gave a score of 0.65. The number of delayed tasks using interval-

based algorithm is compared against the number of delayed tasks using numerical-based

algorithm considering the number of containment happened in each set and the result is
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Figure 5.2: This chart illustrates the relation between the number of

delayed aircraft and the number of overlaps in each dataset.

The red diamonds represent the number of delayed flights

resulting from approximating the data numerically before

applying the algorithm. The blue triangles represent the

number of delayed flights resulting from applying the

interval-based algorithm then approximate the final result.

The red and blue lines describe the trend of delayed flights

and indicate that they are directly proportional with the

number-of-overlaps per each dataset.

represented in figure 5.3. According to the figure and correlation, it is difficult to claim any

strong relation between number of intervals contained and number of delayed tasks.

The third factor affecting the schedule optimality within bounded uncertainty is the

uncertainty range, which is calculated by summing up the distance between the upper and

lower bound for each interval using the equation (i = 1)nI+i − I−i . By calculating the
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Figure 5.3: This chart illustrates the relation between the number of

delayed aircraft and the number of containments in each

dataset. The red diamonds represent the number of delayed

flights resulting from approximating the data numerically

before applying the algorithm. The blue triangles represent

the number of delayed flights resulting from applying the

interval-based algorithm then approximate the final result.

The red and blue lines indicate the trend of delayed flights

and emphasise that they are independent of the

number-of-containments per each dataset.

correlation between this factor and the optimised delays and it gave a score of 0.86. The

number of delayed tasks using interval-based algorithm is compared against the number of

delayed tasks using numerical-based algorithm considering the uncertainty range in each

set and the result is represented in figure 5.4. The figure shows that the number of delayed

flights decreased for the range of uncertainty of 8000 against the trend of the curve, this

happened because flight delays are not dependent on ranges totally 100% as the correlation
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is less than 1 and there exist other factors affects the delays.

Figure 5.4: This chart illustrates the relation between the number of

delayed aircraft and the uncertainty ranges. The red

diamonds represent the number of delayed flights resulting

from approximating the data numerically before applying

the algorithm. The blue triangles represent the number of

delayed flights resulting from applying the interval-based

algorithm then approximate the final result. The red and

blue lines indicate the trend of delayed flights and

emphasise that they are directly proportional and highly

correlated with the uncertainty-range per each dataset.

The results illustrated in figures 5.2, 5.3 and 5.4 showed up that interval programming

gives better results as long as the total uncertainty range or the number of overlaps increases

as they both represents possible dependency between consecutive intervals. The results also

showed that interval programming gives better results as total uncertainty range increases
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especially that uncertainty range and overlaps are highly correlated. Another conclusion is

that interval programming cannot use the number of intervals that is contained in other ones

because the trend of the curve is not stable and the correlation factor is very low. Finally, the

interval programming does not give better results than bisecting or approximation in case

of disjoint intervals as the order of the tasks will be exactly the same as if the numerical

average of lower or upper bound of the interval are used.

It is important to mention that number of delayed flights estimated using interval pro-

gramming was always less than the number of delayed flights estimated by numerical ap-

proximation. The experiments showed that the factors affecting the number of delayed

aircraft are the total uncertainty range and the number of overlaps, which are dependent on

each other. By calculating the correlation score between them, the score was 0.95. So, the

total uncertainty range can be used to minimise the number of delayed tasks.

For the aircraft landing problem, the other factors should be covered including emer-

gency cases, freezing time, the stability of the weather above the airport for the stacked

holding pattern and the readiness of the airport to receive new aircraft landings. These

factors are out of the scope of this paper, but by relaxing these constraints and consider-

ing just the appearance time in the sky, the late flights should have higher probability to

arrive within small interval remaining even if it overlaps with another interval. This will

give possibility to resolve such uncertainty using Bayesian probability techniques instead

of interval-based techniques, which is more accurate and easier.

5.7 Conclusion

Uncertainty is considered a major challenge for scheduling process from the engineering

and decision making perspectives. Eliminating the root causes of data uncertainty is not
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always possible. So, the effect of uncertainty should be minimised by increasing the ac-

curacy without affecting the optimised objective function negatively. Bounded uncertainty

has a special nature as it is identified only by its lower and upper bounds without any in-

formation describing what is in between them. In contrast; probabilistic uncertainty has its

probability density function and fuzzy uncertainty has its membership function. Bounded

uncertainty is usually handled by calculating the average to be used in decision making

calculations where the approximation is applied before the calculation.

This research minimises the impact of bounded uncertainty on the optimality of the ob-

jective function. It proposed a new preventive scheduling technique that uses interval pro-

gramming including interval arithmetic and interval algebra, especially that the probability

density function and fuzzy membership functions are not available. The proposed tech-

nique starts by performing the calculation of interval input data then averaging-bisecting

the final output. The used case study to emphasise the validity of the proposed technique is

the problem of “minimizing the number of tardy jobs”, as it is usually solved on numerical

basis using Moore-Hodgson’s algorithm. The the nature of the problem is considered, the

objective function is reformulated to be interval-based and the algorithm is promoted to use

interval arithmetic and interval logic, and then tested the algorithm on the interval data to

achieve the objective function.

The experiments ad results showed that the effectiveness of the interval programming

increases proportionally with the total number of overlaps and the total uncertainty distance

inside the dataset. It is important to mention that the every task inside each dataset was of

different distances between lower and upper bounds. The proposed methodology is applied

on the scheduling problem of minimizing the number of tardy jobs and it achieved 12% less

number of tardy jobs than by using the average of the intervals of the cost function.

Scheduling uncertainty happens in airports different stages including aircraft landing,

aircraft takeoff and passenger queues. It also happens in medical field in allocating patients
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to surgical operating rooms, usage of intensive care rooms, emergency rooms and normal

medical queues and allocating different patients to different doctors and resources. The

scheduling uncertainty problem and its optimisation is important issue for countries trying

to apply medical care for all people. Scheduling uncertainty affects many other domains in-

cluding logistics, transportation, traffic, assembly lines, supply chains and chemical plants.

Minimizing the impact of bounded uncertainty in theory opens the door to apply it in all

other domains and on different algorithms, which will be the future prospects for this re-

search.



Chapter 6

Minimising Impact of Bounded
Uncertainty on McNaughton’s
Algorithm

Hossny, A.; Nahavandi, S.; Creighton, D.;, “Minimizing Bounded Uncertainty Impact on

McNaughton’s Scheduling Algorithm via Interval Programming”, in IEEE international

conference on Systems Man and Cybernetics, 2013. IEEE-SMC 2013. Manchester, UK,

13-16 Oct. 2013.

Uncertainty of data affects decision making process as it increases the risk and the costs

of the decision. One of the challenges in minimizing the impact of the bounded uncertainty

on any scheduling algorithm is the lack of information, as only the upper bound and the

lower bound are provided without any known probability or membership function. On the

contrary, probabilistic uncertainty can use probability distributions and fuzzy uncertainty

can use the membership function.

McNaughton’s algorithm is used to find the optimum schedule that minimises the

makespan taking into consideration the preemption of tasks. The challenge here is the

bounded inaccuracy of the input parameters for the algorithm, namely known as bounded

126
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uncertain data. This research uses interval programming to minimise the impact of bounded

uncertainty of input parameters on McNaughton’s algorithm, it minimises the uncertainty

of the cost function estimate and increase its optimality. This research is based on the hy-

pothesis that performing the calculations on interval values then approximate the end result

will be produce more accurate results than approximating each interval input then apply

the numerical calculations.

6.1 Introduction

McNaughton’s algorithm is used to solve the scheduling problem with a set of independent

tasks with known processing times [242]. These tasks have to be allocated to parallel

identical processors in order to minimise total schedule length by minimising the maximum

completion time Cmax . This algorithm considers the preemption constraint of tasks and

produces the optimal schedule. The objective function is defined as the maximum of the

two values: max(pj); (pj)/m, such that m is the number of processors.

Uncertainty is a major challenge to applying scheduling to real life problems similar

to job shop scheduling of automotive industry. Scheduling algorithms optimise the cost

function theoretically, as it assumes that input data are exact and accurate, which leads

to exact estimate for the cost function without any change of values at runtime. Such

assumption leads to more risk and more cost as the parametric data in reality is often not so

accurate. The initial estimate of the data may not be 100% accurate and the parametric data

may vary at the run time. To increase the accuracy percentage, the possible reasons and

nature of the uncertainty should be identified, then either to eliminate them or minimise

their impact.

The uncertainty challenge of scheduling algorithms affects different scheduling appli-

cations in different domains including the mining industry [243, 244] [3], liquefied natural
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gas industries [245] , medical follow-up, surgery resource allocation, electricity and power

uncertainties in wind farms , telecom networks [246] and logistics [247].

The traditional way to minimise the impact of bounded uncertainty is to approximate

the interval of the uncertain parameter to the lower bound or upper bound or to bisect

the interval to its average, then use the approximated numerical value for the calculations.

Figure 6.1 represents how old systems minimise the impact of bounded uncertainty.

Figure 6.1: A flowchart for approximation input parameters before

calculation the objective function

This research aims to minimise the impact of bounded uncertainty of the processing

time parameter for each task, which is formulated as mathematical interval, where I =

[I−, I+] , such that I− represents the lower bound and I+ represents the upper bound

taking into consideration that the probability distribution is not known inside, which force

us to consider it uniform to ensure equal chance to all values between lower and upper

bounds. The algorithm is implemented using interval computation [248] including interval

arithmetic [218] and interval algebra [33], which is considered as mathematical uncertainty

handling technique [222] . Figure 6.2 describes how the proposed sequence of steps will
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Figure 6.2: A flowchart for calculating using intervals before

approximating the end results

minimise the impact of bounded uncertainty.

Section 2 introduces scheduling uncertainty concepts and techniques. Section 3 ex-

plains the proposed methodology including interval programming, arithmetic and logic and

how to use them to minimise the uncertainty impact on McNaughton’s algorithm. Section

4 describes the experiments and results. Section 5 closes with conclusions.

6.2 Proposed Methodology

The proposed methodology is to use interval programming including interval arithmetic

and interval algebra as alternative to numerical computation in the scheduling algorithms

to find less uncertain sequence of tasks to achieve better cost function.

6.2.1 Interval programming

Interval programming is a widely used technique to represent mathematical uncertainty

where the numerical value is not known exactly and the only available information is the

upper and lower bounds. Interval programming uses interval arithmetic, interval logic and
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interval temporal relations. Interval arithmetic was first introduced by Moore to solve sys-

tem of equations [218] . It simply uses the interval as a replacement of the number in all

calculations and where the numerical value i belongs to the interval I where I = [I−, I+].

Some representations use the notation I = [i − ε, i + ε] but this refers to known mean for

the uncertainty range and an exact error margin, which is not always available.

Interval arithmetic defines a set of arithmetic operations as basis for any interval-based

equations or algorithms, such that operations of additions, subtraction, multiplication and

division are redefined as follows:

(6.1)I1 ⊕ I2 = [I−1 + I−2 , I
+
1 + I+2 ]

(6.2)I1 � I2 = [I−1 − I−2 , I
+
1 − I+2 ]

(6.3)I1 ⊗ I2 = [min(I−1 I
−
2 , I

−
1 I

+
2 , I

+
1 I

−
2 , I

+
1 I

+
2 ),Max(I−1 I

−
2 , I

−
1 I

+
2 , I

+
1 I

−
2 , I

+
1 I

+
2 )]

(6.4)I1 
 I2 = [I−1 , I
+
1 ][1/(I

−
2 ), 1/(I

+
2 )]

such that 0 /∈ [I−2 , I
+
2 ].

As interval arithmetic maintain the properties of the operations such as associativity and

commutativity of addition and distributivity of multiplication. Therefore it can be applied

to matrices as well.

(6.5)

[A][B] = [C] = cij(p× r)

Where [A] = aij = [a−ij, a
+
ij](p× q)

and [B] = bij = [b−ij, b
+
ij](q × r)

and the elements of the matrix [C] are given by:
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Table 6.1: The definitions of relations between any two intervals are defined by Allen’s

algebra. The timeline examples represent the relation between the lower bound of the first

interval and the lower bound of the second interval and the relation between the upper

bound of the first interval and second interval, where x− < x+ and y− < y+ .
Basic Relation Operator Example End points

x precedes y p xxxx x+ < y−

y preceded by x p−1 yyyy

x meets y m xxxxx x+ < y−

y met by x m−1 yyyyy

x overlaps y o xxxxxxx x− < y− <
x+,

y overlapped by x o−1 yyyyyy x+ < y+

x during y d xxxx x+ < y+,

y includes x d−1 yyyyyyyyyy x+ < y+

x starts y s xxxx x− = y−,

y started by x s−1 yyyyyyyyyy x+ < y+

x finishes y f xxxxx x+ = y+,

y finished by x f−1 yyyyyyyyyy x− > y−

x equals y ≡ xxxxxxxxxx x− = y−,

yyyyyyyyyy x+ = y+

Cij =
∑

(k = 1)qaik bkj i = 1, 2, . . . , p and j = 1, 2, . . . , r

The implementation of interval arithmetic in algorithms determines ts, which extent the

uncertainty will be decreased, as executing the operations that decrease the interval range

should be applied at early stages of the solutions. This is mentioned by Maiumder and

Rao [228] in what is called interval optimisation.

Interval temporal relations were first identified by James Allen in interval algebra or

Allen’s algebra [30, 31]. Interval algebra identifies relations between time intervals using

13 basic operations representing the combination of relations between the lower bounds

and upper bounds of the two intervals as represented in table 6.1.

Interval arithmetic achieved good results in uncertainty reduction for many problems.

However in some cases it increases the solutions interval range, which makes such solu-

tions less useful as it increases the uncertainty rather decreasing it. Such increases depend
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on the mathematical expression of the problem such as when interval variables occur many

times in same equation and interval variables depend on other variables in same equation.

In such case, any change in any interval variable will propagate to all other variables in-

creasing their range. Such problem have been mentioned by Maiumder and Rao [228]

and they proposed the truncation method to deal with it by [249] . Same problem is dis-

cussed by Muscolino and Sofi naming it the dependency phenomena [250] and proposed

the generalised interval arithmetic [251] or affine arithmetic [252, 253] as a solution.

6.2.2 Applying Interval Programming to Scheduling Algorithms

Any scheduling algorithm consists of a set of numerical operations and set of logical com-

parisons in addition to some algorithmic steps such as the assignment operation. In order

to apply the interval programming to any scheduling algorithm, every numerical arithmetic

operation should be replaced by interval arithmetic operation and every logical comparison

should be replaced by interval algebraic comparison.

Although interval relations have been identified by Allen’s algebra but it cannot be used

directly as replacement to standard numerical comparison in normal algorithms, which lead

to the need of mapping Allen,s interval relations to numerical relations. Different mappings

have been tried targeting to minimise the uncertainty of the cost function until the best

mapping is found as stated in table 6.2.
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Table 6.2: Mapping Allen’s relations between the intervals [x−, x+] and [y−, y+] to standard

numerical relations.
x−y− x+y+ Allen’s Description Logical Relation

< < Less ≺
< < Overlap ≺
< = Finishes ≺
< > Contains ≺
= < starts ≺
= = equal ≡
= > Starts �
> < Contained �
> = Finishes �
> > Overlap �
> > Larger �

6.2.3 Using Interval Programming to Minimise Uncertainty Impact

on McNaughton’s algorithm

McNaughton introduced his algorithm to find an optimal solution for the problem of schedul-

ing with deadline and loss functions [242]. This algorithm finds a feasible schedule for pre-

emptive tasks on multiple processors by minimizing the maximum completion time with

given processing time and preemption constraint, which is formulated as P |pmtn|Cmax

with m− 1 preemptions at most. The algorithm creates the schedule machine by machine

rather than task by task over time. Bo Chen et al. [254] used McNaughton’s algorithm for

online preemptive scheduling, Schmidt upgraded the algorithm to build schedule with lim-

ited machine availability [255], Hoogeveen also developed a new algorithm for preemptive

scheduling in a two-stage multiprocessor flow shop as McNaughton’s algorithm is NP hard

in such case [256].
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Data: n := Number of all operations ;

tj := Processing times for all jobs ;

m := Number of parallel processors ;

Result: a set of scheduled tasks on multiple processor with minimum completion

time.

1 Find the makespan using the formula: M∗ = max 1/m
∑

( j = 1)ntj,max(tj)

2 Set processor number i=1.

3 Set remaining time on current processor , R= Mˆ*

4 set the job index ,j=1

5 for j = 1 . . . n do

6 if ti < R then

7 Processor(i) = Job(j) calculate completion Cj on processor i

R = R− tj if R = 0 then

8 i = i+ 1, R = M∗

9 end

10 end

11 else

12 Schedule part of job j [R− C(j − 1)] units of time on processor i

i = i+ 1 job(j).rt = tj − [R− C(j − 1)] processor i = job(j).rt

compute its complete time on processor i

Update R = M∗ − tj − [R− C(j − 1)]

13 end

14 j := j + 1

15 end
Algorithm 3: McNaughton’s algorithm minimises the total completion time ; it ap-

plies numerical calculations and Boolean logic on the time-point estimates.



6.2 Proposed Methodology 135

The source of uncertainty in this algorithm is the possible change of the processing time

of every task while execution. For every tj variable or any dependent variable including R

or Cj or Cmax will be formulated as intervals according to table 6.3.

Table 6.3: mapping algorithm variables to interval variables
Numerical Variable Interval Variable

tj [t−j , t
+
j ]

M∗ [M ( ∗ −),M ( ∗+)]
R [R−, R+]
Cj [C−

j , C
+
j ]

Cmax [Cmax
−, Cmax

+]

After extending the algorithm, every arithmetic or Boolean variable will be replaced

with interval-based variable according to the table 6.3 . The extended algorithm is stated in

algorithm 4
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Data: n := Number of all operations ;

[t−j , t
+
j ] := Processing intervals for all jobs ;

m := Number of parallel processors ;

Result: a set of scheduled tasks on multiple processor with minimum completion

time.

1 Find the makespan using the formula:

[M−,M+]∗ = max 1/m
∑

( j = 1)n[t−j , t
+
j ],max[t−j , t

+
j ]

2 Set processor number i=1.

3 Set remaining time on current processor , [Rˆ-,Rˆ+]= [Mˆ-,Mˆ+]ˆ*

4 set the job index ,j=1

5 for j = 1 . . . n do

6 if [t−i , t
+
i ] < [R−, R+] then

7 Processor(i) ⇐ Job(j) calculate completion [C−
j , C

+
j ] on processor i

[R−, R+] = [R−, R+]− [t−i , t
+
i ] if [R−, R+] = 0 then

8 i = i+ 1, [R−, R+] = [M−,M+]∗

9 end

10 end

11 else

12 Schedule part of job j [[R−, R+]−C(j−1)] units of time on processor i

i = i+ 1 job(j).rt = tj − [[R−, R+]− C(j − 1)] processor i = job(j).rt

compute its complete time on processor i

Update [R−, R+] = [M−,M+]∗ − [t−j , t
+
j ]− [[R−, R+]− C(j − 1)]

13 end

14 j := j + 1

15 end
Algorithm 4: McNaughton’s algorithm minimises the maximum completion time on

all processors; it applies interval-based calculations and logic .
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6.3 Experiments and Results

To verify that interval programming can provide more certain results than numerical ap-

proximation, a set of experiments have been done using dataset gathered from automotive

production facility. The experiment is to build three schedules for the same uncertain input

data, where the processing time of every task is an interval with known upper and lower

bounds. The first schedule is built using the lower bound value, then apply the numerical

algorithm. The second schedule is built using the upper bound value, then apply the nu-

merical algorithm. The third schedule is built by implementing interval-based algorithm

then bisecting the end result.

The objective function is stated as minimising the uncertainty of the maximum com-

pletion time of the whole schedule by minimizing the average of completion distance end

result that is formulated by the equation 6.6:

(6.6)Z = (max
i=0:n

C−
i + max

j=0:n
C+

j )/2

The relation between intervals affects the complexity of the uncertainty. Such relation

can be disjoint, overlapping or containing. The complexity of the interval-based uncer-

tainty is measured by number of overlaps and containment as the disjoint does not affect

the algorithm anyhow. Disjoint intervals does not affect the schedule anyhow, because

maxi=0:n C
−
i equals maxj=0:n C

+
j and the cost function calculates the average between

them. On the contrary, the overlapping and containing intervals build different schedules

because maxi=0:n C
−
i does not equal to maxj=0:n C

+
j .

Our experiment is performed using a Matlab tool box named Torsche that is developed

by Sucha et al. [241]. The toolbox is upgraded to support interval programming, arithmetic

and logic. This instance of our experiments used 4 similar processors and 10 tasks with

uncertain processing times, which are represented in table 6.4.

The experiments, the stated examples and the results analysis showed up the following:
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Table 6.4: Scheduling 10 tasks with uncertain processing times on 4 exact processors
Task Lower Bound Upper Bound Distance
T1 11 15 4

T2 21 35 14

T3 9 25 16

T4 4 16 12

T5 5 23 18

T6 33 45 12

T7 12 24 12

T8 22 36 14

T9 25 38 13

T10 20 38 18

1. Building the schedule on the lower bound minimises the total schedule time, but with

high probability of delays due to uncertainty of the input data as declared in figure

6.3.

2. Building the schedule using the upper bound minimises the probability of delays, but

gives very long total schedule time as declared in figure 6.3.

3. Building the schedule using interval programming gives more flexibility for task al-

location on processors, but it does not guarantee the minimum total completion time

of the schedule as declared in figure 6.3.

As declared in the table 6.4, figure 6.3 and figure 6.3, the estimate of the objective

function according to the numerical estimate is 140 units of time on all processors. On the

other hand, the estimate of the objective function using the interval programming is 130.

The uncertainty is reduced by 7.1% of all uncertainty time.
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Figure 6.3: Scheduling 10 tasks based on numerical estimates of the

lower and upper bound , the total uncertainty distance

between lower bound and upper bound of the final estimate

of the objective function = 4 * 35 = 140 units of time

6.4 Conclusion

The uncertainty of data is a challenge for scheduling algorithms, especially the problems

that use the heuristic or the meta-heuristic techniques to find the optimal solution. Mc-

Naughton’s algorithm is a one of the heuristic algorithms that is used to minimise the

total completion time on multiple machines with the preemption constraints. The job shop
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Figure 6.4: Scheduling 10 tasks based on interval programming

estimates, the total uncertainty distance between lower

bound and upper bound of the final estimate of the objective

function = = 25 + 35 + 40 + 35 = 130 units of time

scheduling in automotive production facility is a good example of such a problem.

In this chapter, McNaughton’s scheduling algorithm has been extended to apply the

interval programming, in order to reduce the impact of the bounded uncertainty of the

input parameters. According to the proposed methodology, all the arithmetic and logic

operations in the algorithm have been replaced with interval arithmetic and interval logic.
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After performing multiple experiments, the results showed that using interval program-

ming in estimating the objective function gives more accurate and less uncertain results

than using numerical calculation directly such as average or median. Interval programming

is more applicable than interval perturbation for a large number of tasks as it does not have

an exponential order of magnitude.

The extended McNaughton’s algorithm did not achieve great marginal enhancements

in terms of optimality, as Cmax of the interval-based algorithm is equal to Cmax of the

original algorithm. Meanwhile, the extended algorithm achieved less uncertainty and better

utilisation of the first processor, which outperform the original algorithm.
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Conclusions and Discussion

The uncertainty challenge is common and affects many domains including engineering, de-

cision making, chemistry, physics, biology, medicine, ecology and environment. The un-

certainty has multiple definitions, taxonomies, causes, implications and techniques. They

all vary according to the problem domain, nature and formulation. One of the challenging

categories of uncertainty that affects many domains is the bounded uncertainty. Bounded

uncertainty is defined by its lower bound and upper bound and its main challenge is the

lack of information between its bounds, as it does not have any descriptive function similar

to probability density function or fuzzy membership function.

The bounded uncertainty of the parameters of the scheduling problem affects many

domains significantly due to the uncontrollable factors. One of the domains is the schedul-

ing of the aircraft take-off, arrival, holding patterns and landing in airports. The airports

and aircraft scheduling depends on the weather, the crew, the passengers, the baggage sys-

tem and the runway availability, which are uncertain factors. Such factors forced aircraft

schedules to be stated as time intervals even though the official statements give a specific

time.

Another domain that faces the bounded uncertainty challenge is the scheduling of the

chemical plants. The main reasons for that are the micro chemical reactions that happen
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during the process as well as the physical changes in the reaction environment that may

affect the reaction back. Such uncertainty is considered cyclic drift uncertainty and it is

difficult to measure all the micro reaction and physical changes to every molecule in the

process.

The domain of renewable energy also faces the bounded uncertainty challenge, which

includes the wind farms, water currents and solar panels. The source of uncertainty in such

domain is the environmental variations, which are neither controllable nor predictable. This

domain is a great example of uncertainty propagation as the energy generation is not certain

and depends on the predictions of the weather, which is not certain as well.

Although this problem has been tackled using mixed integer linear programming and

quadratic programming, the two techniques needed a mathematical formulation as a system

of linear equations. MILP and quadratic programming cannot eliminate or minimise the

uncertainty for heuristic algorithms or meta-heuristics techniques such as neural networks

and genetic algorithms.

Two other techniques are used to resolve the parametric uncertainty challenge within

the scheduling problems. The first is the numerical approximation to the average, upper or

lower bounds of the interval parameter. Such approximation causes the drawback of the

value drifting away of the actual value. The second technique is to calculate the objective

function using different input values that belong to the interval of the input parameter. The

draw back with multiple calculations is the uncertainty propagation.

Some other techniques have been suggested to solve the parametric uncertainty problem

for scheduling algorithms similar to combinatorial approach and interval perturbation, but

they both face the problem of NP-hard complexity, which make the solution infeasible.

The proposed research introduced a new methodology to minimise the impact of bounded

uncertainty on the scheduling problem and its solution. The challenge of bounded uncer-

tainty is the lack of information describing the uncertainty nature between the upper bound
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and the lower bound of the interval parameter.

The proposed methodology extends any scheduling algorithm to be able to use the

interval input parameter as variable that will be used through the execution. The execution

of the algorithm uses the interval arithmetic as replacement for numerical arithmetic and

uses the interval logic instead of Boolean logic. The output of the algorithm is an interval

value, where the distance between the upper and lower bounds can be zero, which is the

ultimate certainty as the upper and lower bounds are equal. The distance of the interval

output variable represents the uncertainty of the output and can be used to measure if the

uncertainty increased or decreased comparable to the uncertainty of the inputs.

The proposed methodology, which is based on interval programming, consists of five

main steps and uses four techniques. The first step is to analyse and decompose the algo-

rithm into a set of instruction and determine, which instructions are affected by the uncer-

tain input parameters and which instructions affect the objective function result.

The second step is to define the interval operators that will be used in extending the

algorithm. Those operators can be arithmetic or logical. The arithmetic operators are

usually defined using Moore’s interval arithmetic, but it can also be defined using other

techniques similar to affine arithmetic, which is generalised interval arithmetic.

The logic operators can be defined using interval temporal algebra that is introduced by

James Allen, it is also known as Allen’s algebra. The main issue with Allen’s algebra is the

number of operators, which are seven in contrary of the Boolean operators, which are just

three. The variation between the number of operators requires mapping Allen’s algebra to

Boolean logic. The other option is to define new logical operators that express the nature

of the problem.

The third step is to extend the scheduling algorithm by replacing the instructions that

have been selected in the algorithm analysis and the decomposition phase with new mod-

ified instructions. The new instructions are modified version of the old instructions after
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applying the interval arithmetic instead of numerical arithmetic and after applying interval

logic rather Boolean logic.

The fourth step is to verify the effectiveness of applying the new methodology on a

specific algorithm, using multiple realistic or generated data sets. Such verification is mea-

sured by comparing the total uncertainty of the objective function using interval program-

ming versus the total uncertainty after calculating the objective function using the lower

bound subtracted from the objective function using the upper bound. Estimating the total

uncertainty of the objective function using interval programming is calculated in terms of

the distance between the upper bound and the lower bound of the end result.

Finally, the fifth step is to use the new extended algorithm to generate the new baseline

schedule. That is why it is considered as protective or preventive technique for scheduling

under uncertainty.

To emphasise the effectiveness of the proposed methodology, it has been applied on

three algorithms solving three different scheduling problems of different objectives, en-

vironments and constraints. The first is Hodgson’s algorithm that solves the problem of

minimising the total number of delayed tasks. This algorithm is considered a single pro-

cessor heuristic that is formulated as 1 | | ∑Uj .

The second is Bartley’s algorithm that uses branch and bound method to minimise

the maximum completion time of all jobs, taking the release time and the deadlines as

constrains. Such problem is a branch and bound NP-hard problem that is formulated as

1 | rj , ∼ dj | Cmax.

The third is McNaughton’s algorithm that is used for minimising the maximum comple-

tion time of all tasks on multiple identical parallel processors, considering the pre-emption

constraint. The problem is formulated as P | pmtn | Cmax and is calculated by finding the

maximum of the two values max(pj); and (
∑

pj)/m, where m is the number of processors.

The results of the three experiments using different sets of data emphasized that the
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proposed methodology can minimise the impact of uncertainty on the objective function.

The estimate of the objective function using interval arithmetic and logic have resulted

in more certain results and less distance between upper bound and lower bound than the

estimate of the objective function using multiple calculation.

The results of the experiments showed that the marginal minimisation of the uncertainty

is affected by two factors. The first factor is the sum of all distances between the upper

bound and the lower bound of the interval parameter. The more distance between upper

and lower bounds causes more marginal minimisation of the uncertainty. The second factor

is the relation between interval parameters, which can be disjoint intervals or overlapping

intervals or containing/contained intervals. The more number of overlaps increases the

marginal minimisation of the uncertainty as well. It is important to mention that the total

distance between upper and lower bounds is highly correlated with the number of overlaps

taking in consideration that correlation does not imply causality.

7.1 Advantages and Limitations of Interval Programming

The proposed methodology has many advantages. First advantage is minimising the total

uncertainty as declared in the multiple experiments in chapters 6, 7 and 8. Second advan-

tage is the applicability on all algorithms including heuristics and meta-heuristics. Third,

the uncertainty does not deviate towards the upper or the lower bound due to applying the

calculations on a specific number. Fourth, the uncertainty does not propagate through the

function, especially through loops or exponential calculations.

Another advantage of using the proposed approach is the ability to execute it using

numerical non-interval inputs. Interval programming converts the numerical values to an

interval starting and ending at the same value with distance equals zero. Such conversion

is called the point estimate.
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The main limitation of interval programming was the containment relation between

intervals, where one of the intervals contains or include the other one totally. the lower

bound of the wide interval is less than the lower bound of the narrow interval and the

upper bound of the wide interval is larger than upper bound of the narrow interval. The

results of the estimating the objective function varies according to the used bound. After

performing a set of experiments on four different algorithms using real data and generated

data, The result analysis showed that the correlation between the number of containments

in the dataset and the marginal enhancement of the uncertainty is 60% which is very low.

7.2 The Trade-off between Optimality and Uncertainty

The main target of solving scheduling problems is to find the optimal solution, but having

an optimal solution with uncertainty implies potential risks and hidden costs. On the other

hand having certain and accurate estimates for the objective function problem can result in

non-optimal solution. The challenge is to find an optimal solution with certain and accurate

results, especially if the input is uncertain by nature. This problem is similar to Heisenberg

uncertainty principle in physics that states “the more precisely the position of some particle

is determined, the less precisely its momentum can be known, and vice versa”. Figure 7.1

illustrates an example of a function with global optimal solution at the point s1 with wide

uncertainty range and non-optimal solution at point s2 with narrow solution range.

The proposed methodology minimised the impact of the uncertain variables on the out-

put variables by tracking the behaviour of the uncertain variables through execution time.

The next step is to find the optimal estimate of the objective function that guarantees the

most near optimal estimate with minimum uncertainty margin.
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Figure 7.1: Illustration of the possible tradeoff between optimality and

uncertainty

7.3 Considerations for Applying Interval Programming

The interval programming should be used when the parameters are uncertain and the un-

certainty is bounded and represented as numerical intervals. The numerical intervals has

just the lower and upper bound without any known information between them similar to a

probability density function or the fuzzy membership function.

The interval programming technique is better to be used when the number of tasks is

huge and the interval size is big and the sensitivity is high as it minimises the uncertainty

of the results. Whenever the number of the tasks is relatively small, the combinatorial ap-

proach is more suitable, as it will find the optimal result and it will not face the complexity

issue. The suitable number of tasks for combinatorial approach varies according to the
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problem nature and its order of magnitude; it is usually less than 15 tasks for most of the

problems.

In case the number of tasks is relatively high and the interval size of each task is rela-

tively small, it will be more optimal to use the interval perturbation combined with sensitiv-

ity analysis. The benefit of interval perturbation is that it will find the near optimal solution

with minimum uncertainty without facing the complexity issue resulting from the range of

perturbation inside each interval. It is important to notice that the complexity is function of

the perturbation step, which can be in terms of integers, or fractions.

7.4 Conclusions

This research studied multiple definitions, taxonomies and understandings of uncertainty

and how it affects decision making as well as optimisation techniques. It also discussed the

proposed approaches to minimise the negative impact of bounded uncertainty on schedul-

ing process and what are the limitation of each technique. The proposed research intro-

duced a novel methodology to minimise the impact of uncertainty on scheduling algorithm

and emphasised its usefulness and applicability on three different algorithms of different

natures in terms of problem formulation, solution technique, number of processors and

constraints.

This research concludes that interval programming is useful to minimise bounded un-

certainty for scheduling algorithms, especially for the heuristic-based and meta-heuristic-

based solution. The solution achieves less uncertainty than other uncertainty handling ap-

proaches, within feasible processing time and acceptable accuracy, especially when the

number of tasks is large and the interval distance of each task is wide.
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7.5 Future Work

The proposed methodology can be extended to consider the urgency function, the weights,

the confidence and the prediction intervals. In case the urgency function of the problem

is known, the schedule can be weighted by calculating the area under the curve using nu-

merical integration. In case urgency curve increases by time, the first interval gets higher

priority in sorting, which means it will be considered as the smaller number even if the in-

terval started after. On the other hand if the urgency curve decays of time, the latest interval

gets higher priority. The priority can be estimated by comparing the slope for linear func-

tions. For the non-linear curves, the priority can be estimated using numerical integration

between the lower bound of the interval and the upper bound.

The numerical integration can be estimated using many methods, which vary in the

performance and the accuracy. One method is the Implicit Midpoint Rule that is also known

as rectangle rule. Such rule takes the average of xi and x(i+1) to create a sequence of

rectangles, each rectangle intersects the curve in the middle of the top edge [257]. The

midpoint rule method assumes the interpolating function to be a polynomial of degree zero,

which passes through the point (xi + xi+1)/2 as stated in the equation 7.1 and declared in

figure 7.2. ∫ d+

d−
f(x)dx ≈ (d+ − d−)f((d− + d+)/2) (7.1)

Another method for numerical integration is the trapezoidal rule method, where the

interpolating function is polynomial of the first degree. The trapezoidal method intersects

the function curve in the starting point, middle point and the end point as declared in figure

7.3. The interval of the integration can be divided to a sequence of subintervals to provide

more accurate estimate. The smaller the size of subintervals, the larger their count is.

The standard trapezoidal rule method is represented in the equation 7.2 and the composite

trapezoidal rule is described in the equation 7.3, which is also known as the extended rule



7.5 Future Work 151

Figure 7.2: Numerical integration using midpoint rule

or the iterated rule.

∫ d+

d−
f(x)dx ≈ (d+ − d−)(f(d−) + f(d+))/2 (7.2)

∫ d+

d−
f(x)dx ≈

(d+ − d−)

2

(
f(d−)

2
+

n−1∑
k=1

f

(
a+ k

(d+ − d−)

n

)
+

(f(d)+)

2

)
(7.3)

where the subintervals have the form [kh, (k+1)h], with h = (ba)/n and k = 0, 1, 2, . . . , n1.

Figure 7.3: Numerical integration using trapezoidal rule

According to the stated equations numerical integration, the inequality relations can be

defined as follows:
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Definition 7.5.1

For any two real intervals I1 = [I−1 , I
+
1 ] and I2 = [I−2 , I

+
2 ] I1 is less than I2 if

∫ I+1
I−1

f(x)dx <∫ I+2
I−2

f(x)dx and I+1 < I+2 whereI−1 , I
+
1 , I

−
2 , I

+
2 R

Definition 7.5.2

For any two real intervals I1 = [I−1 , I
+
1 ] and I2 = [I−2 , I

+
2 ] I1 = I2 if and only if

I−1 = I−2 and I+1 = I+2 where I−1 , I
+
1 , I

−
2 , I

+
2 R

Definition 7.5.3
Otherwise,I1 is larger than I2 (11)

The following set of figures indicates different combinations of the relations between

two intervals with different urgency curves. Such urgency functions affect the estimate of

the integration of the interval, which affect the priority of the intervals in the inequality

situation.
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Figure 7.4: a plot for two intervals representing two uncertain deadlines

for two jobs. Each job has its own urgency curve that varies

with time. Deadline d1 has great urgency factor by its end

where deadline d2 has small urgency factor by its

beginning. Using the numerical integration of the areas

under the curves imply that d1 > d2

As long as the algorithm is under execution, the uncertainty increases or decreases by

processing according to the arithmetic and logic operations, which are implemented using

a specific instruction at a specific slot of time. Such operation is called uncertainty conver-

gence and uncertainty divergence. One of the possible extensions to keep the uncertainty

at the same level or converging and to stop any possible divergence is to put functional

observers that monitor every change in the runtime variables and try to keep them with

minimum uncertainty. Another extension for the proposed methodology is to integrate it

with sensitivity analysis, in order to final, which changes within each interval can lead to

more optimal solution with the same uncertainty level. The same concept of applying pro-

gram slicing, defining interval operators and extending the algorithms can be applied to



7.5 Future Work 154

probabilistic-based and fuzzy-based uncertainty. Probabilistic approach will need to con-

sider the density function, mean and variance and consider how they will affect the uncer-

tainty of the objective function. The Fuzzy approach will need to consider the membership

function and the fuzzy rules and how they can affect the uncertainty and the optimality of

the objective function. The fuzzy approach will be useful for meta-heuristic solutions.
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