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Abstract 

WSNs facilitate the detection of numerous real world phenomena such as natural disaster 

and structural faults. The networks collect information from a particular area and transfer it 

to a centre for further process. In the data collecting process, there are many considerable 

issues that might influence quality of service (QoS). Therefore, it is always necessary to be 

considered about the unpredicted events that might negatively influence QoS in WSNs. The 

main objective of this research is firstly, to identify the existing gaps in providing a better 

QoS in the networks. Although many problems can be addressed in this area, only four of 

them are studied in this thesis. First, a new clustering method for the sensors nodes is 

proposed to ensure the clusters’ formation are maintained during the network lifetime. Next, 

a concept of quality based data fusion mechanism that deals with collecting and sending 

only valued data is introduced. In the proposed approach, the nodes play an important role 

in distinguishing and transferring only valued data. The valued data will then be aggregated 

and transferred to a base station. In the process of routing the data packets, QoS might also 

be influenced due to issues such as node failure. Therefore, as a contribution of this thesis 

we proposed two routing protocols in WSNs that can adjust themselves with changes in 

nodes’ conditions and behaviour. First, the base station is similar to the other deployed 

sensor nodes is stationary. Each node is responsible to take the current condition of 

immediate nodes into consideration in a real time to find the most appropriate next hub. 

Next, we extend the protocol by replacing a mobile sink with the stationary base station. 

The mobile sink is capable to schedule itself, based on current conditions of the nodes. 

Therefore, the mobile sink instead of randomly or in an order visits the sensor nodes, can 

visit the source nodes in a priority manner. Finally, the concept of coverage-hole recovery 

is introduced to deal with loss of coverage arising from node failure in post deployment 

scenario. The proposed approach finds the uncovered areas and then, virtually force the 

nodes to move through the areas. 
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Chapter 1 

INTRODUCTION 
 

Advances in micro electro mechanical systems (MEMS) technology has provided the 

opportunity for developing tiny and low-cost sensor nodes containing on-board sensing, 

signal processing and wireless communication capabilities. These sensor nodes are capable 

of converting environmental phenomenon into digital signals and send them to other nodes. 

Each individual node has limited capabilities that might not be able to use in different 

monitoring systems. However, a combination of hundreds or thousands of them can 

coordinate by forming wireless sensor networks (WSNs). A WSN is a compact sensing 

system with a collection of wireless sensor nodes deployed on a region of interest with the 

purpose of sensing events in a collaborating manner. WSN can be used in many real world 

applications. Some of these applications require a very high level of performance, reliability 

and accuracy. Therefore, it is always necessary to consider quality of service (QoS) in 

WSNs. QoS based on the requirements of WSNs can be used in different meaning and 

prospective. Nevertheless, QoS in any WSNs is used to enhance the performance of WSNs 
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for users [1]. In this thesis QoS is analysed based on the consideration of different 

requirements such as energy consumption, delay, traffic overhead and successful 

transmission. To enhance them, there are many research questions can be addressed. In this 

chapter, four research questions with the motivations behind them are introduced.     

1.1. Research Motivation 

In WSNs QoS can be affected by different reasons. First, the WSN deployment 

method is one of the most important factors that can influence the data quality. Unreliable 

or even not suitable model for a WSN can make the sensor nodes waste their limited power 

and loss data as well as increasing overhead traffic in the network. Another reason that 

influences QoS is the data fusion mechanism used. Unreliable data fusion mechanisms 

might increase traffic overhead as well as unsuccessful data transmissions in WSNs. 

Therefore, as a result of resubmission process, energy consumption would be increased in 

such networks. Next, a comprehensive routing protocol can play a significant role in 

transferring higher quality data packets to base station (BS). Each routing protocol needs to 

be highly capable of adopting itself to different situations. It is also necessary for a source 

node with important data to make sure that BS can receive the data on time. Failure in 

receiving data by BS increases the requirement of data packet re-transmissions. Therefore, 

the QoS requirements such as delay, traffic overhead and energy consumption in the 

network will be influenced. Finally, coverage of the network is also one of the most 

significant factors that can help to enhance QoS in a WSN data. To make sure that the entire 

events in an area of interest are detected and also redundancy in reporting the events is 

minimised, it is necessary to develop an optimised coverage method for WSNs.  
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1.2. Research Problem 

This thesis deals with QoS requirements such as energy consumption and delay in 

WSNs. In particular, we address the following four research questions in this thesis.  

 How to cluster a WSN to achieve the optimum QoS in the presence of node 

failure? 

When the entire deployed nodes are required to forward sensed data packets 

to the sink, the available energy in each node can be wasted through idle 

listening and retransmitting due to collision as well as overhearing. To 

overcome that, sensor nodes are clustered for the purpose of energy 

minimization. Then, they will be required to communicate with their CHs 

instead of sending the data packets directly to BS. However, in the case of 

CHs failure, the clustered structure of the network is ruined and consequently 

the nodes will be required to be re-clustered again. That causes a lot of 

missing data as in cluster creation process, the sensor nodes cannot collect 

data.   

There are several research work related to cluster formation in WSN [2-4]. 

Most of them considered various parameters on different conditions to select 

the most appropriate CHs in WSN. However, they did not consider CHs 

failure, as they can simply be destroyed due to hardware or even software 

failures. To address this problem, we propose a cluster formation with 

primary and backup CH (BCH). That is to make sure in case of the primary 

CHs failure, the BCHs are able to take the responsibility on an appropriate 

time. As a result, the sensor nodes can be sure that, even if their CHs are 
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failed, their cluster formation is still active without requiring a new 

clustering creation process. In fact, the nodes can keep collecting and 

sending their data to BS via their pre-determined backup CHs.   

 How to aggregate WSN data with maximum QoS assurance? 

Data generated from neighbouring sensors is often redundant and 

consequently influencing QoS in WSNs [5]. In addition, the amount of data 

generated in large sensor networks is usually enormous for BS to process. 

Hence, a method to combine data at the sensors or intermediate nodes is 

certainly required. Such a method combines different data packets from 

different sources without losing important information, while it eliminates 

redundant data.   

Recently many approaches have been investigated on developing fusion 

methods with the purpose of enhancing quality of WSN data [6-8]. However, 

the proposed approaches, did not consider specific limitations for sensors’ 

storages as they can influence QoS in WSN. They simply aggregate the 

entire received data from sources that include valued and corrupted data. As 

a result, apart from the created a high traffic overflow, energy consumption 

in such networks is obviously not efficient.   

To address this problem, we propose a data aggregation protocol for WSNs 

that can distinguish valued and corrupted data from each other. Then, it 

disregards the corrupted data in the fusion process. The proposed protocol 

reduces data redundancy as well as enhancing the efficiency of energy 

consumption in the WSN. 

 How to collect data from the WSN in the present of sensor node failure?  
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Node failures that cause loss of connectivity is the most common problem in 

dynamic WSNs that causes the collected data are not received by BS. To 

overcome the problem, an efficient quality based routing protocol is required 

with the capability of adjusting to different unexpected node failure in 

WSNs.  

During the past decade, considerable research efforts have been investigated 

in developing routing techniques in WSNs with stationary and mobile BS 

(MBS). Majority of the approaches considered constrains such as energy 

efficiency and delay as the main objectives to enhance QoS in the networks. 

However, existed developed protocols have limitations in dynamic 

environments which contain a variant amount of noise created by 

interferences. Additionally, MBS is not capable to schedule itself 

intelligently to visit source nodes in an efficient manner. Moreover, MBS in 

the existing approaches cannot be called by the source nodes of WSNs. In 

fact, it needs to visit the entire source nodes even they are not required to be 

visited.      

In this thesis, we develop a dynamic data routing approach for WSNs with 

the purpose of providing a higher QoS. In that we consider local information 

includes noisy data. The MBS used in the approach instead of visiting the 

entire source nodes, is able to smartly schedule itself in the most efficient 

manner. As a result, we enhance the energy efficiency of the network as well 

as reducing the traffic overflow in the WSN. 

 How to enhance coverage of WSN to improve QoS in the presence of node 

failure and coverage redundancy?  
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The importance of this problem arises when a WSN needs to be established 

in inaccessible areas such as forests or chemically polluted regions. In such 

areas sensors are deployed randomly that is reducing the quality of collected 

data. That is because of the low possibility of fully covered sensor field, 

while the node are not overlapped.  

There are several research work related to the deployment of wireless sensor 

nodes [9-11]. Most of them considered a single objective such as coverage 

ratio. However, the other objectives such as energy consumption 

minimization, uniformity and data reliability are also practically considered 

in the choice of deployment process.  

This thesis develops a dynamic reconfiguration coverage maintenance 

scheme for mobile sensor network to meet the specific requirements of the 

event detection system. When a loss of coverage occurs due to reasons such 

as dead or noisy sensors, the proposed approach ensures the immediate 

neighbours to move and replace with the failure node. As a result of locating 

the sensor nodes uniformly in the area of interest, the energy consumption 

of the network is consumed more efficiently.  

1.3. Methodology 

There are many techniques includes statistical and Covariance Intersection (CI) 

based methods are used to enhance the QoS in WSNs. However, most of them are not 

capable to cope with the uncertainty of the data produced by WSN’s. Moreover, the 

inflexibility of the methods prevents processing the data realistically [12]. Applying these 

methods requires very complex and very much computational effort for having optimal 



 

7 

 

performance [13]. In contrast, flexibility of fuzzy systems provides us with the opportunity 

to edit and display given information at any point of the structuring. In addition, the 3D 

display and surface gives us a clearer picture of the output of the system. Therefore, we 

decided to use fuzzy logic systems as in many previous works the sensors were equipped 

with the systems [14-16]. Type-1 fuzzy logic systems (T1FLS) use fixed fuzzy 

memberships that cannot directly address variable conditions. Therefore, uncurtain 

measured parameters in applied systems would be neglected by T1FLS and the performance 

obviously will be negatively influenced. As a result, Type-2 fuzzy membership functions 

that use membership degrees which are themselves fuzzy sets were developed. Type-2 fuzzy 

sets are very useful when there is a difficulty in determining appropriate membership 

function with ambiguity. Type-2 fuzzy sets allow us to handle linguistic uncertainties. 

T2FLS technology has been regarded as a way to increase the fuzziness of a relation means 

increased ability to handle inexact information in a logically correct manner [17]. The fuzzy 

logic toolbox used in this thesis was built in MATLAB. Therefore, although there are many 

simulating software such NS3 or OMNET, we used MATLAB to simulate the proposed 

solutions. To test and validate the proposed approaches in this thesis, we conduct 

experiments. The inputs of the developed approaches we generate synthetic data. We use a 

Gaussian distribution with its mean and covariance matrix representing the expected value 

and its uncertainty (10% of the value). Then, the values are normalized to fit in the [0, 1] as 

the inputs of the fuzzy system. Then, we extract linguistic variables out of the normalized 

data. In each experiment, 20% of the data is used for training the fuzzy system to determine 

the membership functions and also the rules as well as the required threshold values for 

solutions. Then, we used 80% of the data to test the proposed solutions. In those simulations 
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and experiments, various parameters were used to examine and demonstrate the viability of 

the proposed solutions compared to the similar baseline solutions.  

We validate our experiments using root-mean-square error (RMSE) as used in previous 

works [18-20]. RMSE provides a complete picture of the error distribution in an experiment. 

It provides not only a performance measure, but also a representation of the error 

distribution. In this thesis RMSE is used to measure of the difference between predicted 

values and the result of the proposed approaches and also the existing baseline protocols. 

RMSE gives us a single measure of predictive power to compare the performance of the 

approaches.   

1.4. Research Objectives 

The aims of this thesis are: 

 To propose a distributed and dynamic self-configurable approach for clustering 

WSNs, in order to minimize the communication overhead and prolong the network 

lifetime; 

 To develop a cluster based data fusion protocol in order to combine information 

from various sources to reduce the amount of raw data transmitted over the network. 

 To develop two distributed dynamic WSN data routing protocol in WSN with a 

stationary and a MBS; 

 To develop a dynamic distributed coverage strategy in which mobile sensor nodes 

have the ability of communicating with each other, detect failed nodes or uncovered 

areas and organize themselves to move and maximize coverage. 
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1.5. Research Contributions 

Figure 1.1 illustrates the overall research contributions made in this thesis. Block i 

to iv in the “Contribution Overview” window at the bottom correspond to objective i to 

objective iv, respectively the “Underlying Networks” window at the top reveals the type of 

underlying network in relation to each contribution. Finally, “Main contribution” window 

presents the approached thesis objective. 

The primary contributions of this thesis are summarised as follows: 

i. Self-configurable clustering protocol in WSN. The thesis proposes a distributed and 

dynamic self-configurable type-2 fuzzy based approach for clustering sensor nodes. The 

algorithm minimizes the communication overhead and prolongs the network lifetime by 

introducing a backup CHs. Consequently, in case of decreasing the eligibility of the 

current CHs to a certain threshold level, there is a defined node that takes the 

responsibility without needing any re-selection process. The proposed approach, 

compare to the existing approaches, enhances the performance of the system by 

reducing energy consumption and traffic overflow in WSN. 

ii. Data fusion scheme in WSN. In this thesis, a data fusion framework protocol that 

uses type-2 Fuzzy set theory [21] is proposed. The proposed approach is in contrast to 

the existing developed protocols, distinguishes the valued data to the others. Therefore, 

instead of transferring and processing the entire data, only valued data are taken into 

consideration. The main advantages of the proposed technique are firstly, enhancing 

quality of data as the valued data are not influenced with inaccurate or unsatisfied data. 
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Next, it enhances the efficiency of energy consumption as the proposed method by 

eliminating unvalued data make a reduction in transferring data. 

iii. Data routing protocol in WSN. In this thesis, two routing protocols in a WSN with 

the purpose of enhancing QoS are proposed. The first proposed approach is basically a 

routing protocol with stationary sensor nodes and a BS. Each source node needs to 

consider the current condition of neighbours, in real time, through BS to transfer the 

data. After that, the proposed protocol is extended by replacing the stationary BS with 

a MBS. In the extended version of the approach, we develop a unique flexible visiting 

method for MBS. The direction of MBS can be controlled and changes based on sensors’ 

local information. Additionally, MBS can be called by each node in the sensor field.  

iv. A dynamic WSN coverage scheme. In this thesis, a dynamic distributed WSN 

coverage maintenance strategy is proposed. In the proposed approach, the mobile sensor 

nodes have the ability to communicate with each other, detect failed nodes or uncovered 

areas and then, organize themselves to move and maximize coverage. This approach, 

unlike the existing approaches does not need to use global information of the network. 

QoS is also enhanced as noisy or disordered nodes are detected and then, replaced with 

immediate neighbours. Moreover, the energy consumption is become more efficient. 

That is due to firstly, less required message exchanges as well as eliminating the noisy 

nodes that transfer more bits (noises) in the network. Secondly, the needed energy for 

random and inaccurate movement of the mobile nodes is reduced.   
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Figure 1.1 Schematic view of the overall research contribution 

1.6. Thesis Organization 

The remainder of the thesis is organized as the following:  

1. Chapter 2: WSN data quality control. This chapter provides an in-depth analysis 

and overview of existing WSN data quality control approaches, presented 

within a comprehensive taxonomy.  
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2. Chapter 3: WSN clustering. This chapter presents an approach to capable WSN 

of self-configurable cluster head (CH) selection and clustering the entire 

network.    

3. Chapter 4: WSN data fusion. This chapter presents an approach to aggregate 

WSN data with considering the current storage condition of sensor nodes. 

4.  Chapter 5: WSN data routing. In this chapter two routing protocols are 

suggested one with stationary BS and other with MBS. In both scenarios, the 

network behaviour are analysed separately.  

5. Chapter 6. WSN self-configurable coverage scheme. This chapter presents a 

protocol that is divided into two phases.  

6. Chapter 7. Conclusion and future directions. The concluding chapter provides a 

summary of contributions and a future research challenges  
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Chapter 2 

LITERATURE REVIEW 
 

This chapter provides a comprehensive review of wireless sensor network (WSN) and 

various quality of service (QoS) issues in such networks. It focuses on four of the major 

issues which are clustering deployed sensor nodes, data aggregation, proper routing data 

packets and converge enhancement with mobile sensors in a WSN. In this chapter, an in-

depth analysis of the existing approaches is presented to identify the addressed research 

gaps. 

2.1. Introduction 

WSN has been an attractive research area and has been used for various applications. 

WSN integrates low power communication and consists of a large number of sensor nodes 

that communicate with each other. The sensor nodes can be deployed either randomly or 

manually depending upon the applications. In addition to the sensor nodes, WSNs need one 

or more base stations (BS) to be able to make communications and collect data from the 

sensors deployed in the monitored areas. The role of the BS is to maintain the 
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communication between sensor network and external source (users). In fact, the 

communications among sensor nodes and the BS provide users with the accessibility of 

information from any remote location to allow collecting and analysing the sensor data. 

Figure 2. 1.  presents a general view of a WSN. 

NetworkkNetwork

NNNetwwoooorrrkkkkkNetwork
S

Base Station

 

Figure 2.1. A general view of a WSN 

A wireless sensor node is a very small transducer that is capable of convening physical 

phenomenon such as sound, light and temperature into electrical signals. The technical 

components are consisted of sensor interfaces, circuit, microcontroller, battery and radio 

system. Each component and system in the electrical device is required to work properly to 

achieve the expected outcome of the device. Figure 2.2 shows a general view of a sensor 

node device.  
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Figure 2.2. Sensor node 

In a sensor node the radio subsystem is responsible for data transmission. For this purpose, 

each sensor node needs to use radio frequencies to be able to communicate with each other. 

In an operating WSN, there are two types of communications, which are infrastructure and 

application communication. In infrastructure communication, the sensor nodes are required 

to build, maintain and optimize the network. This communication is needed to monitor 

environmental changes or node failures. The application communication is required to 

forward the collected data to the BS. There are well known technologies such as ZigBee 

and IEEE802.11 that manage the radio section of the sensor node. The technologies can 

manage the radio data rate, signal frequency and bandwidth [22].  

Power subsystem is another technology consideration of the devices. Each sensor node 

requires a power unit to function and perform their individual tasks. Power subsystem 

provides the supply voltage and the requirements of the power are strict due to energy 

constraints. It also supplies sufficient levels of current during radio transmissions and 

receptions. In constructing a battery, apart from providing a long life for a WSN, it is 

necessary to be aware of the weight, cost and the size of batteries as well as the global 

standards for availability and shipping batteries.  
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Microcontroller in a sensor node is usually responsible for adapting the applied routing 

methods, efficiently transmitting sensory signals and processing them [23]. This subsystem 

also involves data fusion where the different packets arrive from the sensor nodes are 

gathered to form a single packet thereby reducing the transmission energy in WSNs. Finally, 

circuits and sensor interfaces are responsible for sensing the environment and are controlled 

by microcontroller. 

After deployment, the sensor nodes are subject to various conditions that have impact on 

their performance. Some of these factors include: 

Environment factors: Each sensor node for a period of time might be subjected to a non-

operating environmental limitations without permanently changing its performance under 

normal operating conditions. Environmental limits are directly related to the storage 

conditions of the sensor nodes include the highest and the lowest storage temperatures and 

maximum relative humidity at the temperatures. In such conditions the sensors output 

signals may increase or decrease which is causing an ultralow frequency noise. Those 

changes might be occurring in a short term period of time such as a minute or even in a long 

time of sensors’ performance. Therefore, environmental stability, which is a significant 

requirement of producing sensor nodes, is necessarily needs to be considered by both sensor 

designer and the application engineers.   

The most important factor that influences sensors’ performance is their storage temperature. 

For sensor nodes, the lower and upper extreme temperature (e.g., -5 C to +80 C) is usually 

provided in their data sheets, within which the sensors maintain their specified accuracies. 

Sometimes the temperature range might be divided into some sections with their specified 

error in nodes’ output. In addition, a relatively fast temperature change may cause the sensor 
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to generate a false output signals. That is because in the case of a quick change, the 

temperature, sensors generate an electronic current that might be recognised by their 

processing units as a valid response and consequently, cause a false detection [24].  

Uncertainty: Sensor nodes manufacturers are aiming to produce the most accurate wireless 

sensor nodes to uniformly and consistently collect and process data. However, the reality is 

that the produced sensors are never ideal as they carry uncertainty in their measurements. 

Therefore, users never can be 100% sure about the created measured values [24]. In fact, 

any individual measurement, x, is expected to be presented a bit different to the true 

value,  That is due to the existed uncertainties that cause errors in the measuring process. 

The error is calculated by (2.1).  

ɸ =                                                                (2.1) 

It does not matter how an event (e.g. temperature) is measured by a sensor or how close the 

measurement is to the true value, never can it be sure that it is accurate. For example the 

uncertainty in measured temperature of a water bath could be up to ɸ = 0.068 [24].  

2.1.1. WSN Applications 

Applications of WSNs in the event detection domain can be categorised into five 

major categories. In this section some of the applications are going to be explored.  First, 

environment applications in which a large number of sensor nodes are deployed in an area 

of interest. They are responsible to detect the environmental phenomenon such as 

biodiversity and ecosystem monitoring [25], air pollution monitoring [26], greenhouse 

monitoring [27] and food monitoring [28]. Apart from the applications, the use of WSNs in 

critical environmental hazard detection and disaster warning system attracted more attention 
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in recent years as it promises safety of human lives and properties. Typical applications in 

such forest fire detection [29], volcano monitoring [30] and earthquake warning system [31] 

radiation detection [139, 140], chemical and biological hazard detection [32] or any other 

meteorological hazard characterised in environments [33]. WSNs can also be applied in 

industrial fields for monitoring purposes. The main motivation of using WSNs instead of 

the wired sensor networks in industry is the flexibility and the capability of self-

organization. In case of adding or removing a sensor node from the WSN, the networks can 

reconfigure itself without being worried about cabling. Moreover, sensor nodes can be place 

in a moving part of machineries and inaccessible areas for remote monitoring, where wired 

sensors may not be able to apply. WSN are usually used to detect the performance and 

operational faults and to detect safety issues in large industrial plants [34], building 

automation [35] and structural integrity monitoring [36]. As a result of monitoring and 

detecting faults or anomaly in industry possible damages on machineries which could be 

very costly could be prevented. Moreover from personal safety point of view, WSNs can 

help the operators who work in the industry. Third, WSNs can also be used in emergency 

health applications to provide a global and cost effective monitoring system to continuously 

and independently monitor a person's physiological conditions. Therefore, in case of any 

emergency the corresponding medical centre can be notified. Some of the emergency health 

applications include continuous health monitoring and alarm system [37] and fall detection 

in elderly care [38]. Finally, WSN can be used in our home applications such as vacuum 

cleaners, stoves, stoves and electricity monitoring systems. WSNs can monitor our everyday 

life and determine real world phenomena that needs to be taken care of automatically for 

smart home system [39, 40]. 
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In the all applications, QoS is the main challenging aspect of them that needs to be 

considered. To enhance QoS in the applications, deployment methods used for developing 

WSNs for the applications is as much important as collecting and aggregating data from the 

environments. Transferring data in different environment with different conditions is also 

an important key in providing a satisfactory QoS.      

2.1.2. Event Detection in WSN 

Event detection using WSN technology has been a research area over the past 

decades. That is due to the various applications in the real world. Event in WSNs 

corresponds to a real world phenomena occurring in environments being monitored. Event 

detection process generally can be categorized into two main centralized and distributed 

detection classes.  In centralized detection based systems, each sensor is required to send its 

observations to a centre or a base station without any processing or losing information. 

Then, the centre would be in charge to process the received data and realize that whether an 

even occurred. That obviously increases the traffic as well as energy consumption since 

transferring data consume more energy than processing them. That is clearly become worse 

in large scale sensor networks in real world applications with the large amount of 

transmissions from sources to the base station [41-43]. That also incurs a significant delay 

in event detection process in WSNs. Therefore, decentralized or distributed event detection 

scheme can perform better as the sensor nodes are constrained by limited power and 

bandwidth communication. In decentralized detection architecture, sensor nodes instead of 

sending data packets directly to the base station, they decide on the occurrence of an event, 

based on the sensed data. Then, only the decisions are sent to the destination. As a result, 

lower consumption of energy and bandwidth in such networks, make the decentralized 
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detection to be the most popular technique in event detection process [42, 44-47]. There are 

many proposed techniques and schemes such as patterned based recognition detection 

scheme [48-51] and fuzzy logic system [52, 53] that can be used in developing a distributed 

architecture. In this research, it is decided to use fuzzy logic system detection.    

Krasimira et al.  [53] identified fuzzy logic suitable for event detection in WSNs. First, the 

system is capable of tolerating unreliable and imprecise sensor readings. Next, the system 

work very closely to the natural way of human thinking. Finally, fuzzy logic is much 

intuitive compared to other probability theory based methods. In fact, fuzzy logic has 

potential to deal with conflicting situations and imprecision in data using heuristic human 

reasoning without needing complex mathematical modelling.  

There are two types, type 1 and type 2, of fuzzy logic systems. In this thesis only type 2 of 

the system is used. The interval T2 (IT2) FLS, which is known as interval-valued, is the 

most popular technique that has been using in type-2 fuzzy systems. The basic concept of 

IT2-FLS is considering a foot print of uncertainty (FOU), which can be described by two 

bounding of T1 fuzzy membership functions [17]. Eq. (2.4) calculates the IT2 fuzzy set .    

                              (2.4) 

In this equation, x and u are the primary and the secondary variable and   is the primary 

membership function of x. In case of IT2 fuzzy sets, all secondary grade of fuzzy set  are 

equal to 1. The domain of the primary membership  defines the FOU of fuzzy set , 

which can be described by its upper and lower membership functions. Hence: FOU ( ) = 

.  
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Figure 2.3. Interval Type 2 FLS 

Figure 2.3 shows a general view of the IT2 with the upper  and lower  

membership functions. In order to calculate the final output of T2-FLS,  there are two 

main steps, which are reducing the type 2 to type 1 and then defuzzifing the output. The 

first step, type reduction, which is an important calculation for Type-2 FLSs, is a new and 

complicated concept. detail of some popular methods in type reduction have been described 

in [54]. The second step is defuzzification. In order to obtain a crisp (type-0) output from a 

type-2 FLS, the type-reduced set needs to be defuzzified. For this aim, there are many well-

known techniques such as centroid, bisector, mean of maximum, smallest of maximum and 

largest of maximum. More details of type reduction methods can be found in [17]. 

2.2. Quality of Service (QoS)  

Different techniques in WSNs may recognize QoS in different ways, which can be 

designed based on applications’ requirements. For instance, in a safe control system delay 

and packet loss may not be allowed, while it might be acceptable in air conditioning systems 

in an office. Nevertheless, QoS methods in any application are applied to enhance 

performance of WSNs [55]. There are many considerable challenges that can be categorized 

into hardware and software aspects of the networks. This research is more focused on 
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software aspects of the techniques. In this study, the following six parameters are going to 

be addressed to enhance QoS in the WSN.  

i. Memory Limitation: Since a sensor node is a small device, the memory used in the 

device has a strict capacity limitation. Therefore, there is not enough space to run 

complicated algorithms and also storing much data. Hence, overflow can be a significant 

issue in providing high QoS [56]. 

ii. Delay: Multi-hop routing, network congestion and data traffics are the reasons behind 

delay in wireless communications. That can affect synchronization in the network and 

consequently make issues in data collection processing, especially in critical events. 

Thus, to ensure data to receive on time to the destination in real time applications, it is 

necessary to be aware of delay metrics in developing data collection mechanisms. Notice 

that on-time transmission does not mean fast communication or computation but there is 

a unique timing requirement for every network that needs to be respected [57]. 

iii. Power Consumption: Energy consumption is the biggest constraint that needs to be 

considered in developing a WSN. In general, energy consumption in a WSN can be 

categorized into three main aspects: (i) energy for the sensor transducer, (ii) energy for 

communication among sensor nodes and (iii) energy for microprocessor computation. It 

has been shown [58] that the required power for transmitting one bit of data in WSNs is 

equal to the required energy of processing 800 to 1000 instructions. Consequently, 

energy constraint necessarily needs to be taken into account precisely in developing a 

routing protocol for a WSN [59]. 
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iv. Accuracy: Performance accuracy of WSNs is not only depended on physical properties 

of the environment. Developed algorithms and system protocols also have a significant 

role in providing an accurate network [60]. 

v. Data Aggregation: Data aggregation is a combination of data arriving from different 

sources. The data can be aggregated using some functions to find and eliminate 

duplicates. That helps to reduce data transmissions in the network. As a result residual 

energy of the nodes is consumed more efficiency [61].  

vi. Reliability: Majority of WSN applications are usually required a high QoS respect to 

data reliability transmissions. Reliability of a WSN is highly vulnerable as the networks 

are characterized by resource constraints of the sensor nodes. Moreover, unreliable 

nature of the wireless links and dynamic changes in the size and density of the network 

as well as physical attacks to the sensor nodes reduce reliability of the network [62]. 

2.3. A Taxonomy of QoS-Based Protocols 

In this section an in-depth analysis of the existing approaches is presented. 

2.3.1. Self-Configurable Clustering WSN  

The main purpose of clustering methods in WSNs is to organize the sensor nodes 

into small disjoint groups where each cluster has a coordinator referred as Cluster Head 

(CH) and cluster members (CMs). In cluster based approaches, the sensors do not need to 

communicate directly with BS. Each cluster has a CH with the responsibility of organizing 

CMs, aggregating the collected data within the cluster and finally sending the data to the 

BS. CHs reduce a significant amount of transferred data within the network. Consequently, 
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overheads in communication as well as bandwidth in clustered networks compare to direct 

communication methods are reduced significantly.  

Generally, clustering protocols in WSNs are divided into two main sections. First, cluster 

formation, in which clusters are organized followed by CH selection process. Then, steady 

states phase that is for transferring data from sources to the BS. During the steady state 

phase the energy of sensor nodes dynamically decreases and that leads to disorder the nodes. 

As a result, the network is faced losing the packets. The problem becomes worse if the failed 

node is a CH and its failure is not detected. Then, all the transferred data to the CH from 

CMs will be lost. As a result, the energy consumption and packet overhead in the network 

followed re-submission of the packets will be increased.   

Clustering methods can be classified into centralized and distributed mechanisms. In 

centralized methods such as [63] and [64], BS finds CHs and constructs clusters according 

to the gathered local information from all the deployed nodes periodically. In centralized 

approaches, the entire nodes are required to be in contacted to the BS directly and frequently. 

That results in substantial energy waste. In contrast, the distributed self-clustering methods 

that is more effective in large scale WSNs organize the sensor nodes into groups by 

themselves. Many distributed clustering methods such as LEACH-ERE [65]  are developed 

based on either iterative or probabilistic methods.  

From another point of view, clustering protocols can be dynamic or static. A static clustering 

technique unlike dynamic technique, forms clusters permanently. However, in some 

circumstances permanent formed clusters cannot perform well as sensor nodes might die 

and cause disconnections. Thus, a dynamic protocol operation perfumes more reliable 

although extra overhead is imposed in forming clusters dynamically.  
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The first well known clustering protocol developed by Heinzelman et al. [66] is Low Energy 

Adaptive Clustering hierarchy with Deterministic CH Selection (LEACH). LEACH has 

been developed based on a clustering mechanism to select CHs using optimal probability. 

The protocol works on periodic randomized rotations of the CH within the cluster range 

between zero and one. If the random number is less than the pre-determined threshold value, 

the node becomes a CH for the current round. The authors have succeeded to achieve a 

reduction in energy dissipation compared to direct communication and transmission 

protocols. However, since in the protocol the number of clusters is predefined, LEACH 

cannot guarantee an acceptable CH distribution. Additionally, due to lack of support in 

deploying network with a large number of sensor nodes, the protocol cannot be used in a 

large region. Moreover, LEACH suffers from significant energy consumption when there 

is no CH selected in some rounds.  

Applying T1-FLS in distributed protocols improves the performance of the networks 

significantly. For instance, Gupta et al. [67] introduced a CH election method using fuzzy 

logic to overcome the drawbacks of LEACH. The achievement of the protocol efficiently 

increased the network’s lifetime. However, this centralized approach is not suitable for 

networks with a large number of deployed nodes. LEACH-FL [68] is also an improvement 

of LEACH that employs a similar approach to [67]. In this protocol, the BS selects nodes 

with higher chance as CHs. Although this method has the same drawback of Gupta’s 

method, it presents a better result than LEACH protocol. To overcome the drawback of 

centralized algorithms, Jong-Myoung et al. put forward CHEF routing protocol [69]. To a 

certain extent, CHEF extends the network lifetime. However, it selects the nodes with less 

neighbour nodes as CHs easily that destroys the balance of energy consumption. Gateway 

and CH election using fuzzy logic in heterogeneous WSN (GCHE-FL) [3] is a developed 
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protocol that uses two fuzzy based elections to evaluate the chance of sensors to become a 

gateway and CH. In the first election (Gateway Election), the qualified nodes are selected 

based on their energy and distance to the BS. Then, in the second election (CH Election), 

residual energy of each node and cluster distance are used. Cluster distance is sum of 

distances among cluster members. Simulation results show that the proposed approach 

enhances the energy efficiency in the network.  Qing et al. [70] proposed a distributed 

energy efficient clustering (DEEC) algorithm for heterogeneous WSNs. In DEEC, the CHs 

are selected using probabilistic models based on the residual energy of each node and the 

average energy of the network. In DEEC the responsibility of CHs is rotated among all the 

nodes in the network based on their residual energy. To accomplish that, all the deployed 

nodes need to be informed about the total energy and the network lifetime. That information 

is broadcasted by the BS. Then, each node compares the received information and its 

residual energy against a predefined threshold to realise that if it can be a CH on that round. 

After that, Elbhiri et al. [71] enhanced DEEC by proposing stochastic energy efficient 

clustering (SDEEC). In this approach, the intra-clusters transmissions are reduced and also 

increased the energy efficiency by making the CMs into sleep mode. In this protocol, all the 

CMs are allocated a transmission time to transfer their collected data to their respective 

CHs. When the CHs start to aggregate the received data the CMs will be deactivated. In this 

approach, although the authors to some extend reduced the energy consumption in the 

network, they did not clearly explain about the CH rotating and also the collected data in 

rotation process. Liaw et al. [72] proposed a steady group clustering hierarchy (SGCH) with 

the purpose of stabilizing clustered WSNs. In the proposed approach, all the deployed nodes 

are clustered into different groups based on their initial energy. In this centralized algorithm, 

BS broadcasts a message, called group head request (GHR) to obtain local information of 
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all the nodes. Then, the sensor nodes send back an acknowledgement includes ID and initial 

energy information of the nodes. After that, BS finds and informs group heads for each 

group. Finally, each group head or CH defines its cluster members. The results in this study 

show that the stability and energy consumption are increased however, the traffic overhead 

in the network is quite high as it is a centralized approach. Table 2.1 compares the various 

existing clustering approaches respect to QoS features.  

Table 2.1. The comparison of different clustering protocols with respect of QoS 

Clustering 
Approach 

Energy 
Efficiency 

Overhead 
Rate 

Clustering 
Methodology 

CH Failure Inherent 
Uncertainty 

LEACH 
[66] 

Low Not 
Considered 

Distributed Not 
Considered 

Not 
Considered 

Gupta et 
al. [67] 

Low High Centralized Not 
Considered 

Not 
Considered 

LEACH-
FL [68] 

Low High Centralized Not 
Considered 

Not 
Considered 

CHEF 
[69] 

Low Not 
Considered 

Distributed Not 
Considered 

Not 
Considered 

(GCHE-
FL) [3] 

Moderate Not 
Considered 

Distributed Not 
Considered 

Not 
Considered 

DEEC[70] Moderate High Distributed Not 
Considered 

Not 
Considered 

SDEEC 
[71] 

Moderate High Distributed Not 
Considered 

Not 
Considered 

SGCH 
[72] 

Low High Centralized Not 
Considered 

Not 
Considered 

 

All the explored approaches to some extent, increased the energy efficiency in WSN. 

However, in their considerations to select CHs they did not take failure CHs into account. 

In fact, the main drawback of the existing approaches is the sensor nodes are sending data 

packets without noticing whether they are received or not. Moreover, they did not fully 

accommodate the linguistic and numerical uncertainties such as noisy input signals and 

inaccurate transmitted data packets. To sum up, as it is presented in Table 3, a 

comprehensive distributed clustering protocol that is capable of providing an acceptable 
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energy efficiency and overhead rate while considering inherent uncertainties in WSN has 

not been developed. 

2.3.2. Quality Based Data Fusion Mechanism   

The main purpose of developing data fusion mechanisms in WSNs is to enhance 

QoS in the networks. Data generated from sensor nodes is often redundant and highly 

correlated. In addition, the amount of data generated in large sensor networks is typically 

massive for the BS to process. Hence, it is necessary to come up with a method to combine 

data into a high-quality information that cannot be generated by the sensor nodes 

individually. That is to reduce the number of packets transmitted to the BS resulting in 

conservation of energy and bandwidth in the WSN [73].  

The main process of data fusion in WSN is to provide a greater quality on information and 

make reliable and accurate decisions about the events of interest based on the collected data 

from the various sensors. In this section, some common protocols that have been proposed 

to aggregate data is going to be explained. Then, the advantages and disadvantages of the 

protocols will be explored. As it can be seen in the figure 2.4, all the aggregating protocols 

are categorized into two main classes, which are structure and structure free based 

approaches. The structure based approaches are also further classified.    
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Figure 2.4. Classification of aggregating data protocols in a WSN 

2.3.2.1 Structured Based Fusion Method 

The structure based methods can be divided into three of the most popular protocols, 

which are clustering, tree and grid protocols.  

2.3.2.1.1 Cluster-Based Data Fusioin Method 

In cluster-based data fusion methods, usually sensor nodes are clustered into 

different groups with their own CHs. the CHs are responsible to fuse received data from 

CMs for the purpose of reducing data transmissions WSNs [74]. Clustered diffusion with 

dynamic data aggregation (CLUDDA) [75] is a combination of clustering with dynamic 

diffusion mechanisms. CLUDDA has the ability to fuse data in an unfamiliar environment 

by using query definitions. Chain Based data aggregation [76] is a clustering based 

algorithm that is assuming every single sensor in WSNs has the ability to aggregate data 



 

30 

 

and then, forwards them to the next node. Lindsey et al. [76] proposed a protocol, called 

power efficient data gathering protocol for sensor information systems (PEGASIS), with 

the aim of simplifying data fusion process in a WSN. In this protocol, all the deployed nodes 

need to be located into a stable linear chain and also they need to be aware of each other’s 

locations to choose the closest neighbours. Figure 2.5 shows the general architecture of 

chain based data aggregation. In the WSN all the sensors need to fuse the collected data, 

produce the same size of received data and forward it to the closest neighbour. This process 

continually occurs to reach the closest node to the sink, which is called leader node. Leader 

nodes that are CHs in this network fuse the entire received data packets again and send to 

the BS.    

 

Figure 2.5. Chain based protocol 

The authors believed that this technique can be used in a large size of WSN. This technique 

is more energy savage method than the previous described protocols. However, since all the 

sensor nodes need to aggregate the collected data the delay, especially in the end nodes 

cannot be ignored. Furthermore, PEGASIS cannot be a desirable solution for big networks 

or even for the very far distance sink [77].  
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2.3.2.1.2 Tree Based Data Fusion Method 

Tree based methods arrange the entire sensor nodes into a tree and organize them to 

be able to aggregate the data by immediate nodes in the network [74]. Then, a brief version 

of data is transferred to the root node along the tree. Figure 2.6 shows the tree based 

protocol. To analyse that, there is a query routing based data aggregation algorithms that is 

designed based on direct diffusion. The main thought behind this method is naming the data 

using information of the entire network.  

 

Figure 2.6. Tree-based data fusion protocol 

To analyse the method, there are three general phases. Firstly, the BS broadcasts 

periodically messages to each neighbour and provide them with specific information such 

as task type and expire time for data. Then, the sink produces control messages with the 

required gradient to guide the data packet to the destination. Finally, a path reinforcement 
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method in the network selects the specific neighbours as the next hops to be able to send the 

packets with a higher rate to the identified nodes. 

Although there are some advantages in applying the algorithm such as reducing 

communication between adjacent nodes and also cutting the additional addressing 

mechanism, there are some shortages. Firstly, the energy consumption is quite high and also 

the existed delay of the protocol are not avoidable especially in a large size of network. 

Suboptimal aggregation tree [78] is another protocol that is more focusing on constructing 

a possible minimum tree to the BS. To analyse that, there are three main sub-algorithms. 

Firstly, greedy internal tree (GIT) that is to create the tree in the network gradually and 

cover the entire network. In this protocol, the closest node to the sink determines a route to 

the main destination. Then, all other the nodes connect themselves to the created route. 

Secondly, shortest past tree (SPT) [79] algorithm that is applied in the network to identify 

the shortest data route to the sink. Overlapping route is a common shortage of SPT. Shinji 

MIKAMI et al. [79] suggested that aggregation tree could be an acceptable solution in the 

case of overlapping routes. Finally, the last suboptimal algorithm is CNS (Centre at Nearest 

Source) [78]. This algorithm gives the aggregating responsibility to the very closest node to 

the BS. Then, all the other nodes forward their sensed data to the end node to be aggregated. 

Since the conditions of different networks are changing, the performance of the mentioned 

sub optimal algorithms are changing. For instance, any changes in the distance of the closest 

node to the BS influences performance of the network.  

2.3.2.1.3 Grid-Based Data fusion Method 

Vaidhyanathan et al. [80] proposed two data aggregation schemes, which are grid 

based data aggregation and in-network data aggregation protocols. In grid-based data 
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aggregation, the deployed sensors are not allowed to communicate with each other. The 

sensor nodes that are part of virtual particular grid, transmit data packets directly to the pre-

determined data aggregator. In-network aggregating method is similar to grid based data 

aggregation with two major differences. First, any sensor can be an active aggregator and 

also each sensor within a grid can communicate with its neighbouring sensors [77]. Figure 

2.7 shows the general structure of grid based data aggregation.  

 

(a) In-network aggregator (b) Grid aggregator  

Figure 2.7. Data aggregation methods 

Figure 2.7 (a) presents the sensor nodes that are selecting the best node to be the aggregator 

of the network. Then, the selected node fuses the received packets from the other nodes and 

forwards them to the sink. On the other hand, figure 2.7 (b), shows that in grid based data 

aggregation all sensors directly transmit data to a pre-determined grid aggregator. 

To enhance the performance of the data aggregation it was suggested to make a hybrid 

scheme and apply a combination of the in-network and grid-based aggregation schemes 

[80]. When an event occurs, an aggregator node will be selected while they still maintain 
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the past events in their table. When a sensor detects an event, it checks its table for the 

previous event and identifies the nature of it. The in-network scheme will be followed if the 

sensor identifies the event as a localized event. Therefore, the best aggregator can be chosen 

depend on current situations. Apart from the authors’ claim that increased energy efficiency, 

complexity of the protocol in a large size of a network is a disadvantage of the scheme. In 

addition, since all the data from each node is needed to be processed and transferred, the 

energy cannot be efficiently consumed. Moreover, preventing data redundancy were not 

taken into account in this approach.    

2.3.2.2. Structure Free Based Fusion Method 

Structure free based mechanisms in WSN are the attractive techniques that can be 

used in environments with frequency changes [74]. The technique is more applicable for 

monitoring systems that are not required any structure. There are two main challenges in 

accomplishing the techniques. Firstly, as there is no pre-constructed structure, routing 

decisions for the efficient aggregation of packets need to be made on-the-fly. Secondly, the 

sensor nodes are not able to wait on data from any particular node before forward their own 

data. That is because the sensor nodes do not explicitly know their upstream neighbours. 

Many researchers, as it is surveyed in [81], have been investigated in this area for 

aggregating data. The most common techniques that is going to be explored in this section 

are using neural-network and fuzzy logic systems. In [82], Chen et al. proposed a data fusion 

method. The algorithm uses both neural networks and fuzzy inference. The approach, based 

on some information such as temperature and smoke density determines whether a fire has 

been occurred. This technique enhanced the accuracy of detection however, energy 

consumption and data reduction were not taken into consideration. Doolin and Sitar [83] 
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proposed a system to monitor forest fires, based on the use of WSNs. The nodes of the 

system were able to sense temperature, humidity and barometric pressure. In this approach, 

the energy consumption of the network was not taken into account. Yu et al. [84] proposed 

a paradigm for forest fires detection. In this approach, they considered temperature, relative 

humidity, smoke density and wind speed sensors in the environment to detect fire 

accurately. They reduced the amount of data traffic in the network to prolong the network 

lifetime. In fact, the used cluster base deployment technique to develop a WSN and lead the 

CHs to aggregate the data using a neural network. Then, the CHs send the result to a node 

called manager node. Thus, the node analysis the received results to be able to detect fire in 

the area of interest. This approach prolonged the network lifetime but still cannot be 

considered as a comprehensive solution as they used all the received data from the sensor 

nodes. Thus, they did not consider duplication in the network. As a result, QoS in the 

network was not fully taken into account. In [85], a variable weight based fuzzy data fusion 

algorithm for WSN is proposed. The main purpose is to enhance the accuracy and reliability 

of data fusion in WSN. In this approach, each CH are assigned a different and unfixed fusion 

weight. The weights are changed using fuzzy logic system, based on some factors such as 

delay, data amount and trustworthiness of the CHs. The lower fusion weighted CH the lower 

influence the CH can make. As a result the collected fused data packets are more reliable 

and accurate. The approach to some extend enhanced the QoS of the network. However, the 

authors did not take the message overhead and energy consumption into accounts.  

2.3.3. Routing Protocols in WSN  

A routing protocol in WSN is the process of discovering, selecting and maintaining 

paths from one node to another and using these paths to deliver flow packets to their 
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destinations. In the process, determining the next node to which a packet should be 

forwarded toward its destination is based on given criteria. It is an important aspect of 

network communication as it affects many other characteristics of network performance. 

An efficient routing mechanism can become significantly complex due to the fact that it 

may consider all the current conditions of the nodes in the network [86]. In this section, the 

routing protocols in WSNs with fixed and mobile BS (MBS) are going to be analysed into 

different sections.  

2.3.3.1. Routing Protocols with Stationary BS 

During the past decade, considerable research efforts have been investigated in 

developing routing techniques for delivering data in WSNs. Majority of the approaches 

considered QoS constrains such as energy efficiency, delay and reliability as the main 

objectives. In this section, we present an overview of the most well-known protocols in 

WSNs.  

R. C Shah and J. M Rabaey [87] presented an energy aware routing protocol that maintains 

a set of paths. The paths will be chosen randomly once the data needs to be transferred from 

source to the final destination. This approach on the one hand, decreases the risk of losing 

data and increases energy consumption due to maintain the paths. N Jain et al. [88] proposed 

an energy-aware multi-path routing approach to spread data traffic over the nodes lying on 

different possible paths connecting the source nodes to the sink. Sequential Assignment 

Routing (SAR) [89] for WSNs produces multiple paths from a source node to the BS. The 

path selection considers both delay and energy resources to prolong the life time. In [90] an 

energy-aware routing algorithm for cluster-based WSNs have been proposed. The cost 

function is defined between two sensor nodes in terms of energy conservation, delay 
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optimization and other performance metrics. Real-time and Energy Aware Routing (REAR) 

[91] uses metadata to establish multipath routing to increase the energy consumption in the 

network. In order to evaluate the consumption of bandwidth on the links a cost function is 

constructed. The best route is then chosen, based on the relationship between the energy and 

delay. The authors proved that energy consumption is reduced followed by activating image 

sensors and using metadata of real data in routing setup. However, the idea of metadata 

cannot be a good option as the metadata for streaming data can itself cause a huge energy 

and bandwidth consumption. Ant-based Service Aware Routing (ASAR) [92] is a 

hierarchical protocol that incorporates reinforcement learning to route data. In each round 

of data collection, three different paths that meet the QoS requirements are chosen. Then, 

the most optimal route will be maintained in a path table at each CH. The authors enhanced 

QoS in terms of delay, packet loss rate and energy consumption. However, in hierarchical 

models, the bottleneck problem and new optimal path setup due to congestion issue, requires 

extra calculation that might decrease network performance. the issue arises in a large size 

of WSNs. Zongwu et al. [93] proposed a novel genetic algorithm to satisfy the necessary 

QoS parameters such as end-to-end delay, minimum cost and maximize network lifetime. 

A proposed energy efficient routing protocol [94] attempt to manage both energy 

consumption and delay based on AntNet protocol. This approach uses the concept of ant 

pheromone to produce two prioritized queues with the purpose of sending differentiated 

traffic. However, the approach cannot be a comprehensive solution due to the required 

memory to save both queues. Peng et al. [95] proposed an adaptive QoS and energy-aware 

routing approach. They developed a biological ant colony algorithm for WSNs with the aim 

of meeting QoS requirements in an energy-aware fashion to maximize the network lifetime. 

Their simulation results proved that the proposed algorithm improved the performance of 
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WSN in different scenarios. M Chen et al. [96] presented a multiple-priorities-based path-

scheduling algorithm to guarantee the end-to-end transmission delay while balancing 

energy and bandwidth usage among all the node-disjoint paths in WSNs. Shu et al. proposed 

two-phase geographic greedy forwarding (TPGF) [21] with the aim of minimizing the path 

lengths and end-to-end transmission delay. TPGF firstly explores all the possible paths and 

then find the shorten distance to forward the data packets. However, the scheme has 

limitations in adaptability in large-scale, high density and frequent mobility situations. 

Reference [97] proposed a routing protocol that finds the least-cost and delay-constrained 

path for real-time packets. They assumed that every node knows the position of all the 

sensor nodes as well as the cost of links among them in the WSN. The protocol works on 

finding the path by executing Dijkstra’s shortest path algorithm. Mahapatra et al. [98] 

utilized the geographic location of  the sensor nodes as well. They proposed an energy aware 

dual path routing scheme and aims to balance the consumption of energy in each node in 

the network. E Felemban et al. [99] proposed multipath multispeed protocol (MMSPEED) 

to guarantee reliability and timeliness in the WSN. The protocol uses a distributed localized 

geographic packet forwarding mechanism. It requires the support of IEEE 802.11e at MAC 

layer with its inherent prioritization mechanism. In this protocol, each node that uses packet 

loss rate at MAC layer is responsible to calculate the possibility of each neighbour to a 

destination. According to the gained probability value, each node sends a copy of data 

packets to a number of neighbours to achieve a desired level of reliability. So, the 

probability of retransmissions is decreased. MMSPEED improves the network life time 

however, number of the hops and their available energy are not considered for establishing 

routes. In Table 2.2, we compare and summarize the above-explained routing protocols for 
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WSNs based on QoS constrains. The table clearly shows that the existing developed 

protocols have not sufficiently improved the performance of the WSN.  

Table 2.2. Comparison of routing protocols for WSN 

Routing Protocol Architecture Energy 
efficiency 

Delay  Data 
Packet 
loss rate 

Inherent 
uncertainty Flat Hierarchical 

Shah and Rabaey [87]       
N Jain et al. [88]       
SAR [89]       
Younis et al. [90]       
REAR [91]       
ASAR [92]       
Peng et al. [95]       
Zongwu et al. [93]       
Caro and M. Dorigo [13]        
M Chen et al [96]       
TPGF [21]       
Akkaya and Younis [97]       
Mahapatra et al. [98]       
MMSPEED [99]       

 

2.3.3.2. Routing Protocols Using MBS 

In WSN with stationary sensor nodes and sinks, the probability of significant 

congestion is highly noticeable. Thereby, an excessive delays and inefficient use of 

underlying resources can occur. Moreover, due to the excessive use of the sensor nodes 

close to the BS, the network lifetime is reduced significantly as the nodes become frustrated 

quickly. In order to provide a longer lifetime in WSNs, many new categories include motion 

characteristic of WSN has been developed. In the networks, the data collector can be moving 

in different directions to collect the sensed data from immobile deployed sensor nodes. 

Then, the source node will communicate with the sink directly or by using fewer hops. 

Clearly, in this context, there are several advantages and challenging issues that are required 
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to be addressed. The major advantage of having a data collector or a MBS is to increase the 

system lifetime. Indeed, the MBS leads the network to use fewer hops to create forwarding 

routes. Thus, the number of transmitted packets will be reduced and accordingly, the energy 

consumption will be decreased. In the mechanism, the extra energy spent for the operation 

and movement of the sink does not influence the overall network lifetime. That is because 

the MBS is considered as an external to the network. For example, the MBS could be a man, 

navigated vehicle or an unmanned robot that periodically returns to a fixed point to recharge 

itself. Another important advantage is the reduction of the probability of transmission errors 

and collisions in the network. Hence, the throughput and data reliability can be increased. 

This also further decreases the energy spent at the resource constrained static nodes by 

cutting the required retransmissions. In spite of the advantages, there are many challenges 

and issues that need to be discussed. For example, length of physical routes for the MBS. 

Since the MBS has to pass through the transmission range of the deployed sensor nodes, the 

following issues can occur. Firstly, long visit latency that is due to the waiting time for each 

node to be visited by the MBS. The latency also becomes worse if retransmissions will be 

needed. Besides, the sensor nodes may experience significant buffer overflows until the next 

contact time.  

In order to analyse and improve the performance of WSNs with MBS, there is a huge range 

of approaches have been developed. For example, Vlajic et al. [100] proposed a routing 

protocol with a MBS and reduced propagation delay and energy consumption in the 

network. The deployment strategies of WSN can be generally classified into two main 

categories which are backbone based and tree based structures. 
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2.3.3.2.1. Backbone Based Structure with Mobile BS 

In backbone or virtual grid structured networks, sensor nodes organize themselves 

into clusters on the basis of their geographic locations. Therefore, one node per each group 

may perform data aggregation and communicate with the MBS. Hence, the MBS is not 

required to visit the entire deployed sensor nodes. 

Under the consideration of the explained deployment methods, there are many mobile sink 

based protocols that have been developed. The protocols are either random or controlled 

mobility based with their considerable advantages and disadvantages. Ioannis et al. [101] 

proposed purely random walk as well as a combination of random walk and deterministic 

walking models. Under the purely random walk model, the following three models have 

been proposed. Firstly, the MBS moves toward predefined areas with random transitions. 

Secondly, the sink gives more priority in visiting less frequently visited areas and finally, 

the MBS gives priority in visiting areas populated with more sensor nodes. In the 

deterministic walk model, the MBS moves along a predefined trajectory within small areas. 

The proposed model suffers execute complex movements with a considerable overhead as 

the sensors are required to constantly update the multicast trees involving the sink. Gandham 

et al. [102] proposed to dynamically relocate multiple sinks into different time rounds. The 

authors used an integer linear program to determine the new locations. Results showed that 

the energy consumption of individual sensors is better balanced and the overall energy 

consumption of all sensors is minimized. However, this centralized method suffer a high 

computational complexity of linear programming. Babar Nazir et al. [103] addressed 

hotspot problem and mobile sink based routing protocol (MSRP) to prolong network 

lifetime in clustered sensor nodes. The CHs within the vicinity of the sink send the collected 
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data to the MBS after CH registration processed by the sink. MBS also maintains a CH 

residual energy table for predicting the next position. Sink looks into this table and moves 

to the CH with higher residual energy. This ensures that the nodes near the sink have higher 

energy and thus avoids hotspot problem. However, this approach is not suitable for 

continuous monitoring application as CHs need to wait for the arrival of mobile sink to 

deliver data packets. Xu Jianbo et al. [104] studied mobile sink based data gathering 

protocol (MSDG) for clustered WSN. They adopted a joint strategy of sink mobility and 

routing to realize high efficient data gathering. In this approach, sensor nodes in WSN are 

divided into certain number of clusters in the monitoring area with any side length. Then, 

sink by choosing the closest nodes along the path build a routing tree dynamically. After 

that, CHs gather the data from the CMs, aggregate and send the aggregated data to the sink 

reversely using a tree based method. In this method, although the energy consumption has 

been reduced due to aggregating data, the sensors still need to consume much energy to 

send data packets by using number of hops to the mobile sink.  Jin Wang [105] developed 

distance-based energy aware routing (DEAR) algorithm for WSNs. DEAR is a routing 

algorithm that setup and maintain routes in WSNs. In setup phase, the algorithm first 

calculates the distance among sources and sink nodes. If the distance is less than a 

predefined threshold, the data will be directly transmitted to the BS. Otherwise a multi-hop 

routing method will be considered. This algorithm also determines the number relay hops 

as well as finding the closest relay node to the sink. The author believed that high 

transmission power will drain a significant amount of energy from the nodes. That is 

attempting to transmit over long distance, consumes more energy compared to low power 

multi hop transmission covering the same distance. Apart from the advantages of this 

algorithm, it increases the traffic at intermediate nodes unnecessarily. Moreover, the closest 
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node to the sink is in the high risk of losing energy. DEAR does not also measure the 

available residual energy of selected nodes. This may cause the intermediate node becoming 

totally drained of their energy during data transmission process. 

2.3.3.2.2. Tree Based Structure with Mobile BS 

This structure can be classified into source-based and sink-based structures. In 

source-based structures, source nodes broadcast their information to the entire network and 

create a tree-rooted for delivering data packets. Then, the MBS uses this tree to retrieve data 

from the source. On the other hand, in sink-based structures the MBS broadcasts its location 

to the network and assigns a tree-rooted. Nodes then, use the reverse tree path to deliver 

data to the sink. Both, source-based and sink-based mechanisms have their benefits and 

issues. For example, in source-based mechanism, roots creation is usually independent of 

sink mobility. However, energy consumption as well as congestion are considerably high. 

That is because each source node is required to be updated about the previous routes 

priodically to deliver data packets. In contrast, sink-based mechanisms require only one tree 

for the MBS, irrespective to the number of sources. The MBS is required to periodically 

update their location for the network. These periodic location updates increase the control 

traffic overhead and network’s energy consumption. To reduce these periodic sink location 

updates, several solutions have been proposed [106]. Marta et al. [107] developed a method 

to lead mobile sinks to be relocated once the sink noticed that energy of sensors nearby them 

is depleted. The mobile sink follows paths that direct it to the node with highest available 

energy. The authors claimed that an improvement by 4.86 times in network lifetime was 

achieved compared with static sink case. Their proposed strategy requires that the sensors 

send additional information to the sink periodically. Hence, the energy consumption as well 
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as message over head is considerably high. Yun et al. [108] developed an approach with the 

purpose of maximizing the lifetime of WSNs by using a MBS. They formulated 

optimization problems that maximize the network lifetime subject to delay, node energy 

constraints and flow conservation constraints. In this method, each source node is not 

needed to send the data immediately once it becomes available. Instead, the node can save 

the data temporarily and transmit it when the mobile sink is at the most favourable location. 

However, it assumes that the mobile sink needs to visit all the predefined locations in sensor 

fields even if do not need to be visited. They also did not consider the emergency situations 

with critical data packets.  

Table 2.3 shows a comparison of different routing protocols in WSNs with MBS. The table 

illustrates that all the approaches that have been explored in this section improved the 

performance of WSN, but the problem has yet solved properly. That is because of the lack 

of fully consideration about the local information in WSNs. Moreover, the existed 

approaches did not take emergency situations with urgent data into account. Additionally, 

the designed systems have limitations in dynamic environments which contain a variant 

amount of noise created by some interferences. 

Table 2.3. The comparison of different routing protocols using MBS with respect of QoS 

Protocols Methodology Sink 
movement 

Energy  Traffic 
overhead 

Priority 
visiting 

Urgent 
of data 

Inherent 
uncertainty 

Ioannis et 
al. [101] 

Distributed Random      

Gandham 
et al. 
[102] 

Centralized Controlled      

MSRP 
[103] 

Centralized Controlled      

MSDG 
[104] 

Distributed Controlled      

DEAR 
[105] 

Distributed Controlled      
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Marta et 
al. [107] 

Distributed Controlled      

Yun et al. 
[108] 

Distributed Controlled      

 

2.3.4. WSN Coverage Method 

Solutions to coverage and deployment problems in a mobile WSN investigate how 

to locate sensor nodes to meet the existing constraints and examine how well a sensing field 

is monitored. In this regard, recently, there is a considerable number of protocols and 

algorithms that have been developed to solve the problem. The protocols, in terms of 

computational organization, can be categorized as centralized and distributed algorithms. In 

centralized organizations, to process data and also local information on the deployed nodes, 

a central location is required. The drawback of this method is the very high communication 

costs and intrinsic delay. This becomes worse when the number of nodes in the network 

increases. Consequently, the centralized algorithm is not reliable in large networks. On the 

other hand, in distributed algorithms that distribute the load of computational effort across 

the network, delay and inter-sensor communications are reduced. In such methods, each 

sensor determines its location locally by communicating with its neighbours without the 

requirement of sending and receiving location information to and from the central server. 

Generally, compared to centralized algorithms, distributed algorithms are more robust and 

energy efficient [109]. Apart from the computational organization, to address the research 

problem and make it more understandable, in this section some of the recent developed 

approaches are analysed.   
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In WSN, maintaining both coverage and uniformity is vital and there have been many 

investigations with the aim of improving it. In the networks examined, it has been assumed 

that deployed sensors have fixed sensing and communication ranges. Huang and Tseng 

[110] proposed an efficient polynomial time solution by considering the coverage of each 

sensors’ sensing range. In the literature, the coverage problem is formulated as a decision 

problem with the aim of determining whether the area is sufficiently K-covered. Indeed, 

every point in the areas of interest needs to be covered by at least K sensors, where k is an 

integer. However, this approach does not efficiently address the problem as the uniformity 

and also the number of sensor nodes were not considered. Moreover, this approach is 

designed for a static environment as it is a deterministic deployment based protocol. PFRL 

[111] is a probabilistic fuzzy logic based localization algorithm. This algorithm, to some 

extent, by managing uncertainty associated only with received signal strength (RSS) 

reduced the localization errors in WSN. In fact, PFRL improved localization accuracy in 

separating mobile sensor nodes. However, the authors only managed to enhance the node 

deployment process in a sensor field. They did not consider self-healing, energy 

consumption and also the uniformity of the WSN deployment. Misra et al. [112] addressed 

the problem of network coverage and connectivity. They proposed an efficient solution to 

maintain coverage so as to preserve the connectivity of the network. The main contribution 

of their research work is to cover the monitoring area by considering the overlap region and 

connectivity of the deployed sensor nodes. In this process, the authors started with the two 

nearest nodes in the network which guarantees the connectivity backbone formation and 

then extended the backbone by activating new nodes in the communication range of those 

active nodes. That would proceed until the entire area is covered. The main disadvantage of 

the proposed approach is the lack of consideration of mobile sensor nodes as the approach 



 

47 

 

is designed for only static networks. In [113] the relationship between deploying density, 

coverage and connectivity was analysed. The authors raised the sensing-coverage phase 

transition (SCPT) and the network-connectivity phase transition (NCPT) problems. They 

proposed a new model of combination for both coverage and connectivity. The connected-

coverage problem is approached using the theory of percolation [114], where the goal was 

to probabilistically calculate the fraction of area covered at the critical density when phase 

transition occurs. However, the paper does not address how to recover the coverage holes. 

The main disadvantage of the research work is high energy consumption as it is a 

probabilistic approach. P. M. Pradhan and G. Panda [115] presented an energy efficient 

sensor deployment based on a multi objective particle swarm optimization algorithm. In this 

research work, the main objectives are coverage and network lifetime within the constraint 

of network connectivity. The disadvantage of the approach is a lack of consideration of 

uniformity and the distances among deployed nodes. Jiang et al. [116] proposed a cascaded 

movement solution for the coverage problem. They initially partitioned the area into a 

number of grids. In each grid, a grid head is selected to execute the intra grid management 

and inter-grid communication tasks. The grid head that detects a vacant grid will find 

specific sensors in its grid and then force them to move to the vacant grid. If the coverage-

hole healing procedure fails, the grid head will further notify the grid head in its 

neighbouring grid and then initiate a cascaded movement. In the literature, they enhanced 

the coverage, however, the energy-balanced degree of mobile sensors and uniformity were 

not taken into account as they randomly select sensors to heal the vacant grid. Qu et al. [117] 

developed an efficient method for relocating mobile sensors to achieve optimum sensing 

coverage. The study introduced an average distance based self-relocation and self-healing 

algorithm for randomly deployed mobile sensor networks. In this approach, each sensor, by 
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sending and receiving a message, calculated the distance between each other and made 

moving decisions. The proposed approach is a random based direction movement that 

clearly reduces the energy efficiency in the WSN.  

Table 2.4. The comparison of different coverage protocols with respect of QoS 

Protocols Node 
Deployment 

Coverage 
Healing 

Methodology Energy 
Efficiency 

Uniformity Inherent 
Uncertainties 

K-Coverage   
[118] 

  Distributed    

PFRL 
 [111] 

  Centralized    

S. Misra et 
al. [112] 

  Distributed    

M. Amery 
et al. [113] 

  Distributed    

M.Pradhan  
[115] 

  Distributed    

Jiang et al. 
[116] 

  Centralized    

Qu et al. 
[117] 

  Distributed    

 

Table 2.4 present a comparison of different developed coverage protocols with respect to 

QoS in WSN. The table shows that although they enhanced QoS in WSN, they cannot be 

considered a comprehensive solution. Therefore, in this paper a distributed node 

deployment and coverage-healing protocol with consideration of energy efficiency, 

deployment uniformity and inherent uncertainties in WSN is proposed.   

2.4. Chapter Summary 

In this chapter we deeply analysed number of approaches in WSN respect to QoS 

requirements. We firstly introduced WSN technologies, sensors and applications in details. 

After that, the most considerable challenges in WSN were explained and analysed. Then, 
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we focused more on the existing approaches that have been developed with the purpose of 

enhancing QoS in the networks. We divided the approaches into four main sections. First, 

we analysed clustering approaches in the networks with explanation of their advantages and 

disadvantages. Next, different data fusion methods were analysed and tried to show the 

existing research gap in the existing approaches. Third, data routing protocols with 

stationary and mobile sink were addressed. Finally, WSNs coverage were taken into 

consideration. The approaches showed that they emphasized on enhancing QoS and 

efficiency of energy consumption.  
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Chapter 3 

A SELF-CONFIGURABLE 
CLUSTERING SCHEME IN WSN 
Despite significant advancements in wireless sensor networks (WSNs), energy conservation 

in WSN remains one of the most important research challenges. One approach commonly 

used to prolong network lifetime is through aggregating data at the cluster heads (CHs). 

However, there is possibility that the CHs are failed in functioning correctly due to number 

of reasons such power instability. During the failure, the CHs are unable to collect and 

transfer data correctly that leads to fail the performance of the WSN. Early detection will 

reduce the data loss and provide possible minimal recovery efforts. Therefore a self-

configurable clustering (SCCH) mechanism to detect the disordered CHs and replace them 

with other nodes is paramount to the WSN. 

3.1. Introduction 

The most challenging aspect of WSN is they are energy resource-constrained and that 

energy cannot be replenished. The problem arises when all the sensor nodes are required to 
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forward the data packets to the sink node. In this process, the available energy in each node 

can be wasted through idle listening and retransmitting due to collisions as well as 

overhearing. Cluster-based WSN routing protocols excel network topology management 

and energy minimization [119]. Clustering methods in WSN lead the sensor nodes to be 

organized into small disjoint groups, where each cluster has a coordinator referred as CH. 

In cluster based approaches the sensors do not need to communicate directly with BS. 

Instead, the CHs are responsible to organize cluster members (CMs) and send the data 

collected within the cluster to the BS. This process lead to a significant reduction in the 

amount of transferred data in the network. Consequently, overheads in communication as 

well as bandwidth in clustering will be reduced significantly [119-122]. Figure 3.1 shows a 

general view of a clustered WSN. Maintaining the created clusters is the main challenging 

task in the methods. To choose a node as a CH, it is necessary to define its eligibility. That 

is calculated based on local information of the nodes’ current situations such as its residual 

energy. The eligibility of the selected CHs however, reduces as they sensor nodes are 

consuming energy for transferring data. If the eligibility of the CHs reduce to a certain level, 

they may introduced as failed CHs. In the case, the deployed sensor nodes are required to 

be re-clustered. As a result, in a period of time the sensor nodes cannot collect data. The 

problem arises if the failure of the CH is not predicted, which could be a sudden physical 

damage. Respectively, the CMs keep sending their data to the failed CH and consequently 

the data will be lost. 
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Figure 3.1. A clustered WSN 

Many developed approaches investigate the problem and suggested to use backup CHs 

(BCHs) [123-125]. Figure 3.2 shows a general view of a clustered sensor nodes with BCHs. 

In those approaches, BCHs take over the responsibility once the defined CHs noticed their 

eligibilities of being CHs are on a certain level. They proved that BCHs secure more the 

created clustering formation in the WSN. These approaches however, did not address the 

problem sufficiently. That is because, they mostly focused on only predicted CH failure. 

The CMs in the existing approaches cannot define whether their CHs are operating or 

already failed unless they received an alerting message. Those approaches did not also 

consider the temporary CH failure. Moreover, they assumed that the determined BCH is 

always fully functional and always is the most appropriate node to be replaced with the 

defined CH. Finally, they only considered maximum of two BCH in their protocols. 

However, their assumptions are not realistic. That is because, in WSN there is no guarantee 

that the determined BCHs are always fully functional as the sensor nodes do not consume 

energy equally. In some situations, the BCHs might be used more than the other nodes. 

Also, considering maximum two BCHs is not ensuring the created cluster formation.  
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Figure 3.2. Clustering formation of sensor nodes 

To overcome the issue, we propose a clustering mechanism for WSNs. In which we use 

type-2 fuzzy logic system (FLS) [126] and local information of the nodes to calculate the 

eligibility of the nodes. The node with maximum eligibility is selected as a CH. The other 

nodes are saved on a list based on their calculated eligibilities as BCHs. Therefore there is 

always a BCH for a failed CH in each cluster. To replace the BCHs with failed CHs we 

consider both temporary and permanently failure in the CHs. Moreover, we take 

unpredictable as well as predictable CH failure into account.  

3.2. Problem Overview  

Given  wireless sensor nodes deployed randomly over a surface area. 

The sensor nodes and BS are stationary. The clustering problem is to identify and make a 

collection of CHs and CMs, while they cover the entire deployment area. Generally, 

clustering protocols in WSN are divided into two main sections. In the first section clusters 

are organized followed by CHs selection process. In this phase, the sensor nodes cannot 

collect and transfer data packets among each other. After the clusters were created, the 

sensor nodes are able to collect and transfer data to each other. They consume energy as 
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they receive and send the data packets. So, each sensor node is in the risk of being disordered 

due to its energy depletion. The amount of energy lost in CHs is usually more than CMs as 

they are responsible to collect data packets from other nodes and transfer them to the BS. 

Therefore, they are more in the risk of energy depletion. As a result, they cannot monitor 

their areas of interest. The problem becomes more challenging if the failed CH was not 

detected. In the case, CMs keep sending their collected data to the CHs without noticing 

that they cannot be received.  

CH failure could be predicted and so, the CMs can be noticed by a message. Then, the CMs 

are required to replace their defined CHs with the most optimum BCHs. However, finding 

and replacing BCHs is needed to be considered carefully. In the real world, the deployed 

sensor nodes are not consuming their energy equally. That means current situations of the 

nodes are not changing similarly. As a result, the already determined BCHs are not always 

the most appropriate node to be replaced with failure CHs. In the case, it is a considerable 

challenge for the CHs to find and introduce the best current BCH to the CMs. 

The problem is more challenging if the CHs are failed unpredictably. The CMs then, keep 

sending their data to the failed CHs without noticing they are not received. Thus, it could 

make the WSN to lose number of data packets. To prevent of the data lost in the network, 

it is significantly important to determine the failure CH by the CMs at the earliest moment. 

The CMs also are required to find and replace a BCH with the CH.     

CH failure in WSNs could be permanently or temporarily. Permanent fault means the node 

is beyond repairs and needed to be replaced to ensure the QoS in the WSN. It can be 

happened due to reasons such as damaged components. Temporary fault on the other hand, 

is the one that results from temporary environmental impact or incorrect state of 
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components. To replace BCHs with the failed CHs it is also necessary to realise that it is 

not a temporary failure. That is because short-term lower density may not be an issue as 

long as the network remains connected.  

3.3. Self-Configurable Clustering  

To develop SCCH, we first need to select an appropriate CH for each cluster. For 

that purpose, we develop a type-2 fuzzy logic system (FLS) to find the most appropriate 

CHs for the clusters. FLS is used by the sensor nodes to calculate their eligibilities of being 

a CH. The input of the system are as followed;  

1. Energy (E): residual energy in CHs candidates is used in electing CHs with an 

acceptable energy level. All nodes are aware of their remaining energy. 

2. Node Centrality (NC): is a value that shows how central the node is among its 

mobile neighbours within the entire network. The lower value of the centrality, 

the lower amount of energy required by the other nodes to transmit the data 

through that node as CHs. NC is defined by Eq. (3.1):  

NC = 

where ,  is the distance between the CH candidate i and its 

member nodes, in the number of neighbors of node i and  is the size of 

the sensing field area.  

3. Local distance (LD): This is sum of the distances from a deployed node to its 

neighbours. Figure 3.3 shows the deployed sensor node and its neighbours 

within r radius.  
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Figure 3.3. A deployed node with neighbours 

In order to calculate LD, we first determine the radius ( ) value as follows[4]: 

                                                 (3.2) 

Next, we consider only the neighbours within the confine of  radius for each 

node and then, sum up the distance  of the node to them, as shown in the 

Eq. (3.3) [127]. 

                                                (3.3)  

 

Next, the output of the FLS for each sensor node will be sent by a beacon message to 

neighbours to be informed. Figure 3.4 shows the structure of the beacon message for sending 

the output of FLS.  

Packet Type Node-ID FLS-OUT 

Figure 3.4. Eligibility of each node 

Where Packet Type presents the purpose of the message, Node-ID is the ID of the node that 

creates the message and FLS-OUT is the output of the fuzzy system. The nodes that have 

received the message from the other nodes need to check FLS-OUT. They compare the 

received FLS-OUTs against its calculated fuzzy output as well as the received other nodes’. 

A Sensor node with the highest FLS-OUT introduces itself as a CH. It also lists the other 
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sensor nodes, based on their FLS-OUT. In the list, they are ordered from the highest to the 

lowest FLS-OUT of the nodes. In fact, the list prioritises the sensor nodes to be BCHs. 

Therefore, sensor node with lower FLS-OUT knows that it is a BCH of the node with higher 

FLS-OUT. That is to ensure there is always a BCH for defined CHs. Figure 3.5 presents 

structure of the CH joining message.  

Packet Type CH-ID BCH-IDs 

Figure 3.5. CH joining message 

Where Packet Type presents the purpose of the message, CH-ID shows the ID of the elected 

CH and BCH-IDs is the list of sensors’ IDs from highest to the lowest FLS-OUT. Next, 

each sensor node that received the CH joining message sends an acknowledgement message 

to join to the CH.  Once the clusters are created, the CHs allocate a TDMA (Time Division 

Multiple Access) for the CMs. Then, the sensor nodes can start transferring data packets in 

the WSN based on the allocated TDMA schedule. At this stage, the sensor nodes include 

CHs consume energy. As a result, either CHs or CMs might face to energy depletion. If 

CHs die, the entire area of their interest will be unmonitored. Thus, replacing the failure CH 

is necessary. Disordered CMs also influence the eligibility of the elected CHs as NC and 

LD are affected. Therefore, to maintain the created clusters the CMs are needed to send their 

residual energy with their sensory data in a single message to their CHs. The CHs also are 

required to check their own FLS-OUT frequently. In each round of checking the FLS-OUT, 

the CHs compare it against a determined threshold (β). If the FLS-OUT of each CH is less 

than the threshold, it will be required to inform the CMs and a BCH about the switching 

time. So, the sensor nodes can replace their CHs with the introduced BCH.  

The available BCH cannot be fixed in the WSN. That is because the BCHs might be 

physically damaged or in some situations their residual energy might be changed. Therefore, 
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CHs change the order of the BCHs in the created list based on received their residual energy. 

The updated list is sent to the CMs periodically to make sure that the most suitable BCH is 

available. 

In the WSN the determined CHs also could be suddenly disordered due to for instance, 

physical damage. If a CH dies, the CMs are required to be noticed quickly to prevent of data 

losing in the network. Also if the CMs die, their CHs are required to remove them from their 

list. To achieve that, we propose to monitor the CHs and CMs using TDMA. Figure 3.6 

presents the allocated TDMAs for .  

As it can be seen from Figure 3.6 (a), the CMs need to transfer their data packets upon 

receiving a data request message (Data-Req). If the CH did not receive the requested data 

at the end of the frame, it will mark an error for the CM. the error mark is to prevent of 

assuming the temporary dead as a permanent failure. Then the CH sends another request. If 

the CH did not receive data from the CM by the end of the frame it will check the error 

mark. If the error mark is existed, the CH realises that it is a permanent failure and it needs 

to be removed from its CMs’ list. 
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Slot time Si

Time

Data-Req Data-ReqIF Not Recv-data
Mark Er(i)

           Slot time Si

IF Not Recv-data
IF Er(i) exists

remove Si

Slot time Si

Wait for Data-Req
IF No Data-Req

wait for next Data-Req

IF No Data-Req
send joining message to BCH

        Slot time Si
Time

(a)

(b)  

Figure 3.6 Allocated TDMAs for (a) CH and (b) CM. 

Apart from the CM, failed CHs are also needed to be detected. Figure 3.6 (b) presents the 

TDMA of the CMs. The CMs in the WSN need to wait for a data request (Data-Req) from 

its determined CH. if it does not receive Data-Req, it will wait for the next frame to receive 

the request as it might be a temporary failure. In case of not receiving the request in the 

second frame, it will be required to replace its CH. To replace the CH, the CM needs to 

check the latest and updated of its BCHs’ list. Then it sends a joining message to the first 

available BCH and waits for acknowledge message. However, there is a possibility that the 

defined BCH might be disordered. In the case of not receiving the acknowledge message 

from the BCH, the CM sends another joining message to the second available BCH until it 

joins to a CH.  
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3.4. Performance Analysis 

In this section we evaluate the performance of the proposed shame using simulation. 

As a performance metric, we compare the efficiency of energy consumption of the 

networks. The communication model for energy consumption used in this evaluation is as 

explored in [66]. The transmitter dissipates energy to run the power amplifier and radio 

electronics is shown in Figure 3.7. 

 

Figure 3.7. Radio energy dissipation model 

 

The required energy for transferring a k-bit message to d distance can be calculated by using 

(3.4).   

                                (3.4)            

Energy consumed in receiving k-bit message can be computed by (3.5). Where based on the 

referred algorithm = 50nJ/bit and  = 100pJ/bit/m2.  

                                                 (3.5) 

Apart from energy consumption, we analyses data loss ratio (DLR) of our proposed 

approach. DLR is a ratio of the difference of total data sent by the sensor nodes and received 

by the BS to the total data sent by the sensor nodes as provided below; 
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                                          (3.6) 

 

Finally, we analyse the traffic overhead of our proposed protocol. To evaluate the traffic 

overhead of the distributed approach in WSN, we tested the average amount of traffic 

transmitted within the network  

3.4.1. Experimental Setup 

In this section we use MATLAB to compare our proposed approach against PDD 

(Probability, Distance and the sum of Distances) [128] and Achieving Reliability over 

Cluster-Based WSN using Backup Cluster Heads (DBCH-LEACH-C) [129]. The reason 

behind choosing PDD is that it is a fuzzy based approach that increased the network lifetime 

and DBCH-LEACH-C is also a clustering WSN that proved using BCHs enhances 

performance of the WSN.  

In the simulation, the network consists of a BS and 80sensor nodes, , 

wireless sensor nodes. The sensing range for each sensor is 25m and the communication 

range is 50m. The sensor nodes are deployed randomly over 200 * 200 meters surface area. 

The initial energy for each node is 1J equally. In terms of energy, memory and 

computational power, there is no limitation for BS. BS is located in the middle of the 

surface. The packet size is 100 bytes and beacon message is 10 bytes.  

3.4.2. Result and Discussion  

Figure 3.8 compares the rule surface of our scheme and PDD. Based on the plotted 

surfaces, the chance of finding CHs in the network by our system figure 3.8 (a) is higher 
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than PDD figure 3.8 (b). Moreover, our system introduces a substantially smother surface. 

This smooth response will consequently provide a better monitoring performance that can 

handle the uncertainties although, the complexity of the system with respect to the size of 

the fuzzy rule based is remained the same (no additional fuzzy rules or fuzzy sets were 

used).  

 

(a) Our proposed system 

 

(b) PDD 
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Figure 3.8. Comparison of the response surface generated by the Fuzzy systems 

 

In order to prove that the proposed approach prolongs the network’s lifetime, we calculate 

the required energy for successful transmission of specific number of data packets. As can 

be seen from figure 3.9, the results show that the proposed approach outperforms both PDD 

and DBCH-LEACH-C by transferring the same amount of data with less energy dissipation. 

PDD has the less efficiency in energy consumption. That is due to the lack of consideration 

of CH and CM failure in the network. In case of CH failure, CMs transfer data packets 

through the networks without noticing they cannot be received. As a result, the efficiency 

of energy consumption is negatively influenced. DBCH-LEACH-C enhances PDD as it 

replaces BCHs with the failed CHs.  
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Figure 3.9. Energy consumption 

However, as it is a centralized protocol and did not consider the CM failure energy cannot 

be consumed efficiently. That is because; the network needs to consume energy to make a 

data request from a CM by a CH without noticing the CM is already disordered. SCCH on 

the other hand, enhances the energy efficiency in the network. The reason behind it is 

because SCCH is a distributed protocol, in which the CHs and CMs of a cluster can define 

whether they are failure of not. In case of CH failure, the CMs are able to replace the most 

optimum BCH with it. As a result, data request message as well as data packets are not 

transferring unless the nodes are ensured that the destination node is fully functional. Apart 

from energy consumption, data loss ratio (DLR) is calculated for the data sent and received 

at the BS for the whole network. As illustrated in Figure 3.10, SCCH has the lowest DLR.  

 

Figure 3.10. Data loss rate 

That is due to the following reasons. First, it can determine failure of CHs and CMs. That 

prevents of transferring data packets to a failure nodes. However, CMs failure is not 

considered in both PDD and BCH-LEACH-C. In addition, there is always a BCH for a 
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failed CH. So the CMs do not need to worry about re-clustering process as they can simply 

replace a BCH with their determined CH. BCH-LEACH-C performs better than PDD as it 

considers BCH. However, its DLR is lower than SCCH that is due to considering only 

maximum two BCHs. 

Finally, traffic overflow is also used to prove the performance of the proposed approach. In 

order to evaluate traffic overhead of SCCH, we tested the average amount of traffic 

transmitted within the network. Figure 3.11 compares the average message for transferring 

data with different sizes of network. It clearly shows that the traffic in our scheme is lower 

than PDD and BCH-LEACH-C. The message in PDD is more than BCH-LEACH-C and 

SCCH because in case of CH failure the nodes are required to be connected to the BS 

directly.  
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Figure 3.11. Message Overhead in cluster 

3.5. Chapter Summary  

To prolong WSN lifetime as well as decreasing the created traffic in this chapter, we 

proposed a new distributed type-2 fuzzy based self-configurable clustering (SCCH) 

mechanism. SCCH firstly clusters the sensor nodes. That is followed by selecting CH. To 

define CHs we used a fuzzy system and considered local information of each sensor node. 

The output of the system is presenting the eligibility of sensor nodes to be CHs. Then, nodes 

in the network compared their eligibility against others’. A node with the maximum 

eligibility will introduce itself as a CH and the rest of the nodes as BCHs. As a result, the 

CMs can ensure that there is always a BCH for their CHs. Therefore, in case of CH failure 

the CMs can replace the BCH with the permanent CH failure. The claim was proven by 

comparing the behaviour of the SCCH against a fuzzy and a well-known non-fuzzy 

approach. It achieves longer lifetime with the ability of reducing overhead in WSNs, 

compared to existing clustering protocols. 

For the future work, we would like to extend the protocol to meet QoS requirements of 

WSNs, such as coverage preservation, because complete coverage of the monitored area 

over long period of time is an outstanding issue. Also, since, the amount of uncertainty in 

different environment is not the same Thus; obviously, a certain fuzzy interval cannot be 

used in different applications. Therefore, it is necessary to come up with a method to be able 

to estimate the best fuzzy interval for the membership functions.  
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Chapter 4 

A DATA FUSION METHOD IN WSN 
 

The success of a WSN deployment strongly depends on the QoS it generates about the 

events of interest. Low data quality is a prevalent problem in WSNs, which is due to a 

variety of reasons such as sensor failure or data duplication. This is especially challenging 

in data fusion mechanisms, where a small fraction of low quality data in the fusion input 

may negatively impact the overall fusion result. To provide a higher quality of fused data a 

distributed data fusion mechanism is proposed. The proposed algorithm is able to 

distinguish and aggregate only true value of data instead of processing the entire data. It is 

generally divided into three main phases. Firstly, to differentiate the true value of data from 

other data a fuzzy logic controller (FLC) is developed for each sensor. After that, the cluster 

heads (CHs) fuse the received data. They are also responsible to calculate and then, send 

the probability of occurring the target events in the monitoring area to the base station (BS). 

In this process redundant data is simply eliminated and consequently, energy consumption 
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is reduced. The transferred data are then stored in the BS. To detect the events the BS needs 

to analyse the history of the received data. If a trend of change in the received data is noticed, 

the BS can determine whether the events occurred. In such a case, BS reports the detected 

event to the alerting system.  

4.1. Introduction 

In WSNs, sensor measurements are referred to as a sensor reading or sensor value. 

The corresponding correct value of an event in the environment of the data is referred to as 

the true value. If a sensor reading and the true value disagree, the sensor reading is said to 

be incorrect. The error that leads to an incorrect sensor reading can occur at a sensor node 

level. A sensor node itself might in some cases collect incorrect data. Moreover, duplicating 

data might also decrease the QoS. In order to overcome the problem, a data fusion 

mechanism is required to be developed to remove the incorrect data as well as duplicated 

data in the data fusing process. 

The main purpose of data fusion mechanism in WSNs is to provide a greater QoS for the 

purpose of making reliable and accurate decisions about the events of interest. Data fusion 

mechanisms process the data from multiple sensors and thereby create meaningful new 

information that cannot be obtained from any single sensor. In fact, fusing data ensures that 

not only the data quality of the WSN is enhanced but also energy consumption can be 

lowered as it  removes redundant information [73].  

There are many data fusion mechanisms with the purpose of reducing the energy 

consumption in the WSN [130-132]. These mechanisms used different techniques such as 

probability theory [133], fuzzy set theory [134], possibility theory [135], rough set theory 
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[136] and Dempster-Shafer evidence theory (DSET) [137, 138]. Most of these approaches 

are able to eliminate duplicated data in the fusing process. However, these approaches do 

not consider specific limitations of the sensor devices. In fact, they assume that the entire 

received data from sensors are the true value, which is an unrealistic assumption. Moreover, 

all existing schemes transfer include both necessary and unnecessary data to the BS. As a 

result, energy consumption is quite high.   

The goal of the proposed sensor data fusion approach is to improve the performance of a 

system with respect to the level of QoS generated about the events of interest. Moreover, 

by transferring only the necessary calculated probability of the events instead of the entire 

fused data to the BS energy consumption is minimized. Finally, the proposed approach is 

robust in terms of sensor node failures as it combines all the received data from the sensor 

nodes to measure the events of interest.   

4.2. Research Problem 

To avoid heavy traffic and conserve energy in a WSN caused by the transmission of 

unnecessary data packets to the BS from each sensor node, a data fusion method can be used 

in such networks. A data fusion method in a node is used to aggregate the received data 

from the other sensors. A general block diagram of a data fusion mechanism is given in 

Figure 4.1. The sensor nodes  collect data  from the environment. 

They then send the data to a fusion node. Next, the node will create one single internal 

representation of the environment from its inputs. The single representation is then 

consumed by the BS. This means that the BS in general does not have access to the 

individual sensor measurements. 
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 Figure 4.1. Fusion mechanism 

In many situations depend on the current conditions of the sensor nodes,  

might not be exactly the true value. There are many useless data packets generated and 

transferred from each sensor node in each round of data collection. In many situations, a 

sensor node is not able to recognize the useless data while it generates data packets for 

further process. The data are transferred to the fusion node and aggregated with the others’ 

true value of data. As a result, they can effect negatively in making accurate decisions as 

well as efficiency of energy consumption in the WSN. To solve the problem it is necessary 

to address the unnecessary data in addition to redundant data transferred from sensor nodes.  

To formulate the problem, we consider a set of sensors in a cluster based WSN deployment. 

These sensor nodes collect data and then send it to their CHs. CHs are responsible for fusing 

and transferring the data to the BS. The problem of data fusion can be formulated as follow: 

                            Maximise                                                          (4.1) 

                                                              (4.2) 
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                                                           (4.3) 

The objective (4.1) is to maximise the network life time ( ) subject to maintaining or 

enhancing quality of the produced data. Constraints (4.2) and (4.3) ensure that the 

percentage of collected true value of data ( ) and data redundancy ( ) are satisfied by a 

user-defined threshold.    

4.2.1. Data Quality 

In order to enhance QoS in the WSN, it is necessary to make sure that sensor 

readings and measurements are true values to be used. The main cause that makes a WSNs 

produce and process incorrect data is the sensor nodes. Different environmental factors such 

as a sudden change of tempest or humidity influence a sensor node behaviour. These 

environmental factors decrease or increase the output signal of the sensors, which create an 

ultralow-frequency noise on the transferred signals [24]. In addition, non-operating 

environmental limits such as a high or low temperature of air surrounding the sensor nodes 

usually influence the sensors’ performance. The operating temperature range is the length 

of ambient temperatures given by their upper and lower extremes, within which the sensor 

nodes maintain their expected accuracy [139].    

In different WSN applications, it is impossible to confirm that the collected data are true 

values of the events without taking samples or analysing data history [24]. Therefore, we 

suggest to assign a weight for each collected data. The weights are determined based on 

current storage conditions of the source nodes. If the sensor nodes are not in the expected 

condition as revealed in their data sheets, the determined weights are changed. The better 

condition a sensor node is the higher weight is assigned to its collected data. In fact, the 
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weights show the percentage of correctness of the data. Based on the calculated weights, 

the correct value of data can be distinguished and separated from others. As a result, a higher 

QoS can be received by the BS. Eq. (4.4) presents the percentage of the accurate received 

data packets from an event by BS. 

                                                                                                  (4.4) 

Where, R is the percentage of the received correct data by BS. L is the total number of 

events defined by the application and is the number of messages that contain only the 

received true value of data.  

4.2.2. Data Redundancy 

Redundancy in WSNs is defined as the use of redundant data, e.g. extra bits to report 

the events of interest. Obtaining information for a specific event in a location from different 

sources decreases the quality of collected data. Sensor nodes in a WSN are typically 

deployed densely and thus they provide a large amount of redundant and duplicate data. 

That causes serious packet collisions, bandwidth waste and energy consumption. Therefore, 

removing redundant data enhances the overall quality of the collected data and minimizes 

the number of transmissions from source nodes to the BS. The key idea is that instead of 

expecting each sensor node to send messages for each event individually, their data can be 

combined and transferred with lower traffic. Therefore, we suggest to calculate only the 

probability of the events to the BS. Next, send only the necessary information out of the 

entire calculated probabilities to the BS. The necessity of the obtained information is 

determined based on a trend of changes. If the probability of existing events is more than a 

pre-determined threshold, the system will send the information to the BS.      
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4.3. Data Fusion Algorithm   

Figure 4.2 shows the proposed data fusion and transferring process. At the first step, 

the sensor nodes collect data as well as calculating a confidence factor (RF) for each 

collected data packet in each round. To calculate RF, a fuzzy logic controller (FLC) is 

programed on each sensor node individually. 
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Figure 4.2. Proposed flow chart 

FLC is developed based on Sugeno method [140]. The purpose of FLC is to find a 

confidence level of the collected data considering the current condition of the sensor nodes. 

Figure 4.3 shows the proposed FLC in a sensor node. 
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Figure 4.3: Proposed FLC 

FLC considers the non-operating temperature (T) and humidity (H) range to create the 

membership functions. A random membership function is also used for noise to signal ratio 
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(N) of the sensors. FLC produces a confidence factor ( , , …, ) for each sensor 

data ( , ,…, ) that is collected in a real time. The FLC in a real time, determines 

whether the temperature and humidity rates of the sensor nodes and also the signal to noise 

ratio are in the acceptable range. To accomplish that, FLC compares its input measurements 

with the desired range for each sensor. The desired range for each sensor can be found on 

its specified datasheet. The output of FLC for each sensor can be 100% only if the 

environmental factors are in the desirable range. 

In case of being out of the range, FLC produces a confidence factor (0%  100%) for 

the collected data. Next, each node compares the calculated RFs against a predetermined 

threshold. If the created factor of each data is less than the threshold value, the data will be 

disregarded. Otherwise, it will be sent to CHs in a data message. This prevents the 

occupation of the correct value of data by the other data that does not present the true values, 

which is shown in Eq. (4.2). For fusion purpose, the message also consists of a Node-ID of 

each source node. 

At the second step, Eq. (4.3), CHs are responsible to aggregate the received data from the 

cluster members. The data fusion process is started by CHs at the end of each round of data 

collection. Eq. (4.5) is used to aggregate the entire received data from cluster members in 

the same kind with different locations.  

        (4.5)    
Where is the received data from the same kind of cluster members, is the calculated 

confidence factor of the collected data and FD is a combination of the data from the same 

kind of sensor nodes. In fact, FD is a combination of the data with a higher certainty as it 
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combines the entire correct received data based on their confidence factors. As a result of 

considering different sources of one kind of sensor nodes in different locations, FD provides 

a better view of the environment. FD is also robust as data from multiple sensors with their 

own confidence factors mitigate the problem of sensor failure. FD is calculated for the three 

kind of deployed sensor nodes individually. Therefore, that would be a set of FDs. Next, 

FDs are stored in a matrix with one row and m columns ( ). Equation (4.6) presents 

matrix. 

= { }                                              (4.6) 

As an example, consider three temperature, four light and three smoke density sensors. They 

are deployed on a cluster-based method. Over a period of time, the temperature sensors 

sense the environment by 20 ̊c, 15 ̊c and 10 ̊c with the confidence factors of 0.75, 0.65 and 

0.41 respectively. As a result, the fused temperature data  would be 15.93. Fused light 

detector and fused smoke density data  also are 49.8 and 33.2 respectively. 

Based on this  matrix of the monitoring system is  = {15.93, 49.8, 32.2} 
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Figure 4.4. Event probability in FIS 

Then, the vector will be fed and processed by a type-2 fuzzy inference system (FIS) in 

CHs. The output of the system is the probability of occurring events in the monitored areas. 

FIS analyses the vector based on a provided fuzzy rules after data fusion process was 

accomplished. Figure 4.4 presents an example of calculating the events occurrence by FIS. 

If the calculated probability in the clustered nodes was not changed, the CHs do not forward 

the data packet to the BS. Otherwise, the CHs send the probability of the events in their 

controlled areas. However, the change in the probability does not guarantee a correct 

detection and it is only considered as a possible event in the monitored area. Therefore, to 

make sure that the detection is accurate enough, the BS needs to regularly monitor and 

process the received probabilities that are generated over the time. In fact, all the received 

probabilities are constantly processed by the BS. If a constant change is noticed, the event 

will be reported to the alerting subsystem by BS. Otherwise, the algorithm continues 

collecting data. The following algorithm explains the proposed data fusion process. 

1. INPUT: (T: Node temperature, H: Humidity ratio,  N: Noise to signal) 
2. OUTPUT: Fused Data 
3. BEGIN 
4. WHILE (Event NOT Detected ) 
5. FOR all the cluster members in one kind 
6.         ← FLC (T, H, N)      
7.         IF   
8.              Data and  will be sent CH 
9.         ELSE 
10.              Collected data will not be considered 
11.         END IF  
12. END FOR 
13. ←  Received data by CHs from one kind of node will be fused  
14. Detection Probability ← FIS (  ) 
15. IF the probability was not changed 
16.      Disregards the received data 
17. ELSE IF 
18.      Send the Detection Probability to BS   
19.      IF  the event detected by BS 

          Algorithm:  Data Fusion Algorithm 
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20.      Report the event 
21.      END IF 
22. END IF 
23. END WHILE 

 
END Algorithm   

4.4. Application 

The application of the network can be in a forest fire detection system that requires 

measurements from in-field deployed sensors. In this application, the three different sensors 

that are responsible for measuring temperature, smoke density and light are clustered in the 

area. Then, each node, based on their current situation, uses FLC to assign a weight for their 

data. Next, the data are sent to CHs, which is connected to MBS wirelessly. Figure 4.5 

shows an example of forest fire detection. 
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Figure 4.5. Forest fire application 

 

4.5. Performance Analysis  

In the simulation, we focus on the expected amount of colleting correct data respect 

to QoS in WSNs. In each round, many number of data packets are generated but it is not 

necessary for the entire produced data to be sent.   

To evaluate the proposed approach Eq. (4.4) is used.  We also estimate the created traffic 

overflow in the simulated WSN. The traffic overflow is calculated as the following:  

                                   (4.7) 

Finally, we calculate the energy consumption in each round of data collection using the 

method proposed in [66].  

4.5.1. Experimental Setup 

It is assumed to use MTS420/400 sensor board and a BS which could be IRIS with 

ATmega1281 processor and a mib520 programming base. The sensor board consists of 

humidity, temperature and light sensor as well as a communication component. By using 

the obtained information from the device’s datasheet, MATLAB was used to implement 

and analyse the performance of the network. Table 4.1 presents the obtained information of 

MTS420/400. In order to simulate noise effects in real sensors, a random high-frequency 

noise signal is added to the sensor signal. 
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Table 4.1. Parameters of MTS420/400 

Parameters MTS420/400 

Temperature Range 
Humidity Range 
Signal to Noise Ratio 

−40 to +123.8°C 
0 to 100% RH 
0 to 1  db 

 

The results of the experiment are compared against WSNs and fusion information methods 

for forest fire detection (FIM) [141] and a variable weight based fuzzy data fusion algorithm 

for WSN (VWFFA) [85]. The reason that we choose FIM is because it is a distributed 

threshold based algorithm that uses MTS420/400C sensor boards as well as our proposed 

algorithm. VWFFA is also chosen because it is a distributed fuzzy based data fusing 

algorithm that enhances the QoS in WSNs.    

4.5.2. Result and Discussion 

To evaluate the proposed algorithm the percentage of correct data collected is 

calculated. Figure 4.6 presents a percentage of correct collected data by BS in the proposed 

approach as well as FIM and VWFFA in each collecting round of data.  

As can be seen from Figure 4.6, the proposed approach provides a higher percentage of 

correct data compared with the other approaches. That is due firstly, to the elimination of 

the incorrect data to prevent corrupting the true value data in the fusion process. Moreover, 

in the fusing process data is processed again in CHs assess whether there is any change in 

the collected data. 
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Figure 4.6. Data collection 

Finally, the BS by processing the flow of the received data, can determine that the event is 

correctly detected. After the proposed approach, FIM has a better performance than 

VWFFA that is due to the consideration of uncertainty in detection process. VWFFA 

provides worse data quality. In VWFFA the quality of collected data is considered based on 

their assigned weights. However, the weights are considered on all the data includes true 

values and incorrect values of data. Therefore in VWFFA, since the entire received data are 

aggregated by CHs, the true values might be influenced by the incorrect data in the fusion 

process. In addition to results comparison between the proposed approach vs FIM 

and VWFFA, root means square error (RMSE) is also calculated. To calculate RMSE, the 

most optimum result (100%) is considered as the predicted result in each call. RMSE for 

the proposed approach is less than that for FIM and VWFFA, which are 3.67, 5.13 and 5.9 

respectively.  
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Figure 4.7. Transferred data packets 

In addition, the average amount of data packets that are required to be transferred in the 

network is measured. Figure 4.7 shows the amount of the data packets that are transferred 

in the proposed scheme is lower than that in the two existing approaches. That is because 

the entire data do not need to be transferred, as not all of them are true valued data. In fact, 

in the proposed approach the untrue values are eliminated from transferring as well as data 

fashioning process. Moreover, CHs are not required to transfer the fused data as they are 

able to find the probability of occurring the events.  
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Figure 4.8. Energy consumption 

The CHs send the calculated probability only if it shows an abnormality based on the history 

of data. So, the data that is sent to the BS is going to be only the possibility of the detected 

fire. In contrast to the proposed approach, FIM has the highest number of data packets that 

need to be transferred in the network. The reason behind that is the entire incorrect and 

correct collected data and also redundant data are needed to be transferred. VWFFA has a 

lower transferred data number in the network than FIM. The reason behind that is the 

developed network is a cluster based and the data are fused based on the assigned weights 

on clusters. In VWFFA, the assigned weights reduces the influence of the incorrect data on 

the true values in the fusion process.   

Energy consumption is also a critical feature of a developed WSN. As explained in details, 

we reduced the transferred data packets in the network. This helps significantly to reduce 
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the energy consumption. Figure 4.8 illustrates the energy consumption in the networks. As 

it can be seen, the proposed scheme minimizes the energy consumption in WSN. That is 

due to firstly, the lower transferred data packets in the network. Moreover, data packets 

similar to VWFFA are sent to their CHs consequently, lower energy is required compared 

to FIM. 

4.6. Chapter Summary 

The main purpose of this chapter is to come up with a quality based method for data 

fusion to provide a better QoS. In the proposed approach, which was a cluster based 

network, cluster members were required to collect data from the environment frequently 

until a target event is detected correctly. Since they needed to make sure that their data are 

true values, FLC was developed for each of them individually.  FLC with the inputs of some 

information of current conditions of the sensor nodes such as a temperature and humidity 

ratio, determines a confidence factor for each individual collected data. Based on the factor, 

each sensor could group their data into true valued and untrue valued data. Next, clearly, 

the valued data was sent to CHs for further process. Then, the CHs were responsible to 

aggregate the received valued data. Instead of sending the fused data to the BS, they were 

required to send the calculated probability of occurring the events in their monitored areas. 

To calculate the probability, each CH was equipped with a fuzzy inference system with the 

inputs of the three different fused data and output of the occurrence possibilities. Next, in 

case of noticing any changes in the calculated possibilities, they sent the fuzzy output to the 

BS. However, the BS still was needed to process the received data with the aim of realizing 

whether the detection is accurate enough. Then, the BS was required to record the detection 

to the alerting subsystem. 
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Chapter 5 

ROUTING WSN DATA 
 

In this chapter, we propose two routing protocols to improve wireless sensor network 

(WSN) performance and lifetime. The first approach is based on a fixed base station (BS), 

in which each source node has to find a path to the BS to forward their collected data. The 

second approach is based on a mobile BS (MBS) with flexible visiting routes to prevent 

same nodes frequently participate in forwarding data. The direction of the MBS is controlled 

and changed based on sensors’ local information.  

5.1. Introduction 

A routing algorithm is a process of discovering, selecting and maintaining paths 

from one node to another and using these paths to deliver flow packets to their destinations. 

An efficient routing mechanism can become significantly complex due to the fact that it is 

necessary to consider current condition of each neighbour to be able to find the most optimal 

path [119]. 
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Routing protocols can be classified into three main classes: proactive, reactive and hybrid 

routing protocols. Proactive-based routing protocols establish paths and keep them active 

from all the sensor nodes to the sink during the networks’ life time. Then, source nodes 

forward their collected data packets through the determined paths to the BS periodically. In 

reactive routing protocols, source nodes need to determine a path for their collected data. 

For example, Direct Diffusion routing protocol [142] calculates the best route from a source 

node to the sink once a required message received from the BS. These routing protocols can 

be used for query-driven applications. Finally, the hybrid routing protocol is a combination 

of both proactive and reactive routing protocols. 

Although there are many routing techniques for WSNs they are based on a set of 

assumptions that are not realistic. For example, the effect of noise on signals cannot be 

avoided in processing data by the nodes [143]. Therefore, we extend the T1 fuzzy route 

management design via incorporating the Interval Type-2 (IT2) fuzzy logic [17].  

We develop two routing protocols for WSNs. First, we develop a routing protocol for 

stationary sensor nodes and a BS subject to enhance efficiency of energy consumption. In 

this protocol delivery routes for delivering data packets from sources to the BS are 

established. To define the routes residual energy, buffer capacity and congestion at each 

node as well as distances among sensors and the BS are considered. Then, we extend the 

routing protocol with replacing the stationary node with a MBS. We proposed a data 

collection scheme (IDCS), in which MBS is responsible to visit source nodes to collect data. 

Thus, the source nodes are not required to worry about establishing routes to transfer data. 

Visiting time and location are controlled by a fuzzy system. The fuzzy system dynamically 

prioritises the source nodes that are needed to be visited. The source nodes even have the 
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ability to call the MBS to be visited. Thus, in case of emergency situation, the source nodes 

ensures that their collected data can be reached by the MBS quicker.  

5.2. Problem Description 

The main objective of developing a routing protocol is to enhance efficiency of 

energy consumption in WSNs. Routing protocols in each data collection round are 

responsible to find a relay node for transferring data packets. To find a relay node there are 

many requirements that need to be taken into account. First, residual energy of the next hop. 

Low residual energy of a node may cause a disconnection in the created route as it is in the 

risk of failure. Next, buffer capacity is also playing an important role in choosing an 

immediate node.  

Table 5.1. Notations  

Symbols Definitions  
 Current residual energy of each sensor node 

 Network lifetime  
S Set of deployed sensor nodes 
d Distance among the sensor nodes and BS 
B Buffer capacity  

 if the location of sensor is a sojourn location of the MBS; 
Otherwise,     

and    Minimum and maximum sojourn of the sink at location  
 Maximum tolerable end-to-end delay 

 

If a buffer capacity of nodes is at the certain level, they might not be able to store 

the received data packets. As a result, the network faces to data loss. Additionally, delay in 

transferring data is another challenging point in developing routing protocols. To reduce 

delay in receiving data from sources, the shortest and the most secured route needs to be 
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determined. Resubmission of data that could be due to node failure or data collisions 

increases delay in data transferring. Table 5.1 presents the notations used in this chapter. 

5.2.1. Problem Formulation 

Distributed routing protocols in immobile WSNs lead the source nodes to find the 

most suitable neighbour node as a relay node to transfer the data. To establish a route for 

data, each source node needs to find a relay node subject to decrease the energy 

consumption. Developing packet routes in an immobile WSN is formulated as follow: 

Maximize                                                          (5.1) 

                (5.2)   

                                                          (5.3) 

The objective (5.1) is to maximize the network lifetime. To achieve that, we refer to the 

residual energy of the relay nodes and their traffic rate. Constrain (5.2) stands that it is 

essential to make sure that the residual energy of the elected relay nodes is more than a 

certain level. Constrain (5.3) ensures that transferring rate of the selected relay node is more 

than a determined threshold.  

We then extend the problem by replacing a MBS with the stationary BS subject to reduce 

energy consumption and transmission delay in the WSN. In this approach we use the cluster 

method explained in chapter three to create disjoint groups of sensor nodes. The MBS starts 

from and returns to a location  to recharge petrol or electricity. The location (  may 

be outside of the monitored region. During its tour, the MBS sojourns at each chosen 

location for a certain duration in order to collect the sensing data from source nodes. End to 

end delay time for a data packet to be delivered from a source node ( ) to the MBS, is 
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presented as . End to end delay that is calculated by (5.4) includes the delay 

among cluster members (CMs) ( ) and the delay between the cluster heads (CHs) along 

the path to the MBS. It is assumed that is the same for all the CMs. The delay between 

CHs to reach the MBS is basically depends on the propagation delay ( ), which is the same 

for all the CHs and number of data packets ( ) between the CHs and MBS.   

                                               (5.4) 

We formulate the data collection scheduling (IDCS) as follows:   

                                                         (5.5)                         

             for any  S         (5.6) 

     

Constrain (5.8) stands that it is essential to make sure that sojourn time for MBS is not more 

than the maximum tolerable end-to-end delay otherwise, it negatively influences the rate of 

packet drop. Constraint (5.6) ensures that the visiting time for MBS of CHs is limited to 

ensure the entire data packets are collected, while there is always a maximum time as the 

other CHs are awaiting to be visited.  

5.3. Reactive Routing Algorithm 

In this section we first describe the routing protocol for a WSN with stationary BS. 

The algorithm starts when the BS broadcasts a data request message. All the nodes that are 

idled and located in the area of interest will wake up to process the message. If the request 

is not for them, they will go to sleep mode again. Otherwise, they will check their current 

conditions based on their local information. To calculate that we developed a Type 2 fuzzy 

logic system (FLS1). The inputs of the system are residual energy, required energy for the 
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operation and their current queue size or congestion rate. To calculate the existing 

congestion, arrival and transmission rate of each sensor is calculated. Eq. (5.7) shows the 

network rate of transferring in a sensor node [144].        

                                                      (5.7) 

Where is congestion rate of the sensor node, is the arrival data rate and is the 

transmission rate of the networks. The output of the FLS1 determines one of the three next 

processes. First, if the output of the FLS1 is more than , the requested data will be delivered 

to the BS directly. Additionally, the energy consumption of the resource nodes and also the 

neighbours for delivering data and processing the order message will be calculated. The 

energy consumption is calculated based on Heinzelman's energy model [145] as it is 

explained in chapter three. Secondly, if output of FLS1 is less than  the collected data will 

be lost as the node is not capable to deliver that. Finally, if the output of FLS1 is in between 

 and , the source will need to find another node to relay the data packets. To find a relay 

node, there are two main steps that are updating neighbour list and finding the most eligible 

neighbour for relaying data packets.  

Consider a source node ( ) and its neighbours. To find a relay node, we develop another 

fuzzy system (FLS2) with three inputs; residual energy, distance to neighbours and the 

current congestion at the neighbour nodes. To calculate the distances among the sensor node 

we used received signal strength (RSS). RSS is the measure of voltage by received signal 

strength indicator (RSSI) circuit of the sensor node. Since there is no additional hardware 

required to calculate the mentioned parameter, RSS measurement is not a difficult and time 

consuming task for each node. After measuring the RSS, the theoretical models are usually 

applied to convert the RSS into a distance estimate [146]. 
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Figure 5.1. T shows and compares the distance from A and B 

Figure 5.1 shows how sensor node  that is located in different distances from two nodes 

in WSN. In the first step, RSSI value will be measured by sensor nodes to calculate the 

distance can be calculated. Eqs. (5.8) and (5.9) can be applied to calculate distances based 

on RSSI [147].  

(5.8)

(5.9)

where RSSI is the received signal strength, d is the distance between the nodes and n is the 

damping coefficient of the signal and A is the absolute value of the signal strength with 1m 

distance between the transmitter and the receiver. 

Then, the neighbours will send the output of the FLS2 to the node “ ” periodically. That 

helps to update the forwarder table and remove the recent failure nodes from the list. Then, 

the source node will select the most eligible neighbour. After the selection process, the 

source node broadcasts a request message (64 bit) and wait for a reply within a certain period 
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of time. If it did not receive any ACK from the selected neighbour, the source node chooses 

the second highest qualified neighbour node. When a node from the list of source node is 

selected and received the data packets, the neighbour will be the new source node. The 

following algorithm is the presented routing protocol.  

 

Algorithm 1: Data routing algorithm 
INPUT: S, D  // S – Source node; D – Destination node 
OUTPUT: route 
BEGIN 
1:    WHILE (packet not delivered) DO 
2:        Check the eligibility (E) of  source node 
3:        IF ( Ea > μ) THEN 
4 :           Send the packet directly to the sink  
5:            Calculate the energy consumption 
6:        ELSEIF (Ea < ) THEN 
7:            Drop = Drop + 1;  
8:            Calculate energy consumption 
9:        ELSE 
10:          Update the neighbour table ‘ ’ 
11:           Select the most eligible node from the table( );  
12:          WHILE (Select a relay node from table ( ) and   
                send the packet) 
13:               DO               
14:                 IF (Ea (selected node) > β) THEN 
15:                  Send the request message   
16:                  Wait for ACK  
17:                    IF (ACK received) THEN  
18:                       Send the packet 
19:                       Calculate the energy consumption 
20:                       ELSE 
21:                       Select another eligible node 
22:                    ENDIF 
23:                 ENDIF 
24:          ENDWHIL     
25:                 IF  the relay node been selected 
26:                          Go to 2 
27:                     ELSE 
28:                       Drop = Drop + 1; 
29:                 ENDIF 
30:        ENDIF 
31:    ENDWHIL 
END 
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To enhance the proposed algorithm, we replace the stationary BS with the MBS. To develop 

a routing protocol in a WSN with a MBS, we firstly divide the entire region into equal-sized 

squares or grids as in [148]. Figure 5.2 presents a small part of our deployed WSN. There 

are 4 clusters (C1, C2, C3, C4) formed and each cluster has different number of sensors that 

regularly sense the environment and also can be CHs in each group.  

C2

C3C4

d

C1

(x’2, y’2)(x’1, y’1)

(x2, y2)(x1, y1)

(x’3, y’3)

D

CC

Sleeping
Active
Dead node
Cluster head

 

Figure 5.2. Grid cluster formation Network 

The CHs are not fixed for the groups as their energy for each cycle of data collection can be 

depleted quickly. Clusters are formed and CHs are defined based on their residual energy, 

the direction of the MBS and the communication distance between each cluster and the 

MBS. In fact, the MBS in the network has the authority to determine a CH for each cluster. 

For example, the CH for cluster C1 is in ( , ) when the MBS is at ( , ). In the next 
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data collection cycle CHs, based on the residual energy of the node, can be changed by MBS 

with the aim of becoming close nodes to the new destination of MBS. 

In the initializing phase of the proposed algorithm MBS locates at the starting point, where 

can be sure that the entire sensor field can receive its signals. Then, it broadcasts a starting 

beacon message to the whole network. CHs that happen to receive that message are 

responsible to send Request to Register (RTR) message to the MBS and wait for Agree to 

Register (ATR) message from the MBS. This message has dual responsibilities. Firstly, in 

emergency situations CHs can call MBS to be visited by setting the EMG to 1 in this 

message. Otherwise, in regular situation EMG is settled to 0. In the situation, MBS will be 

notified that there is no urgent visiting and need to check the priority of the clusters. To 

prioritise the clusters to be visited, we developed a fuzzy controller (FLS3) that calculates 

the priority of clusters based on local information of the nodes. To calculate that, we choose 

influential parameters from the local information of the CMs as inputs of the system. The 

output of FLS3 shows the score of each cluster as a new location of the MBS. Finally, the 

region with the highest score has the most priority to be chosen as the next position of the 

MBS. Figure 5.3 presents FLS3 that is responsible to place the MBS at the most appropriate 

location in the real time 

The input variables that have been designed based on interval methods, are defined as 

follows: 

1. Energy (E): The average residual energy in each cluster can be calculated by (5.9), 

where the residual energy of each cluster member and n is the amount of live 

nodes in the considered cluster. 
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Energy =                                                                  (5.9) 
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Figure 5.3. FLS3 for controlling MBS 

 

2. Buffer occupancy (B): The average buffer occupancy in each cluster can be 

calculated by (5.10), where, is the available buffer capacity in each cluster 

member and n is the number of live nodes in the cluster. 

Buffer capacity =                                                         (5.10) 

3. Number of nodes (n); the more live node in each cluster the more energy 

consumption. Figure 16 shows the membership function on number of live nodes 

in the WSN. 

Figure 5.4 shows structure of RTR message. Where Packet Type shows the purpose of the 

message, CH-ID presents the ID of the referred CH. FLS3-OUT is to show the calculated 

priority of the clusters and EMG-ID is to show the emergency of the cluster to be visited.  
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Packet Type CH-ID FLS3-Output EMG-ID 

Figure 5.4. RTR message 

Once MBS received RTR message, it needs to prioritise the clusters based on FLS3-OUT. 

Next, it needs to send ATR message to inform the cluster with the highest FLS3-OUT about 

its presents. Since the MBS has the authority to change the already defined CH in the RTR 

message, it needs to define a CH for the targeted cluster in the ATR message. To find the 

most appropriate CH for the cluster that needs to be visited, the MBS needs to figure out 

the second prioritised cluster to be visited. If MBS finds a location to collect data from both 

cluster (e.g. C1 and C2 in Figure 5.2) in one stop (stop point is ( , )), it chooses the 

closest node of each cluster to the location. However, this selection of the CH is influenced 

by the residual energy of the nodes. In fact, the MBS is aimed to choose nodes as CHS with 

the certain level of their residual energy. Residual energy on each node is received by the 

MBS with the collected data packets in each data round of data collection. Figure 5.5 

presents structure of ART message. 

Packet Type CH-ID T= D/v 
Figure 5.5. ATR message 

Where Packet Type shows the purpose of the message, CH-ID presents the ID of the node 

that is going to be visited by the MBS. Also, MBS calculates T by dividing the distance 

between its locations to the selected CH (D) to the velocity (V) of movement. As a result, 

by the time the MBS reached the determined CH in the ATR message the CH collects all 

the sensed data from the CMs as well as their residual energy. In fact, each cluster has to 

finish with data collection and save them in the buffer of their CH within the T. 

As showing in Figure 5.2, the movement of MBS could be in several ways, for example a 

mix of clock-wise and anti-clock-wise direction to reach the closest point to CHs. After the 
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MBS reached to the destination, it would be responsible to send a TDMA (time division 

multiple access) to the defined CHs. TDMA is an assigned time slot to each CH in a real 

time to send data to the MBS directly. Figure 5.6 presents the TDMA structure. TDMA 

consists of two sections, which are the data request and data section. In the data request 

section, MBS informs its presents and ready to receive the data. The data section in TDMA 

is reserved for the actual data transfer. Each CH has its own time slot so, data collision is 

cut off the network.  

 

Data
Request

Data
Section

Data
Request

Data
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Figure 5.6. TDMA structure 

Next, the MBS stays at the location long enough to collect the data accumulated at the CH, 

emptying the CH’s buffer. In addition to the sensed data, CHs send residual energy of their 

CMs, with a 20 bytes table message. At the MBS this residual energy information is 

maintained in CH Residual Energy Table (CHRET). Moreover, in case of emergency 

situations, CHs in each cluster will create a message with the cluster ID for emergency 

visiting.  

Packet type EMG-ID 

Figure 5.7. Emergency message 

Figure 5.7 shows the emergency message. This message is forwarded to the next neighbour 

CHs or border nodes down to the MBS.  After each movement and data collection process, 

MBS checks the received data with the aim of defining if there is an emergency collection. 

If there is no urgent in collecting data requirement, MBS will move toward to the next 

prioritised cluster. The MBS before moving to the determined cluster sends the ATR 
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message and informs the CH about the time (T) to reach there. So, other nodes that was not 

mentioned on the message will be on sleep mode and wait for their ATR message. The 

further the MBS is the longer a sensor node could afford to spend in sleeping mode. 

However, in some applications critical sensor nodes are to be sensing and forwarding duties 

in the entire network lifetime.  

INPUT: ( ) 
OUTPUT: MBS Destination 
BEGIN 
 

1.  IF it is at the first cycle 
2.       Broadcasts starting message to the entire network 
3.          IF CHs have not been defined for each cluster 
4.               Clustering 
5.          END IF    
6.       Received RTR from CHs 
7.          IF EMG-ID = 0                                   //Regular situation 
8.               List the CHs to be visited               //Based on FLS3-output  
9.               Next Destinations ← Cluster-ID    // Location is the closest point to the defined CH                                   
10.          ELSE 
11.               Next Destination ← EMG-ID        //Urgent cluster needs to be visited 
12.           END IF   
13.       Sends ART message to the determined CH 
14.       Arrange a Time Slot for registered CH 
15.       Send TDMA schedule to registered CH when it reaches 
16.       Wait                                                        //For collecting data   
17.       Calculate energy consumption               //For transferring data and messages       
18.  ELSE 
19.       Checks the received sensed data from CHs 
20.        IF there is an urgent collection 
21.            Next Destinations ← EMG-ID           
22.        ELSE         
23.            Next Destinations ← Cluster-ID       // Based on FLS3-output 
24.        END IF 
25.       Find and inform CHs                             // Based on CHRET 
26.       Define a destination close to the new CH 
27.       Sends ART message                               //To inform the CH of moving decision 
28.       Arrange a Time Slot for registered CH 
29.       Send TDMA schedule to registered CH when it reaches 
30.       Wait                                                        //For collecting data   
31.       Calculate energy consumption              //For transferring data and messages      
32.  END IF 
33. END Algorithm   

 

          Algorithm 2:   Data Collection Scheduling 
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5.4. Performance Analysis 

In this section we evaluate the performance of the proposed shame using 

simulations. As a performance metric, we compare the efficiency of energy consumption in 

the networks. The communication model for energy consumption used in this evaluation is 

as proposed in [66] and explained in chapter three. Apart from energy consumption, we 

analyses data loss ratio (DLR) of our proposed approach. DLR is a ratio of the difference 

of total data sent by the sensor nodes and received by the BS to the total data sent by the 

sensor nodes as explained in chapter three. Moreover, we analyse the traffic overhead of 

our proposed protocol. To evaluate the traffic overhead of the distributed approach in WSN, 

we tested the average amount of traffic transmitted within the network. Finally, in analysing 

the performance of only the proposed protocol for WSN with MBS, we calculate the end to 

end traffic delay. The delay is defined as the average time interval between transmission 

and correct reception instants of a data packet. 

5.4.1. Stationary Sensor Nodes and a BS 

In this section we analyse the performance of the WSN with a stationary BS. 

5.4.1.1. Experiment Setup 

In this section, we use MATLAB to evaluate the performance of our proposed 

protocol and compare it against Fuzzy Based Optimized Routing Protocol for Wireless 

Sensor Networks that uses T1 fuzzy logic system (Type 1 FLS) [149]. In reference [149] 

they developed a routing protocol with the aim of improving the performance of WSNs. 

The main purpose of the research work is to extend the network lifetime applying T1 FLS. 
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In this approach, they let each source node that are equipped with GPS technology selects 

the most optimized path individually and forwards the data packets to the BS.  They proved 

that a better energy consumption and reliable path selection can be achieved compare to the 

existing routing protocols. However, the problem has not been fully solved by the authors. 

In this section we show that even though they used intelligent system and improved the 

performance, our protocol outperforms the routing protocol (Type 1 FLS). In this 

experiment the monitored surface area is 100 * 100 meters with 50 sensor nodes with 

randomly assigned initial energy from 0.5J to 5J. 

5.4.1.2. Result and Discussion 

The behaviour of the proposed approach in establishing data routes can be analysed 

based on the respective surfaces plot of our proposed protocol and the literature [149]. The 

surfaces are constructed by calculating the fuzzy confidence value of each node for each 

combination of the input fuzzy differences. Figure 5.8 presents the surface plot. As the 

plotted surfaces demonstrate, the proposed approach introduces substantially smother 

surface. This smooth response will consequently provide a better monitoring performance 

that can handle the uncertainties. However, the complexity of the system with respect to the 

size of the fuzzy rule based remained the same (no additional fuzzy rules or fuzzy sets were 

used).  
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(a)                                                                                       (b) 

Figure 5.8. Comparison of the surfaces of the type 1 FLS (a) and the proposed approach (b)  

Figure 5.9 illustrates a comparison of energy consumption in the networks. As the figure 

shows, although energy consumption of transferring a data packet in most of the time is the 

same there are some situations that our proposed approach performs better. For example, 

the required energy for transferring data from source to the sink in the  time of the data 

collection in our proposed approach (Type 2 FLS) is (1.08e-4 J), which is less than the 

recent approach [149] (1.17e-4 J). 
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Figure 5.9. Energy Consumption 

In addition, we calculate and compare the required energy for transferring data packets in 

both approaches. The results show that our protocol needs less energy to have a successful 

transmission. Figure 5.10 presents the relation of the data received and energy dissipation. 

The total data  received by our proposed algorithm is more than that in [149] with the same 

energy consumption. That is because the proposed mechanism puts an emphasis more on 

energy balancing. The consideration of balancing energy leads to a scenario that the 

redundant node might not be chosen as the route node. 
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Figure 5.10. Relation of data received and required energy 

In addition to the remaining energy in the network, it is worth mentioning that efficiency of 

buffer usage can be increased by our developed protocol. In order to prove that, remained 

buffer capacity in the selected node as a next hop for each call was checked. Then, the 

outcome from our system and the literature (Type 1 FLS) [149]  was compared. Figure 5.11 

shows the comparison of buffer capacity in the both systems. As can be seen from the figure, 

both systems are working mostly the same but our approach in some situations can select 

the next node with fewer available buffers capacity. Type 1 FLS on the other hand, needs 

more capacity to be satisfied to choose the next hop. For example, in the 3rd times of calling 

data, the remaining required capacity, in order to be selected as a next hop, for the same 

amount of data was less in Type 2 FLS than that in Type 1 FLS. Consequently, next hop 

selection could be more accurate by using our system therefore; routing could not be 

effected by inaccurate buffer capacity measurement. 
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Figure 5.11. A comparison of remaining buffer capacity 

The result of the experiment also proves that the amount of dropped packets by our proposed 

system is less than data packet lost in the litereture [149]. Packet drop is undesirable for any 

protocol that aims at energy conservation and collision control as more packet drop depict 

collision in the network and increase the energy consumption due to redelivering the data 

packets to the destination. Packets are dropped either due to insufficient buffer capacity at 

the receiver or because of the lack of energy needed to transmit the packet. Percentage of 

packets dropped is significantly lower for our fuzzy approach resulting in greater reliability. 

Our Proposed protocol by taking the queue size and congestion on candidate nodes into 

account, selects each particular route based on fuzzy decision making model. For analysing 

this claim, we detected every dropped packet in each call and added to the previous amount 

of unsuccessful transmission. Figure 5.12 illustrates and compares the unsuccessful 

transmission in each designed system. Every dropped packet in each calls added to the 
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previous amount of unsuccessful transmission. As can be seen in the figure, unsuccessful 

transmission in our system for the entire 50 times of calling data is less than 10%. However, 

in the other system the DLR goes up to 50%. Consequently, our system increases the 

reliability of the system up to more than 40%.  

 

 

Figure 5.12. A comparison of unsuccessful transmissions 

5.4.2. Stationary Sensor Nodes with a MBS 

In this section we analyse the performance of the WSN with a MBS. 

5.4.2.1. Experiment Setup 

The result of our proposed approach are going to be compared against SDD [150] 

and HCDD [151] via MATLAB. The reasons that we chose the approaches are mainly 

because of their cluster-based structure and also their focus on energy consumption in WSN. 

In this implementation there are 100 nodes with the communication range of 50m. In this 
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implementation, it is assumed that the initial energy for the nodes is chosen randomly 

between 0.1J to 1J. The beacon message is 10 byte while the packet size is 100 byte. The 

speed of MBS is randomly from 10m/s to 40m/s. The energy required for data aggregation 

is set as 5nj/bit/signal and CHs perform ideal data aggregation (i.e. all the message received 

from cluster members can be aggregated into a single message) 

5.4.2.2. Result and Discussion 

To analyse the performance of our designed network with the proposed protocol, we 

run the system to transfer different number of data packets. The results show that our 

proposed protocol increases the efficiency of energy consumption significantly. This can be 

due to the following reasons. Firstly, IDCS unlike the SDD and HCDD does not maintain 

the discovered path for delivering data. In addition, the proposed policy can make the entire 

cluster into sleep mode by considering their prioritized order. Moreover, our proposed 

algorithm unlike the SDD and HCDD reduces the amount of controlling message 

significantly. Therefore, the network overhead and traffic in the network decreased. So, the 

risk of collisions and consequently retransmissions the data is reduced. Figure 5.13 presents 

the required amount of energy for transferring data in different protocols. 
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Figure 5.13. Average energy consumption 

Apart from the energy consumption in the WSN we analyse specifically energy 

consumption of the CHs. Network availability depends mostly upon the relaying activity. 

When the relaying load increases in the routing process, obviously the border nodes (CHs) 

and also their closest relaying nodes are in the high risk of depletion. To prevent the 

developed WSN to be fulfilled, it is suggested to investigate on the benefits of dynamically 

changing the CHs during network lifetime. Using a fixed CH in each cluster in developed 

protocols e.g. SDD and HCDD, even with a mobile sink the nodes are still in the risk of 

depletion more than others.  
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Figure 5.14. Energy consumption of border nodes 

Figure 5.14 shows the energy consumption as a function of message inter-arrival period. 

The figure proves that the amount of consumed energy by the key nodes in IDCS is much 

less than that in SDD and HCDD. That is due to the reason that in our proposed protocol, 

MBS dynamically changing CH. So, we could make a better balanced energy consumption 

among the crucial nodes. As a result, we made the nodes to be more organized to consume 

their available energy. Also, since the border nodes in SDD are not always the same and in 

each movement different nodes are used, the total energy consumption of the network can 

be more balanced than HCDD.   

In addition to the energy consumption, delivery delay is also analysed. To route the data 

source nodes usually select immediate nodes as a next hop. Then, in the optimal status the 

immediate nodes receive the data packet and forward it through the MBS. 
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Figure 5.15. End-to-end delay 

However, if in this routing process an immediate node forwards the data packets with a bit 

of delay, the data packets will end up to be received by the previous position of MBS. So, 

the data either needs to be resubmitted in a proper time again or follow the MBS by finding 

another next hop. Ultimately, the average delay increases and consequently collision occurs. 

Figure 5.15 compares the existed end-to-end delay in IDCS with SDD and HCDD. The 

results proves that our approach works better than the other methods. That is because our 

protocol unlike SDD and HCDD is not needed to find a path among many sensor nodes in 

the network. Thus, it obviously cuts a huge number of controlling messages for organizing 

a path which is changed many times during the network lifetime. In addition, in emergency 

situations our protocol is capable of calling the MBS to be crossing the network and reach 

the most urgent cluster. That means, the MBS by skipping and not stopping at the other 

clusters can decrease the delay in such network. However in SDD and HCDD, MBS does 
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not care about the emergency situations and urged data as the data packets need to find a 

path to the MBS.  

Finally, we calculate DLR in the proposed approach. It is observed that a major cause for 

packet loss is link failure between the sink and an immediate relay node. In packet 

transmission procedure from the representative source to the sink any collision or link 

failure cause data loss in the network.  

 

Figure 5.16. Unsuccessful transmission   

Thus, the throughput performance can be dominated by the handoff scheme between the old 

and the new immediate relay node. Figure 5.16 compares the rate of unsuccessful 

transmission in IDCS, SDD and HCDD. The performance of SDD is better than HCDD due 

to some reasons include the fewer required hop for delivering data and less signalling for 
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link detection. However, the amount of control message in IDCS is much less than SDD 

and also CHs are not required to find another CH to chase the MBS until data delivered. In 

fact, the MBS finds the best CH and locates itself close to the CH to collect the data packets.    

5.5. Chapter Summary 

The main goal of this chapter was to develop routing protocols for WSN with 

stationary and mobile sinks. In the proposed routing protocols the inherent uncertainty was 

taken into account. In the first section, we proposed a fuzzy logic based reactive routing 

protocol for a sensor network with stationary sensor nodes and a BS. The main contribution 

of this was establishing a balance in energy consumption. The obtained results proved that 

our system increased the efficiency of energy consumption and buffer usage. Then, we 

extend the proposed approach by replacing the stationary BS with a MBS. We proposed 

IDCS to control MBS in locating and timing. In our dynamic and expert proposed system 

MBS determined a location by using local information of deployed sensor node to collect 

the data. The system has the ability to instead of visiting clusters randomly or in a fixed way 

of moving, firstly figures out the importance of data in each cluster. Then, it prioritised the 

CHs to be visited. Next, the MBS defined a closet location to communicate with CH. 

Simulation results showed our scheme significantly prolonged network lifetime and also 

reduced the time delay in delivering data packets.  
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Chapter 6 

DYNAMIC WSN COVERAGE 
 

Sensing coverage of a wireless sensor network is an important measure of the quality of 

service in data. Therefore, it is always desirable to develop a more accurate and energy 

efficient method to increase coverage ratio. This chapter introduces a fuzzy-based self-

healing coverage (FSHC) scheme for randomly deployed mobile sensor networks. The 

approach determines the uncovered areas that could be due to dead nodes and then select 

the best mobile nodes and move them to minimize the coverage-hole. Also, it distributes 

the sensor nodes uniformly considering Euclidean distance and coverage redundancy 

among the mobile nodes.  

6.1. Introduction  

In order not to lose data in the networks, positioning of sensor nodes in the region 

of interest is one of the biggest challenges in designing WSNs. The importance of this 

problem arises when a WSN needs to be established in inaccessible and sometimes polluted 
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area. For example, in a uranium polluted area in Japan, which is inaccessible as it is very 

harmful for human bodies. In those areas, there are many elements such as temperature that 

needs to be recorded very accurately to prevent an explosion. Each explosion can increase 

the pollution in the atmosphere, which could be worse in a windy weather. In such areas, 

sensors are aimed to be deployed randomly. However, there is no guarantee that the nodes 

are uniformly distributed after random deployment. The possibility of covering the sensing 

field while they are not overlapped and being within communication range of each other to 

be fully connected will be decreased. In addition, maintaining coverage is vital as sensor 

nodes fail due to battery drain or environmental causes or even noise influences. As a result, 

due to the created redundancy and coverage-hole the quality of collected data is influenced. 

There are several research works related to the deployment of wireless sensor nodes. Most 

of them considered a single objective such as coverage ratio or energy consumption [152-

154]. However, objectives such as uniformity and data reliability are needed in the 

deployment. More importantly, existing approaches have limitations in dynamic 

environments which contain a variant amount of noise created by some defences such as 

irregular radio propagation in disaster areas.  

To develop a coverage optimization scheme in WSNs we enhance a recent developed 

protocol [155], which is the first approach that introduces mobile node migration. The 

authors proposed a set of dynamic coverage maintenance (DCM) schemes that can be 

executed on individual sensor nodes having a knowledge of their local neighbourhood. They 

claimed that efficiency of energy consumption in maintaining sensor nodes’ coverage in 

WSNs is enhanced. However, energy consumption is still not efficiently consumed by the 

approach as it is somehow centralized approach and also using GPS technology. Moreover, 

complexity of using different algorithms particularly in moving more than two sensor nodes 
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in the network is very high. To enhance DCM schemes, we proposed a distributed self-

healing coverage scheme without GPS requirement. We also enhance quality of transferred 

data in the approach by considering coverage redundancy as well as noisy sensor nodes, 

which were not taken into account in DCM.    

      Definition 1 (Neighbour): A neighbour of a sensor node is defined as a node that is 

located in the communication range of another sensor node in a WSN. 

Definition 2 (Sensing area): The sensing area of a node is defined as a point (p) in an 

area that can be monitored by a node. Generally, a node is assumed to monitor up to a 

distance of a sensing radius, Rs, (i.e., |p | < Rs).  

Definition 3 (Noisy sensor): A noisy sensor is a node that adds bits to its produced 

original signals. The added data, called noise, influences and sometimes destroy the original 

signal. The more added data the weaker signal is produced. Each produced signal can have 

a certain signal to noise ratio (SNR) to be detected by receivers. Therefore considering SNR 

in transferring and receiving high QoS in WSNs is necessarily needs to be considered [156].  

For a mobile sensor , transferred signals from the event located at point p is calculated 

by Eq. (6.1) [157]. 

                                               (6.1) 

Here the constant  and k are sensor technology-dependent parameters and  is the 

Euclidean distance between the sensor m and the target p, 0 ≤ p ≤ Rs. For most types of 

sensors k= 2 and  = 0.1. To make sure that transferred signals are detectable S (m, p) needs 

to be more than a threshold ( ).  
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Definition 4 (Coverage redundancy): In a densely deployed WSNs, the sensing area of 

the sensors might be overlapped. The larger the overlap of the sensing area, the more 

redundant data is produced. As a result, the quality of collected data and efficiency of energy 

consumption is reduced.  

The coverage redundancy for each node can be calculated by considering only its sensing 

area. Eq. (6.2) calculates the ratio of coverage redundancy for a sensor node. 

                                                           (6.2) 

Where, is the sensing area of that has been covered by , j = {1, 2, 3, …, 

n} and is the sensing area of . When , there is no coverage redundancy 

for the sensor, when there is a coverage redundant occurred and when , 

sensor has a complete coverage redundancy.    

The contributions of this chapter can be summarized as follows: 

1. A self-healing coverage maintenance scheme for mobile sensor network is 

designed to meet the specific requirements of event detection systems. When 

a loss of coverage occurs due to node death or noisy sensors, the ensuing 

movements are restricted to the immediate neighbours of the failure node. 

The neighbours are moved in, using a distributed algorithm. Therefore, the 

loss of coverage is minimized.  

2. A Euclidean distance-based coverage scheme considering coverage 

redundancy is designed to cover the monitoring area in a very effective 

manner, especially for randomly deployed WSNs. To maintain the maximum 
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coverage and to minimize the redundancy of collected data the Euclidean 

distance of the nodes is fully considered. 

3. Reliability of data by detecting noisy or disordered nodes and replacing them 

with immediate neighbours, is increased.  

4. The proposed algorithm consumes more efficient energy than the existing 

approaches. This is due to first, fewer required message exchanges as well as 

eliminating the noisy nodes that transfer more bits (noises) in the network. 

Second, the energy required for random movements and inaccurate 

movements of the mobile nodes is reduced.   

5. Uncertainty, which is an inherent behaviour of WSN, in processing data is 

considered. 

6. This approach, unlike existing approaches, does not need to use the global 

information of the network. 

6.2. Problem Description 

In general, the coverage problem can be considered due to two reasons. Firstly, 

random deployment methods that cannot guarantee the sensor field to be covered uniformly. 

Figure 6.1 shows a WSN field in which the sensor nodes are randomly distributed. The 

figure shows that the Euclidean distance among the deployed nodes are not equal. As a 

result, the WSN experiences uncovered areas as well as coverage redundancy in the 

network. In addition, coverage maintenance or coverage-hole prevention is another 

considerable issue that influences the quality of collected data. There are two identified 

reasons that cause a WSN to experience coverage-hole problem. Firstly, node depletion or 

physical damage makes the nodes disordered. Secondly, a sensor node may make faulty or 
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unusual reports, which might be caused by external environmental interferences such as 

noise. 

 

Figure 6.1. Over lapping with uncovered area 

In general, there are two main kinds of noise in a WSN; these are white noise and internal 

thermal noise [158]. Noise can easily add more bits to the original data as well as effecting 

SNR. The SNR then impacts on the bits error rate (BER) and the BER will become the 

cause of the fault–estimation factor. In either case, it is assumed that the nodes are 

disordered. Figure 6.2 shows a sample WSN that faces the coverage-hole problem, in which 

the node F is the disordered node that cause a coverage-hole in the WSN.       
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Figure 6.2. Coverage-hole 

To overcome the coverage problem we propose an algorithm to detect uncovered areas, 

move determined sensor nodes towards defined destinations and ultimately achieve 

maximum coverage with optimum overall energy consumption. 

Table 6.1 lists some of notations used in this paper. 

Table.6.1 Notations 

Symbol Definition 

E Available energy of a newly deployed mobile node 

 Mobile sensor node  

 Coverage gain if  moves to the hole . 

 
, when a mobile node ( ) moves to cover a 

coverage hole ( ). Otherwise . 

 &  Minimum and maximum Euclidean distance between two 
nodes 

 Coverage redundancy threshold  

 the Euclidean distance between a mobile sensor node and 
a hole  

 The required energy for each movement of nodes ( ) 

6.2.1 Problem Formulation 

We formulate the addressed coverage enhancement problem as follows; 

    Maximize                                                                   (6.3) 

                                                              (6.4) 

                                                               (6.5)    

                                                                        (6.6) 

           For each                         (6.7) 
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The objective of Eq. (6.3) is to maximize the coverage ratio of the sensing field subject to 

deploying the nodes uniformly. The objective of (6.4) is to ensure that the mobile node 

moves toward the coverage-hole to minimize the uncovered area. Constraint (6.5) ensures 

that the nodes are located in an equal Euclidean distance from each other. is half of 

the maximum communication range and  of the sensor nodes and  

[159]. Constraint (6.6) presents that the required coverage redundancy is bounded by a 

threshold. Constraint (6.7) states that the total required energy by sensor  during the 

optimization is no more than its initial energy. 

6.3. Self-Healing Algorithm 

In WSN node failures and changes in nodes’ behaviour may reduce the overall 

efficiency or it may change the definition of efficiency itself. In either case, other nodes 

should move to maintain an effective network layout. To achieve this, each node is doomed 

to periodically send an identified heartbeat message to their neighbours to ensure that they 

are fully functional. The sensor nodes that receive the signal can apply RSS [147] method 

to ensure that there is a functional neighbour located in an expected distance. The sensor 

nodes also apply Eq. (6.1) to discover whether the neighbour node is a noisy sensor node.  

If a neighbour is detected as a noisy node or dead or even not located in the expected 

distance, it will be assumed as a failure node that causes a coverage-hole in the WSN. Figure 

6.3 shows a WSN with a failed node (F).  
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Figure 6.3. A failed node in a WSN 

To compensate the coverage lost the neighbours are required to move and minimize the 

uncovered area. There is a possibility that F has more than one neighbour. Hence, 

determining a proper neighbour node to be moved to the uncovered area is essential. To 

choose the most appropriate node, each of the neighbours uses FLS2. FLS2 is a Type-2 

fuzzy logic system (FLS) based that is able to handle linguistic and numerical uncertainties 

in WSNs. FLS2 determines the most suitable neighbour based on available energy (E) of 

the candidate nodes or neighbours as well as the distance (d) to the detected coverage-hole. 

In the moving process, FLS2 is required to consider E of the nodes to not expect the mobile 

nodes with low power take big steps. Moreover, coverage redundancy ( ) that is calculated 

by Eq. (6.2) is also taken into account. The more redundant a sensor is the more redundant 

data is collected and consequently, the lower QoS is produced. To decrease redundancy in 

a WSN each node needs to determine whether it is a redundant node. Then, the result of the 

calculation ( ) determines the redundancy of the sensor node. In fact, FLS2 calculates a 

ratio of the required maximum distance that sensors can move and their redundant coverage 

to their residual energy. Then, FLS2 uses the calculated ratio and organizes the neighbours 

into an order to move and compensate the coverage lost. In the case of a tie, the node with 

a lower node ID-number moves first to avoid collisions in the movement process. The 
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defined neighbour nodes are then needed to find a destination to move and uniformly cover 

the sensor field. To accomplish this we developed FLS1, which is also a type-2 FLS based 

that is applied by the mobile nodes. The inputs of the system are node density (ND) and 

average Euclidean distance (ED).  
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  (b) 

Figure 6.4. Coverage Enhancement 

The  main mission of the system is to place the entire nodes in the same ED. The nodes are 

moved to a certain distance to the area with lower node density. In fact, FLS1 is to place the 

entire nodes at the same distance to each other to reduce coverage redundancy while the 

area is uniformly covered. Figure 6.4 shows the coverage enhancement process. Figure 6.4 

(a) shows that a mobile node (e) move to maintain the coverage from higher density to the 

lover density. After the movement, it is located at the same average ED from the new 
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neighbours (I, g and d). Since it is a cascaded algorithm, the moving process is continued 

by moving h and the other neighbours to be located uniformly from each other. Figure 6.4 

(b) shows the relocation process of the second sensor node (h).   

 

When a neighbour that need to be moved its determined final location, it needs to check 

whether a “Self-relocation ON” message has been received from other nodes. In such a case, 

it waits for the nodes to finish with their relocation process and send a “Self-relocation OFF” 

message. Figure 6.5 shows the structure of a relocation message. Then, it sends a relocation 

message that includes “Self-relocation ON” and node-ID to its neighbours. Next, the node 

will be relocated. Once the relocation process is finished, it sends a “Self-relocation OFF” 

message and finally calculates the energy consumption. 

          Algorithm: Self-Relocation algorithm  
INPUT: E: Available Energy, d: Distance to the detected hole, ND: Node density, : Coverage redundancy, 

ED: Euclidean distance. 
OUTPUT: Destination position  
BEGIN 

1. WHILE ( It detects loss of its neighbour) DO 
2.      myFLS2 ← FLS2 ( E, d, )                                                         // Calculate the eligibility     
3.      Send (myID, myFLS2)                                                               //To neighbours     
4.      ID ← max (myFLS2)                                                                 //Chose an eligible  node 
5.       IF it is the suitable neighbour 
6.             IF  received “ self-relocation ON”                                      //From neighbours 
7.                   Wait until message “Self-relocation OFF” is received 
8.             ELSE 
9.            New position ← FLS1 (ND, ED) 
10.            Send “self-relocation ON”                                                    //To neighbours     
11.            Start moving                                                                          
12.            Calculate the energy consumption 
13. ELSE 
14.            Reject the request 
15. END IF 
16. END  WHILE 

END Algorithm
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Node-ID Self-relocation ON/OFF 

Figure 6.5. Relocation message 

Finally, the mobile nodes will be moved to be located within the same ED to the other nodes. 

The following algorithm describes the explained relocation process of the nodes.  

6.4. Performance Analysis 

In the simulation, we focus on enhancing coverage ratio and uniformity of node 

deployment in the area of interest with considering energy consumption of each mobile 

node.  

To evaluate the coverage ratio of the proposed approach, we used Monte Carlo-based 

algorithm [160] is used. In this process, coverage measurement was tested and repeated for 

200 simulations. 

Moreover, to prove that the proposed approach provides a consistent uniformity in 

deploying the mobile sensor nodes we used the following formulas; 

                                                                (6.8) 

                                                   (6.9) 

 

Where N is the total number of nodes, is the number of neighbours of the node, is 

the distance between and node and is the mean of intermodal distances 

between sensor node and its neighbours. In the calculation of local uniformity (U), at the 

 node, only neighbours within its communication range are considered. A smaller value 

of U means that nodes are more uniformly distributed in the sensor field. 
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To analyse the energy consumption of the sensor nodes in the deployment process, we use 

a developed energy model [161]. According to the approach the required energy for a robot 

platform to move 1 inch is 0.210 joule. 

6.4.1.Experimental Setup 

In this section the proposed scheme is implemented and evaluated in MATLAB 

against Dynamic Coverage Maintenance (DCM) schemes [155], which proposed 

compensating and maintaining coverage methods for WSNs. We also compare the result of 

our approach against an energy efficient fuzzy optimization algorithm (EFOA) [162], which 

proposed a maintenance strategy in the post deployment phase. In this simulation, a 450m 

by 400m square sensing field is used. The sensing range ( ) of the sensors used in this 

experiment is 25m with a communication range of 50m. The sensor nodes have a random 

initial energy level between 0.1J and 5J and are capable of moving up to 44m with a constant 

speed. Noise factor ( ) in this implementation is = 0.0001. Figure 6.6 presents a 

random deployment that we implement in MATLAB. In this figure 81 nodes are randomly 

located with a specific (X, Y). They are connected to each other with a link if they are close 

enough (<=50) to neighbours. The number of nodes based on the communication range and 

sensing area for each node is enough to have the best coverage gain. However, due to 

applied random deployment method, the nodes are not uniformly located in the area on 

interest. There are some areas that have not been covered and also some sensor nodes cannot 

communicate with others. So, it is necessary to relocate the nodes to be uniformly deployed 

in the area of interest.       
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Figure 6.6. Random deployment 

6.4.2.Result and Discussion 

In this section, the goal is to adjust sensors’ positions appropriately with minimum 

energy dissipation in deployment. To analyse this the consumed energy for each node to 

travel in FSHC was calculated and compared against that in DCM and EFOA. The sensor 

nodes were deployed randomly eight times and compared with the required moving 

distances, while the nodes in each protocol reached the same coverage. Results in figure 6.7 

indicate that sensor nodes in the proposed approach consume less energy than in the other 

approaches. That is due to the accurate positioning of nodes in each movement that is 

followed the accurately transferred data. More importantly, FSCH unlike EFOA does not 

move the mobile node randomly.  
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Figure 6.7. Average energy consumption 

DCM is also consume less efficient than the proposed approach. That is because it uses GPS 

technology in each node to find locations. Running GPS system and receiving and 

processing the signals also consumes an amount of residual energy. Additionally, the mobile 

nodes in DCM, are directed based on a centralized method by using base station (BS) that 

is obviously increasing the energy consumption. 

In addition to the energy consumption, the coverage ratio is also analysed. Figure 6.8 

compares the percentage of archived coverage by the proposed approach against the other 

two existing schemes. As can be seen, FSHC has a higher coverage ratio for the same 

number of iterations compared to DCM and EFOA and it almost reaches 99 % for thirty-

five iterations.  
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Figure 6.8. Coverage 

Coverage ratio of the network was also analysed. Figure 6.9 shows the coverage ratio based 

on the number of sensor nodes. It can be seen from the figure, that as the number of nodes 

is increased the coverage ratio is increased in FSHC as well as the other two protocols. 

Coverage is improved by increasing the number of nodes in the network to 81 nodes, 

whereas the coverage ratio is approaching 99.5% by the proposed approach, 90% in DCM 

and just 82% in EFOA. The main reason behind that is in the proposed approach the mobile 

sensors consider the Euclidean distance among each other as well as coverage redundancy 

and find moving directions in the network. However, in EFOA, the sensor nodes move 

randomly. In DCM also due to the high complexity of the approach the coverage ratio is not 

high.  Complexity of the DCM approach for n neighbour of a dead node the complexity of 

the relocation is increased by  [155], where k is the required hops that need to be 

relocated to compensate the existing coverage-holes.  
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Figure 6.9. Coverage ratio 

Uniformly distributed sensor nodes spend energy more evenly through the WSN than sensor 

nodes with an irregular topology. Uniformity (U) can be defined as the average local 

standard deviation of the distances between nodes[163, 164]. Figure 6.10 compares 

uniformity of coverage in FSHC against DCM and EFOA in a WSN. As can be seen by 

increasing iterations in the network, U becomes smaller in all three networks. From the 

figure, it can be understood that U in the proposed approach has become at least 15% better 

that in DCM and EFOA after 55 iterations. The reason behind this is the consideration of 

the Euclidean distance and node density in the network. U in EFOA is lower than the other 

algorithms, because the mobile nodes are mainly moved randomly in the network.   
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Figure 6.10. Uniformity  

6.5. Chapter Summary 

The main purpose of this chapter is to provide a better QoS in WSN, particularly, in 

an inaccessible sensor field. To achieve that, it is necessary to be concerned about dynamic 

node deployment techniques. In this chapter we firstly, formulated an optimal sensor node 

deployment problem, in which we used type-2 fuzzy logic systems that has low computation 

requirements and is robust to incomplete information. Next, we introduced a self-healing 

algorithm to maintain the coverage rate of the network. The algorithm can be applied after 

a random deployment. Each node, by applying the algorithm, can be sure that their 

neighbours are fully functional. If a node noticed that a neighbour node is dead, noisy or not 

located in an expected distance, it will be assumed as a failed node. Then, the other 

neighbours will be required to move toward the position of the failed node to be uniformly 

distributed in an acceptable Euclidean distance from each other. As a result, the network 

maintains its coverage ratio dynamically. Finally, in the evaluation section of this chapter, 
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we implemented the protocols in MATLAB and evaluated the proposed system against two 

recent developed approaches. The simulations demonstrated that by locating the sensor 

nodes uniformly in the sensor field, the energy consumption of the network is more efficient. 

Moreover, the coverage ratio of the proposed protocols has been higher than the other two 

developed approaches.       
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Chapter 7 

SUMMARY AND FUTURE 
RESEARCH DIRECTIONS  
 

The purpose of this thesis is to develop solutions for the existing research problems in WSNs 

that negatively influence QoS in their performance. We firstly introduced an energy 

efficient clustering deployment method for the sensor nodes. Next, a quality based data 

fusion mechanism was proposed. Third, two data routing protocols with the purpose of 

enhancing efficiency of energy consumption were developed. Finally, a coverage 

maintenance in WSN was developed.  

A. Conclusion  

In this thesis, we developed a formal quality aware data collection framework using 

a WSN. To achieve this, five steps were explored very carefully. Firstly, a deep exploration 

and study was managed on many of the existing frameworks available in the literature. That 
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deals with analysing the advantages and disadvantages of the proposed solutions for WSN 

QoS control. As a result, four existing research gaps were introduced as research problems.  

First, an energy efficient sensor node deployment method always plays an important role in 

enhancing QoS in WSNs.  Unreliable or even not suitable deployment for a WSN can cause 

the network to waste their limited energy. To enhance the efficiency of energy consumption 

we proposed a self-configurable clustering approach. In the proposed scheme, we 

thoughtfully considered predictable and unpredictable CH failure. In the both cases, the 

cluster members (CMs) are required to be re-clustered. Otherwise, the more they do not 

have a CH the more they are in the risk of losing their data. However, re-clustering the 

sensor nodes is a time consuming process that does not allow the sensor nodes to collect 

and transfer data. Therefore, we suggested to assign a backup CH (BCH) for each 

determined CH. Consequently, the sensor nodes ensures that there is always a CH for them 

during the network lifetime. To switch the CH, CMs need to firstly notice about the 

permanent failure of the node. The failure however, could be due to a sudden physical 

damage. In the case, the sensor nodes are able to assess whether their CHs are permanently 

or temporary failed. If their CHs permanently failed, they will automatically switch to their 

determined BCH. Our approach performs better in terms of reducing communication 

overhead by the average ratio of 32% as well as prolonging the network lifetime by the 

average ratio of 46%. In addition to results comparison between the proposed approach vs 

DBCH and PDDA, root means square error (RMSE) is also calculated. To calculate RMSE, 

the most optimum result (100%) is considered as the predicted result in each call. RMSE 

for the proposed approach is less than that for DBCH and PDDA, which are 0.1, 1.6 and 3.2 

respectively. 
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The second addressed research problem was to aggregate the received data with the aim of 

reducing data duplication as well as energy consumption. The main and the first cause that 

makes a WSN to produce and process unvalued data and consequently become unreliable 

is missed behaviour sensor nodes. Usually, missed behaviour sensor nodes are not 

detectable unless the history of their collected data is analysed. Therefore, we suggested to 

monitor current condition of the sensor nodes to ensure that their data are true values. To 

achieve that, we developed a fuzzy system that calculates the confidence factor of the 

produced data. Based on the factor, each sensor can group the collected data into valued and 

unvalued data. Clearly, the valued data are sent to CHs for further process. The CHs were 

responsible to fuse the received valued data. They were also required to calculate the 

probability of occurring the target in their monitored areas. Thus, the CHs are sending only 

the probability of the events, instead of sending the fused data to the BS. To calculate that, 

each CHs were equipped with a fuzzy inference system with the inputs of the fused data and 

output of target possibilities. In case of noticing any changes in the calculated possibility, 

they sent the fuzzy output to the base station (BS). However, the BS still needed to process 

the received data with the aim of assessing whether the detection is accurate enough. If the 

BS determines that the event is occurred, it records the event to alerting subsystem. The 

proposed approach enhanced the performance by the average of 17%. In addition to results 

comparison between the proposed approach vs FIM and VWFFA, RMSE is also calculated. 

To calculate RMSE, the most optimum result (100%) is considered as the predicted result 

in each call. RMSE for the proposed approach is less than that for FIM and VWFFA, which 

are 3.67, 5.13 and 5.9 respectively. 

After collecting and fusing data packets from different sources, they need to be transferred 

to the assigned BS. To transfer the data, we proposed a fuzzy logic based reactive routing 
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protocol for a WSN with stationary sensor nodes and a BS. In that, source nodes were 

required to establish a route to the BS.  To establish data routes, we carefully considered the 

balance of energy among the deployed sensor nodes. The obtained results proved that our 

system increased the efficiency of energy consumption and buffer usage as well as 

reliability of the system. Then, we extend our proposed approach by replacing the stationary 

BS with a mobile BS (MBS). Then, we proposed IDCS (data collection scheduling) that is 

a data routing protocol with a controlled MBS. In the proposed scheme, location and the 

visiting time of the MBS are cautiously determined using local information of the deployed 

sensor nodes. In fact, the MBS is able to prioritise the clusters to be visited. Thus, it can 

visit the most prioritised clusters at a time, instead of visiting them randomly or in a fixed 

way of moving. That is determined based on the important of data in the clusters. The MBS 

was also authorised to define CHs for the clusters. That is because it moves across the 

network in different ways. Therefore, in some locations it can collect data from more than 

one clusters at the same time. Therefore, selecting the closest node to the specific location 

as a CH can reduce the energy consumption. However, to make the decision residual energy 

of the nodes also significantly important. Simulation results showed our scheme prolonged 

the network lifetime by the average ratio of 25% and also reduced the time delay in 

delivering data packets by the average ratio of 30%. In addition to results comparison 

between the proposed approach vs SDD and HCDD, RMSE is also calculated. To calculate 

RMSE for the proposed approach is less than that for SDD and HCDD, which are 0.9, 1.6 

and 1.9 respectively. 

Finally, maintaining the maximum coverage of the deployed nodes in the area of interest 

has a direct relation to the QoS maintenance.  To maintain the coverage, we firstly 

formulated an optimal sensor node deployment problem. The computation requirement of 
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solving the problem exceeded the capability of typical sensor nodes. So, we proposed to use 

type-2 fuzzy logic system that has low computation requirements and also robust to 

incomplete information. Next, we introduced a protocol to distribute the deployed nodes 

uniformly. In this approach, disordered sensor nodes as well as noisy sensor nodes were 

firstly detected. Then, the other neighbours were required to move toward the position of 

the failed node. As a result, the network maintains its coverage ratio dynamically. The 

simulations demonstrated that by locating the sensor nodes uniformly in the sensor field, 

the energy consumption of the network is become more efficient that is about 20%. 

Moreover, coverage ratio of the proposed protocols has been higher than the other two 

developed approaches by 15%. In addition to results comparison between the proposed 

approach vs DCM and EFOA, RMSE for coverage ratio is also calculated. RMSE for the 

proposed approach is less than that for DCM and EFOA, which are 0.1, 0.3 and 0.4 

respectively. 

B. System Implications  

Generally sensor nodes, sink and monitored events are the three main components 

in a WSN need to be considered properly to deploy a dynamic WSN. In the deployment 

process, the main issue is the mobility of the BS and the sensor nodes that need to be taken 

into account thoughtfully. In that, routing methods play important roles as route stability 

becomes an important optimization factor in addition to energy and bandwidth usage in the 

networks. Another consideration is the topological deployment of nodes. This is application 

dependent and influences the performance of the routing protocols. Next, efficiency of 

energy consumption that is influenced during the creation of an infrastructure. The process 

of setting up the routes is greatly influenced by energy considerations. The transmission 
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power of a wireless radio is proportional to distance squared or even higher order in the 

presence of obstacles, multi hop routing will consume less energy than direct 

communication. Finally, node capabilities is another considerable point in developing a 

dynamic WSN. All sensor nodes are assumed to be homogenous, having equal capacity in 

terms of computation, communication and power. However, depending on the application 

a node can be dedicated to a particular special function such as relaying, sensing and 

aggregation since engaging the three functionalities at the same time on a node might 

quickly drain the energy of that node. Inclusion of heterogeneous set of sensors raises 

multiple technical issues related to data routing. The results generated from these sensors 

can be at different rates, subject to diverse quality of service constraints and following 

multiple data delivery models. 

C. Future Directions  

Our extensive study on QoS control in WSNs identified a number of research 

problems that we could not solve in this thesis due to time and other limitations. We list out 

a number of future research directions in line with the problems discussed in this thesis. 

There are opportunities to enhance the proposed solutions and explore other potential issues 

to ensure the technology can performed at its best to benefit the users. 

In this thesis we consider missed behaviour sensor nodes in data fusing process. To detect 

the missed behaved sensors, we considered the current condition of each of them. We 

checked the temperature and humidity of the environment around the sensor nodes and then 

compared them against the provided information in their datasheets. Next, we assigned a 

confidence rate (weight) for each collected data. Therefore, we could detect and disregard 
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the not true value of collected data from the fusion process. However, temperature and 

humidity are not the only factors that can negatively influence the performance of the nodes. 

There are many more factors that need to be considered to create a more accurate weights 

for the collected data in each round. 

In this thesis we used one stationary BS and one MBS individually in different protocols. 

We enhanced QoS in our proposed schemes however, we believe that using multiple sinks, 

either fixed or mobile, can significantly enhance QoS in WSN. There is considerable 

opportunity for research of these areas to extend the current approaches.  

Traditionally, sensor fields are considered in two dimensional, where location of any event 

can be defined using only two co-ordinates. However, monitoring systems using WSN can 

be installed in underwater or even in some applications in space. In these environments, the 

occurred event locations need three dimensional locations to be determined. Based on that, 

more complicated geometric factors are required to be taken into account. The change in 

WNSs from 2D to 3D is the extension of our QoS aware of coverage presented in chapter 

6. In addition, our dynamic coverage scheme can be extended by considering the movement 

delay.   
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