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Abstract 

This thesis work incorporates various facets of inorganic nanoparticles that havethe potential to 

be utilized in the oil and petroleum industries. It includes their synthesis, characterization and 

utilization in lubricating oils and greases. 

Chapter 1 includes an abbreviated and general background of inorganic nanoparticles, including 

calcium carbonate, molybdenum disulphide, hexagonal-boron nitride and their application in oil 

industries. 

Chapter 2 lists experimental techniques that involve synthesis and characterization throughout 

the PhD work. Synthesis of nano or near nanoparticles was carried out using planetary ball mill, 

while the characterization of the obtained products was conducted using analytical tools 

including particle size analyzer, x-ray diffraction, transmission electron microscopy, scanning 

electron microscopy, thermo gravimetric analysis, small angle x-ray scattering, contact angle 

measurement, raman, BET and tribological tools (Falex four ball wear test machine, Seta-Shell 4 

ball lubricant tester and Optimol SRV). 

Chapter 3 describes the preparation procedure and evaluation of a hydrophobically modified 

core-shell calcium carbonate structure by different capping agents. The structure and surface 

morphology of the particles were characterized by transmission electron microscopy. The shell 

thickness was calculated from the results of transmission electron microscopy and thermo 

gravimetric analysis. The maximum coating thickness was found for octadodecenyl succinic 

anhydride. 

Chapter 4 presents the core shell calcium carbonate structure modified by stearic acid.  Contact 

angle measurement technique was used to analyze the hydrophobic character of synthesized 

particles.The shell thickness was determined using small angle x-ray scattering.  The maximum 

thickness of shell was found to be 4.7nm, which corresponds to the molecular length of stearic 

acid.  

Chapter 5 describes the production of surface modified molybdenum disulphide nanosheets 

using lecithin (a source of phosphorus (exfoliating / stabilizing agent)) along with antiwear 

additives and their tribological behaviour in terms of wear scar diameter; weld load and 

coefficient of friction was evaluated. Scanning electron microscopy and electron diffraction 

spectra analyses of the wear track were performed, along with raman spectroscopy.  The results 



showed the characteristic peaks of molybdenum disulphide over the surface of steel ball after 

four-ball test. 

Chapter 6 involves the production of hexagonal-boron nitride nanosheets via low energy ball 

milling treatment for tribological application.  Transmission electron microscopy analysis 

indicates that sheets obtained were highly ordered and crystalline in nature. Tribology of 

hexagonal-boron nitride nanosheets blended with base oil was also explored and found to give 

substantial improvement in lubrication. 

Major conclusions and future work are summarized in Chapter 7. 
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                                                                                                                    Chapter 1

1. Introduction 

1.1 Brief overview 

1.1.1 Nanotechnology and nanoparticles 

The exciting prospect of nanotechnology has potential use in almost every domain of life. 

Synthesis and processing of nanomaterials and exploring their possible applications are essential 

aspects of nanotechnology.  Research and development in the field of nanotechnology helps in 

understanding, developing and creating improved, as well as revised forms of materials, devices 

and systems for future applications.  Every field from medicine and electronics to apparels and 

manufacturing prosper from the advances in nanotechnology, which is multi-faceted in its 

application.  This field of revolutionary technology has attracted strong attention from the 

researchers across the world.  

Nanotechnology maneuvers breakthrough in fields such as- energy, agriculture, catalysts, 

healthcare and medicines.  For instance, the realization of cost effective energy harvest via solar 

and fuel cells with better efficiency is a current challenge.  It can be used to tackle environmental 

problems and may be used to develop efficient drug delivery processes.  Genetic improvement 

enhances agricultural productivity and can help to make crops resistant to heat and water 

logging.  Nanotechnology has many future applications and possibilities that will become known 

with further development. 

Nanomaterials with desired size, morphology and chemical composition are required in order to 

study their physical properties and application.  In general, particles of less than 100 nm (10-9m) 

are defined as a nanoparticle, which as a small object behaves as a whole unit in terms of its 

physical properties.  At nanoscale dimensions, the materials are more effective than their larger 

sized counterparts for two reasons: first, their small size yields a very high surface area to 

volume ratio; second, when materials are fabricated on the nanoscale, they achieve intriguing 

surface properties due to their active surface atoms that are not found within their large-sized 



counterparts.  Nanomaterials including carbon nanotubes, metal nanowires, semiconductor 

quantum dots and other inorganic nanoparticles (such as gold, silver, copper ) are produced 

through various methods and are being tested for their potential applications. 

1.1.1.1. Classification of nanoparticles 

Nanoparticles can be classified into two classes: 

1. Organic nanoparticles  

2. Inorganic nanoparticles  

Carbon nanostructures such as fullerenes, nanotubes, graphene are organic nanoparticles, while 

inorganic nanoparticles may include noble metal nanoparticles (like gold and silver), metal oxide 

nanostructure, magnetic nanoparticles, and semiconducting nanoparticles (like titanium dioxide 

and zinc oxide). 

1.1.1.2. Importance of inorganic nanoparticles 

There is growing interest on inorganic nanoparticles, which show superior material properties 

with processing and functional flexibility.  Inorganic nanomaterials have been widely used in 

various fields; in medicine field due to their versatile biocompatibility (for instance, titanium 

based dental implants, hydroxyapatite based artificial bones) and their possibility to get 

functionalize helps in targeted drug delivery and controlled release of drugs.  Glass and paint 

industries exploit the fascinating properties of inorganic nanoparticles. 

In oil companies too inorganic nanoparticles are being added into lubricant formulations to 

enhance the extreme pressure (EP), anti-wear (AW) and anti-friction properties, thereby 

improving the efficiency and service life of machinery [1]. 

1.2. Thesis objective  

A growing number of industries are now seeking to commercialize emerging technologies 

related to nanostructures.  The fundamental problem, however, lies in the scaling-up of materials 

successfully grown and tested in the laboratory, so that they can be produced in bulk and also 

tested at the scaled up level.  The hope of efficient commercialization can be realized on the 

success of scaling up of individual nanomaterials.  It follows that the increasing interest in 

nanomaterials requires a major step towards the development of more efficient methods for their 



synthesis and growth.  Rapid development of new cost efficient synthesis techniques for large 

quantities of nanomaterials is therefore crucial for success. 

In this thesis, the application of planetary ball milling for the efficient production of 

nanomaterials is systematically studied.  Three inorganic materials: calcium carbonate (CaCO3), 

molybdenum disulphide (MoS2) and hexagonal-boron nitride (h-BN) are chosen as model 

systems.   CaCO3 is well known for its detergency and basicity boosting applications.   MoS2 is a 

widely used material in the field of lubrication specifically in grease having load bearing 

tendency and antifriction property, while h-BN is used as an AW/load bearing additive. 

The main focus is to synthesize the surface capped CaCO3 nanoparticles, exfoliated MoS2

nanosheets with suitable exfoliating and stabilizing agent and also synthesizing hexagonal-boron 

nitride nanosheets (h-BNNSs) by exfoliation via ball milling.  Synthesized nanosheets were 

systematically characterized and their tribological properties are evaluated along with their 

dispersion stability.  

1.3. Review of related literature 

1.3.1. Calcium carbonate

CaCO3 is one of the cheapest commercially available inorganic materials having calcite as the 

most common form existing in nature, whereas aragonite and vaterite are in metastable forms 

and convert readily under ambient conditions to calcite form.  It has wide applications in oil, 

paint, plastics industries and agriculture sector.  Its applications are determined by parameters 

like morphology, structure, size, and chemical purity and it is critical to control the shape and 

size of the particle for the technical applications.  Despite its wide applications, CaCO3 has some 

disadvantages for instance; being hydrophilic it is not compatible with hydrophobic systems like 

oil and polymer melts.  Hence, to improve these shortcomings, surface modification methods 

have been used. 

1.3.1.1.  Significance of surface modifications

The high surface area to volume aspect tremendously increases the surface energy of the 

nanomaterials, which tend to form agglomerates leading to difficulties in processing the 



nanomaterials.   Surface modification of nanomaterials will greatly reduce the surface energy and 

resist particle agglomeration thereby enabling the processing of nanomaterials as per the 

requirements.  Therefore, many studies have been performed on the surface modification of 

nanoparticles [2–9]. 

CaCO3 nanoparticles are hydrophilic in nature and tend to form agglomerates and in particular 

ultrafine particles of precipitated calcium carbonate (PCC), size <0.20μm, are having greater 

chances for agglomeration.  The surface modification is essential to disperse the hydrophilic 

CaCO3 in oil medium for over basing application [10].  The surfactants or dispersants are usually 

amphoteric in nature, containing long hydrocarbon chain (non-polar tail) and a reactive 

functional groups (polar head), such as a fatty acid (stearic acid (SA), oleic acid (OA)) can be 

used as a capping agent to impart the surface hydrophobicity on CaCO3 as given in Figure 1.1 

[11, 7]. 

Figure 1.1: Schematic illustration for interaction between the organic substrate and CaCO3 in aqueous 

medium [7]. 

These large molecules containing reactive functional group form covalent bond a with the 

CaCO3 surface, leading to organic-inorganic hybrid structures containing CaCO3 core and long 
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hydrophobicity, as well as their binding with biological molecules.  These kinds of nanomaterials 

allow the introduction of secondary functional groups or multifunctional sites into the materials 

to engineer them for suitable applications [12]. 

1.3.1.3. Synthesis of hydrophobic CaCO3 nanoparticles 

1.3.1.3.1. Methodology 

The synthesis of CaCO3 is reported using two basic routes; solution route and carbonation route. 

The solution route is carried out using double decomposition reaction under aqueous conditions, 

in which stoichiometric amounts of calcium salts particularly calcium chloride (CaCl2) and 

sodium or ammonium carbonates are taken.  The carbonation method as the name of the route 

apprehends, involves purging CO2 gas into the aqueous slurry of calcium hydroxide (Ca (OH)2) 

or freshly formed calcium oxide (CaO) in mediums of different polarity.  The process mimics the 

crystallization of CaCO3 within living systems and hence is often termed as bio-mimetic 

synthesis or bio-mineralization of CaCO3.  Amongst the above-mentioned routes the carbonation 

method is an industrially beneficial one, in terms of environmental preservation and effective use 

of mineral resources, although the control over shape and surface modification are limited in this 

method. 

1.3.1.3.1.1. Solution route  

The solution route is one of the simplest routes and generally involves precipitation of CaCO3

from water soluble calcium salts under mild conditions. Hydrophobic vaterite CaCO3

nanoparticles (spike like structures) were synthesized by using chemical co-precipitation method 

in the presence of OA, which acted as a crystal growth modifier.  In the absence of OA both 

rhombohedral calcite and irregular vaterite particles were formed.  It was speculated that OA can 

prevent phase transformation of vaterite to calcite under precipitation conditions.  High 

concentration of OA (OA: Ca2+) in the reaction medium yielded pure vaterite CaCO3, whereas a 

mixture of calcite and aragonite was formed with molar compositions of OA:Ca2+< 0.25.  The 

degree of hydrophobicity increases with increasing OA to Ca2+ molar ratio as evident from the 

increasing active ratio from the floating test measurements [13].  Transforming a naturally 

hydrophilic material to hydrophobic and then finally to super-hydrophobic material has been 



brought out [14].  The double decomposition of sodium carbonate (NaCO3) and CaCl2 in the 

presence of OA and heptadecafluorodecyl-trimethoxysilane (FAS-17), respectively, in methanol 

and ethanol solution yielded hydrophobic to super hydrophobic CaCO3. The contact angle 

measured were 95o (hydrophobic) and 152o (super-hydrophobic), respectively for OA and FAS-

17 stabilized CaCO3powder [14]. 

The use of several cationic surfactants offers a new vision for controlling the structure and 

morphology of calcite crystallization.  The cationic surfactants induce the formation the CaCO3

crystal at ambient temperature.  Alteration in CaCO3 crystal morphologies (laminated cube to 

sphericity to string shape) was observed with increased concentrations of didodecyldimethyl 

ammonium bromide (DDAB) and 1-dodecyl-3-methylimidazolium bromide ([C12mim]Br).  The 

crystalline forms of obtained CaCO3 were found to be calcite despite different dose concentration 

as shown in Figure 1.3 [15].  However, changing DDAB concentration leads to change in both 

the morphology along with crystalline form, suggesting that the hydrophobic alkyl chains of 

cationic surfactants helps in regulating the growth of CaCO3 crystal.  

Figure 1.3:Sketch 1:map of different morphology of CaCO3 crystals prepared in different micelle with different 

concentration: flower-shaped CaCO3 crystals formed in the presence of (a) 12.5, (b) 15.0, (c) 25.0 mmol/L DTAB 

(dodecyltrimethylammonium bromide) and string- shaped CaCO3 crystals formed in the presence of (d) 60.0mmol/L 

[C12mim] Br. Sketch 2: map of the growth procedure of calcium carbonate crystals with different morphology 

prepared by different concentration of DDAB: inerratic globosity-shaped and inerratic globosity-shaped crystals 

formed in the presence of (a) 7.5, (b) 10.0 mmol/L DDAB [15]. 

The solution route was found to yield better hydrophobic product consuming lesser amount of 

SA (  2 %), compared to dry coating that led to a bilayer coated product [16].  Thus, high 

hydrophobic CaCO3 can be attained using suitable low concentration of SA by solution route. 

However, the right concentration of coating agent must be optimized.  A super-hydrophobic 

Sketch 1 Sketch 2 



surface with a contact angle as high as 152.8o has been found to be very useful in the area of 

making self cleaning materials.  The surface modification of spin coated nano and micro CaCO3

film was realized by self-assembled SA coating [17].  The coverage of micro CaCO3 by nano-

sized counterparts played a major role in increasing the surface sliding angle and, in turn, super 

hydrophobicity with self-cleaning properties.  

1.3.1.3.1.2. Carbonation route  

In contrast to the solution route, many reports have been found on the carbonation method for the 

synthesis of surface modified CaCO3 nanoparticles [7, 18-33].  

1.3.1.3.1.2.1. Oleic acid based coatings 

Hydrophobic CaCO3 through OA coating was prepared in situ through carbonation of Ca(OH)2

slurry, which was formed from CaO in an aqueous medium.  Ellipse-like hydrophobic CaCO3

particles were formed and the hydrophobicity was measured through contact angle and floating 

test.  It was concluded that high weight ratio of OA to CaCO3 promotes the active ratio of CaCO3

particles in the floating test [7].  Thus, the active ratio of 100% and contact angle of 108.7 was 

achieved under an optimal dose of OA in the reaction medium. 

The high concentration of OA has been found to increase the active ratio, however, only 1.5 to 

2.5 Wt% was needed to coat the CaCO3 particles.  The shell comprised of OA and Ca2+

deposited on primary CaCO3 nanoparticles leading to further controlled particle growth to 

aggregates.  The nanoparticle aggregation as reported with high concentration of OA was due to 

the reunion of nanoparticles, which was facilitated by the interaction of the double bond present 

in OA [18]. 

1.3.1.3.1.2.2. Stearic acid based coatings 

Like OA, SA is used often to synthesize hydrophobic CaCO3.  The post treatment method is the 

most widely employed for the synthesis of SA modified CaCO3.  However, the in situ

carbonization method has been found to be economic and environmentally benign and hence 

quite a few reports were found on the preparation of SA coated CaCO3 [4].  In a typical 

carbonation route, SA and NaOH were used as organic substrate and growth medium in aqueous 



conditions, respectively, to produce hydrophobic CaCO3 from Ca(OH)2 slurry under CO2

purging at temperature between 20°C and 90oC.  Uniform spindle like CaCO3 nanoparticles with 

a diameter about 10nm were obtained.  SA was found to bring not only hydrophobicity but also 

induce the growth and morphology of CaCO3.  TEM studies revealed that the absence of SA 

yields cubic CaCO3 whereas a spindle like morphology was obtained in the presence of SA.  The 

active ratio of hydrophobic CaCO3 depends upon the synthesis conditions like temperature and 

SA to NaOH molar ratio.  An optimal temperature of 60oC and SA: NaOH ratio around 1.0 was 

found to give an active ratio as high as 99% from the floating test. 

The room temperature synthesis of hydrophobic CaCO3 via carbonation route was reported using 

SA in the presence of polyethylene glycol phosphate (PGP) and NaOH.  To study the effect of 

SA, NaOH and PGP on CaCO3 surface hydrophobicity, samples were prepared with different 

experimental parameters such as different ratios of CaCO3 and PGP and varying ratios of NaOH 

and SA.  The active ratio has been changed by changing the weight ratio of SA to CaCO3 and 

PGP.  Similarly, the degree of hydrophobicity changes by varying the molar ratio of NaOH to 

SA.  The cooperative interactions between SA and PGP facilitated a chemical coating of the 

former on CaCO3 as has been confirmed through Fourier transformation infrared (FTIR) studies. 

The dissolved PGP in the reaction medium forms micelles that play an important role in 

increasing the solubility of SA and through electrostatic interaction with Ca2+ SA got adsorbed 

on CaCO3.  The density of SA (number of SA molecules per nanoparticles) was also calculated 

by considering the shape of CaCO3 as cubic and cylindrical [19].  The agglomeration of nano 

precipitated calcium carbonate (NPCC) was reduced to a larger extent using SA as a surface 

modifier.  NPCC was agitated and mixed with SA in a homogenizer followed by filtration and 

drying to give SA coated and uncoated NPCC.  Scanning electron microscopy (SEM) was used 

to study the effect of SA on the deagglomeration of NPCC.  The mean diameter of agglomerates 

indicates that SA coating reduced the degree of agglomeration in comparison to uncoated NPCC, 

3 wt% of SA was found to be optimum to reduce the excess agglomeration of NPCC at 80oC 

[20]. 

In situ surface modification using sodium stearate (Na-SA) by multiple-orifice dispersion 

microreactor was reported for the first time by Le Du et al. [21].  For this study, a multiple-



orifice dispersion microreactor was designed to generate gas-liquid microdispersion system, as 

shown in Figure 1.4. 

Figure 1.4: The experimental setup for preparing CaCO3 nanoparticles [21]. 

Operation parameters like two-phase flow rate and the surfactant influencing the nanoparticles 

growth were ascertained. The mechanism involving efficient mass transfer that affects the 

preparation process and the adsorption of Na-SA and calcium ion on solid particles during the in 

situ surface modification process was studied.  Obtained particles were highly hydrophobic with 

a contact angle of 117o and it was demonstrated that temperature control was of great importance 

as the particle size decreased significantly with the temperature [21].

The use of silane coupling agents was reported to hydrophobic surface of CaCO3 nanoparticles 

by grafting.  Presence of stretching vibration of methylene and methyl groups in IR spectra 

suggests that grafting of silane coupling agent over the surface of CaCO3 was productive. 

However, the surface modification did not affect the crystallinity of CaCO3, whereas with 

increasing amount of silane coupling agent the diffraction peaks of modified CaCO3

nanoparticles shifted by small value (increased 2 ).  Chemical bonds formed between silane 

coupling agents and CaCO3, leading to steric hindrance which cause reduction in surface energy 

for better dispersion. Modified nanoparticles showed improved dispersion and interfacial 

compatibility (studied using rheological measurement) with styrene-butadiene rubber (SBR) 

[22].



The ultrasonication technique was found to be suitable to coat NPCC with SA.  NPCC was 

ultrasonicated at various amplitudes in ethanol medium containing SA at different temperatures. 

Other coating methods like dry milling, aqueous coating and direct coating were also employed. 

It was found that uniform coating with retention of cubical shape was observed during 

ultrasonication, while dry or aqueous modification shows non-uniformed coating and shape, as 

shown in Figure 1.5. 

Figure 1.5: TEM images of (a) uncoated NPCC, (b) NPCC coated in aqueous, (c) NPCC coated with   dry ball 

milling and  (d) NPCC coated with ultrasonication [23].

Thermogravemetric (TGA) studies revealed the presence of monolayer, local bilayer and free 

acid from different coating processes.  The direct coating leads to deagglomerated NPCC and 

shows no free acid or local bilayer as excessive SA dissolved in ethanol.  The free acid along 

with local bilayer was observed in aqueous medium NPCC coating because of rapid precipitation 

of SA in water.  In the case of dry milling, there was the formation of a fused layer of SA on the 

surface of NPCC as a result of high impact forces by milling.  In contrast, during ultrasonic 

coating, a local bilayer was detected forming multilayer adsorption over NPCC without fusion of 

coating layers [23].  Although coating with SA by both ultrasonication and dry milling showed 

drawbacks for the coating process, the agglomeration of nano CaCO3 was controlled. 

(a) (b)

(d) (c) 



1.3.1.3.1.2.3. Terpineol based coating 

In contrast to commonly used OA and SA, there was a report that examined the applicability of a 

rare capping agent.  The influence of terpineol (2-(4-Methyl-1-1cyclohex-3-enyl) propan-2-ol) 

was studied as a surface modifier on the size and morphology of CaCO3 particles, via

carbonation route [24].  Various parameters like CO2 flow rate, stirring speed and terpineol dose 

were studied.  It was found that fine bubbles of CO2 were produced by fine gas jet nozzle, which 

is found to be better for good dispersion and mass transfer of CO2.  Similarly, increasing the 

stirring speed improves CO2 mass transfer into Ca(OH)2 slurry that hastened the formation of fine 

spherical particles.  The optimized dose of 0.1-1.0 vol % terpineol was observed to be effective 

for the preparation of fine CaCO3 particles; however, higher terpineol dosage decreased CO2 

mass transfer that reduced the rate of carbonation and thus the formation of larger CaCO3 

particles became inevitable. 

1.3.1.3.1.2.4. Dodecanoic acid and octadecyl hydrogen phosphate based coatings

Dodecanoic acid (DA) is another capping agent widely used for the surface modification of 

CaCO3.  Cubic hydrophobic CaCO3 was prepared through carbonation of Ca(OH)2 in the 

presence of DA at 20oC.  Synthesis parameters like temperature or the weight ratio of DA to 

Ca(OH)2 influence the growth of CaCO3, morphology and hydrophobicity.  IR studies indicate 

that the calcium salt of DA formed over CaCO3 acts as hydrophobic shell. The surface 

hydrophobicity increases with increasing weight percent of DA and reaches saturation at a 

contact angle value of about 120o.  The surface of CaCO3 was completely covered with certain 

concentration of DA (3.98 wt% or more) and thus further increase in hydrophobicity was not 

observed with increasing the concentration of DA[25].  The concentration of DA and the 

temperature of the medium controlled the obtained particle morphology.  Cubic structures 

transformed into spindle-like particles were obtained with high dosage of DA at temperature 

above 60oC.  Nevertheless, as found from the higher contact angle, increasingly the surface of 

CaCO3 nanoparticles became hydrophobic due to larger surface coverage with high dosage of 

DA. 

Another reported literature claimed the production of rod and ellipse-like particles via 

carbonation method using mixture of Ca(OH)2 and DA by bubbling a gas mixture (CO2/N2). 

Variation in the hydrophobic character by changing temperature (influencing the interaction of 
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of these experimental parameters on the nucleation, surface modification and the particle size 

aspects were studied and correlated through an empirical model.  

Unlike Na-SA, sodium oleate (Na-OA) comprises of double bond, which enabled Na-OA to 

copolymerize and thus CaCO3 would be encapsulated by polymers.  The influence of addition 

time and dosage of Na-OA were studied [30].  It was found that addition of Na-OA at three 

different stages of synthesis has different effect on the active ratio of the product.  The addition 

of Na-OA during the digestion time achieved a better result (fine calcite CaCO3 particles) than 

that at initial stage or at medium pH=7.  Similarly, different dosage of Na-OA was added during 

digestion time in order to optimize dosage and it was realized that contact angle increased from 

53.9° (Na-OA 1 wt %) to 123.8o (Na-OA 2 wt %) and beyond that only a saturation in contact 

angle was observed.TG-DTA study on the comparison of traces from Na-OA, calcium oleate 

(Ca-OA) and coated CaCO3 showed the presence of a small amount of Ca-OA and no traces of 

Na-OA in the sample.  Further, it was noticed that the amount of Ca-OA increased with the 

increasing the Na-OA dosage.  Hence, it was concluded that the sample hydrophobicity was due 

to the deposition of Ca-OA formed during the reaction on the surface of the CaCO3 particles. 

The synthesis of active hydrophobic CaCO3 nanoparticles by an environmentally benign route 

was reported using linseed oil as a surface modifier [31].  The addition of saponified linseed oil 

to the Ca(OH)2 slurry followed by CO2 purging under constant stirring at pH =7 yielded fine 

calcite CaCO3.  The results revealed that the smaller particles obtained low process temperature 

ca. 20°C.  The active ratio of product increases with increasing weight ratio of linseed oil to 

CaCO3 nanoparticles. IR and TG-DTA results confirmed the coating of linseed oil over the 

CaCO3 surface. The IR spectrum of linseed oil coated CaCO3 shows absorption peak 

characteristics of linseed oil in cm-1 at 2922 (H-C-H asymmetric), 2876 (symmetric) and 3024 

(C=C-H asymmetric stretching), which were not observed from uncoated CaCO3. 

The binding ability of the surfactants over the specific crystal face of CaCO3 affects the crystal 

growth and morphology of CaCO3.  The morphology of the obtained CaCO3 in CO2 pressurized 

autoclave was clearly different from those CaCO3 nanoparticles synthesized in the absence of 

surfactants under similar conditions.  The non-ionic surfactant Tween 80 preferably interacts 



with the neutral plane ({1 0 4}) of CaCO3.  Thus, the reaction between hydrated CO3
2- and Ca2+

ions on the {1 0 4} plane was inhibited and the growth speed of this face was slow resulting in 

the final formation of the plate like morphology.  On the other hand, anionic surfactant Na-SA 

can be adsorbed onto the positively charged faces such as {0 0 1}, {1 0 1}, {1 1 0} inhibiting the 

growth of these faces leading to the formation of cubic particles with rough surfaces.  In contrast, 

cationic surfactant, CTAB does not have a considerable effect on the morphology of the obtained 

nanoparticles.  It may be due to the electrostatic repulsion between the positively charged head 

group and the Ca2+ ion, which makes the adsorption of CTAB difficult onto the CaCO3faces 

[32]. 

The effect of different surface modifiers on crystal morphology and structure of CaCO3 were 

studied [33].  They reported in situ synthesis of hydrophobic cubic and spindle like configuration 

of CaCO3 by bobbling (gas-liquid-solid) method.  Electron microscopy images revealed OA gave 

small cubic crystals while Na-SA and ODP produces spindle like particles.  X-ray diffraction 

(XRD) characterization revealed that product obtained was calcite in nature despite of addition 

of different modifiers which gave dissimilar morphologies and sizes.  The effect of a modifier 

dose was investigated and it was concluded that an optimum modifier dose (2%) was required to 

attain maximum hydrophobicity.  This modified CaCO3 has been used as a filler to improve the 

mechanical properties of polymers such as PVC.  The properties like rupture intensity pull 

intensity and fuse temperature of PVC improved due to its compatibility and affinity with the 

modified CaCO3 nanoparticles [33]. 

1.3.1.3.1.3. Milling 

Ball milling is defined as a process in which the mechanical breakdown of solids into smaller 

particles occurs without any change in their state of aggregation [34].  Particles of certain shape 

and sizes (including nanosize) can be produced using ball mill, which will increase the surface 

area and defects will be induced into the solid structure.  Along with the increase in surface area 

there will be increased proportions of high active surfaces due to the induced defects.  This is 

also known as the mechano-chemical method and it is widely used for the synthesis of 

nanoparticles and nanocomposites.   However, size reduction through this route is dependent on 

dispersant molecules and is time-consuming. 



The literature shows that surface modification of CaCO3 was very effective via milling approach. 

In wet-milling approach in situ modification of newly created surfaces of the small molecules 

using surfactant molecules is done to generate hydrophobicity.  This small molecule surface 

modification continues until creation of new surface is exhausted due to the limitation of the 

milling parameters, process conditions, or until the surface potential energy is neutralized with 

the organic dispersant molecule.   However, dry-milling reduction in the particles size is difficult 

as newly generated surface have high energy that leads to particle agglomeration and also the 

chances of contamination during milling through mill (vial and balls) are greater. 

Unlike in solution and carbonation routes, where certain conditions (reaction time, temperature, 

gas flow, pH) exist that crucially affect the crystal growth and morphology of CaCO3; in the ball 

milling process no such problems arise, except for milling parameters (milling speed/time, 

modifier dosage, ball to mineral ratio, milling media).  However, these parameters can be 

controlled in an industrial scale with ease to give better tailored hydrophobic materials.  The 

desirable phase and morphology of the solids (for instance calcite and cubic CaCO3) can be 

selected for milling with a suitable surface modifier. 

Chemically synthesized CaCO3 through the precipitation method was ball milled and the phase 

transition was studied with respect to milling time in toluene medium.  The sample prepared in 

wet medium is primarily vaterite with a small amount of calcite with increased milling time, the 

formation of calcite phase increased with a small amount of vaterite to aragonite transformation 

occurred.  About 25% of calcite formed after 19 hours of milling.   The crystallite size of vaterite 

hardly changed as it remained over 30nm whereas the calcite crystal reduced to one third of its 

original size [35]. 

A mechano-chemical route was reported on the synthesis of nano calcite CaCO3 in a NaCl matrix 

through solid state displacement reaction between CaCl2 and Na2CO3 caused by milling followed 

by heat treatment at 350°C.  TG-DTA results revealed that after 4 h milling the reaction was 

incomplete as evident from an exothermic peak at 295°C that was attributed to CaCO3 formation 

through the steady state displacement reaction between CaCl2 and Na2CO3.   Further, the milled 

product was heat treated in air at 350oC and later washed to obtain single phase CaCO3.  The 

particle size of CaCO3 was dependent on the volume fraction of CaCO3 formed in the salt matrix; 

20% volume fraction of CaCO3 resulted in 142 nm whereas 10% led to 77 nm particle size [36].  



Another mechano-chemical route accounted for the surface modification of CaCO3 using Na-SA 

as modifying agent in a wet stirred mill.  The effect of milling conditions on the modification of 

CaCO3 was studied; the influence of Na-SA dosage on CaCO3 particle size shows remarkable 

improvement in particle size (d50) reduction from 16.33 (before milling) to 1.33 μm (after 

milling) respectively, the active ratio improved from 35 to 98%.  Milling not only reduced the 

particle size but also increased the specific surface of the sample.  It was found that modification 

effect was highest when the particle size was 1.33 μm, which is the optimum size to use the 

sample as fillers for rubber products. 

The intensity of crushing mechanical force resulted from changing the parameters like milling 

time, rotary speed and the mass ratio between grinding media and mineral feeding effects final 

phase and morphology.  The range of the mechanical crushing force must be suitable to generate 

ultra-fine grinding and the best-modified product.  If the crushing intensity is too weak or there is 

no grinding action, the modification effect would be poor because of ineffective activation of the 

sample surface.  If the intensity was too high, the modification effect would again be poor as the 

finer particles need more modifying agent.  The optimized condition was found to be a mass 

ratio of five between grinding media and mineral (CaCO3 powder), with 1000 rpm rotor speed.  

The difference in Ca 2p3/2 energy level obtained from XPS at 346.75 (before) and 346.30 eV 

(after modification) confirmed Na-SA adsorption on the surface of CaCO3 [37].

The mechano-chemical energy associated with the milling process triggers the polymerization of 

styrene monomers and facilitates the polymer grafting onto the surface of CaCO3 particles, 

resulting in a potential filler material.  About 30-40% styrene was found to be sufficient for best 

surface grafting as higher amount of polymer lead to particle adherence [38].  Na-OA was also 

used as surface modifier in the milling process to make hydrophobic CaCO3with a higher active 

ratio in a floating test [39].  A mechano-chemical method was introduced, in which CaCO3 and 

SA was milled in the presence of n-decane in a horizontal stirred ball mill [40].  Various 

characterization techniques were used to evaluate the starting and modified CaCO3.   The doses 

of SA were optimized in order to obtain monolayer coverage/ coating over the CaCO3 surface.  It 

was found that 1% SA modified CaCO3 shows the maximum active ratio however, increased SA 

content leads to a decrease in the active ratio due to multilayer physical adsorption through tail-

to-tail arrangement of non-polar groups.  Characterization techniques like TG-DTA were able to 



differentiate between chemisorbed, intercalated (local bilayer), and free acid molecules, which 

may be present on the surface of calcite fillers.  Similarly, the surface of CaCO3after 

modification becomes smooth and uniform due to strong mechano-chemical effects [40]. 

1.3.1.4. Tribological applications of CaCO3

Lubricants function as friction and wear reducers between the moving asperities. Many 

performance-enhancing additives are added to improve the properties of lubricants depending 

upon the requirements.  Due to the emergence of nanotechnology, the newly developed products 

available have the potential to outperform the traditional lubricant additives.  These traditional 

lube additives contain heavy metal (Mo, Zn)-based sulphur or phosphorus additives as 

performance enhancers, which provide effective wear and friction protection on engine parts 

through the formation of glassy polyphosphate AW film.  However, the formation and deposition 

of sulfur and phosphorus species on the automotive three-way catalytic converter lead to catalyst 

poisoning, a well-known problem.  Acid sulfur and phosphorous lead to engine parts corrosion 

and wear during prolong usage.  Therefore, green additives have received more attention recently 

and hydrophobic CaCO3 nanomaterials are one of the potential candidates in lube technology [1]. 

Generally, fatty acid salts of CaCO3 has excellent cleaning (detergency) and dispersion 

properties that can guarantee the effects of cleaning fuel combustor parts, piston ring, cylinder 

and reduce carbon and lacquer deposition.  It also primarily enables the lubricating oil to 

maintain necessary total base number (TBN) to neutralize the vitriol resulted from using high-

sulfur fuel [41]. 

Overbasing is one of the most important applications of CaCO3 in lubricants.  An increasing 

range of additives are added into lubricating oils to enhance the chemical stability, wear and 

friction reducing properties.  The so-called overbased additives (detergents), are colloidal 

nanoparticles of CaCO3 (orCa(OH)2) stabilized by a surfactant layer.  The term overbased refers 

to the fact that the quantity of base incorporated in the particle cores is greater than that needed 

to neutralize the acid surfactant.  The neutralizing strength of an overbased detergent is measured 

by its TBN.  The nano detergents essentially consist of an inorganic core (15–40 mass %) 

stabilized by oil-soluble surfactants (20–45 mass %) incorporated into lubricating base oil, as 

depicted schematically in Figure 1.7. 



Various by-products are formed, including inorganic and organic acids, due to the oxidation of 

sulphurous and nitrogenous impurities during fuel combustion.   The oxidative degradation of the 

lubricant leads to the formation of organo-acids.   If allowed to build up, these acids would cause 

severe corrosion to machinery parts, especially under engine start-up conditions.  These 

nanoparticles are relatively insensitive to temperature, which explains their effectiveness at high 

temperatures as slow-release acid neutralizers. 

Figure 1.7: Schematics of (a) overbased sulfonate and (b) its micellar form[42]. 

The principal functions performed by detergents in engine oil formulations are: (1) acid 

neutralization, (2) high temperature detergency, (3) oxidation inhibition and (4) rust prevention.  

These functions promote engine cleanliness, fuel efficiency and extended trouble-free operation. 

The surfactants most commonly used are phenates, sulphonates, salicylates or phosphonates, 

which act as surfactants to stabilize the CaCO3 particles [42]. 

Surface modification using various surfactants effectively reduces particle agglomeration and 

thereby the efficiency of processing CaCO3nanoparticles for various applications has improved 

greatly.  Surface modified CaCO3is useful to make overbased lubricants with desired TBN as per 

the requirements. It also enhances the load bearing capacity, wear and friction reducing 

properties of lubes.  Long chain hydrocarbon tail embedded on the surface of these nanoparticles 

also acts as dispersant to stabilize carbon soot and lacquers.  This brief survey clearly indicates 



the potential applicability of surface modified CaCO3 nanoparticles in the field of modern 

lubricants. 

1.3.2. Molybdneum disulfide 

MoS2 is the most common solid lubricant with a slippery or greasy touch.  This blue-grey or 

black solid is a layered hexagonal lattice material [43], in which Mo (IV) occupies trigonal 

prismatic coordination sphere surrounded by six sulphide ligands, where, each sulphur centre is 

pyramidal connected to three Mo centers.  Hence, layered structure was formed by 

interconnected trigonal prisms [44].  MoS2, being second only to graphite in some cases, exhibits 

superior lubricity amongst antifriction additives.  However, it is almost insoluble in all solvents, 

including lubricants, and, therefore, its application is limited to grease in fine form [45].  It 

possesses good load bearing capability and can be used in high vacuum application due to its low 

volatile nature.   

The good lubricity of MoS2 is due to its lamellar structure that can orient parallel to the direction 

of motion.  The MoS2 particle size affects its properties and usage, for instance, larger particles 

are abrasive, by imparting excessive wear give better performance on rough surfaces, while 

small and fine particles are best for smooth surfaces at low speed [46]. 

Unlike graphite, MoS2 do not depend on the presence of adsorbed vapors to act as lubricant. 

Therefore, it can be used satisfactorily in high vacuum and temperature applications.   It can still 

be used for short periods up to 450oC despite MoS2 begins to oxidize at 350oC in air.  The 

oxidation produces molybdic oxide (MoO3), which itself is a fair lubricant at higher temperature 

but wears rapidly.  Apart from oxidation, it is stable to most chemicals, but can be attacked by 

strong oxidizing acids and alkalis.  Overall, MoS2 is a versatile and useful material where oils or 

greases cannot be used or do not have sufficient load carrying capacity [43].  However, due to its 

insolubility in organic media, the tribological applications of MoS2 are limited and it is easily 

oxidized in air to molybdenum oxides, which have a negative influence on the AW and friction 

reduction properties of the lubricating oil. 

There are different methods to synthesize surface capped MoS2 nanoparticles/nanosheets.  Few 

papers have reported that the synthesis method not only influences the stability but also the cost 

effectiveness.  Most of the reports covered chemical methods to synthesize MoS2 with different 



dispersants by both top-down and bottom-up methods.  We briefly discuss here some bottom-up 

methods along with a top-down approach (milling method) to prepare MoS2 nanoparticles. 

Duphil et al. [47] has reported that spherical crystalline nanosized MoS2 with curved basal planes 

were obtained after annealing the amorphous precursor incurred from Mo(CO)6 under reflux 

conditions.  However, the by-product CO is highly toxic [47].  Surface-capped MoS3 

nanoparticles were prepared using reversed micro-emulsion route with several surface capping 

agents such as dithiocarbamate (DTC), amines, carboxylic group, alkoxy thiophosphinate and 

succinimide based dispersants have been used.  The synthesized nanoparticle radius was found to 

be below the 3nm range as determined using small angle x-ray scattering (SAXS).  Excellent 

tribological properties were demonstrated by hydrocarbon soluble nanoparticles with good 

control of sulphur and/or phosphorus quantity in lubricant [48].

Since the discovery of inorganic fullerene (IF) like nanoparticles, many reports were found on 

the synthesis of IF-MoS2, which exhibit superior lubricity than the 2H-MoS2 (hexagonal form of 

MoS2). The reported method yields a cost effective method that involves the reaction of 

ammonium molybdate with sulfur in presence of hydrogen at different annealing temperature 

yielding nanoparticles in the range of 10-20nm having hollow cage structure along with 

nanowires and nanotubes.  This hollow cage structure possesses high elasticity by allowing the 

particles to roll rather than slide between the mating parts in appropriate loading regime [49]. 

Several physical and chemical methods were used to prepare IF-MoS2, such as gas-phase or 

solid-gas reactions [50, 51], electron beam irradiation activation [52], arc discharge [53] and 

thermal decomposition [54].  The growth mechanism of IF-MoS2wasalso studied to understand 

the formation of fullerene like structure from respective metal oxide precursor. The product 

purity achieved by the process was good and a narrow particle size distribution was obtained in 

some cases.  However, the tribological application of IF-MoS2 in lubricant formulation is likely 

limited, due to the smaller quantity of material prepared using these approaches, which are 

seldom cost effective with respect to application [55-57]. 

A novel method which can be scaled up at industrial level isthe formation of high quality two 

dimensional (2D) nanosheets of MoS2 and WS2 using oleylamine to avoid agglomeration, 

oxidation and inherit the functionalization property that helps in introducing new properties to 



hybrid organic-inorganic nanocomposite.  The low temperature (360oC) synthesis involves the 

production of stable nanosheets at two different time intervals (30, 90 min) in which a single 

source precursor (containing both metal and sulphur) decomposes in oleylamine.  Various 

characterizations were performed to check the effect of reaction time on reaction products.  It 

was observed that a single layer was obtained after 30 min of reaction followed by assembly of 

few layers through van der waals interactions after 90 min of reaction time.  IR spectra were 

acquired to investigate whether surface of nanosheets was capped [58].

Mixed-solvothermal approach was used for synthesizing different morphologies of MoS2

nanosheets with different solvents. Solvent effect on growth and morphology of the final product 

was also studied.  It was found that MoS2 obtained with water/ethanol/N-Methyl pyrrolidone 

(NMP) solvents demonstrate the layered structure with interlayer spacing of (002) plane of 

0.62nm corresponding to 2H-MoS2.  However, MoS2 with water/ethanol/ ethylene glycol 

solvents displays fullerene like structures. 

The formation of different morphologies is due to the absorbing effect of two mixed-solvents 

over the MoS2 surface, for instance, ethylene glycol over the surface of MoS2 prevents regular 

crystallization and hence reduced layer stacking [59]. 

Large flake sizes of exfoliated MoS2 were prepared to give high concentration dispersion under 

optimized conditions using NMP as solvent.  Using this method, the flakes of length ~2μm-4μm 

(maximum size) can be produced.  This report confirms that controlled centrifugation helps in 

isolating MoS2 flakes with various dimensions [60]. 

The mechano-chemical synthesis of MoS2 nanoparticles from MoS3 via high energy ball milling 

was reported on the effect of milling time and speed [61].  The MoS3 precursor was ball milled 

for 24h, followed by washing with carbon disulfide, HCl, alcohol and deionized water yielded 

MoS2 as final product.  The appearance of (100) and (110) peaks in XRD indicated the presence 

of MoS2.  It was obscured to claim complete conversion of precursor MoS3 to MoS2 because the 

peaks were broadened due to the milling effect.  The complete conversion of MoS3 to MoS2 was 

confirmed with the help of differential scanning calorimeter (DSC) results.  The milled product 

was typical lamellar hexagonal MoS2 having rich active sites for hydro-desulfurization catalysis. 

On further annealing the sample to 850°C for 30 minutes, results in converting the short low 



stacked MoS2 layer into long high stacked layers, while retaining the hexagonal structure.  Short 

low stacked layers were found useful for catalytic activity as active centers of HDS reactions 

were located on the edges of the MoS2 slabs.  It was concluded that there was an increase in local 

temperature during milling to around 375°C, as the sample obtained after milling was similar to 

that obtained by thermal decomposition.  

A combined ball milling and catalytic route was proposed for the synthesis of multi-walled MoS2

nanotube; ammonium tetrathiomolybdate [(NH4)2MoS4] was ball milled and then converted to 

MoS2 in the presence of C4H4S and hythane mixture [62].  The catalytic thermal decomposition 

condition controlled the nanotube growth.  Various techniques were used to characterize the 

multi-walled product.  The hexagonal polycrystalline MoS2 was observed using XRD only after 

thermal decomposition. Long entangled nanotubes with an average length 3-5 micron were 

observed over the large area in scanning electron microscopy (SEM) and the diameter was 

confirmed as 30-50 nm in transmission electron microscopy (TEM) shown in Figure 1.8 [62]. 

Figure 1.8: (a) SEM image of the as-synthesized MoS2 nanotubes and  (b) HRTEM of the as-synthesized MoS2

nanotubes [62]. 

MoS2 nanoparticles for tribological application were synthesized via ball milling in different 

media.  Milling was performed in steel vials for different time intervals in selected media (air, 

canola oil and hybrid of air and canola oil, i.e., milling in air followed by canola oil) with twice 

the ratio of balls with respect to the reactant.  Conventionally available MoS2, dry milled MoS2

and hybrid milled MoS2were chosen for tribological testing.  These samples were added to 

paraffin oil at 1% concentration for evaluating the wear scar diameter (WSD), coefficient of 

(a) (b)



friction (CoF) and the EP properties [63].  There was substantial improvement in AW and 

antifriction properties by using this hybrid product.  Further, EP was improved for the hybrid 

sample showing that inorganic nanoparticles intercalated with organic molecular medium can 

significantly enhance the tribological performance.

A micro-domain reaction method was established for MoS2 nanosheet synthesis.  Method 

involves the ball milling of MoO3 and S in order to get homogeneous distribution, close contact 

and quick reaction to produce MoS2 thin films, which inhibits the formation of oxide core and 

hence MoS2 nanosheets were formed.  Ball milling plays an important role by activating and 

homogeneously distributing the reactants leading to fast reaction and limiting particle size in 

micro-domains.  For the tribological study, samples were prepared by adding the synthesized 

nanosheets to base oil along with 1 wt% of surfactant (Span-80) followed by sonication.  AW 

performance was tested and it was found that 1.5% of nanosheets gave the smallest wear scar 

(0.3mm), smaller than that of base oil (0.72mm).Load bearing capacity (PB) of lubricating oil 

was determined to be very less (392 N) in comparison to lubricating oil with 1.5% of MoS2

nanosheets yields 1048 N [64]. 

1.3.2.1. Tribological applications of MoS2

The machining application of MoS2 in minimum quantity lubrication (MQL) has been discussed 

by Kalita et al. [65].  A dispersion of MoS2 added with lecithin was prepared in commercially 

available base oils; paraffin oil, soyabean oil and commercial MQL metal working fluid in two 

concentrations by weight (20% and 5%).  Their tribological properties were tested from the 

measurement of grinding forces, grinding ratio (G-ratio), CoF and wear track analysis.  It was 

found that MoS2 nanoparticles offer unique advantages in MQL when they present the possibility 

of navigating in the grinding zone and delivering reduction of grinding forces and most 

distinctively increase the life of expensive grinding wheels by increasing G-ratio [65]. 

Tribological properties of IF-MoS2 were compared with that of bulk MoS2 and IF-WS2 in two 

types of poly alpha olefin (PAO) synthetic oils.  IF-MoS2 nanoparticles were prepared in a quartz 

reactor by reacting vapors of MoO3 with H2S, which allows full conversion of oxide to sulphide 

at 840°C for 20h.  The obtained particles were about 70 nm in size, crystalline in nature and less 

agglomerated as compared to IF-WS2.  The friction coefficient, contact pressure and friction 



coefficient with cycle number at three contact pressures were measured.  It was found that under 

high pressure and low humidity IF-MoS2 demonstrate low friction coefficient (0.03) with the 

smallest wear rate.  However, the performance was found to deteriorate due to its inferior 

chemical stability compared to IF-WS2 after 2500 cycles [66].  Tribochemistry of such IF like 

metal dichalcogenides is well known.  The tribochemical reaction mechanism is believed to be in 

two steps, viz., the fullerene structure gradually flowering to exfoliated layers and then the sheets 

occupying onto asperities of the rubbing surface to give protective film.  The analysis of worn 

surface showed the presence of tribofilm composed of hexagonal MoS2 incorporated into iron 

oxide layer, as given in Figure 1.9. [67]. 

Figure.1.9: Possible tribochemical mechanism of IF-MoS2 nanoparticles on steel surfaces [67]. 

Interestingly, Cyanex 302 ((bis(2,4,4-trimethylpentyl) monothiophosphinic acid)) modified 

MoS2 microspheres (MS-MoS2) dispersed in base oil 500SN demonstrate better tribological 

properties than the commercial colloidal MoS2 (CC-MoS2).  The friction-reduction and AW 

properties of the lubricants were examined using an Optimol SRV oscillating friction and wear 

tester.  The EP characteristics of the base oil with or without MoS2 additives were evaluated 

using a Seta-Shell four-ball EP tester.  The chemical states of some typical elements on the worn 

surfaces of the flat discs after the wear experiments were examined using x-ray photoelectron 

spectroscopy (XPS).   As shown in Figure 1.10a, signals of Mo, P and S did not appear from the 

worn surface, indicating that CC-MoS2 has not undergone tribochemical reaction or deposited as 

tribolayer between moving parts.  In contrast, the system of MS-MoS2/oil shown in Figure 1.10b, 

gave signals of P 2p at 133.7eV, attributed to FePO4, Mo3d characteristic double peak appearing 

at 228.4 and 232.8eV from Mo4+of MoS2, and S 2p around 162.9eV attributed to S2− of MoS2.  



This result indicates that thin tribo film composed of MoS2, FeS, Fe2O3 and FePO4 formed, 

which acted as solid lubricants during the friction process, giving rise to good friction reduction 

and AW performances on the surface of the lubricating pair [68]. 

Figure 1.10: XPS spectra of typical elements on the worn surfaces lubricated with (a) 0.50% CC-MoS2/oil and (b) 

0.50% MS-MoS2/oil at 200 N [68]. 

Similar chemically adsorbed surface protective film was observed elsewhere while testing 

tribological properties in LP (liquid paraffin) of Cyanex 301 (di-(2, 4, 4-trimethylpentyl) 

dithiophosphinic acid)) modified nano-hollow spheres (NH) of MoS2.  The performance of this 

solvothermal synthesized NH-MoS2 was excellent compared to CC-MoS2 and liquid paraffin. 

The friction coefficient decreased with increasing the additive (CC-MoS2 and NH-MoS2) 

concentration in liquid paraffin; the friction coefficient from NH-MoS2was found to be less than 

that of CC-MoS2.  The higher wear loss volume observed with low concentration (up to 0.25%) 

NH-MoS2 in LP compared to CC-MoS2 was not clear and the reason has not been described. 

However, 0.5% of NH-MoS2 in LP, an optimum concentration, had shown good sliding and 

rolling effect resulting in the least friction coefficient and wear volume loss under all applied 

loads [69]. 

The effect of lubricating condition as well as additive morphology (MoS2 nano-balls, nano-slices 

and bulk MoS2) was compared one to one to derive the comparison in tribological properties 

between micro and nano MoS2.  It was found that nanosized MoS2 function as better lubricating 



additive in LP compared to micro-MoS2. This was due to the small size of nanosheets (5-10 nm) 

that easily fill the asperities present on the interface of the friction pair.  

Figure 1.11: Stribeck curves of steel balls lubricated by liquid paraffin and MoS2 particles in point-contact friction 

[70]. 

The Stribeck curves (Figure 1.11) show the different lubrication region with respect to rotation 

for the three samples.  Under boundary conditions, the interface was too small and oil film 

thickness allows only nano-balls and slices to enter and lubricate the rubbing surface.  In the 

mixed and hydrodynamic lubrication region at higher rpm the oil film thickness increases and 

more amounts of nano-balls and slices could fill the asperities.  However, it was contradictory 

to the previous reports that nano-balls at mixed and hydrodynamic regions (higher rotation) 

show more friction.  It was proposed that the curved basal surfaces of the nano-balls were 

highly reactive and, at faster rpm, generates heat and decomposes LP, which leads to increased 

friction.  Thus, nano-slices were found to be more advantageous in high sliding speeds [70]. 

From the detailed literature it was concluded that most of the reported work focused on 

synthesis of MoS2 nanaparticles like: nanotubes, nanospheres.  There is lack of literature in the 

area of production of MoS2 nanosheets via top-down approach (milling) and their application in 

tribology.  These studies mainly described the preparation of MoS2 nanoparticles dispersion in 

oil for tribology testing, without giving any knowledge about the stability of the dispersion.  



1.3.3.  Boron nitride 

BN is synthetically prepared and it is highly resistant to heat, exhibiting graphite like layer 

structure.  Its unique characteristics make it an excellent performance enhancing solid lubricant 

additive, and a viable alternative to graphite and MoS2.  It possesses superior thermal stability 

and adherence that presents an opportunity to formulate new solid lubricants with BN for 

applications where conventional materials perish and fail to deliver the desired performance.  It 

has the ability to lubricate in extreme cold or heat and is well suited to EP applications.  It is 

environmentally benign and inert to most chemicals [71]. 

There are six polymorphs of BN 

1. Hexagonal BN (h-BN). 

2. Rhombohedral BN (r-BN) 

3. Cubic BN (c-BN) 

4. Wurtzite BN (w-BN). 

5. Orthorhombic BN.  

6. Monoclinic BN. 

Amongst them, cubic and hexagonal boron nitride has engineering applications [72].  
Cubic Boron Nitride (c-BN) Hexagonal Boron Nitride (h-BN) 

Alternatively bonded boron and nitrogen atoms 
in a tetrahedral network, exactly like carbon 
atoms do in diamond.  So it is a 3D giant 
covalent lattice 

The three boron and three nitrogen atoms 
form a hexagonal ring and all the bond 
lengths are found to be 0.145 nm.  It is not 
an alternate single-double bond system. 

The B-N-B or N-B-N bond angle is 109o as 
found in the 3D C-C network in diamond. 

The B-N-B or N-B-N bond angle is 120oa 
perfect hexagonal network as found in 
graphite. 

Cubic boron nitride (c-BN) is used for cutting 
tools and abrasive components for 
shaping/polishing with low carbon ferrous 
metals.  BN based tools behave in a similar way 
to diamond tools but can be used on iron and low 
carbon alloys without risk of reaction because c-
BN is chemically inert. c-BN does not lose its 
cutting properties until 1100-1200oC. 

Possesses excellent thermal and shock 
stability and chemical stability; h-BN is 
often used as parts of high-temperature 
equipment (a typical melting range is 
2700-3000oC).  They are stable in air up to 
~1000oC.  



1.3.3.1. Synthesis of h-BN 

It is typically synthesized from boric oxide or boric acid in the presence of urea or urea 

derivatives and ammonia, at temperatures ranging from 800°C to 2000°C.  The mixing of 

sodium tetrafluoroborate (NaBF4) and sodium azide (NaN3) in an autoclave kept at 300°C in a 

furnace for 20h yielded BN hollow sphere and small amount of nanotubes.   Higher percentage 

of spheres and tubes were produced as high as 450°C.  The obtained products demonstrate 

excellent thermal stability along with chemical inertness.  More amounts of NaN3 and longer 

reaction time facilitate nanotube formation; however, this was only to a small extent [73].

Large quantities of h-BN, as high as 73.6% yield, were obtained from the reaction between urea, 

Na2CO3 and boric acid in different atmosphere; NH3, Ar and N2 at temperatures between 700 and 

1200oC.  It was observed that addition of Na2CO3 to the precursor leads to increased production 

of h-BN with increased crystal thickness and particle size only when the atmosphere used was 

NH3 [74].  In other atmosphere, such as Ar and N2, the amount of h-BN formed was low.  The 

change in d values and three-dimensional ordering was observed with increased temperature and 

were independent of other factors such as atmosphere and Na2CO3 content.  Boric acid and 

Na2CO3 formed a sodium borate melt from which h-BN crystallized by the reaction of borate and 

nitrogen ions in the melt. 

Another report was found on the high yield synthesis of stoichiometric BN nanostructure from 

borazine vapor as a precursor using hot filament-chemical vapor deposition (HFCVD) technique 

[75]. The precursor without any catalytic reagent undergoes a series of dehydrogenation 

reactions resulting in the formation of stoichiometric quasi-spherical BN nanoparticles (20 and 

50 nm).  Elemental mapping revealed the BN stoichiometry and the structure was free from 

elemental B segregation or N deficiency.  Nano fibers of diameter from 80 to 500 nanometers 

were observed along with quasi-spheres consisting of hexagonal and rhombohedral phases.  

The synthesis of a graphene analogue of a few layer of BN was reported for the first time 

through a bottom-up approach.  Reacting a mixture of boric acid and urea with a different molar 

ratio (i.e. 6, 12, 24, 48 and 72) at 900°C yielded h-BN.  The obtained product showed the 

characteristic reflection of h-BN with d-spacing 3.51Å and it was found that with increasing ratio 



of urea the d-spacing of (002) plane also increases, indicating a decrease in the number of layers 

[76].  The surface area was also found to increase due to less number of layers rather than the 

bulk area of flakes.  Functionalization of the obtained product with Lewis bases (trioctylamine 

(TOA) and trioctylphosphine (TOP)) in toluene, heptane and benzene was also completed for the 

possible applications to make polymer composites. 

Highly crystalline h-BN was synthesized by heating turbostratic semi-crystalline BN (t-BN) 

under N2 atmosphere.  The aqueous mixture of H3BO3 and Na2B4O7was spray dried and mixed 

with urea, followed by calcination at 900oC for 30 minutes, which yielded t-BN.  The product 

was further subjected to nitriding at different temperatures up to 1550oC under N2 atmosphere. 

The obtained particles were found to be irregular plate-like shapes having diameter between 0.5-

1.5mm with a thickness in the range of 50-150 nm.  It was observed that h-BN was obtained at 

low nitriding temperature (1400°C).  In addition high-energy ball milling of t-BN followed by 

nitriding at 1400°C was helpful for phase transformation from t-BN to h-BN with increased 

grain size [77]. 

A facile method was introduced for the synthesis of h-BN having different morphologies, such as 

fibers and flowers.  The process involves the formation of an intermediate (by the reaction of 

potassium borohydride (KBH4) and NH4Cl), which on further heating at 1250°C for 10h will 

give h-BN.  From TGA and XRD studies it was confirmed that that no h-BN was formed at 

1000°C, even after heating for longer times (up to 36h) revealing that temperature plays a crucial 

role in h-BN synthesis; h-BN were obtained only at a temperature of 1250°C for 10h [78].  The 

precursor mixture consisting of boric acid, NaN3, NH4Cl and urea was combusted in minutes to 

give t-BN, which on annealing at 1000oC converted to h-BN.  XRD, raman and IR 

characterization revealed that the obtained product was highly crystalline.  On heating at 1400°C 

for 6h these large thin-walled structures with an irregular arrangement grows into regular 

vertically-aligned nano plates [79].

The synthesis of h-BN crystallites carried out by the reaction of NaBF4 and sodium amide 

(NaNH2) in the presence of LiBr melt at 600°-700°C for 6-24h [80].  The effect of LiBr melt was 

investigated on the shape and morphology of h-BN crystallization under auto-thermal conditions. 

The yield of spherical h-BN obtained was 83% to 94% based on initial amount of NaBF4.  The 

spherical morphology changes predominantly to 2D plates when LiBr molten salt was used for 



crystallization medium. Also, the influence of temperature was realized by comparing the size 

and morphology of h-BN obtained in LiBr at different temperatures.  At 700°C h-BN crystalline 

plates were stacked up giving a much thicker crystal having thickness about 200 nm to tens of 

micrometers, than those obtained at 600°C and 650°C [80]. 

Nanoflakes of h-BN were synthesized at 600°C by the reaction between H3BO3, Mg and NH4Cl 

powders in an autoclave for 10h. The exothermic nature of the reaction as, discerned from the 

Gibbs energy and enthalpy respectively, -713 and -515 KJ/mol were believed to be the main 

factor for the BN crystallization, Mg powder have a quasi-catalyst function in the yield of h-BN 

nanoflakes.  The as-synthesized pure flakes had a mean of about 100 nm thickness and 600 nm 

width.  The surface atomic ratio of B to N was 0.98 [81]. 

Micro and mesoporous BN with a high surface area was synthesized through the sol-gel poly 

condensation method. The cryogel, formed from freeze drying the mixture of resorcinol, 

formaldehyde and boric acid, was subjected to pyrolysis and subsequent heat treatment resulted 

in the formation of BN powder.  Boron carbide (B4C) was formed as an intermediate product, 

which on increasing the temperature from 1400°C-1500°C converts to BN under N2 atmosphere. 

The pre-composite cryogels and the BN powders were porous in nature with high surface areas 

[82].   

Hollow BN nanocages were prepared by nitriding the arc-discharge synthesized amorphous 

boron nanoparticles at 1073 K for 4h using N2 and NH3.The growth mechanism of BN 

nanocages involves the reaction of nano boron with N2 gas to form local BN layer, which along 

with boron nanoparticles, gives hollow BN nanocages.  The obtained hollow nanocages were a 

highly crystalline mix of both pentagonal (200 nm) and spherical (12-20 nm) nanoparticles [83].

Needle like and hollow spherical morphology of BN was obtained by nitriding magnesium 

diboride (MgB2) with NH4Cl and a mixture of NH4Cl and NaN3.  These two routes show a 

different effect on the morphology of the product; in the presence of NH4Cl needle like BN 

particles formed whereas hollow spheres of 80-120nm formed with a mixture of NaN3 and 

NH4Cl (molar ratio of 0.5) and with 1:1 ratio fine size (20nm) hollow spheres produced.  This 

suggests that NaN3 plays important role in the morphology and particularly on the size of BN 

hollow spheres.  Similarly, temperature and time had some influence for both reaction routes; the 



reaction was complete within 4 to 10h runtime at 500°C (550°C) for NH4Cl and NaN3 route 

(NH4Cl route) [84]. 

Spongy h-BN was synthesized from the auto thermal reaction of BBr3 (boron tribromide), NH4Cl 

and aluminum powder at 500°C.  Silver nanoparticles based composites with BN sponges also 

prepared following the same procedure, using AgCl at the same temperature.  Structure and 

composition studies of the powders were performed using different characterization techniques 

such as electron diffraction, IR, XRD, TEM, and XPS.  The effect of reaction conditions on the 

formation of sponges was investigated by varying parameters like reaction temperature and 

duration and it was discovered that 500°C and 10h auto thermal condition was ideal for the 

formation of h-BN sponges and Ag-composites [85].  Temperature and reaction time above or 

below this yield product of different morphologies.  Silver nanoparticles loaded BN sponges may 

have potential use as novel catalysts for new applications. 

High-pressure (22MPa) auto thermal synthesis was reported on nanocrystalline BN from KBH4

and NH4Cl at 650°C.   The obtained BN nanowhisker was found to be a combination of c-BN 

and h-BN.  The surface atomic ratio of B to N was 1.01:1.  The influence of reaction 

temperature, time and amount of reactant NH4Cl were found substantial on the BN phase purity 

and morphology.  The formation of c-BN was prominent with increased amount of NH4Cl that 

leads to increased pressure and reaction temperature higher than 600oC [86].  On the contrary, 

high pressure was found to be beneficial for h-BN formation at lower temperature.  h-BN 

nanocrystals of high purity with different morphologies such as fiber, sheets and tubes, were 

synthesized by the reaction of boron and NaN3 in anhydrous CH3-CN solvent at 380°C.  On 

increasing the temperature above 400°C, sheets like h-BN crystals were obtained along with 

small amounts of BN nanotubes with disappearance of the fibers [87].  Nevertheless, BN phase 

transitions were influenced to a greater extent by pressure and temperature at which they are 

treated under given atmosphere, for example inert or air or H2O; very high pressure of 7.7 GPa 

and 2200oC inert conditions were required to transform amorphous BN to highly crystalline 

cubic form.  Such amorphous BN when converted to h-BN, exhibits significant reactivity under 

humid conditions and thus can be transformed to c-BN in air at relatively lower pressure (5.5 

GPa) and temperature (1500°C) in comparison to the one kept under dry nitrogen atmosphere 

[88]. 



Vertically aligned BNNSs were grown on Si substrate from mixture of gases (BF3-N2-H2) in 

catalyst free conditions using microwave plasma chemical vapor (MPCVD). The obtained 

morphology and growth rate of sheets strongly depends on the chemical properties of gases (H2

and BF3), along with their flow rate and flow rate ratio.  The procedure involves the introduction 

of hydrogen that balances the etching effect of the F atom leading to formation of stable HF 

molecule counting on the RH2/RBF3 (flow rate ratio), resulting in BN solid deposition. The 

RH2/RBF3 ratio controls the equilibrium between film formation and etching and thus controls the 

production rate of solid BN from the gas phase.  In addition, the branching in sheets and its size 

is dependent on BF3 flow rate (RBF3) while required flow rate (RH2) of H2 gas is needed for the 

nanosheet formation.  Increasing RH2 at constantRBF3 produces thick, coarse and more branched 

granular film.  

The effect of different flow rates of H2 and BF3 on the morphology of BNNSs are shown in the 

Figure 1.12.  The catalyst free synthesis of 2D-BN nanomaterials with controlled structure gives 

rise to the potential application of BNNS in UV nanoelectronics and self-cleaning coatings [89].

Figure1.12: SEM images of the BNNSs grown at different RH2/RBF3 (sccm): (a) 10/5, (b) 25/5, (c) 40/5, (d) 10/3, 

(e) 60/3, (f) 160/3,(g) 30/2, (h) 40/2 and  (i) 100/2 [89]. 

The functionalization of h-BN using amine molecules would cause exfoliation of layers into 

several or multi-layered nanosheets.  This method facilitates nanosheets of h-BN to disperse in 

organic solvents and/or water.  Mechanism involves the complex formation between amine and 

boron (lewis acid-base interactions), which allows the amine molecules to get attached between 

the h-BN layers and hence eased the exfoliation of nanosheets from large particles [90]. Lewis-



base interactions were studied using solution phase nuclear magnetic resonance (NMR) 

spectroscopy and showed a reaction mechanism of complex formation between amino groups 

and electron deficient boron atom on the surface of h-BNNS.  Exfoliation of h-BN particles was 

performed using methanesulfonic acid [MSA] (protic sulfonic acid), as shown in Figure 1.13. 

Figure 1.13:  Schematic illustration of the protonation of BNNS in MSA solution (top), and dispersion of BNNS in 

MSA in a sealed bottle (left) and exposed to air (right) two weeks after preparation [91]. 

The product obtained was orange due to the charge transfer between BNNS and MSA molecules 

as seen in case of carbon nanotube (CNT) or graphene.  Obtained BNNSs could be readily 

redispersed in many organic solvents (NMP, DMF and dimethyl sulfoxide (DMSO)) by 

sonication for several minutes, showing the ability of exfoliation state of BNNS and polarity of 

solvent molecules. These sheets were used for forming BNNSs based composites having poly [2, 

2 -(p-oxydiphenylene)-5, 5 -bibenzimidazole](OPBI) as polymer matrix. The composites were 

prepared using a solution casting technique and the obtained product displays good mechanical 

and thermal properties [91]. 

A simple chemical exfoliation method to produce large size BNNSs was proposed by Du et.al. 

[92] using H2SO4, KMnO4 and H2O2.  A tentative mechanism was proposed comprising of three 

major steps: mixing of BN powder with H2SO4, which will cause the enlargement of layer 

spacing, followed by the addition of KMnO4, which reacts with H2SO4 to form MnO2

nanoparticles that intercalate within the layers of BN and commences exfoliation by continual 

restacking of sheets. H2O2was used to remove MnO2 nanoparticles with generation of oxygen 



gas, which results in outward pushing force inducing the expansion of BNNSs multilayers and 

accomplishes the full exfoliation of sheets.  This cost effective and facile method produces sheets 

of larger size [92]. 

Use of molten hydroxide for exfoliating the h-BNNSs at low temperature was demonstrated.  

The method turned out to be expedient and cost effective, with a single step, and easily 

transferable to any substrate by redispersing in common solvents.  The adsorption of cations over 

the BN surface leads to self-curling that expands the spacing between layers near the edges and 

facilitates the insertion of ions.  The excess of anion (OH-) gets adsorbed first and self-curling 

begins, followed by cationic adsorption on the freshly exposed surface.  It was predicted that the 

curling up sheet peels off from the parent counterpart owing to the reaction of h-BN and 

hydroxides.  The yield obtained using the above method was about 0.19%.Atomic force 

microscopy (AFM) and high resolution transmission electron microscopy (HRTEM) studies 

indicated that exfoliated BNNSs largely comprised of aggregated and few layer crumpled sheets 

(less than 10).   Crystalline structure of separated nanosheets was evident by six-fold symmetry 

of h-BN [93].

Recently, a primary research focus has been to isolate the single and multilayered products and 

study their unique properties.  These 2D sheets are produced by exfoliation of bulk sample 

(graphite, MoS2, h-BN) and possess enhanced physical and chemical properties. Since the 

preparation of graphene by exfoliation using scotch tape [94, 95] was reported, the method was 

utilized and proved to be effective for other layered materials [96-98].  The production of BN by 

mechanical cleavage using scotch tape is traditional and one of the most common methods but 

the yield obtained is quite low [99].  Methods such as chemical solution exfoliation, chemical 

vapor deposition (CVD), chemical reaction, segregation method, and ball milling approach are 

also well known.  Literature methods show good yield of more defective BNNSs, unlike the 

mechanical exfoliation route that yields fewer defects despite the low yeild.  The Ball milling 

method can be utilized for the synthesis of BN sheets; the milling parameters can be altered and 

optimized in order to produce high yield and better quality BNNSs with minimal in-plane defects 

in the crystal structure [100,101]. 



Tailored milling conditions produce high quality BNNSs.  Milling was carried out in horizontal 

planetary mills with benzyl benzoate as the milling agent for 15 hours with steel balls.  The in-

plane crystal structure was retained by selecting appropriate milling conditions, such as planetary 

mill, which allows a rolling motion that will give shear force on the powder material.  The 

smaller size steel balls help in reducing the damage caused to the in-plane crystal structure and 

lastly the milling media acts as a lubricant that prevents a welding effect by reducing damage on 

gently shearing.  Other milling agents (water, ethanol and dodecane) tested showed increased Fe 

content in milled sample, however, the low reactivity of benzyl benzoate with iron and the higher 

viscosity helps in reducing the impact of the balls and hence only 0.26% of Fe contamination 

was found after 30 hr of milling with benzyl benzoate.  Reduced thickness and little damage to 

in-plane structure was also achieved using ball milling [102]. 

Ball milling followed by sonication was found to be effective for high yield production of few 

layer h-BNNSs.  Increased milling time leads to small and thin nanosheets, however, the yield 

was very low around 0.1 mg mL-1.  Multiple recycling leads to an increase in the yield of 

exfoliated h-BN nanosheets.  Recycling involves exfoliation of the sediments obtained from a 

combination of low energy ball milling and short-term sonication of the starting material that 

may lead to increased yield up to 5 mg mL-1[103]. 

1.3.3.2.  Applications of h-BN 

h-BN has several applications such as: 

1. Lubricating oil additives. 

2. Solid lubricant for metal forming. 

3. Electrical insulator. 

4. Thermal coatings for semiconductor, electronics, motor vehicles, and industrial 

equipments. 

5. High temperature fire resistance grease. 

6. For polymer based composite as an anti-friction coatings. 



1.3.3.3. Tribological applications of h-BN 

As mentioned earlier, h-BN is a potential candidate for solid lubricant application.  Several 

morphologies, tubes, fibres, faceted cylinders and nanowhiskers are known from the literature 

reports; spherical nanoparticles (nanospheres) or nanoflakes will be useful for lubricant 

applications to produce rolling effect between the rubbing surfaces.  The friction behaviour of h-

BN nanoplates was compared between room temperature and 800°C under inert and water vapor 

atmosphere in pure form and mixed with CaB2O4(10 wt%) as additive.  The tribological testing 

revealed that the friction coefficient of both the sample initially increased from about 0.15 to 0.5 

from room temperature to 400°C; beyond that at 800°C friction coefficient reduced marginally 

due to sliding effect as well as boron oxide formation. In the presence of water vapor the friction 

reduced dramatically to 0.38 at 400oC, which was attributed mainly to a lamella-slip and the 

solid lubrication effect of H3BO3 [104]. 

The effect of h-BN was demonstrated as an additive in lubricating oil for porous sliding bearings 

used in car clutches.  h-BN powder was mixed with transformer oil and then the CoF of powder 

matrix was measured at various loads and pressure-velocity (PV) characteristics derived from the 

transition time to seizure of porous bush composites.  It was found that addition of h-BN micro 

particles (~1-2 μm) reduces the friction two times that of neat oil.  On comparing commercial 

lubricant Mobil DTE-BB, h-BN micro-particle added oil showed superior performance.  The 

micro particle embedded within the porous bearings persists for long time and is released 

gradually during sliding to occupy the contact surface.  The prospective application of BN as 

AW additive was also established; about 1% BN in lubricating oil found to show reduction in 

wear scar of rubbing surface comprising steel and cast iron. In particular, boron occupies the cast 

iron surface and CoF is also amply reduced [105].  

A study was conducted to evaluate the effect of the addition of micron sized BN particles in 

grease and test for fretting sliding and vibrating tests.  Same weight percent of h-BN micro 

particles were taken while conducting the test and it was discovered that the scar depth and width 

were comparable to commercial lubricant during vibrating fretting, while sliding fretting showed 

improvement as surface damage was three times lower compared to commercial sample.  The 

friction coefficient was independent of sliding speed in sliding tests [106]. 



Other sliding experiments were conducted to verify the behaviour of BN when added to 

lubricating oil.  Sliding of bearing steel and bearing steel vs. cast iron were examined and found 

that there was wear reduction in both cases whereas friction was increased in the former.  

Surface analysis also revealed that there were traces of boron over small cavities while the major 

constituent was boron oxide as B2O3 for steel vs. steel bearing, however, steel vs. cast iron 

mainly consisted of BN on wear scars demonstrating BN as a potential lubricating oil additive 

[107]. 

Stable Newtonian nanofluid with nanosheets of h-BN in mineral oil (MO) were prepared and 

examined for their thermal electrical properties.  Nanosheets were prepared by exfoliating the h-

BN powder in isopropyl alcohol and then dispersed in MO to form stable dispersion without 

compromising its electrically insulating properties.  Effective thermal conductivities (keff) of 

nanofluids (NFs) increases with temperature (measurements are taken from room temperature to 

50°C), indicating the role of Brownian motion on thermal conductivities measured, in 

accordance with Maxwell predictions.  Other factors influencing the keff of NFs are the liquid 

layering and viscosity.  Viscosity enhancement by using nano-fillers was negligible that helps to 

maintain effective Keff.  The high thermal conductivity value even at smaller filler concentrations 

is due to the high surface area of h-BNNSs [108]. 

Tribological properties of h-BN were studied using porous bush composites of different 

diameters infused with (h-BN and transformer oil).  The effect of load on transition to seizure 

time for porous bearings and effect of PV on friction coefficient for bushes infused with (h-BN 

+oil) and Mobil DTE-BB lubricant were studied.  h-BN is an effective lubricant as it lowers the 

transition time to seizure and also reduces the friction coefficient by forming a film over the 

surface on the sliding interface as h-BN particles align parallel to the direction of motion. Bench 

tests showed the impact of impregnation of h-BN with oil by satisfying 100,000 h of clutch 

operation in real engines [105]. 

Improved tribology was manifested by 2D atomic sheets reinforced mineral oil in the field of 

NFs. Multifunctional prospects of NFs (containing 2D nanosheets) are reported where a very 

small fraction of nanomaterials reduces the contact friction and is involved in thermal 

management.  Thermal and tribological properties of h-BN and graphene reinforced metal 



cutting lubricants were examined by studying the variation in viscosity with temperature and 

concentration of nanofillers. 

Two different tests, ASTM standard D5183, and a polish method (from ITEePib) were 

performed for testing lubricants under conditions of scuffing and the results in general are in 

agreement with each other.  The layering mechanism explained for the lubrication reduction with 

graphene engine oil fluid is more generalized to other layered materials based fluids such as h-

BN.  These multifunctional NFs maybe better candidates for various energy management fields 

in future [109]. 

Little research on the tribological properties of AISI 4140 steel with an engine oil additive that 

includes nano h-BN nanoparticles has been reported.  The amount of nano h-BN in the engine oil 

varied from 0 to 10% by volume, and four different lubricant samples were prepared to study the 

effect of nanoparticles on friction and wear properties. Varying the concentration of h-BN 

nanoparticles does not change the viscosity of lubricants however; they displayed differences in 

CoF and wear results.  Inadequate amount of nanoparticles in one sample leads to increased 

friction and wear.  Other samples containing appropriate amount of nanoparticles exhibited 65% 

less wear as compared to neat sample containing no additive. 

Nanoparticles completely covered the asperities therefore, the mending effect occurred in these 

samples, and they exhibited the lowest wear rate and the wear-track widths among the samples. 

The surface roughness values found from the samples supported these results.  The presence of 

sufficient amount of nano h-BN additives in oil prevents direct contact and results in a decrease 

in friction and wear.  This study represents a step toward a fundamental understanding of the 

friction and wear properties of nano h-BN [110]. 

The reported literature demonstrates various techniques for the production of h-BNNSs that 

involves chemical synthesis route, liquid exfoliation and ball milling procedure.  However, the 

yield obtained was not satisfactory because of poorly optimized reaction/ milling conditions. 

Most importantly, the tribological applications of h-BNNSs were not evaluated.   



                                                                                                                    Chapter 2

2. Experimental method and characterization techniques 

This chapter gives a brief overview of the experimental method used for the preparation of 

nanomaterials and the analytical techniques exploited for their characterization and testing. 

Nanoparticles prepared by the methods described in the thesis have been characterized by 

spectroscopic techniques such as confocal dispersive raman and microscopic techniques such as 

TEM, SEM and other standard material characterization techniques such as XRD measurements, 

TGA and particle size analysis (by dynamic light scattering (DLS)).  This chapter details the 

instrumentation and physical principals behind these analytical techniques. 

2.1 Experimental method 

2.1.1. Ball milling 

Ball milling is defined as a process in which the mechanical breakdown of solids into smaller 

particles will occur without any change in their state of aggregation [Bernotat and Schonert 

1998].  Particles of indefinite shape and sizes (micron and sub micron domain) can be produced 

using this approach; as well as there will be induced defects into the solid structure that would 

increase the surface area of the material.  The increase in surface area is accompanied by 

increasing proportions of high active surfaces due to the induced defects. This method is also 

known as mechano-chemical method, which is widely used for the synthesis of nanoparticles and 

nanocomposites.  However, controlled size reduction through this route is somewhat tedious 

[111].  Process involves subjecting the powder sample along with balls (ceramic/steel/glass ) into 

a milling vial and the sample particle encounters the impact of balls colliding with each other and 

with walls of vial.  The process is typically used for decreasing the size of the particles and hence 

termed as top-down approach.   

Following the advancement of this technology, more sophisticated ball milling machines capable 

of accelerating balls up to high speeds (large kinetic energy) have been developed.  High-energy 

ball milling that is achieved by grinding with balls of large kinetic energy appears to be capable 

of structural modification and creating a number of interesting phases.  A list of phases achieved 



by ball milling includes nanocrystalline materials, quasi-crystals, supersaturated solutions and 

other non-equilibrium materials.  In addition, the ball milling technique is capable of inducing 

chemical reactions that do not normally happen at room temperature (the phenomenon referred 

generally to as mechano-chemical or reactive ball milling).  A more detailed overview of the ball 

milling technique can be found in several reports [112-114].

A number of ball milling devices (shaker mills, attritors, planetary ball mills, and vibratory ball 

mills) have been designed for processing and inducing structural transformations of powders and 

new phases.  

A planetary ball mill has been used in the current study.  The schematic of ball mill is shown in 

Figure 2.1.

Figure 2.1: Movements of working parts and balls in a planetary mill [111]. 

It works on the principle of centrifugal acceleration where vials and supporting disc rotate in 

opposite directions; the centrifugal forces alternatively act in like and opposite directions 

[Suryanarayana 2001, Golosov 1971; Molˇcanov et al. 1988].  The charge inside the vials 

performs two relative motions; a rotary motion around the mill axis and a planetary motion 

around the vial axis [111].  Wet ball method was performed to produce nanoparticles as it is 

beneficial over dry milling process in which a powder sample was ball milled with milling balls, 

which causes lots of damage to the vial walls, leads to contamination by ball wearing and 



particle agglomeration.  However, during wet milling such encounters are very rare if the milling 

parameters are properly optimized. 

Two different planetary mills were used in this study: 

1. Retsch PM-400MA planetary ball mill with ZrO2 (stabilized zirconia) having a volume of 

about 500 ml are used at rotation speeds in the range of 1000-1200 rpm and grinding 

balls (zirconia) of size 1mm, 0.5mm and 0.1mm  are placed inside the vials along with 

the sample and milling medium for milling at desired speed and duration.   

2. Pulverisette 7, Fritsch horizontal planetary ball mill with steel having a vial volume of 

75ml used at 600-1000 rpm and grinding balls (steel and Zr2SiO4) of 1.0 mm  (steel), 

0.6-0.8 mm and 0.1-0.2mm  (both Zr2SiO4) placed inside the vials along with the 

sample and milling medium for milling at desired speed and duration.   

2.2. Characterization techniques 

2.2.1. Particle size analysis

DLS is used to find out the particle size by analyzing the Brownian motion (random movement 

of particles in a liquid due to the bombardment by the molecules surrounding them) of 

suspended particles.  The size of the particle is determined from the arbitrary motion and the 

speed of the particles in liquid medium.  Hence, this technique employs a source of light (laser) 

to trace the particle path and then the scattered light is collected at the detector positioned at a 

fixed scattering angle.  Scattering intensity for the particles moving under the Brownian motion 

will vary along with time. Across long time intervals, the intensity trace will appear to be 

representative of random fluctuations about a mean value.  When viewed on a much smaller 

time scale, however, it becomes evident that the intensity trace is in fact not random but rather 

composed of a series of continuous data points.  Smaller particles show quick movement in 

contrast with larger molecules.  By keeping a watch on the particle movement the particle size 

can be obtained, if there is minimal movement and the particle position are similar, then the 

particle in the sample is large; likewise if prominent amount of movement and position of 

particle are quite dissimilar then smaller size of particle are obtained [115].  



Data obtained through experiments is the correlation curve formed due to the constant random 

Brownian motion of particles in dispersion, which causes fluctuation in the intensity of scattered 

light.  Correlation function is thus used to obtain size distribution and correlation function (G) of 

scattered intensity is given as: 

G (τ) =<l (t). l (t+τ)> 

Where, τ = the time difference (the sample time) of the correlator. 

In the current study particle size analysis is performed with Malvern Zetasizer (Nano-ZS) 

dynamic light scattering equipment dispersing the sample (CaCO3 and MOS2) in base oil after 

processing in the mill.  The equipment operation is based on photon correlation spectroscopy, 

which examines the diffusion rate of suspended particles utilizing a backscatter angle of 173 

degree.  The equipment uses 5 mW He-Ne laser of wavelength 633 nm. 

2.2.2 X-ray diffraction 

XRD is used for the phase identification of crystalline materials.  It provides information about 

the crystal structure and atomic spacing.  It is based on the principle of constructive interference 

of monochromatic x-rays and the crystalline powder sample. 

X-ray diffraction occurs in the elastic scattering of x-ray photons by atoms from the periodic 

lattice.  The scattered monochromatic x-rays that are ‘in-phase’ give constructive interference.  If 

the distance between two periodic lattice planes is ‘d’ and the angle between the incoming x-rays 

and the normal to the reflecting lattice plane is ‘θ ’ then Bragg’s equation [116] is 

... 3, 2, 1,  n ;  sin2dn ==      (2.1) 

where, λ is the wavelength of the x-rays and n is an integer called the order of the reflection. By 

measuring the angle, 2θ, under which constructively interfering x-rays leave the crystal, the 

Bragg’s equation (2.1) gives the corresponding lattice spacing, which is characteristic for a 

particular compound. 

Width of diffraction peaks signifies the dimension of the reflecting planes. Diffraction lines from 

the perfect crystals are very narrow.  For crystals with size below five nm, peak broadening 

occurs due to incomplete and somewhat destructive interference in scattering directions where 

the x-rays are ‘out of phase’. The Scherer formula (equation 2.2) [117] relates crystal size to line 

width: 



cos
K

L =        (2.2) 

where < L > is a measure of the dimension of the crystal in the direction perpendicular to the 

reflecting plane, λ is the x-ray wavelength, β is the full width at half maximum (FWHM) of the 

peak, θ is the angle between the beam and the normal to the reflecting plane and K is a constant 

(often taken as 1). 

XRD studies are carried out at two different instruments: 

I. An 18 KW X -Ray Diffractometer (Rigaku, Japan) having a copper rotating anode was 

used.  For analysis powder sample was grinded and spread on the sample holders. The 

patterns are recorded at 50 KV and 250 mA, 

(i) from 5-75o at a scan rate of 2 deg / min with a step size of 0.01 deg for pristineCaCO3 

and milled samples. 

(ii) from 0.5-10o at a scan rate of 0.5 deg / min with a step size of 0.01 deg for 

pristineCaCO3 and milled samples. 

(iii) from 5-50o at scan rate of 1deg / min with a step size of 0.01 deg for pristine MoS2, 

MoO3and milled samples. 

II. A Pan-analytical Xpert Pro equipped with a copper anode was used.  For analysis, samples 

were prepared by displacing over the glass substrate directly taken from the milling vial 

(without sonication and centrifugation).  The patterns are recorded, 

(i)from 10-110o at a scan rate of 6.25 deg / min with a step size of 0.1 deg for pristine h-

BN and milled samples. 

 The patterns were processed and peak search was conducted by search match to determine 

different phases present in the samples. 

2.2.3. Electron Microscopy 

Although some structural features can be revealed by x-ray diffraction, direct imaging of 

nanoparticles is only possible using transmission and scanning electron microscopes. Both are 

operating on the same basic principles as the light microscope but uses electrons instead of light 

[118].  



The development of the transmission and scanning electron microscope in the late 1930’s and 

early 1950's respectively primarily as an imaging devices, which exceeded the resolution power 

of the light microscope, by several orders of magnitude. Since the de broglie wavelength of 

electrons decreases with their increasing kinetic energies, fast moving electrons have very short 

wavelength associated with them and so are capable of very high resolution if that wavelength 

can be used in an appropriately designed instrument.  

Resolving power of a microscope is given by the following formula: 

  d= 0.5 λ / sin α

where, λ represent the wavelength and α equals the one-half of the angular aperture.  Since the 

wavelength of electrons is in the range of a few angstroms, in principle, the resolution of electron 

microscope could go up to a few angstroms.  In both SEM and TEM, the system is composed of 

an electron gun that has a hot wire filament and a wehnelt shield.  The electron beam comes from 

a source (filament), made of various types of materials.  The most common is the tungsten 

hairpin gun. A small electric current heats the source. This produces a thermionic emission of 

electrons, which essentially is a cloud of electrons that form around any hot metal.  The filament 

and shield called the cathode are then set to a very high electric potential between 25KV to 

125KV.  This gives the electrons in the cloud the incentive to move.  As the filament heat is turn 

up the electron cloud forms, and all the electrons are accelerated towards the grounded anode if 

not for the bias shield.  Surplus electrons collected onto the shield making the shield more 

negative, which in turn inhibits the release of more electrons.  This is called self-biasing and is 

controlled by the bias resistor. 

2.2.3.1. Transmission electron microscopy (TEM) 

TEM is a microscopy technique in which an electron beam is transmitted through and interacts 

with the sample, leading to the formation of an image due to the interaction of the transmitted 

electrons.  A beam of accelerated electrons can interact with an object in a conventional TEM in 

one of two ways [119].  Usually, elastic scattering takes place whereby the electrons change their 

path in the specimen without a loss of energy.  Inelastic scattering can also occur, resulting in a 

loss of energy due to an interaction of the impinging electrons with the orbital electrons 

surrounding the nucleus of each atom in the object. Those electrons, which are not or hardly 

scatter, contribute positively to the image.  Those that are considerably deflected are prevented 



from doing so by apertures in the optical path.  As a result, differences in light intensity 

(contrast) are created in the final image, which relate to areas in the object with different 

scattering potentials.  

This fact can be deduced from the following formula of Rutherford, which describes the 

deflection potential of an atom: 

2

.
r

eZeK −=

where, K is deflection potential, e= electron charge, z= positive charge and r =distance from 

electron to nucleus. As the atomic number increases, their scattering efficiency will also 

increase.  Hence, heavy metals can form images with good contrast.  The imaging system 

consists of an objective lens and one or more projector lenses.  The chief lens in transmission 

microscopes is the objective.  It determines the degree of resolution in the image.  It forms the 

initial enlarged image of the illuminated portion of the specimen in a plane that is suitable for 

further enlargement by the projector lens.  The projector lens, as it implies, serves to project the 

final magnified image on the screen or photographic emulsion. The great depth of focus 

provides the high magnification of the sample. 

TEM measurements were carried out on Jeol (JEM 2100) instrument at 200KV having LaB6 

filament with a point resolution of 0.194nm and lattice resolution of 0.14nm. For analysis, 

samples (CaCO3 and MOS2 based) were prepared by dispersing the powder sample in heptane by 

ultrasonication for 5 minutes.  A drop of prepared sample was poured on a mesh type copper grid 

placed on filter paper and kept for drying. 

For h-BNNSs analysis, studies were performed using a JEOL 2100F operated at 200KV under 

both TEM and scanning transmission electron microscope (STEM) modes.  

2.2.3.2. Scanning electron microscopy(SEM) 

SEM uses a focused electron beam to scan the sample surface and produce an image, which 

involves the electron interacting with the surface atoms in the sample producing signals that are 

detected to give sample’s surface morphology and chemical composition.  

The scanning electron microscope is able to provide images of three-dimensional objects 

because, in its normal mode of operation, it records not the electrons passing thorough the 



specimen (as in TEM) but the secondary electrons released from the sample surface by the 

electron beam impinging on it [120].  The sample can therefore be of any size and thickness that 

will fit in the instruments evacuated sample chamber kept under vacuum. The secondary 

electrons do not have to be focused but are simply collected.  

The broad magnification range of the scanning electron microscope, together with the ease of 

changing magnification, makes it easy to zoom from a gross image of the object to an image 

showing fine details.  The images created without light waves are rendered black and white.  The 

electron beam travels downward through a series of magnetic lenses designed to focus the 

electrons to a very fine spot.  Near the bottom, a set of scanning coils moves the focused beam 

back and forth across the specimen, row by row.  As the electron beam hits each spot on the 

sample, secondary electrons are generated from its surface.  A detector counts these electrons 

and sends the signals to an amplifier.  The final image is built from the number of electrons 

emitted from each spot on the sample.  Detectors collect the secondary or backscattered 

electrons, and convert them to a signal that is sent to a viewing screen to produce an image. 

When the electron beam strikes the sample, some of the electrons will interact with the nucleus 

of the atom.  The negatively charged electron will be attracted to the positive nucleus but if the 

angle is just right instead of being captured by the gravitational pull of the nucleus it will circle 

the nucleus and come back out of the sample without slowing down.  These electrons are called 

backscattered electrons because they come back out of the sample.  Because they are moving so 

fast, they travel in straight lines. In order to form an image with backscattered electrons, a 

detector is placed in their way. When they hit the detector a signal is produced that is used to 

form the image.  Also, beam electrons interact with the electrons present in the atom rather than 

the nucleus. Since all electrons are negatively charged, the beam electrons will repel the 

electrons present in the sample.  This interaction causes the beam electrons to slow down as it 

repels the specimen electrons, the repulsion may be so great that the specimen electrons are 

pushed out of the atom, and exit the surface of the sample, these are called secondary electrons. 

Unlike the backscattered electrons, the secondary electrons are moving very slowly when they 

leave the sample. Since they are moving so slowly, and are negatively charged, they can be 

attracted to a detector, which has a positive charge on it.  This attraction force allows you to pull 

in electrons from a wide area and from around corners.  The ability to pull in electrons from 

around corners is what gives secondary electron images a three-dimensional look. 



To produce an image on the screen, the electron beam scans over the area to be magnified and 

transfers this image to the screen.  The points of information are the product of number of points 

and lines an electron beam scans across horizontally and vertically.  The signal read from the 

electrons coming off each point is transferred to a corresponding point on the screen [121].  

Since the screen also has same points and lines across horizontally and vertically, there is a 

correspondence between the scan on the specimen and the screen.  Since the length of the 

electron beam scan on the specimen is smaller than the length of the screen, a magnification is 

produced equal to the following equation: 

Magnification = Length of screen / Length of electron beam scan

By changing the size of the scan on the sample, the magnification can be changed.  The smaller 

the area of the electron beam scans, the higher the magnification. 

Here, the SEM analysis was conducted on Hitachi S-3400N equipped with a tungsten filament. 

Samples (steel balls after tribology tests) were recorded at accelerating voltage of 15KV, 

emission current of 75mA, and working distance14200 um under vacuum. 

Few samples (h-BN nanosheets) were recorded under Zeiss supra 55VP scanning electron 

microscopes operated at 3 KV.  

2.2.4. Thermo gravimetric analysis  

Thermal analysis includes a group of techniques in which a physical property of a substance is 

measured as a function of temperature, while the substance is subjected to a controlled 

temperature program.  Thermogravimetry provides a quantitative measurement of any weight 

change associated with a transition [122].  The composition and purity of the sample can be 

determined by using TGA by taking the known mass of the substance and heating it to a certain 

temperature so that some of the constituents decompose into gas.  It is also used to determine 

the percentage by mass ratio of solute by taking in to account the heat utilized and 

stoichiometry ratio.  Percentage by mass for known compounds can be estimated when the 

weight of substance left after heating is divided by the initial mass taken.  Also, knowing the 

mass of the original mixture and the total mass of impurities liberating upon heating, the 

stoichiometric ratio can be used to calculate the percent mass of the substance in a sample. 

In this study, the thermal stability and phase transitions of the samples were measured using 

TGA model 2960 thermal analyzing machine (TA Instruments, USA) under a flow of air Nearly 



5-10 mg of the sample (pristine and milled CaCO3) were taken in the platinum pan and heated in 

air at the heating rate of 10 deg / min, up to 900ºC. 

2.2.5. Small angle x-ray scattering  

Very low angles (0.1-10°) elastic scattering of the x-rays (wavelength 0.1-0.2 nm) by a sample in 

nm range is measured in SAXS.  This angular range is of significance as it is characteristics of 

partially ordered materials and their shape and sizes.  It is very powerful tool and widely used to 

study the form of particulate system like colloids and proteins, inhomogeneous structure like 

polymers and composites and layered materials.  This is also a non-destructive method like 

XRD, in which x-ray scattering intensity versus scattering angle or scattering vector is recorded. 

If ‘ ’ is scattering angle for an incident x-ray of wavelength ‘ ’ then scattering vector (q) is given 

as: 

 For layered structure, the scattering vector appears at equi-distant as series of reflections (q1, q2, 

q3,..) then the distance between the two layers ‘d’ is given as: 

For coated samples, the first reflection (q1) can be considered in order to calculate the coating 

thickness. 

SAXS measurements were carried out by dispersing the prepared particles in heptane in Anton 

Paar SAXSess mc2 equipment.  The equipment has a 40 KV x-ray generator emitting Cu K  line. 

Imaging plate and 1D diode array detector has been used.  The samples were taken in quartz 

capillary dispersing in xylene.  In order to determine the scattering signal of the sample (milled 

CaCO3) measurements are done in duplicate.  After transmission correction, the x-axis was 

converted into scattering vectors (q) and the background measurement was subtracted from the 

sample measurement [123].

2.2.6. Contact angle measurement 

This is an angle formed by liquid/vapour at the interference with solid.  Different contact angle 

value represents different information such as: low values of contact angle indicates that the 

particle wets well while high value for contact angle shows poor wetting of the solid surface. 



Full wetting of the surface indicates that it has zero contact angle.  An angle less than 90 

degrees implies the solid is well wet by the liquid, while a value higher than 90 degrees means 

low wetting.  Generally, if the water contact angle is smaller than 90°, the solid surface is 

considered hydrophilic and, if angle is larger than 90°, the solid surface is considered 

hydrophobic.  This technique helps in quantitatively measuring the wetting of a solid by the 

liquid surface. 

Figure 2.2: Schematic of contact angle measurement [124]. 

γs....solid surface tension 

γL....liquid surface tension 

γSL....A solid and liquid boundary tension 

γs = γL .cos  + γSL(2.3) 

This equation 2.3 is referred to as "Young’s equation", and the angle  formed by the solid 

surface and the tangent of the droplet is called a "contact angle”.  The contact angle is very easy 

to understand as an indicator of wettability, and has been adopted widely in industrial fields as an 

evaluation method of surfaces, as shown in Figure 2.2 [124]. 

Contact angle measurement was performed on OCA 15 plus goinometer from Data physics.  

This instrument can measure wetting behavior of solid surfaces by sessile drop method and can 

give video based measurement of static and dynamic contact angle.  The measurement was 

obtained by taking a thin pellet prepared from powdered samples (milled CaCO3) (1g) under 10 

MPa pressure and dropping a water droplet onto the pellet. 



2.2.7. Raman spectroscopy 

The Raman phenomenon is a consequence of sample illumination with a monochromatic photon 

beam (laser), most of which are absorbed, reflected, or transmitted by the sample.  However, a 

small fraction of photons interact with the sample. During this interaction, some energy is 

transmitted to elementary particles of which materials are constituted (electrons, ions). This 

causes their transition from ground energy levels to ‘virtual’ excited states.  These excited states 

are highly unstable and decay instantaneously to the ground state by one of the following three 

different processes:  

-   Rayleigh scattering: the emission of a photon of the same energy allows the molecule to relax 

to its ground vibrational state (elastic scattering).  Rayleigh scattering, therefore, bears no 

information on vibrational energy levels of the sample.  

-  Stokes and anti-stokes raman photons (inelastic scattering): emission of a photon with energy 

either below or above that of Rayleigh photons, thereby generating a set of frequency-shifted 

‘Raman’ photons.  The energy differences of the stokes and anti-stokes raman photons with 

respect to the excitation energy give information about molecular vibrational levels (Figure 

2.3). 

Figure 2.3: Spectrum of photon transition from elemental ground level to virtual states [125]. 

These photons are collected by a detector and transformed to electrical signals and finally to the 

corresponding raman spectrum. Usually, stokes bands which are more intense than anti-stokes 



bands are called “Raman spectrum” of the sample. The Rayleigh band is filtered out before the 

detector [125].

Raman technology utilizes two techniques for spectra collection which involves dispersive 

raman and fourier transform raman. 

Dispersive raman is a powerful spectroscopy as it helps in separating the collected raman 

scattered light into individual wavelengths by focusing the raman signal on grating that helps in 

separating the different wavelengths.  For radiation only visible laser having shorter wavelength 

are used as it helps in enhancement of raman signal.  Dispersive raman is often powerful for 

analyzing very dark samples, such as carbon black loaded or highly colored samples.  Many 

other techniques suffer from total absorbance or sample heating, which is often not present when 

using the dispersive raman technique, owing to lower laser powers that can be used. 

Raman analysis of wear track (steel balls after tribology tests), MoS2 (pristine and milled), 

MoO3,calcium stearte, SA, pristine and milledCaCO3was performed on STR 750 Confocal 

Dispersive Micro Raman Spectrometer equipped with 514.5 nm Ar laser (70mW) and Princeton 

Instruments Acton SP2750 Spectrograph having 1.4 cm-1 dispersive pixel resolution.  Raman 

stroke shift between 150 and 1000 cm-1for wear track and MOS2 based samples and between 200 

and 1700 cm-1 for CaCO3based samples were recorded from 20 scan acquisition of 10 seconds 

laser excited area. 

2.2.8. Surface area determination by BET method 

The BET (Brunauer-Emmett-Teller) method is the most widely employed procedure to 

determine the surface area of the solid materials. By using the BET equation (2.4): 
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where, P = adsorption equilibrium pressure, P0 = standard vapor pressure of the adsorbate, Va = 

volume at STP occupied by molecules adsorbed at pressure P, V0 = volume of adsorbate required 

for a monolayer coverage, χ = constant related to heat of adsorption. 



Plotting ( )[ ]0a PPVP −  versus 0PP  yields a straight line with a slope ( ) 0V1−= , crossing 

the y-axis at 0V1= . The volume adsorbed in the first monolayer is found as ( )1V0 += . 

The volume V0 can be converted into the number of molecules adsorbed by RTPVN 00 =  and if 

we know the area occupied by each molecule (A0) then the total area, 00ANA = , can be found. 

For N2 molecule 2
0 nm16.0A =

To differentiate the adsorption mechanism between micropore and to that in meso and 

macropores, the t-plot analysis was developed by Lippens and de Boer and the same was applied 

[126].  The method consists of plotting the adsorption isotherm in terms of the volume of the 

adsorbate versus the statistical film thickness, t.  The pore size distribution is obtained from the 

analysis of the desorption isotherms by applying the BJH model [127] which involves the area of 

the pore walls and uses the Kelvin equation to correlate the partial pressure of nitrogen in 

equilibrium with the porous solid to the size of the pores where the capillary condensation takes 

place. 

BET surface area of the nanoparticles was determined by N2 adsorption method at liquid N2

temperature (77 K) using Quantachrome iQ2 adsorption unit.  About 200 mg of sample (pristine 

and milledCaCO3) was degassed at 313 K for 2 hours until the residual pressure was < 10-3 Torr. 

The isotherms were analyzed in a conventional 11 point BET method in the region of relative 

pressure P/P0 = 0.05 to 0.35 with the assumption for the nitrogen molecular area in an adsorbed 

monolayer is 0.16 nm2.  

2.2.9. Tribological evaluation 

Tribological properties such as wear scar, weld load and CoF, between the two rubbing surfaces 

are most important studies to benchmark the performance of lubricants.  The relative wear 

preventing properties of lubricating fluids and greases in sliding and rolling applications are 

determined in different tribological evaluation mentioned above.  For wear scar analysis, three 

9mm  steel balls are clamped together and covered with the test lubricant.  A fourth 9mm 

steel ball is pressed into the cavity formed by the three clamped balls for three point contact, and 

rotated for a set duration.  Lubricants are compared using the average size of the scar diameters 

worn on the three lower clamped balls.AW properties of the grease was examined using four 



ball wear tester (Falex friction and wear test machine) as shown in Figure 2.4(a) by following the 

ASTM standard D4172 at 75oC; 45kg weight load for 60 minutes.  

Figure 2.4:Photograph of (a) The Falex Four Ball Wear Test Machine and (b) Seta-Shell 4 Ball Lubricant Tester 

For load carrying capability of oils and greases, four-ball extreme pressure lubricant tester is 

used.  A ball, mounted in a chuck, is rotated against three stationary balls in a pot containing the 

sample lubricant. A load, adjustable in the range of 40 to 800kg, is applied to the balls via a 

balance beam and electric jack, followed by the torque transferred between the rotating and 

stationary balls which is measured and displayed in the digital timer, with a range of 0.1 second 

to 9999 hours, can be used to control the duration of the test if the torque exceeds a preset level, 

or the balls weld during a test power to the drive motor is automatically turned off.  The torque 

or load applied is the measure of weld load (EP characteristics) of the sample. The EP 

characteristics of the lithium grease with or without MoS2 additives were evaluated using a Seta-

Shell four-ball EP tester (Stanhope-Seta, Chertsey, UK) as shown in Figure 2.4(b).  The Weld 

Point-Pb, Kg is reported for all the samples by using IP 239 method.  All the experiments 

(a) (b) 



were carried out at room temperature.  All the above measurements were performed in triplicate 

and best were taken for evaluation. 

Figure 2.5:  Photograph of Optimol SRV 

Anti-friction or friction-reduction was examined using an Optimol SRV oscillating friction 

shown in Figure 2.5 by following DIN 5706.  Test involves two test specimens (e.g. a ball and 

disk) installed in the test chamber and pressed together with a specified normal force.  The top 

specimen oscillates on the bottom specimen.  The basic configuration includes specimen holders 

for point, line or area contact.  Frequency, stroke, test load, test temperature and test duration are 

pre-set.  Friction force is continually measured by a sensor. The friction coefficient is 

automatically calculated and recorded during the entire test duration. For analysis, basic 

parameters involved are normal force: 1-2000 N, stroke: 0.1-5 mm (50 Hz), frequency: 1-511 

Hz, temperature: ambient to +350° C, test duration: 1min-999h.  All the tests were carried out 

with test conditions: 50oC for 50N, 200N and 300N for duration of 60 minutes [128]. 

  



                                                                                                                    Chapter 3

Wet milling of CaCO3 with different capping agents to produce hydrophobic 

core shell nanostructure. 
  

3.1. Introduction 

Overbasing is the most important application of CaCO3 in lubricant formulation. This can be 

achieved by taking advantage of the excellent dispersant properties of the long chain sulfonate 

molecule.  Excess base in the form of calcium carbonate can be dispersed in micellers to produce 

so-called overbased sulfonates (refer to Figure. 1.7).  Thus, surface modification by surfactants 

enables to disperse and/or stabilize CaCO3 in the oil medium to be used for overbasing 

application. Several studies have been performed on the surface modification of 

CaCO3nanoparticles [2-9, 42]. 

Most of the synthesis routes involve direct carbonation and mineralization of CaO or Ca(OH)2 in 

the presence of surfactant like fatty acids and solvent medium such as water or alcohol. The 

process mimics the crystallization of CaCO3 within living system and hence often termed as bio-

mimetic synthesis or bio-mineralization of CaCO3.  Solution and carbonation routes were 

employed by many researchers for the synthesis of hydrophobic CaCO3 nanoparticles. 

Hydrophobic CaCO3 crystals are obtained through carbonation route from Ca(OH)2 slurry under 

CO2 purging at desired temperature in the presence of different surface modifiers such as fatty 

acids [4,7,18,19],ODP [3,29], Na-SA, terpineol [24], DA [25,26] [30-33,129].  There are reports 

that have mentioned carbonation process assisted by ultrasonication, in which by optimizing the 

synthesis parameters they had obtained desired particle size [130].  

In contrast to the above mentioned soft chemical approach, ball milling technique also termed as 

mechano-chemical approach has been employed to synthesize hydrophobic CaCO3.  It is a 

widely used method for the synthesis of nanoparticles and nanocomposites; in which the 

mechanical breakdown of solids into smaller particles (macro to micro or micro to nano or sub 

micro particles) occurs [38].  Generally, the surface area of the solids would increase due to the 

induced particle size during milling. The size reduction through this method depends upon 

various milling parameters affecting the process. These factors are material of milling media, 

ball to solid weight ratio, filling volume of milling chamber, milling atmosphere, milling speed 

and time.  In mechano-chemical approach the newly created surface of the small particles in situ



modified by the surfactant molecules to make them hydrophobic.  This small molecule surface 

modification continues until the creation of new surface ceases due to the limitation of the 

milling parameters and process conditions.  The particle size reduction is not as easy as that of 

controlling these milling factors. The desired size reduction could be achieved by following 

optimized milling parameters.  

Particle size reduction and in situ surface modification through mechano-chemical bonding of 

PCC nanoparticles with modifiers and the product application in overbasing has not been 

reported in the scientific literature. 

In this chapter, hydrophobically surface modified core shell type CaCO3 nanoparticles 

production, where shell is the organic-inorganic hybrid structure by ball milling route and 

characterized by relevant physicochemical techniques is reported. 

3.2. Experimental work 

As discussed in chapter 2 section 2.1.1. planetary ball mill was used for synthesizing 

hydrophobically modified core shell CaCO3 nanoparticles using different dispersants, such as 

long chain fatty acids, succinic anhydrides and amines.  

Figure 3.1 shows the molecular structure of different dispersants. 

Figure 3.1: Detailed molecular structures of the dispersants used. 



To begin 1:1 molar ratio of CaCO3 and selected dispersant dissolved in suitable medium was 

taken in ZrO2 milling vial along with ZrO2 milling balls.  The milling time and milling speed for 

different ball sizes (1, 0.5 and 0.1mm ) were fixed for 2 hours and 1200rpm respectively. 

The details of the milling process parameters are given in Table 3.1. 

Table 3.1: Details of the milling process parameters. 

1. Mole ratio of CaCO3 and selected dispersant 1:1 

2. Medium suitable for capping agent Three times of 
sample dosage. 

3. Volume of ZrO
2
 balls  

(1mm, 0.5 mm and 0.1mm ).  

1/3 of vessel 
volume (500ml). 

4. Rotating speed 1200rpm 

5. Milling time 2 hr 

After milling, the milled samples were rinsed and washed several times with suitable solvent so 

as to remove excess dispersant followed by centrifugation and drying. 

The samples are described in Table 3.2 with six letters, in which first three refer to capping agent 

and CaCO3 (C) while the last three are milling medium hexane (hex), methanol (met) and xylene 

(xyl). 

Table 3.2: Description for samples. 

S.No. Sample description  Capping agent Medium 

1. OAChex Oleic acid Hexane 

2. SAChex Stearic acid Hexane 

3. PAChex Palmitic acid Hexane 

4. SCCmet Salicylic acid Methanol 

5. OLCmet Oleylamine Methanol 

6. ODCmet ODSA Methanol 

7. TPCmet TPSA Methanol 

8. DDCxyl DDSA Xylene 



3.3.Effect of milling on CaCO3 with different dispersants 

The experiments were carried out to investigate the effect of different dispersants on the shape, 

size and surface characteristics of the CaCO3 after milling treatment. 

XRD analysis of milled samples helps in discovering the polymorph form of CaCO3, change in 

crystallite size and confirms the coating over CaCO3 surface when scanned over low angles. 

The XRD patterns in Figure. 3.2 show that the products obtained after milling with different 

capping agents were typically calcite in nature despite of their different morphologies and sizes; 

Figure 3.3 (a, b) shows the low angle diffraction of representative samples (SACHex and 

OACHex).  The distinct patterns observed are matching well with calcium stearate and calcium 

oleate reflections (JCPDS File). 

CaCO3 were first de-agglomerated and then further reduced to smaller particles by grinding 

actions and, at the same time, the newly created surfaces of smaller particles were covered by the 

agents under milling impact [39]. 

Figure.3.2: XRD patterns of CaCO3 particles after milling in different capping agents (a) uncoated CaCO3, (b) 

OAChex, (c) SAChex, (d) PAChex, (e) SCCmet, (f) OLCmet, (g) ODCmet, (h) TPCmet, and (i) DDCxyl. 



Figure.3.3: Low-angle XRD patterns for (a) OAChex, (b) SAChex 

Table 3.3 comprises the crystallite sizes of the fresh (uncoated) and milled (coated) CaCO3 with 

different capping agents; a decrease in crystallite size was observed after milling for all the 

samples.  The impact of ball milling on the particle size reduction is a well-known fact as well 

as the coating by capping agents reduces the surface energy of calcite and could control the 

particle-particle interaction which was confirmed by Anshan and Taylor using IGC (inverse gas 

chromatography [130]. 

Table 3.3: Crystallite sizes of CaCO3 milled with different capping agents.

S.No. Sample XS (Å)  

1. CaCO3 519.87 

2. OAChex 299.37 

3. SAChex 338.75 

4. PAChex 321.12 

5. SCCmet 281.25 

6. OLCmet 372.00 

7. ODCmet 344.00 

8. TPCmet 341.50 

9. DDCxyl 333.25 



To compare the amount of coating with different dispersants over CaCO3 surface thermal 

gravimetric technique was used to reveal the presence of organic moiety over the surface of 

CaCO3 core.  

TGA results from uncoated and coated CaCO3 are given in Figure 3.4.  Figure 3.4i shows TGA 

curve of the uncoated CaCO3 and SA.   The uncoated CaCO3 undergoes two decomposition 

steps: a weight loss of 8.514% below 600°C and a large weight loss of 42.03% above 600°C 

indicating the complete decomposition of CaCO3 to CaO and CO2.  TGA curve of SA shows 

about 95% weight loss below 250oC indicating the complete thermal decomposition of organics 

under air atmosphere.  Figure.3.4 (ii-iv) shows TGA curves for the coated CaCO3 samples; 

overall there are three weight loss steps.  The first step with minimal weight loss was primarily 

due to desorption of adsorbed solvents and excess of dispersants occurred below 250°C.  The 

second step was in the temperature range from 250°C to 650°C, where the weight loss may be 

attributed to the thermal decomposition of coating agent.  The final third weight loss observed 

after 650°C was due to the thermal decomposition of CaCO3 to CaO and CO2.  The weight loss 

of third step was found to be about 15- 40% for all of the samples that the percentage loss 

depends up on the second step weight loss; more (less) the second step less (more) the third step 

weight loss.  The second step weight loss was found to be an important characteristic of the 

coated CaCO3.  



Figure.3.4: (i)Showing the thermal decomposition pattern for the (a) uncoated  CaCO3 and  (b) SA; (ii)Showing the 

decomposition pattern for coated CaCO3 with different capping agents (a) OAChex, (b) SAChex, (c) PAChex; (iii)

(a) SCCmet, (b) OLCmet; (iv) (a) ODCmet, (b) TPCmet , (c) DDCxyl. 

Table 3.4: The weight loss during the temperature range of 250°C-450°C corresponding to 

decomposition of calcium salt of capping agent for different capping agents.  

  

Table 3.4 indicates that the weight loss was more where efficacious reaction takes place between 

the CaCO3and capping agent.  Typical acid-base reaction is expected with fatty acid and succinic 

anhydride based coating agents.  However, in the case of SA and oleylamine minimal weight 

loss was observed indicating an ineffective reaction with calcite under milling condition.  The 

reaction of SA might be hindered due to the presence of intramolecular hydrogen bonding 

S.No. Calcium salts of Capping agent Weight % loss of 

shell(approximate) 

1. Calcium salt of oleic acid 27 

2. Calcium salt of stearic acid 52 

3. Calcium salt of palmitic acid 49 

4. Calcium salt of salicylic acid 03 

5. Calcium salt of Oleylamine 06 

6. Calcium salt of ODSA 50 

7. Calcium salt of TPSA 15 

8. Calcium salt of DDSA 14 



whereas no reaction is expected with oleylamine an organic base.  Thus, a plausible reaction 

mechanism of calcite with coating agents except SA and oleylamine are in equation (1) and (2). 

The thermal stability of the coated CaCO3 was less than 200oC under air atmosphere.  The 

physical stability of these samples is verified in the oil medium to form stable dispersion, which 

is essential for the lubricant application.  All the samples except SCCmet and OLCmet (5-10%) 

were mixed with group II base oil to give stable, partially clear nanodispersion. These 

dispersions on left undisturbed in the glass cylinders were stable up to a month time. 

The morphology and particle size of milled samples were characterized using TEM.  Figure.3.5a 

shows that original CaCO3 particles are agglomerated and cubic in shape with an average particle 

size of approximately 200 nm.  With the addition of capping agents, the CaCO3 powders were 

de-agglomerated and their shape was little distorted due to breaking down of primary crystals 

(Figure 3.5 (b-i)).  Sample obtained after milling was in a size range of 85 to 120 nm. The 

dispersants have the reactivity of different extent for binding with CaCO3 and results in different 

efficacy to stabilize the reduced size. From the images, it can be inferred that different 

dispersants gave different impressions to CaCO3 particle shape and sizes.  Most of the images 

show that particles were de-agglomerated and coated by dispersants.  The maximum rupturing 

and de-agglomeration of cubes was observed for sample with ODSA capping (Figure 3.5g). 



   

   

   

Figure.3.5: The TEM images of CaCO3 particles: (a) uncoated CaCO3, (b) OAChex, (c) SAChex, (d) PAChex, (e) 

SCCmet, (f) OLCmet, (g) ODCmet, (h) TPCmet, and (i) DDCxyl. 

3.4. Coating thickness and surface density 

From the results of TGA and TEM analyses, the shell thicknesses was estimated along with the 

surface density for every dispersant.  Two quantities were obtained from TGA; 

i. The weight of CaO after the CaCO3 decomposition,  

ii. The amount of capping agent used during the reaction to form the shell.  

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 



The cubic core-shell CaCO3 structure is shown in Figure 3.6.where, a and b respectively, are 

length of the sides of core and shell.  The particle size histogram derived from TEM images 

(Figure 3.7) gives the size of cubic particles of maximum distribution. 

Figure.3.6: Representation of cubic core-shell CaCO3 nanoparticle. 

From the length a and b were obtained the volume of the cubic structure for n number of cubic 

nanoparticles; 

n3acoreV ×= (3.1) 

n3btotalV ×= (3.2) 

The shell structure is made up of CaCO3 and capping agent and if the shell volume is shellV then 

can be obtained from equation 3.1 and 3.2 as  

shellVtotalVcoreV −= (3.3) 

The total volume and shell volumes are calculated from TGA weight loss by using respectively 

the bulk density of CaCO3 (0.675 gcm-3) and the dry bulk density of the prepared samples.

Thus the coating thickness is obtained from length of the sides a and b as follows;  

2
abt −=

(3.4) 

If we consider the reaction stoichiometry as two moles of capping agent involved per mole of 

CaCO3 (except in the case of ODSA, DDSA, TPSA and oleylamine where one mole was 

utilized) then the weight (W) of the capping agent in the shell can be obtained from the TGA 



weight loss.  Thus, the surface density of the capping agent (the number of capping molecules 

coated over one cube) is given as follows: 

26aM

NAW

×

× (3.5) 

Where NA is Avogadro number and M is formula weight of capping agent. 

Histograms derived from six representative TEM images, recorded at different positions of a 

grid, are given in Figure. 3.7. 



Figure.3.7: Showing the histogram plots for (a) OAChex, (b) SAChex, (c) PAChex, (d) SCCmet, (e) OLCmet, (f) 

ODCmet, (g) TPCmet , (h) DDCxyl. 

Table 3.5: The shell thickness and surface density calculated using above calculations, with the 

help of TEM and TGA results.  

S.No Sample TEM particle 
size(nm) 

Thickness of 
Coating(nm) 

Surface Density 
(molecules/nm2) 

(1013) 
1. OAChex 102 1.85 2.65 
2. SAChex 103 3.35 5.04 
3. PAChex 101 3.00 2.41 
4. SCCmet 102 0.00 0.00 
5. OLCmet 118 0.35 0.90 
6. ODCmet 97 16.3 4.25 
7. TPCmet 95 1.00 5.70 
8. DDCxyl 87 1.69 2.90 



From Table 3.5 we conclude that maximum coating thickness was obtained for ODSA coated 

CaCO3 (16.3 nm) followed by SA coated CaCO3 (3.35nm), while the surface density calculated 

for both these sample show different effects due to stoichiometric molar ratios being different for 

both the capping agents.  However, SA coated sample displays no surface coating as per the 

calculation and likewise oleylamine shows a very negligible surface coverage having surface 

density of 0.9x1013 molecules/nm2with coating thickness of 0.35 nm only.  Similar findings were 

observed in TGA results. 

Below are the TEM images (Figure. 3.8) for coated OA samples 3.7(a) at 40,000X showing 

cuboidal crystals.  It was observed that surface of these crystals starts crumpling 3.8(b) when the 

sample was exposed to beams for a time of 10 seconds.  Further, when the exposure time was 

increased to 30 seconds it was discovered that the entire surface film has been crumpled 3.8(c). 

A similar observation has been reported earlier [132].  This observation further confirms the 

presence of organic coating on the CaCO3surface generated by mechano-chemical reaction, 

which has been decomposed by the high electron beam energy inside the TEM.  

Figure.3.8: Showing the TEM images (a) OAChex, (b) OAChex after 10 sec of beam exposure and (c) OAChex 

after 30 sec of beam exposure. 

3.5. Coating effect and surface area

Surface area analysis of the milled samples was conducted to measure the change in surface area 

during the milling process.  Table 3.6 shows the values of the surface area for different milled 

samples. 

(a) (b) (c) 



Table 3.6: Surface area for various milled samples compared with thickness of coating. 

The fresh sample shows low surface areas, about 14.9 m2/g. It is evident from the table that the 

samples, which were effectively coated, show a decrease in surface area compared to fresh 

samples.  For instance, the maximum coated sample ODCmet shows the smallest surface area 

because of the coating over the surface.  Similarly SA coated sample also gives lower surface 

area values.  The degree of coating varies depending on the reactivity of dispersants with 

CaCO3 and that affects the surface area of the sample.  However, the surface area of samples 

(PAChex, OLCmet, SCCmet) are more than the fresh sample.  There was zero or very 

negligible coating observed with these samples because of no reaction between OLCmet or 

SCCmet with CaCO3.  The newly generated surfaces during milling were not coated with 

dispersants molecules and thus higher surface area was observed for these samples. 

3.6. Conclusion

Synthesis of hydrophobic core shell type CaCO3 particles via the ball milling approach using 

different capping agents was presented.  The observed results demonstrate that coating was 

successfully done that helps in reducing the agglomeration of NPCC to different extents.  It has 

also been demonstrated that organic substrate (capping) alters the crystal morphology and 

surface properties of CaCO3 by making it hydrophobic.  It was found that different capping 

S.No. Sample name Thickness of 

coating(nm) 

Surface area 

(m2/g) 

1. CaCO3 ... 14.9 

2. OAChex 1.85 7.3 

3. SAChex 3.35 9.7 

4. PAChex 3.00 29.76 

5. SCCmet 0.00 33.42 

7. OLCmet 0.35 28.21 

6. ODCmet 16.3 4.83 

8. TPCmet 1.00 25.08 

9. DDCxyl 1.69 14.73 



agents show different tendencies to coat the CaCO3 surface and have different influence on the 

particle size, morphology and surface hydrophobic property. These coated calcite samples are 

potential candidate for overbasing applications in lubricant technology. 

  



                                                                                                                    Chapter 4

Ball milling of selected dispersant (stearic acid) for optimization of milling 

parameters

4.1. Introduction 

CaCO3 is a widely used material in different chemical industries for numerous applications in oil, 

paint, plastics industries and agriculture sector.  In the downstream oil sector for the preparation 

of basic additives calcium compounds are the natural choices due to their availability in the pure 

form and used in maintaining the reserve basicity in the product matrix.  Owing to its alkalinity, 

the most important application of CaCO3 is overbasing in lubricant formulation. During 

combustion, the sulfurous and nitrogenous impurities present in fuel get oxidized to inorganic 

acids.  In turn, the lubricant itself undergoes oxidative degradation to form organo-acids.  These 

acids would cause severe corrosion to the engine parts if allowed to build up and thus may 

reduce the drain interval duration.  In order to treat the acid build up, overbasing or detergents is 

one of the most important additives added to lubricants.  The role of overbasing additive is not 

limited to prevent acid build up or rust formation, which promotes engine cleanliness, oxidation 

inhibition and extended trouble-free operation.  Nano CaCO3 (and Ca(OH)2) in the colloidal 

form stabilized by a surfactant layer is used as an overbasing additive in lubricant formulations 

[2-9, 42]. 

Surface modification of CaCO3 is of prime importance in making overbasing additives; the 

surfactant layers help to disperse otherwise non-dispersible CaCO3 in the oil medium.  Recently, 

we reported the surface modification of CaCO3 using different surfactants through ball milling 

approach. The clear advantage of milling approach for surface modification of CaCO3 over 

chemical synthesis routes has been well documented [133].  

In solution and carbonation routes there are certain conditions (reaction time, temperature, gas 

flow, pH) that exist that crucially affecting the crystal growth and morphology of CaCO3; 

whereas in ball milling process no such significant problems exist, except the above-mentioned 

milling parameters.  However, these parameters can be controlled in an industrial scale with ease 

to give better tailored hydrophobic materials.  The desirable phase and morphology of the solids 

(for instance calcite and cubic CaCO3) can be selected for milling with suitable surface modifier 

(SA). 



Recently, super-hydrophobic CaCO3 nanoparticles have been prepared by surface modification 

of CaCO3 using OA followed by polydimethylsiloxane (PDMS) through simple process.  PDMS 

helps in creating super hydrophobicity (contact angle was found to be 167o) as well as dual type 

of roughness on the surface that adheres tightly to the substrate due to high adhesion of the 

polymer [134]. A silane-coupling agent was also found to modify the CaCO3 surface by 

improving the dispersion and interfacial compatibility between CaCO3 and styrene-butadiene 

rubber (SBR) latex using hydrothermal route. A silane-coupling agent modified CaCO3

nanoparticles assists in decreasing the viscosity of CaCO3 by improved hydrophobicity and 

reduced surface energy and hence making it compatible with SBR latex [135].  

The coating thickness of surfactants over CaCO3was reported and the coating efficacy was 

correlated with respect to the reactivity of CaCO3 and surfactant molecule.  Nevertheless, the 

milling parameters should also play an important role in achieving efficient coating over CaCO3. 

In the preparation of nanodispersion for overbasing applications the stability of the dispersion of 

active materials is very important; it is desirable to control particle size in order to be 

gravitationally stable when dispersed in desired matrix [136].  Further, the low average particle 

size in the nanometer range and monomodal narrow particle size distribution of surface modified 

CaCO3 is important for preparing stable dispersion. Surface modified CaCO3has potential 

applications in lubrication provided the nanoparticles form a stable dispersion in the lubricant 

matrix by having a balanced brownian motion and gravitational pull. 

In this regard, coating of CaCO3 with SA was investigated by applying various milling 

parameters such as milling duration, sample to ball ratio, molar CaCO3 to SA ratio and milling 

medium.  The coated CaCO3materials were characterized by relevant physicochemical 

techniques and the results are presented here.  

Surface modification of precipitated CaCO3 particles realized in a planetary ball mill using SA as 

a modification agent for making dispersion in hydrocarbon oil was investigated.  Different 

milling parameters such as milling time, ball/sample weight ratios, sample dosage and milling 

medium were varied and analyzed for optimization of efficient coating.  The physical properties 

of the hydrophobically modified CaCO3were measured; the particle size and morphology of the 

resulting samples were evaluated using TEM and XRD techniques.  The surface coating 

thickness was estimated using SAXS.  



4.2. Experimental work 

SA (laboratory grade), hexane (laboratory grade) were purchased from commercial market. 

Precipitated CaCO3 (THIOX- CARB 300) having particle size of 6-10  was purchased from 

Specialty minerals Lifford, Birmingham.  Precipitated CaCO3 was ball milled in Retsch PM-

400MA planetary ball mill with ZrO2 (stabilized zirconia) balls in ZrO2 vessels by keeping the 

volume of milling content to one third of vessel volume (500 ml).  SA was mixed with 

precipitated CaCO3 in different mole ratio.  Hexane was used as the milling medium.  The 

milling was carried out in three steps, as per the sequence detailed below. 

• Step 1: Milling with 1 mm ball at 1200 rpm followed by sieving. 

• Step 2: further milling of the sample obtained after step1 with 0.5 mm ball at 1200 rpm 

and sieving. 

• Step 3: and third milling of the sample obtained after step 2 with 0.1 mm ball at 1200 rpm 

and sieving. 

The stepwise milling led to effective particle size reduction in small stages otherwise direct 

milling of initial CaCO3 with 0.1 mm balls would not be effective.  

Vibratory particle sieving was performed using a 3D sieve shaker (AS 200 of M/s Retsch) to 

separate the milling balls from the sample after milling.  During sieving, it was ensured that no 

solid particles remained by increasing the amplitude of vibration.  Different sizes of sieves were 

used to separate different ball sizes, as mentioned in Table 4.1 below. 

Table 4.1: Sieve sizes used while separating the balls from the sample. 

The mass of the sample remains nearly the same (negligible loss due to interstitial volume 

among the balls) after each sieving step because no particles were separated during sieving and 

the whole mass was kept for further milling.  Hence, the ball to sample ratio was considered the 

same in every milling step. 

S.No. Sieve Size (micron) Ball size (mm) 

1. 600 1 

2. 300 0.5 

3. 70 0.1 



The milling time for different ball sizes (1, 0.5 and 0.1mm ) were also varied (2, 4 and 6 hours). 

After the milling, procedure samples were washed in order to remove excess of SA with hexane 

through centrifuging and dispersing steps.  After washing, the wet sample was subject to particle 

size and TEM analysis, the sample was dried at 60oC for XRD and contact angle measurement. 

The samples are described in Table 4.2 with eight alpha-numeral characters, in which the first 

two letters refer to stearic acid (S) and CaCO3(C), followed by three digits that indicate, 

respectively, the molar ratio between S and C, balls to sample (S+C) weight ratio and time (in 

hours sample were sequentially milled with 1, 0.5 and 0.1mm balls); the last three letters are 

milling medium hexane (hex). 

Table 4.2: Description of samples 

Sample 

description 

S:C 

(molar ratio) 

Ball: Sample 

(weight ratio) 

Milling time/h 

(*3) 

Milling 

medium

SC112hex 1 1 2 Hexane 

SC114hex 1 1 4 Hexane 

SC116hex 1 1 6 Hexane 

SC216hex 2 1 6 Hexane 

SC226hex 2 2 6 Hexane 

SC246hex 2 4 6 Hexane 

The synthesized samples were characterized using various analytical techniques, such as XRD, 

TGA, raman, TEM and SAXS. 

4.3 Effect of milling parameters 

The experiments were carried out to investigate the effect of milling parameters such as milling 

time, sample to ball ratios, reactant molar ratios and milling medium, on the shape and size of the 

hydrophobic CaCO3 particles and the results are discussed in this section. 

The XRD patterns from the fresh and milled CaCO3 samples are given in Figure 4.1-4.3. 

The molar ratio of reactant (CaCO3: SA = 1) and ball to sample ratio (1:1) were fixed to optimize 

the milling time.  The samples were milled for different time intervals (2, 4 and 6 hrs) as detailed 



in the methods and the effect of milling time on the phase purity and crystallite size are 

summarized in Figure 4.2 and Table 4.3.  

Figure 4.1: XRD pattern for (a) unmilled sample, (b) SC112hex, (c) SC114hex, (d) SC116hex, (e) pure calcium 

stearate and (f) SA. 

Table 4.3: Crystallite size (Å) and particle size (nm) for sample ball milled for different time 

intervals. 

Sample XRD 

Xs Å{1 0 4} 

DLS particle size 

(nm) d90

SC112hex 414 434 

SC114hex 257 260 

SC116hex 191 224 

The major reflections observed are from calcium stearate (below 2  =15) and calcite (above 2  = 

20) that match well with the reflections of standard calcium stearate and fresh CaCO3. For 

comparison purposes, standard SA was given in Figure 4.1.  The intensity of calcium stearate 

reflection increases with milling time that implies the formation of calcium stearate during 

milling of CaCO3 with SA.  The major peak of calcite (2  = 29.35) broadens that indicates the 



primary crystallite size of fresh CaCO3 was significantly reduced with milling time. It is 

noteworthy that the major reflection of SA (2  = 6.95, indicated by arrow) was observed in 2 and 

4 h samples and that disappeared in the 6h sample. This indicates the presence of SA on the 

surface of calcite despite the samples being subjected to effective washing after milling. This 

may be attributed to the SA (molecular form or strongly adsorbed form) coating along with 

calcium stearate on the calcite surface during milling up to 4h.  Beyond 4h, this adsorbed SA was 

converted to calcium stearate.  Thus, the 6h milling time was found to provide complete coating 

and effective for particle size reduction and hence was chosen to optimize other milling 

parameters.  The particle size d90  (Table 4.3) observed from DLS has also indicated the effective 

size reduction after 6h milling and was recorded as mentioned in chapter 2 section 2.2.1. 

The effect of molar ratio of reactant (SA: CaCO3, from 2 to 1) on the particle size reduction was 

significant as it is evident from the d90 value; however, there are hardly any changes in the XRD 

reflections (Figure 4.2 a, b) and the crystallite size (Table 4.4). 

Figure 4.2: XRD patterns showing the effect of different doses of SA w.r.t CaCO3for SA modified CaCO3 (a) 

SC116hex and (b) SC216hex 



Table 4.4: Crystallite size (Å) and particle size (nm) for samples ball milled with different 

sample doses. 

Sample  XRD 

Xs Å{1 0 4} 

DLS particle 

size d90 (nm) 

SC116hex 191 224 

SC216hex 177 131 

This indicates that the crystallite size reduction depends more on the milling time than the molar 

ratio of the reactant.  On the other hand, the higher amount of SA might lead to complete or near 

complete coating of calcite that could hinder the agglomeration of calcite particles and hence 

smaller particle size was obtained with molar ratio (SA: CaCO3, from 2 to 1) in the DLS.  The 

effect of ball to sample ratio on the crystallite and particle size reduction were also studied; the 

higher the amount of balls (2:1 or 4:1), the greater the reduction in crystallite size, which 

indicates the greater impact of milling on the sample (Table 4.5). 

Figure 4.3: XRD patterns showing the effect of different ball ratio for SA modified CaCO3 (a) SC216hex, (b) 

SC226hex and (c) SC246hex. 



Table 4.5: Crystallite size (Å) and particle size (nm) for samples ball milled with different ball 

ratios. 

Sample XRD 

Xs Å{1 0 4} 

DLS particle 

size(nm)d90

SC216hex 177 131 

SC226hex 129 102 

SC246hex 114  78 

However, due to crystal breakdown, there are new surfaces exposed and thus the particles tend to 

agglomerate in order to dissipate the high surface energy.  The DLS d90 results for ball to sample 

ratio (Table 4.5) also indicate increased particle size.  

The following findings are observed from the above results that crystallite size depends largely 

on the impact of milling (duration and ball amount), whereas the particle size depends on the 

amount of SA used for milling.XRD patterns observed for all of the samples show the presence 

of calcium stearate and calcite (Figure 4.2 and 4.3), which reveals that the calcite phase remains 

intact during milling regardless of the parameters applied.  Particle size reduction is discussed in 

detail in section 4.4 under morphology of particles. 

Raman analysis was carried out, as described in chapter 2 section 2.2. to support the other 

analytical techniques.  Raman results confirm the formation of the calcium salt layer of SA. 

Figure4.4:  Raman spectra. (Note spectrum intensity of CaCO3was reduced to one eighth to match with the intensity 

of other spectra). 



Raman spectra of CaCO3, SA, calcium stearate and ball milled CaCO3 are given in Figure 4.4. 

Pure CaCO3 shows two weak and one strong stoke line at 285, 714 and 1088 cm-1.  The spectra 

of calcium stearate and SA are similar, except for the absence of 1422 and 911 cm-1 peak in 

former.  The spectrum of milled sample SC246hex shows predominantly the features of calcium 

stearate, in addition excitation lines of CaCO3 were observed (indicated by arrow).  The 

existence of such combined spectral features clearly indicates the calcium stearate coating over 

CaCO3.  

Thermo gravimetric studies were carried out for the starting material and milled sample, as 

described in chapter 2, section 2.2.4. 

Figure 4.5: TGA curves of (a) unmodified CaCO3, (b) SA and (c) SA modified CaCO3 (SC116hex) from room 

temperature to 900°C at heating rate of 10 deg/min in air medium. 

TGA of fresh CaCO3 (Figure 4.5a) was obtained in air medium with a total weight loss of 

50.54%.  The decomposition curve consists of two stages; the first before 600°C with a weight 

loss of 8.514% that corresponds to the decomposition of Ca(OH)2  impurity in this CaCO3 and 

the second after 700°C, indicating the complete decomposition of CaCO3 into CaO and CO2 with 

a loss of 42.03%.  Figure 4.5b shows TGA of SA in the presence of air medium, which is a 

single step weight loss (95.86 %) at 250°C that reaches to 99.56% at 400°C, indicating the 

complete decomposition of SA.  A small weight loss tailing before becoming a zero loss straight 



line is observed near 300oC.  The reason could be the burning of residual carbon, which might 

form from the decomposition of SA under air atmosphere.  Overall, this small weight loss is 

negligible compared with the main weight loss.  On the other hand, the decomposition pattern of 

milled CaCO3 shown in Figure 4. 5c (SC116hex) comprises of a three step weight loss.  The first 

step was only 10.37%, which is attributed to the loss by decomposition of adsorbed SA that was 

not removed by washing procedure from the milled sample and was completed before 350°C.  

The second step weight loss starts just after first step and ends before 600°C and is showing 

about 62.90% weight loss, which is attributed to the thermal decomposition of calcium stearate 

or chemically embedded SA might also be termed as an organic-inorganic hybrid shell.  The 

final or third step weight loss is due to the decomposition of CaCO3 into CaO and CO2.  The 

decomposition onset and end temperature of this third step weight loss matches well with that of 

fresh CaCO3(Figure 4.5a).  These above three stage TGA weight losses show that the milled 

CaCO3 consists of three components; calcite core, chemically embedded SA (shell) onto the core 

and physically adsorbed SA onto the shell.  It is worth mentioning that physically adsorbed SA 

decomposes at a higher temperature (almost 100oC) compared to that of pure SA (Figure 4.5b). 

This shows that physically adsorbed SA is well oriented (tail to tail) over the calcium stearate 

shell, which could influence the decomposition temperature of SA.  A similar trend was observed 

for all samples (data not given) that show the formation of a calcium stearate shell on the calcite 

surface during milling conditions. 

4.4. Morphology of particles 

The morphology and particle size of fresh and ball milled CaCO3  were characterized using TEM 

studies as mentioned in chapter 2 section 2.2.3. Figure 4.6 shows that fresh CaCO3 was though 

agglomerated, purely cubic in nature with an average particle size of approximately 200 nm.  

Ball milling for fresh CaCO3 with SA leads to particle size reduction through gradual destruction 

of the cubic morphology depending upon the milling conditions and parameters.  The addition of 

SA as a capping agent was observed to hinder the agglomeration of CaCO3 particles.  The 

formation of calcium stearate as a shell over the surface of CaCO3 enables the deagglomeration 

of the particles [34].  



Figure 4.6: TEM image of uncoated CaCO3 particles. 

The milling time dependency of morphology and particle size of calcite samples after 2, 4 and 6h 

milling duration is given in Figure 4.7(a, b and c).  The cubic morphology was intact during the 

first 2h milling time as is evident from Figure 4.7a compared with the fresh calcite in Figure 4.6.  

However, 4 and 6h milling duration was found to severely affect the morphology and size 

reduction.  The indefinite shape of particles indicates the severity of the milling condition and the 

particle size reduces substantially with milling time and the particles appeared as agglomerates in 

Figure 4.7(b and c).  The particle size observed from DLS measurement also implies the size 

reduction with milling duration, as shown in Table 4.1.  Thus, 6h milling duration was kept fixed 

to evaluate the influence of other parameters on the morphology and size reduction.  A similar 

effect on the particle size was observed with the ball to sample ratio (1, 2 and 4), as shown in 

Figure 4.7(d-f); the greater impact of larger quantity of balls on the sample was evident from the 

observed size reduction in the representative images.  

The reactant molar ratio (SA: CaCO3, 2 and 1) dependency of particle size (Figure 4.7 (c and d)) 

was hardly visualized in the TEM unlike DLS studies revealed, which is due to the 

agglomeration of particles after solvent evaporation during sampling.  



Figure 4.7: TEM images of SA coated CaCO3 particles (a) SC112hex, (b) SC114hex, (c) SC116hex, (d) SC216hex,  

(e) SC226hex and (f) SC246hex. 

(a) (b) 

(c) (d)

(e) (f) 



4.5. Analysis of modified surface 

The hydrophobic characteristics of the modified CaCO3 surface are measured by the contact 

angle measurement, as described in chapter 2, section 2.2.6., shown in Figure 4.8, (for 

comparison fresh CaCO3 was also given).  A water droplet on fresh CaCO3 (Figure 4.8a) resulted 

in no stable drop shape and water was imbibed in the pellet slowly.  The contact angle of water 

on pure CaCO3 was found to be small (nearly 59°) and this is due to the hydrophilic nature of 

fresh CaCO3.  The contact angle of ball milled CaCO3 (SC116hex) shows, 99.3° (Figure 4.8b), 

which indicates a small, hydrophobic character imparted on the calcite surface due to stearate 

shell coating.  

Figure 4.8: Contact angle measurement of CaCO3 in (a) absence of organic additive and (b) presence of SA. 

SAXS analysis was performed in order to determine the type/ characteristics of coating and the 

value of coating thickness. 

Figure 4.9 shows the SAXS pattern from (SC226hex and SC246hex).  The scattering curves of 

both samples are nearly identical.  At q = 16.3 nm-1 the most intense reflection of the calcite 

structure of CaCO3 was observed.  At q = 18.5 nm-1 the most intense reflection of the aragonite 

structure of CaCO3 has also been observed.  The most intense reflections were found at large 

scattering angles of both the calcite and aragonite phase of CaCO3.  It may be inferred that 

during high intensity milling a minute fraction of calcite might have been converted into 

aragonite; which was stable under surface capping and not detected from the XRD results.   

Additionally, at q values of 12.8, 14.4, and 15.3 nm-1, signals were observed which correspond to 

(a) (b) 



distances in real space of 0.49, 0.44, and 0.41 nm, and this was attributed to calcium stearate 

shell structure.  Two weak reflections at q = 8.0 nm-1 (very weak) and q = 9.3 nm-1 can also be 

seen. 

Figure 4.9: Small angle X-ray scattering (Imaging Plate); red curve SC226hex and blue curve SC246hex. 

The scattering signal of these samples is dominated by a multi-lamellar structure, which is most 

likely due to the strongly adsorbed SA and stearate coating.  This multi-layer structure was due 

to the use of excess acid, which reacted to the freshly generated CaCO3 crystallites and led to 

further adsorption of SA.   It might be inferred by SAXS study that the shell structure of organic-

inorganic coating of CaCO3 nanoparticles was done effectively and parameters were optimized. 

The layer thickness determined from the position of first reflection q1 (d = 2 /q1) is 4.7 nm 

(including multi-layer) for both these samples.  This shows that the surface coating of CaCO3

could be complete or has reached saturation under these conditions. 

4.6. Conclusions 

This chapter reports the synthesis of hydrophobic CaCO3 via ball milling, using SA as a surface 

modifier.  Several parameters like milling time, sample to ball ratio, molar ratio of reactant and 

milling medium were varied.  Results from this work show that SA coating successfully reduced 

agglomeration of CaCO3 after milling.  It has also been demonstrated that an organic substrate 



(SA) alters the surface properties of CaCO3 by making it hydrophobic.  It was found that 

different milling parameters have different influence on the particle size of CaCO3.  On 

increasing the milling time, ball to sample ratio and molar ratio of SA to CaCO3 the particle size 

considerably reduced, as evident from DLS and TEM results.  Longer milling time and higher 

ball ratio have a direct impact on the size reduction; whereas a higher amount of SA hinders the 

agglomeration of CaCO3 particles by surface coating.  Hydrophobic character was imparted on 

milled CaCO3 sample, which was also confirmed by contact angle measurement. Thus, the 

surface modified hydrophobic CaCO3 nanoparticles are potential candidates for overbasing 

applications in lubricant technologies. 

  



                                                                                                              Chapter 5

Tribological behavior of surface modified exfoliated MoS2 nanosheets 

5.1.  Introduction

Tribological applications of MoS2 have been limited because of the dispersiblity issues in 

hydrocarbon/oil media.  Furthermore, it is easily oxidized in air to molybdic oxide which has a 

negative influence on the AW and friction reducing properties of the lubricating oil.  Hence, oil 

soluble MoDTC/ MoDDP has been used which in situ get converted to MoS2 between the 

surfaces of mating metal parts under tribochemical condition [137].  This solubility issue in 

hydrocarbon oil medium could be resolved by improving MoS2 dispersiblity in the oil matrix by 

reducing its size or by exfoliating and stabilizing its layers. 

The major challenge was to disperse inorganic nanomaterials within a non-polar hydrocarbon 

medium while maintaining the fineness of these particles in the dispersed state in the 

formulation.  The requirement could be met by using MoS2 particles in nanometer dimension. 

The exceptional tribological properties were shown only by IF-like MoS2 such as, nanospheres 

and hollow cage. Mass production and cost effective process need to be developed.  

Nevertheless, in order to evaluate tribological properties of the nanosized particles; the particles 

must be stable in hydrocarbon media, which could be achieved by modifying the nanoparticles 

surface using dispersant/capping agents/surfactant to make the surface hydrophobic and 

compatible with oil/ hydrocarbon non-polar phase.  

The use of lecithin for exfoliating, as well for stabilizing the exfoliated graphene sheets during 

ultrasonication by reverse micelles formation in solution and over the graphene surface to 

prevent self-aggregation of exfoliated sheets was recently reported by Martin Pykal et. al. [138]. 

They found the poor results of exfoliation when chloroform was used for exfoliating the 

graphene sheets without lecithin.  

This chapter describes a unique design of MoS2 nanosheets tribology in oil giving a stable 

additive, consisting of layered inorganic nanoparticles (MoS2) with organic agents 

(phospholipids (lecithin) in the presence of ZDDP (Zinc Dialkyl Dithiophosphate)/ ashless 

phosphorus free AW additive). 

The stable oil-dispersible MoS2 requires a nanosized structure, an oil compatible hydrophobic 

surface and stability in oil.  To meet these requirements, micronsized MoS2 powders were ball 



milled in the presence of Zn and P based AW additive (ZDDP), ashless phosphorus free AW 

additive as well as lecithin, which acts as an exfoliating agent. The impact of ball milling 

generates few layered sheets with high surface energy and severely strained structure, chemically 

linked and coated with AW additive and lecithin to minimize the surface energy of the newly 

generated nanosheets to achieve a stable dispersion.  This chemically coated MoS2 exfoliated 

nanosheets dispersed in oil and under lubrication conditions they would navigate through the 

asperities of the rubbing surface and form a durable tribo film to reduce friction and wear. 

5.2. Experimental work 

MoS2 (98.2% pure) was purchased from Electro Ferro Alloys Pvt. Ltd., lecithin (P content 

2.1%), ZDDP and ashless phosphorus free AW lubricant additives [Methylene 

bis(dibutyldithiocarbamate)] (MBDDC) were arranged by IOCL, paraffinic oil having profile of 

viscosity (40 cP at 25°C, 12cP at 40°C and 3-4cp at 100°C) were used in all experiments. 

Micron sized MoS2 andrespective dispersants in various weight ratios were milled in a Retsch 

PM-400MA planetary ball mill with ZrO2 balls in ZrO2 vessels.  Paraffinic oil was used as the 

milling mediums in all the experiments.  The whole milling process includes the following three 

milling steps using different sizes of balls: 

1. Milling with 1 mm balls at 1200 rpm followed by sieving to separate the balls from 

materials. 

2. Further milling (sample obtained after step 1) with 0.5 mm balls at 1200 rpm and 

sieving. 

3. Third milling (sample obtained after step 2) with 0.1 mm balls at 1200 rpm and 

sieving. 

Vibratory sieving was performed in a 3D sieve shaker (AS 200 of M/s Retsch) to separate the 

balls from the sample only after milling.  During sieving, it was ensured that no solid particles 

were left by increasing the amplitude of vibration.  Different sizes of sieves were used to 

separate different ball sizes (mentioned in Table 5.1 below). 



Table 5.1: Sieve sizes used while separating the balls from sample. 

The duration for each milling step was fixedat3 hours. The details of the milling process 

parameters are in Table 5.2. 

Table 5.2: Milling parameters. 

Weight ratio of MoS2 and selected (exfoliating/ surface stabilizing 
agent)/ additive. 

1:2 

Lecithin : ZDDP/ MBDDC 1:2, 2:1  

Total volume of milling vessel 500 ml 

Volume of ZrO
2
 balls (1mm/0.5 mm/0.1mm ).  125 ml 

Rotating speed 1200 rpm 

Milling time 3 hr 

The samples prepared are represented in Table 5.3 by alphanumeric characters in which the first 

two digits represents the weight ratio of selected exfoliating/ surface stabilizing agent [Lecithin 

(L)] and AW additive [ZDDP (Z) or MBDDC (V)] followed by solid MoS2 (M).  For instance, 

12LZM is MoS2 milled in the presence of 1:2 mixtures of lecithin and ZDDP.  The ratios 

mentioned are as used while preparing MoS2 dispersion in oil. 

Table 5.3: Samples description 

S.No Sieve hole size (μ) Ball size (mm) 
1. 600 1.00±0.12 
2. 300 0.50±0.08 
3. 70 0.10±0.01 

Sample 
description 

Dispersant Ball 
fineness 
up to 

% 
MoS2

%Lecithin % Z (V) 

12LZM L+Z 0.1mm 27.5 18 36(0) 
21LZM L+Z 0.1mm 22 30 15(0) 
12LVM L+V 0.1mm 25 17 0(32) 
21LVM L+ V 0.1mm 24 33 0(17) 



5.3. Grease preparation  

Base oil and fatty acid (weight ratio 1:1.5), and lithium hydroxide [LiOH (0.1 wt %)] were 

charged in a reactor and allowed to react at 200oC for 10-15 minutes before bringing down to 

90oC as detailed reports about the method can be found in [139].  Prepared MoS2 nanoparticles 

were added to the grease product at 90oC with constant and thorough mixing for 20 minutes and 

homogenized.  The amount of nanodispersion in grease composition was taken in such a way to 

give 2.5 wt% of MoS2 in the final grease product.  

Several sets of samples were prepared by blending nano MoS2 dispersion (concentration of nano 

MoS2 was about 2.5%) with freshly synthesized lithium grease (Li grease).  Another set of 

samples include the base grease, base grease with ZDDP or ashless phosphorus free AW additive 

or with micron sized MoS2.  The composition of each prepared sample is discussed in Table 

5.4below. 

Table 5.4: Effective concentration of MoS2 and dispersants present in grease sample. 

5.4. Characterization and tribological testing of prepared samples

TEM images in Figure 5.1(a-d) show the presence of separated exfoliated sheets of MoS2 after 

milling different combination of exfoliating agent / stabilizing agent (lecithin) with AW 

additives.  The diffraction pattern taken from 12LZM sample in Figure 5.1e confirms the 

hexagonal structure of MoS2 and the similar pattern was observed for all samples.

S.No. Sample MoS2

(%) 

Z or V 

(%) 

L 

(%) 

1. Li grease  0 0 0 

2. Li grease +μMoS2 2.5 0 0 

2. Li grease +12LZM 2.5 3.3 1.7 

3. Li grease +21LZM 2.5 1.7 3.3 

4. Li grease +12LVM 2.5 3.3 1.7 

5. Li grease + 21LVM 2.5 1.7 3.2 

6. Li grease + Z 0 3.3 0 

7. Li grease + V 0 3.3 0 



1(a) 1(b) 

1(c) 1(d) 

1(e) 
Figure 5.1: TEM images of MoS2 dispersions containing exfoliated sheets prepared through milling (a) 

12LZM, (b) 21LZM, (c) 12LVM, (d) 21LVM and (e) SAED pattern matching with the hexagonal structure of 

MoS2. 

XRD pattern was recorded for 12LZM, 21LZM, 12LVM, 21LVM samples after ball milling 

against pure 2H-MoS2 and molybdenum oxide, in order to check the oxidation of MoS2 during 

the milling process in the hydrocarbon medium.  No reflections related to molybdenum oxide 



were observed in milled samples (Figure 5.2).  It is evident from this result that none of the ball 

milled sample was oxidized. 

Figure 5.2: XRD plots of (a) 2H-MoS2, (b) Molybdneum oxide, (c) 12LZM, (d) 21LZM, (e) 12LVM and (f) 

21LVM. 

Figure 5.3: Raman spectra of (a) standard MoS2, prepared dispersions (b) 12LZM, (c) 21LZM (d) 12LVM and 

(e) 21LVM. 



In addition, Raman analysis of the synthesized dispersion supports the exfoliation of MoS2 into 

sheets is shown in Figure 5.3.  It was found that the intensity of E1
2g peak increases, while that of 

A1g peak decreases, which implies the decrease in the number of sheets [140].  Also, a blue shift 

was observed for the E1
2g peak from 369 to 379 cm-1 and A1g peak from 397 to 404 cm-1 of the 

respective samples. The presence of lecithin enhances the exfoliation process as already 

described in the literature [138]. 

Table 5.5: Particle size for various ball milled samples.  

  

Table 5.5 shows the sheet size distribution of MoS2 nanosheets present in the prepared 

dispersions. The initial particle size of MoS2 (10 ) was reduced to the sub-micron range after 

three stages of milling treatment. 

The backscattered laser scattering analysis assumes all particles are spherical and it displays the 

average radius or length of the particles.   

Figure 5.4: Volumetric distribution for various dispersions. 

S.No Sample Average 
major axis (nm) 

Average 
minor axis(nm) 

1. 12LZM 715 90 
2. 21LZM 819 108 
3. 12LVM 733 92 
4. 21LVM 4784 393 



From TEM measurements, it was found that obtained dispersions consist of nanosheets of 

different length and width.  The volumetric distributions are of bimodal distribution with one 

major axis (the higher one) being the length of the nanosheets, and the smaller one (the minor 

axis) is the width of the nanosheets as shown in Figure 5.4. 

The obtained average nanosheet length of MoS2 was found to be around 700-820 nm, showing a 

narrow size distribution for all LZM samples.  However, for LVM samples the size distribution 

was much wider (700-480 nm).  This marginal variation in the particle size in the minor axis 

could be attributed to the viscosity of the medium used during milling.  However, the larger sheet 

length may be due to the difference in dispersion composition, which will be resolved in future 

work. 

Lecithin is the most viscous followed by ZDDP and then MBDDC.  The overall effect of 

viscosity of medium along with the surface tension of the medium affects the exfoliating 

capability [138].  The average length of the exfoliated sheets measured through TEM [141] is 

following the same trend as the d50 obtained from DLS.  

5.4.1. EP Characteristics 

Figure 5.5:EP data for the various samples blended with Lithium grease. 

Figure 5.5 shows the EP data for various samples synthesized after homogenizing the fixed ratio 

of nano MoS2dispersion into freshly synthesized Li-grease.  



The base Li-grease has about 160 kg weld load, whereas substantial improvement can be seen 

with the addition of nano MoS2 dispersion along with Z or V.  The maximum load bearing of 315 

kg was obtained from the sample (12LZM) that has MoS2 and 1:2 mixtures of lecithin and 

ZDDP.  For the similarly processed sample (21LZM) with higher lecithin content (2:1, lecithin: 

ZDDP), a marginally lesser weld-load of 280 kg was observed.  In contrast, when MBDDC was 

used, the sample 21LVM exhibited better load bearing capability than 12LVM. Therefore, the 

observed load bearing capacity in the samples 12LVM and 21LVM was influenced by the 

amount of lecithin; whereas the amount of ZDDP had the same effect on the samples 12LZM 

and 21LZM.  The marginal difference in the weld load value may be linked with the varied 

number of exfoliated layers in MoS2.  In the case of base grease mixed with only MBDDC and 

ZDDP, ZDDP gave a better weld load.  

5.4.2. Wear and Friction Tests 

Figure 5.6: Wear data for the various samples blended with Lithium grease. 

Figure 5.6 shows the WSDs measurement data for Li-grease containing different MoS2 additives. 

The base Li-grease and Li-grease with μ-MoS2 samples with no additives produce the largest 

WSD at 1mm.  However, the grease sample blended with only ZDDP or MBDDC develop less 

wear scar in some cases comparable to nano additive greases (0.55mm).  The samples blended 



with exfoliated nano-MoS2 sheets dispersion showed comparatively much smaller WSDs. It 

should be noted that the samples (Li-grease blended with 21LZM and  Li-grease blended with 

21LVM) gave marginal wear reduction i.e. between 0.6-0.65 mm, while significant wear 

reduction was observed for the samples  (Li-grease blended with 12LZM, Li-grease blended with 

12LVM, and Li-grease blended with Z) giving a similar outcome for WSDs as 0.55mm. ZDDP 

alone (Li-grease blended with Z) or in combination (12LZM) exhibit good AW property 

showing the efficacy of P based AW additive. 

In comparison of a pair of samples (12LZM and 12LVM) and (21LZM and 21LVM) the samples 

with ZDDP produce less wear scar.  It signifies the effect of ZDDP in comparison to MBDDC. 

However, excess P is not desirable as evident from the higher WSD value in the sample 21LZM. 

On the other hand, the addition of lecithin to MBDDC blends improved AW property due to the 

P content (12LVM). 

Figure 5.7: Wear and weld load trend of the grease samples that with varying concentration of ZDDP. 

The wear and weld load trends of the grease samples show that wear value decreases while weld 

load value increases with increasing concentration of ZDDP in the presence of lecithin moiety. 

However, at same concentration of ZDDP (3.3%) in Li-grease composition without lecithin the 

observed wear value was nearly the same, whereas the weld load value was found to be much 

smaller.  The phosphorous concentration in the latter case was low and it is desirable for good 



AW behavior, whereas EP property was affected and hence low weld load was observed.  It 

indicates that, at high ZDDP concentration, lecithin molecules behave synergistically along with 

MoS2 nanosheets, as depicted in Figure 5.7. 

Figure 5.8: Wear and weld load trend of the grease samples that with varying concentration of MBDDC. 

On the other hand, with increasing MBDDC concentration in the Li-grease samples wear value 

decreases and weld load value remains nearly constant in the presence of lecithin moiety. 

However, the grease with same MBDDC concentration (3.3%) in the absence of lecithin yielded 

wear and weld load value nearly the same.  It indicates that at high concentration of MBDDC, 

lecithin molecules do not have much contribution and MoS2 nanosheets nor does it behave 

synergistically nor antagonistically with other moieties (Figure 5.8); possibly due to the affinity 

of both for the same surface. 

All the above permutation of MoS2 nanosheets with different AW additive at various 

concentrations concludes that addition of MoS2 nanosheets helps in improving the load-bearing 

tendency of the Li base grease; whereas addition of MBDDC merely improves the EP property 

compared to other samples as indicated by the weld load result of 12LVM. 

Further, it emerged that Li-grease blended with MoS2 nanosheets (12LZM) is the most desirable 

formulation to be further explored. 



The friction test was performed for the sample (Li-grease blended with 12LZM) at different 

loads for a fixed period of interval (60 minutes) at 50oC under varying loads (Figure 5.9).  A 

reduction in CoF from 0.13 to about 0.1 after 60 minutes was observed at 300N load.  MoS2 is a 

well-known friction modifier, thus addition of MoS2 nanosheets in dispersion leads to the 

decrease in friction with increased load bearing tendency [66].   

Figure 5.9: Coefficient of friction for Sample (Li grease + 12LZM) at different loads at constant temperature. 

The slight reduction in CoF with increasing load is due to the efficacy of MoS2 nanosheets to 

reach and work in the asperity zone for wear reduction and reduction in CoF at high loads. 

The higher applied load facilitates MoS2 nanosheets to flow more easily through the asperities 

existing on the rubbing surfaces.  The contact between the asperities is prevented, possibly by the 

formation of a thin, runny film containing MoS2 nanosheets that keeps the rubbing surfaces 

completely apart and thus reduces the friction between them [66]. 

MoS2 nanosheets, along with phosphate in the asperity zone, may create a glossy phosphate and 

synergistically MoS2 nanosheets comes to the asperity in the disc takes care of the EP property in 

the steel on steel lubrication. 

5.4.3. SEM and EDS analysis of the Worn Surfaces 

The samples were selected on the basis of their EP and WSD performances for SEM analysis. 
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The qualitative elemental composition of the wear tracks obtained from EDS is given in Table 

5.6.  The wear track of balls tested with additive added grease contains P, S, Zn and Mo, in 

addition to Fe, unlike the ball tested with neat base grease.  It is a well known aspect of ZDDP 

and MoS2 combination that tend to form a durable phosphate based tribofilm layers contain 

incorporated MoS2 fragments over the surface of the balls during rotation [142, 65, and 143].  

There is a varying degree of roughness found on the track of Figure 5.10 (b1 and c1) compared 

to Figure 5.10 (a1).   This indicates a minimum initial wear proceeds on the surface of the balls 

until elemental (S, P, Zn & Mo) incorporation in the form of sulphide/ phosphate occurs, which 

resists further surface wear.  The amount of Zn (0.8%) present on the surface remains the same 

irrespective of the amount of ZDDP used whereas there was an increase of P (1.1%) content, 

which is higher than Li-grease blended with 12LZM (Li-grease+12LZM) (Mo- 2.3% and P- 

0.6%).  The observed higher P was due to the higher amount of lecithin in Li-grease+21LZM and 

Mo was also present more in this case on the wear track.  This is due to the synergism between 

MoS2 nanosheets, ZDDP and lecithin in tribofilm. It is also known that molybdenum in 

phosphate-based tribofilm exists in the form of MoS2, not as oxygenated molybdenum 

compounds [68]. 

It is also evident from the percent oxygen composition detected on the surface of steel balls 

(Table 5.6) decreases due to tribofilm formation.  To check the ambiguity in semi-quantitative 

analysis, standard samples were run in EDS and all the analysis was performed in a single 

stretch. 

Table 5.6: EDS analysis for different sample after four-ball test. 

S.No Sample Elements (%) from semi 

quantitative analysis 

O P S Zn Mo

1. Balls(Li grease) 2.3 0 …. …. …. 

2. Balls (Li grease+12LZM) 1.7 0.6 0.3 0.8 2.3 

3. Balls (Li grease+21LZM) 1.9 1.1 0.2 0.8 2.3 



There is only a marginal difference observed in WSD with Li-grease blended with 21LZM (Li 

grease+21LZM) (0.60) and Li-grease blended with 12LZM (Li-grease+12LZM) (0.55) despite 

the presence of qualitative varying amounts of Mo and P on the track. This indicates that AW 

contribution from Mo and P is negligible, indeed Zn alone resists wear as is evident from the 

observed minimum WSD (0.55) with Li-grease blended with Z (L+Z). Nevertheless, load-

bearing ability requires the combination of Mo and P with Zn on the surface. The weld load 

study confirms the best weld load result (315 kg) observed with Li-grease blended with 12LZM 

(Li-grease+12LZM). This could be attributed as a synergy between Mo, lecithin and ZDDP 

where P contributions from both the molecules are in the ratio of (0.2:2).  

5.4.4. Raman analysis of the Worn Surfaces 

Figure 5.11 shows dispersive Raman spectra from the selected area on the wear track of balls 

from base grease, 12LZM and 21LZM (Figure 5.11 (a, d, e)).  There are two strong stroke shifts 

observed at 383.5 and 407.8cm-1corresponds to 2H-MoS2 E1
2g and A1g modes [144, 145].   

Figure5.11: Raman spectra of standard molybdenum compounds and worn surfaces in balls after four balls test. 

The less intense peak observed around 285.7 cm-1was also a characteristic line from MoS2 

(Figure 11(c)) [146].  This confirms that reduction in wear scar was due to the tribofilm 

formation with MoS2 nanosheets and confirms the presence of MoS2 in between the rubbing 



surfaces.  However, the presence of P in the wear surface has not been visualized through Raman 

spectroscopy although same has been qualitatively visualized by EDS in a considerable amount. 

Raman excitation from pure molybdenum oxide (Figure 5.11 (b)) is also given for reference and 

shows peaks at 281, 287, 334.9, 376.9, 663.9, and 817.9 cm-1.  On comparing the spectral 

features of molybdic oxide with the worn surfaces data, no raman excitation was found to be 

related to molybdenum oxide and thus demonstrates that surface passivated MoS2 nanosheets are 

not oxygenated under tribochemical conditions.  

5.5 Conclusions 

MoS2 nanosheets synthesized by ball milling technique with oil, dispersant and AW additives 

helps to improve the AW, anti-friction and EP properties of Li-grease. SEM analysis of the wear 

track demonstrates that the wear scar surface is much smoother and smaller in diameter than that 

of base grease.  The formation of tribo film is supported by the elemental composition analysis 

on the surface.  Raman spectra also confirm the presence of MoS2 over the surface of steel ball 

after the four-ball test.  Exfoliated MoS2 nanosheets functionalized by ZDDP and lecithin 

demonstrate substantial improvement in tribological properties of the base grease.  

This study shows that inorganic layered nanosheets of MoS2exfoliated, and chemo-mechanically 

stabilized, with P containing organic surface stabilizing/exfoliating agent (lecithin) and AW 

additive (ZDDP), give significant improvement in lubricant performance and tribological 

properties. 



                                                                                                                   Chapter 6

High-efficient production of boron nitride nanosheets via an optimized ball 

milling process and their tribological studies 

6.1. Introduction 

BNNSs have many unique characteristics such as a wide band gap, environmentally benign, inert 

to most chemicals and the ability to lubricate in extreme temperatures. They possess superior 

thermal stability and adherence properties that present an opportunity to formulate new solid 

lubricants with BN, for applications where conventional materials perish and fail to deliver the 

desired performance.  It is also considered as a green lubricant additive after being evaluated for 

its tribological properties in water dispersion [147]. 

BNNSs can be produced in a bottom-up or top-down manner.  The bottom-up method includes 

chemical vapour deposition[148-150],chemical reaction[151] and segregation method[152]; and 

the top up is mainly exfoliation of bulk h-BN crystals via mechanical [91, 102,153] or chemical 

methods [154].  It has been demonstrated that tailored wet ball milling is an efficient and high 

yield method to produce atomically thin BNNSs of high crystallinity [102].  Among water, 

ethanol, dodecane and benzyl benzoate milling agents, benzyl benzoate gives rise to the best 

peeling results, due to its relatively high density and similar surface energy to h-BN.  The peeling 

efficiency or nanosheet yield by ball milling can also closely relate to many other milling 

parameters, such as ball size, milling speed and ball-to-powder ratio, which have not been 

investigated.  Here, we carefully studied various milling parameters for optimized production of 

large quantities of BNNSs in benzyl benzoate by ball milling. We also study the effect of h-

BNNSs on lubricating properties of base oil. 

6.2 Experimental work 

A standard amount (0.5 g) of h-BN powder (PT110, Momentive) an10 ml benzyl benzoate 

(purity  99% Sigma-Aldrich) were milled in a horizontal planetary ball mill (Pulverisette 7, 

Fritsch) using steel vials.  The vials were sealed and filled with argon (Ar) gas, at a pressure of 

200 kPa above atmospheric pressure, to avoid environmental contamination.  The milling speed 

was varied (600 and 800 rpm) with different powder to ball ratios (1:10, 1:20 and 1:50) for up to 



10 h.  At different time intervals (0.5, 1, 2, 5 and 10 h), a small amount of sample was removed 

from the vials for analysis. 

6.2.1. Yield estimation of h-BNNSs 

To estimate the production yield of nanosheets, ball milled samples (2-3 mL) were mixed with 

benzyl benzoate (5-10 mL) followed by bath sonication for 15 minutes and centrifugation at 800 

rcf for 60 minutes.  The supernatant containing nanosheets was separated from the settled large 

particles.  Supernatant and settled particles were filtered over a membrane (0.45 μm pore sized) 

with the help of a vacuum pump.  Membrane containing nanosheets and large particles were 

dried and weighed to calculate the percentage yield: 

Total weight = weight of nanosheets + weight of weight of large particles. 

6.3. Effect of milling on h-BNNSs production 

6.3.1. Milling time effect 

The starting h-BN particles have a characteristic disc-like shape with diameters of 10-20 μm and 

a thickness less than 100 nm, as shown in the SEM image in Figure 6.1a.  The study of milling 

time effects on BN peeling was based on 1mm steel balls with a ball-to-powder weight ratio of 

10:1 at a milling speed of 800rpm in benzyl benzoate.  According to SEM studies, most of the h-

BN particles become delaminated after 2 h milling.  Figure 6.1(b and c) show partially exfoliated 

h-BN particles caused by the impact from the milling balls, which predominately produce shear 

force during milling.  Under the shearing force, the weak interplane bonds break and thinner BN 

sheets can be produced.  However, the yield of few-layer BN is still low at this (2 h) stage.  With 

the extension of milling time to 5 h, the exfoliation is more complete, as shown in Figure 6.1d 

that there are more BNNSs than BN particles.  After 10 h milling, the yield of BNNSs further 

increases, but the size of the BNNSs is slightly reduced compared with that of the 5h milled 

BNNSs.  This indicates that certain milling time is required to allow the complete exfoliation of 

BN, but extended milling should be avoided to reduce damage on BNNSs.  In this particular 

case, 10 h milling is the optimum milling time.  
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a BNNS suspended over a wholly carbon supporting film on a TEM grid.  Folds and partial 

exfoliation are observed, which is similar to many other investigated BNNSs. The electron 

diffraction pattern in Figure 6.5b shows one set of bright dots and several sets of weaker dots 

both of a six-fold symmetry.  This suggests that the BNNS is still crystalline and the in-plane 

structure is not damaged, consistent with the XRD results.  

Figure 6.5: (a) TEM Images of the BN sheets obtained, (b) the corresponding SAED pattern, (c) and (d) high-

magnification TEM images, (e) and (f) TEM images of a monolayer and a bilayer BNNS and (g) EELS spectra of 

the BNNS.

The presence of the sets of weaker diffraction dots suggests the stacking of the BNNS is twisted, 

or there are folds or incomplete exfoliation.  A high-resolution TEM (HRTEM) image in Figure 

6.5c shows the edge of part of the BNNS, indicating a thickness of 2 nm (~6 layers).  The highly 

crystalline nature of the BNNS is confirmed by the HRTEM image in Figure 6.5d, showing a 

pattern of lattice dots with a distance of 0.25 nm, representing the distance between two adjacent 



BN hexagonal rings.  Therefore, the distance between B and N atoms is calculated to be 0.144 

nm, typical for h-BN crystals.  We also find a monolayer and bilayer BN, as shown in Figure 6.5 

(e and f).  The EELS spectrum in Figure 6.5g shows predominately B and N, along with a small 

amount of carbon.  The carbon could come from the residue of benzyl benzoate, which is not 

fully evaporated during the TEM sample preparation.

6.4. Tribology studies 

Figure 6.6: Coefficient of friction for Sample (base oil, base oil-BN nanosheets) at fixed load and constant 

temperature. 

Figure 6.6 shows the plot of friction of coefficient versus time of neat base oil and base oil 

containing h-BNNSs under mentioned conditions.  Oil containing h-BNNSs has shown lower 

friction compared to the neat oil and such a drop in friction could be due to the alignment of 

nanosheets on the metal surface parallel to the direction of motion [105]. 

Figure 6.7 shows SEM images of worn surfaces of the stationary balls tested for neat base oil and 

base oil containing nanosheets. The base oil gives the largest scar, of around 1mm, while h-

BNNSs blended base oil shows remarkable reduction in WSD (0.5mm). 
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                                                                                                                    Chapter 7

Conclusions and future work 

Conclusions  

This thesis has explored the synthesis of inorganic nanoparticles and their application in 

lubricant technologies.  The obtained results indicate that inorganic nanoparticles play a vital and 

significant role as additives in lubricants and greases.  Owing to their hydrophilic nature, the 

surface of inorganic nanoparticles, i.e. CaCO3, MoS2, need to be modified in order to be 

stabilized in oil medium. Therefore, the major work of this thesis was to carry out surface 

modification of inorganic nanoparticles within oil medium (in situ) using capping agents/ 

dispersants through a ball milling process to give nano or near nanometer-sized dispersions.  The 

prepared dispersion was subjected to tribological evaluation to assess its efficacy as a lubricant 

additive. 

Particle size reduction and in situ surface modification through (milling route) mechano-

chemical bonding of precipitated CaCO3 nanoparticles with capping agent/ dispersant, and their 

application in lubricant over basing, have not been reported in the literature. Being a new 

concept, different dispersants were examined for their binding abilities on the surface of CaCO3. 

The surface modification of CaCO3 nanoparticles using long alkyl chain capping agents renders 

the surface hydrophobic.  The surface coated nanoparticles were characterized using various 

physiochemical methods and the surface coating thickness was determined by geometric 

calculations utilizing the results of TEM and TGA analysis.  The milling parameters were 

optimized for the production of SA modified CaCO3.  Particle size reduction by milling and 

surface hydrophobicity provided by dispersants, especially SA, enhances the dispersion stability 

of nanoparticles within the oil medium.  The developed CaCO3 dispersion has potential as a TBN 

booster in a variety of lubricant formulations. 

Likewise, the direct application of MoS2 in lubricant formulation is limited, due to the 

dispersiblity issues in hydrocarbon/oil media.  MoS2 nanosheets were produced using a unique 

combination of organic agent (phospholipids (lecithin)) and AW additives through ball milling 



treatment.  These agents and additives were found to exfoliate bulk MoS2 to the nanosheets of 

few layers in addition to prohibit the oxidation of MoS2 during milling.  The obtained MoS2

dispersion was found to be oil dispersible due to nanosized structure and hydrophobic character. 

The nanosheets generated through ball milling process have a strained structure and high surface 

energy, thus chemically linked and coated with AW additive and lecithin to minimize the surface 

energy.  The chemically coated MoS2 nanosheets are dispersible in oil, homogenized with 

lithium based grease and were tested for their antifriction and wear resistant properties.  An 

improvement in tribology results was noticed when MoS2 nanosheets were used and blended 

with lithium based grease. 

The production of high quality nanosheets of h-BN through tailored wet milling has been 

achieved.  h-BN is a well known EP additive and helps in the reduction of wear scar and CoF 

when blended with base oil during tribology testing.  The sheets obtained were highly crystalline 

and chemically pure with a diameter of 0.5-1 μm and thicknesses of a few nanometers. 

Substantial improvement was observed in lubricating performance of base oil blended with h-BN 

nanosheets. 

Future work 

The synthesis of a core shell structure of CaCO3 using bifunctional surfactants (like hydroxyl 

stearic acid) is worth examining in order to increase the coating efficacy and reduce the amount 

of surfactant used.  The coating of calcium hydroxide, instead of carbonate, can also be tested for 

over basing additive development with these surfactants.  Similarly, the synthesis of MoS2 and 

BNNSs through exfoliation using ionic liquids is one promising option because of the interesting 

properties of ionic liquids. 

There was a marginal variation in the particle size measurements of nano sheets in the minor 

axis, which could be attributed to the viscosity of the medium used during milling.  However, the 

larger sheet length may be due to the difference in dispersion composition and this could be 

resolved in future using acoustic and electro-acoustic particle size measurement methods.  The 

nanomaterials studied in this thesis though are found to be enhancing, as additives, the 

lubricating properties there are lots of scope to work in transferring the knowledge into larger 



scale processes, as bulk scale production and designing of nanomaterials with desirable 

properties is a challenging task.  The study of friction and wear resistance requires knowledge of 

surface interactions with these additives. This field is rapidly developing, however, most 

applications that can be realized by exploiting nano tribological ideas are still in the embryonic 

stage. 

In summary, the inorganic nanoparticles as additives enhance the lubricity of base oil, as 

demonstrated from various tribological evaluations.  There is an immense scope for this work to 

be applied in modern lubricant technology. 
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