A study of the chicken IFN lambda system

by

Andreas Rohringer B.Sc., M.Sc.

Submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Medicine Deakin University

August, 2016

A study of the chicken IFN lambda system

submitted for the degree of Doctor of Philosophy

This thesis may be made available for consultation, loan and limited copying in accordance with the Copyright Act 1968.

'I certify that I am the student named below and that the information provided in the form is correct'

Full Name:

Rohringer Andreas

Signed:

Rohy Ardus

Date:

15.08.2016

DEAKIN UNIVERSITY

CANDIDATE DECLARATION

I certify the following about the thesis entitled

A study of the chicken IFN lambda system

submitted for the degree of Doctor of Philosophy

- a. I am the creator of all or part of the whole work(s) (including content and layout) and that where reference is made to the work of others, due acknowledgment is given.
- b. The work(s) are not in any way a violation or infringement of any copyright, trademark, patent, or other rights whatsoever of any person.
- c. That if the work(s) have been commissioned, sponsored or supported by any organisation, I have fulfilled all of the obligations required by such contract or agreement.

I also certify that any material in the thesis which has been accepted for a degree or diploma by any university or institution is identified in the text

'I certify that I am the student named below and that the information provided in the form is correct'

Full Name:

Rohringer Andreas

Signed:

Rohy Ardue

Date:

15.08.2016

Acknowledgements:

Firstly, I would like to express my sincere gratitude to my advisors Prof. Alister Ward, and Dr. Andrew Bean for the continuous support of my Ph.D. study and related research, for their patience, motivation, and immense knowledge. Their guidance helped me in throughout the research and writing of this thesis. I could not have imagined having better advisors and mentors for my Ph.D. study.

My sincere thanks also goes to Tamara Gough, Dr. Jeffrey Butler, Dr. David Williams and Dr. Celine Deffrasnes who provided me with research support, guidance and an open ear whenever needed. Without their enduing support, it would not be possible to conduct this research.

Last but not the least, I would like to thank my family: my mother and sister as well as Dr. Amy Burroughs for supporting me throughout the writing of this thesis and in our amazing life journey so far.

Rohy Sidnes

Funding support:

This work was supported by the Deakin University International Postgraduate Research Scholarship, the CSIRO Top up scholarship and the Poultry CRC.

1 Abstract

High Pathogenic Avian Influenza (HPAI) viruses, such as H7N9 and H5N1 HPAI, have a very large effect on poultry production and there is a need for new strategies to deal with these infections. The characterization of antiviral immune pathways is essential for understanding host-pathogen mechanisms to underpin improved therapies for both human and livestock use. The interferon (IFN) pathway stimulates the expression of a myriad of interferon stimulated genes (ISGs) that impact viral replication. This study aimed to characterize the chicken type III IFN response, its receptor complex and its downstream mediator.

The induction of type III IFN in comparison to type I IFNs was examined in chicken splenocytes stimulated with TLR agonists and chicken IFNs. The induction of type I and type III IFNs by PIC and LPS was similar but IFN and ISG induction kinetics differed in response to IFN α and IFN λ with IFN α inducing a more rapid induction. Furthermore, age and sex dependent differences in the induction of type I and type III IFNs were identified, while females had higher levels of type I IFNs as immature and mature birds, immature males had a higher IFN λ response.

The IFN λ R complex is composed of two receptor chains, the IFN λ receptor 1 (IFN λ R1) and Interleukin 10 receptor 2 (IL-10R2), which utilizes the Janus kinase (JAK) and Signal transducer and activator of transcription (STAT) pathway for signaling. A chicken IFN λ R1 gene was identified, which showed conserved sequence and synteny with its human counterpart. Selective siRNA mediated knockdown of either chain reduced IFN λ mediated ISG expression and STAT activation, while selective JAK1 inhibition blocked the IFN λ mediated ISG upregulation. This points towards a conserved IFN λ R/JAK/STAT/ISG pathway in chickens.

The interferon-induced protein with tetratricopeptide (IFIT) repeats 5 (IFIT5) is an ISG that has been shown to be important in the antiviral response in mammals. A single IFIT was identified in chicken which showed synteny with the human IFIT genes and encoded a 470 amino acid protein with strong conservation to mammalian IFITs especially IFIT5. It was induced in chicken splenocytes by IFN α , IFN λ and TLR ligands *ex vivo*, in the lungs of chickens following infection with a highly pathogenic avian influenza virus (HPAI). This highlighted the conserved role of chicken IFIT5 in the response to viral infections like HPAI.

2 List of Abbreviations

AA	amino acids
aa/s	amino acid substitutions per site
AI	avian Influenza
ANOVA	analysis of variance
APC	antigen presenting cells
bp	base pair
CHD	cytokine receptor homology domain
СНО	Chine Hamster ovary cells
CO ₂	carbon dioxide
CRF2	class II cytokine receptor family
CSF	colony-stimulating factor
CSIRO	Commonwealth Scientific Industrial Research Organisation
DMSO	dimethyl sulfoxide
dsDNA	double stranded DNA
dsRNA	double stranded RNA
E.coli	Escherichia coli
EID ₅₀	50% egg infectious dose
ELISA	enzyme-linked immunosorbent assay
EMSA	electrophoretic mobility shift assay
ERK	extracellular signal regulated kinase
HA	Hemagglutination Assay
HBV	Hepatitis B
HCV)	Hepatitis C
HPAI	highly Pathogenic Avian Influenza
IBDV	infectious bursal disease virus
IBV	infectious bronchitis virus
IFIT	interferon-induced protein with tetratricopeptide repeats
IFN	interferon
IFNα	interferon alpha
IFNaR1	interferon alpha receptor chain 1
IFNaR2	interferon alpha receptor chain 2
IFNyR1	interferon gamma receptor chain 1
IFNyR2	interferon gamma receptor chain 2
IFNλ	interferon lambda
IFNλR	interferon lambda receptor
IFNλR1	interferon lambda receptor chain 1
IL	interleukin
IL-10R2	interleukin 10 receptor chain 2
IRF-9	IFN regulatory factor-9
ISGF3	IFN stimulated gene factor 3
ISGs	IFN stimulated genes
ISREs	IFN stimulated response elements (ISREs)

JAK	Janus kinase
JNK	c-Jun N terminal kinases
LPS	lipopolysaccharides
LSD	least significant difference
MAPK	mitogen-activated protein kinase
MDA-5	melanoma differentiation-associated gene 5
MDV	Marek's disease virus
mRNA	messenger RNA
MX1	Myxovirus resistance gene 1 (Mx1
NA	neuroaminidase
NDV	Newcastle disease virus (NDV)
PAMPs	pathogen associated molecular patterns
PBMC	peripheral blood monocytes
PCR	polymerase chain reaction
PIC	poly I:C
PKR	IFN-induced double-stranded RNA dependent protein kinase
PRR	pattern recognition receptor
RIG-I	retinoic acid-inducible gene-I)
RT-PCR	real-time polymerase chain reaction
SEM	standard error of the mean
SFV	Semliki Forest virus (SFV)
SNP	single nucleotide polymorphism
ssRNA	single stranded RNA
STAT	signal transducer and activator of transcription
TLR	Toll-like receptor
TNF	tumor necrosis factor
TYK2	tyrosine kinase 2
Viperin	virus inhibitory protein, endoplasmic reticulum associated, interferon inducible
VSV	vesicular stomatitis virus

3 Table of Content

1	ABSTRACT		
2	LIST OF ABBREVIATIONS6		
3	TABLE OF CONTENT		
4	IN	NTROD	DUCTION
	4.1	Avian	N INFLUENZA
	4.2	Ноѕт	IMMUNE RESPONSE TO VIRAL INFECTIONS
	4.3	IFNs.	
	4.	.3.1	Туре I IFN
	4.	.3.2	Туре II IFN
	4.	.3.3	Туре III IFN
	4.	.3.4	Expression and regulation
	4.	.3.5	Antiviral actions of IFNλ
	4.	.3.6	Apoptosis and anti-proliferative actions of IFN λ
	4.4	CLASS	5 II CYTOKINE RECEPTORS
	4.5	IFN R	ECEPTORS
	4.6	IFN∧	RECEPTOR COMPLEX
	4.	.6.1	Expression and distribution
	4.	.6.2	IFNλ receptor signal transduction24
	4.7	The C	THICKEN IFN SYSTEM
	4.	.7.1	Chicken type I IFN
	4.	.7.2	Chicken type II IFN25
	4.	.7.3	Chicken type III IFN
	4.	.7.4	Chicken IFN receptors
	4.8	INTER	FERON STIMULATED GENES
	4.	.8.1	Mx1
	4.	.8.2	ZAP
	4.	.8.3	PKR
	4.	.8.4	IFIT
	4.	.8.5	Viperin
			0

	4.9 RATIO	DNALE	27
	4.9.1	Hypothesis	28
	4.9.2	Aims	28
5	MATER	IAL AND METHODS	29
	5.1 Cell	CULTURE	29
	5.1.1	Chicken splenocytes	29
	5.1.2	DF1 cells	29
	5.1.3	Transfection	29
	5.1.4	Cell stimulation	29
	5.2 IN VIV	/O STUDIES	30
	5.2.1	Ethics	30
	5.2.2	Egg trial (H1N1)	30
	5.2.3	Virus propagation	30
	5.2.4	Animal trial (H5N6)	30
	5.3 BIOIN	IFORMATICS	31
	5.3.1	Primer design and domain prediction	31
	5.3.2	Phylogenetic analysis	31
	5.4 Moli	ECULAR METHODS	32
	5.4.1	RNA isolation and reverse transcription	32
	5.4.2	Cloning and sequencing	32
	5.4.3	Quantitative Real Time PCR (RT-PCR)	32
	5.4.4	Electrophoretic mobility shift assay (EMSA).	32
6	CHARA	CTERIZATION OF CHICKEN IFNλ SIGNALING	34
	6.1 INTRO	DDUCTION	34
	6.2 RESU	LTS	35
	6.2.1	Phylogenetic analysis of the chicken type I/III IFNs	35
	6.2.2	Dose response of chicken IFNs to poly (I:C)	35
	6.2.3	Time course of TLR-dependent stimulation of chicken IFNs	35
	6.2.4	Time course of IFN mediated induction of chicken IFN expression	38
	6.2.5	Characterization of TLR-dependent ISG responses	38

	6.2.6	Characterization of the type I/III IFN-mediated ISG response	.41
	6.2.7	Characterization of the IFN response following acute HPAI H5N6 infection	.41
	6.2.8	Characterization of ISGs expression following acute HPAI H5N6 infection	.41
	6.2.9	Comparison of type I and III IFN expression between male and female chickens	. 45
6	.3 Discu	JSSION	. 48
7	CHARA	CTERIZATION OF CHICKEN IFNλR	. 52
7	.1 INTRO	DDUCTION	. 52
7	.2 Resu	LTS	.54
	7.2.1	Phylogenetic analysis of the type III IFN receptor chains	. 54
	7.2.2	Synteny of genes encoding the type III IFN receptor chains	.54
	7.2.3	Tissue distribution of the type III IFN receptor chains	. 58
	7.2.4	Functional analysis of the chicken type III IFN receptor complex	. 58
7	.3 Discu	JSSION	. 62
8	CHARA	CTERIZATION OF CHICKEN IFIT5	. 64
8	.1 INTRO	DDUCTION	. 64
8	.2 Resu	LTS	. 66
	8.2.1	Identification and characterization of a putative chicken IFIT5 gene	. 66
	8.2.2	Conservation of chicken IFIT5	.66
	8.2.3	Expression of chicken IFIT5 following immune stimulation	. 71
	8.2.4	Expression of chicken IFIT5 following viral infection	. 71
8	.3 Discu	JSSION	.76
9	GENER	AL DISCUSSION	. 78
10	REFERE	NCES	. 84
11	APPENI	DIX	102

List of Figures:

Figure 4-1 Schematic structure of influenza virus1	4
Figure 4-2 Host range and infection cycle of influenza virus1	5
Figure 4-3 Antigenic drift of influenza virus1	5
Figure 4-4 Antigenic shift of influenza virus1	6
Figure 4-5 The IFN-mediated antiviral response1	7
Figure 4-6 The IFN lambda receptor signaling cascade	3
Figure 6-1 Phylogenetic analysis of the type I/III IFNs3	6
Figure 6-2 Dose response of chicken IFNs to poly (I:C)3	6
Figure 6-3 Time course of TLR-dependent stimulation of chicken IFNs	7
Figure 6-4 Time course of IFN-mediated induction of chicken IFN expression	9
Figure 6-5 Characterization of TLR-dependent ISG response4	0
Figure 6-6 Characterization of the type I/III IFN-mediated ISG response4	2
Figure 6-7 Characterization of IFN response following acute HPAI H5N6 infection	3
Figure 6-8 Characterization of ISG response following acute HPAI H5N6 infection	4
Figure 6-9 Comparison of type I and III expression in immature male and female chickens	6
Figure 6-10 Comparison of type I and III IFN expression in mature male and female chickens	7
Figure 7-1 Phylogenetic analysis of IFNλR1 proteins5.	5
Figure 7-2 Phylogenetic analysis of IL-10R2 proteins5	6
Figure 7-3 Synteny of IFNLR1 and IL10R25	7
Figure 7-4 Tissue distribution of IFNλR chains5.	9
Figure 7-5 Confirmation of successful siRNA mediated gene knockdown	9
Figure 7-6 Effect of IFNλR chain knockdown on STAT activation6	0
Figure 7-7 Effect of IFNλR chain knockdown on Mx1 expression6	0
Figure 7-8 Effect of JAK inhibition on IFN λ -mediated Mx1 induction6	1
Figure 8-1 Chromosomal location and predicted gene structure of chicken IFIT5	7
Figure 8-2 Amplification of the chicken IFIT5 gene6	7
Figure 8-3 Phylogenetic analysis of IFIT5 proteins6	9
Figure 8-4 Domain analysis of human and avian IFITs7	0
Figure 8-5 Expression of IFIT5 and Mx1 in response to TLR agonists	2
Figure 8-6 Expression of IFIT5 and Mx1 in response to IFN stimulation	3
1	1

Figure 8-7 Expression of IFIT5 and Mx1 in response to viral infections in vivo	. 74
Figure 8-8 Expression of IFIT5 and Mx1 in response to viral infections in ovo	. 75
Figure 11-1 IFN alpha mRNA expression post IFN alpha stimulation	116
Figure 11-2 Alignment of th predicted and sequenced chicken IFIT5 sequence	117
Figure 11-3 in silico translated protein sequence alignment of the predicted and sequenced chicken	
IFIT5 sequence	118

4 Introduction

4.1 Avian influenza

Influenza A viruses are members of the *Orthomyxoviridae* family being lipid enveloped, negative-sense, single-stranded segmented RNA viruses, with eight segments encoding ten proteins ^{1,2}. Protruding from the enveloped surface are two distinct glycoproteins, the hemagglutinin (HA) and the neuraminidase (NA) on which subtypes and antigens are classified ^{3,4} (**Figure 4-1**). Influenza is capable of infecting a range of hosts including but not limited to humans, dogs, horses, pigs, ferrets, cats and a wide variety of domesticated and wild birds ⁵⁻¹². It is believed that wild aquatic birds act as a reservoir for influenza A viruses, since virtually all HA and NA subtypes have been isolated from that source ¹³. The exceptions are the recently discovered subtypes H17 and H18 that seem to be limited to bats ^{14,15} (**Figure 4-2**). This suggests that spill-over hosts, like domesticated poultry and humans, will remain at risk due to the difficulties of eradicating a pathogen in a wild population.

There are two major mechanisms influencing viral diversification. Antigenic drift (Figure 4-3) describes the mechanism of generating seasonal influenza virus, where point mutations in the viral genome change the antigenic profile of the virus leading to immune evasion ^{16,17}. Antigenic shift (Figure 4-3) describes the rearrangement of the segmented genome when more than one strain infects one cell which forms a new virus with often unique properties $\frac{18,19}{12}$. This is thought to occur particularly in pigs, which can be infected by both avian and human virus strains, giving rise to new highly pathogenic influenza variants ²⁰. The selective pressure of the host immune system plays a key role in both antigenic drift and shift 21,22. Infectivity of influenza virus in the host is influenced by the type of receptor the virus can bind ²³. The HA subtypes of avian influenza (AI) viruses, such as the H5 and H7 subtypes, are thought to preferentially attach to the α 2,3-linked sialic acid receptors present on the respiratory epithelium and intestinal tract tissue of many avian and terrestrial bird species 24 while HA subtypes adapted to humans preferentially bind the α 2,6-linked sialic acid receptors $\frac{25}{2}$. However, there are exceptions to this, with single amino acid substitutions at the receptor binding site of the HA molecule enough to allow HPAI H5N1 viruses to recognize the human α 2,6-linked sialic acid receptor on the surface of human respiratory epithelial cells and thereby assist in cross-species transmission ²⁶. It has similarly been shown in the recent H7N9 outbreak in China that the human virus isolates possessed two mutations

associated with increased α 2,6-linked sialic acid binding that could account for their human pathogenicity ²⁷. Therefore, both antigenic shift and drift can also influence host specificity. Als can cause significant mortality and morbidity in humans. Since 2003 851 human cases of H5N1 were reported, which led to 450 deaths ²⁸. More recently the H7N9 LPAI, which caused no death in chickens ²⁹, led to severe symptoms and even death in humans ²⁷. Until now a total of 781 laboratory confirmed cases have been reported causing 313 deaths ³⁰. In 2014 a new H5 virus emerged, subtyped as an H5N6, which caused 14 confirmed cases and 6 deaths ^{28,31}. Evidently the AI viruses are still re-assorting and are likely to cause more mortality and morbidity since they have now become endemic in a number of countries and pose a serious risk of becoming a new pandemic strain ³¹⁻³³.

Apart from the human cases, HPAI strains have killed millions of poultry worldwide directly and indirectly, since containment of the outbreaks has necessitated culling of additional birds. The impact of HPAI strains on the poultry industry has been substantial with the economic loss has been numbered in the billions (USD) ^{34,35}. Transmission of AI from poultry to humans usually occurs by close association ^{27,36}. Therefore, an AI virus with the ability to spread easily between host species poses a serious risk and could be a potential influenza pandemic virus candidate ³⁷.

Figure 4-1 Schematic structure of influenza virus

Influenza viruses are negative-sense single-stranded RNA viruses. Their genome consists of eight RNA segments that encode 10 proteins, which are encapsulated by matrix proteins and surrounded by a host-derived lipid envelope from which the glycoproteins hemagglutinin and neuraminidase protrude.

Figure 4-2 Host range and infection cycle of influenza virus

Water fowl, such as ducks, are thought to be the natural reservoir for influenza virus. Through the fecal/oral route they infect a range of domesticated animals like horses, pigs and chickens. The virus can then reach the human population by transmission via chickens or pigs. In contrast, the newly discovered H17 and H18 subtypes seem to be limited to bats.

Figure 4-3 Antigenic drift of influenza virus

Seasonal influenza viruses typically acquire mutations through their error prone viral RNA polymerase. These mutations can alter antigenicity and enable the virus to escape the immune system.

Figure 4-4 Antigenic shift of influenza virus

Different strains of influenza that infect the same cell can rearrange their segmented genomes, which can lead new gene combinations not previously encountered by the host immune system, potentially leading to new pandemic viruses. The pig is thought to be the ideal 'mixing vessel' since avian as well as human pathogenic influenza strains can infect it.

4.2 Host immune response to viral infections

The mammalian immune response to virus infections is well characterized. During viral invasion, innate immune recognition is mediated by a series of germ line encoded receptors, the pathogen recognition receptors (PRR), which detect conserved pathogen associated molecular patterns (PAMPs) 38-40. One of the most prominent families of PRR are the Toll-like receptors (TLR) 41. Up to thirteen conserved TLRs have been found in mammals that serve distinct functions in PAMP recognition and subsequent immune responses, although variation between species exist in the number of functional TLRs ^{42,43}. TLRs induce the expression of genes involved in both direct cellular defence and the mobilization of a wider immune response 38.44. Infection with viral pathogens may be sensed through TLRs 2 and 4 that detect viral glycoproteins on the cell surface or through recognition of dsRNA through TLRs 3,7, 8 and 9 located in the endosome 45-51. In addition to the TLRs, intracellular sensors such as retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation-associated gene 5 (MDA-5) are involved in the cytosolic recognition of foreign nucleic acids ⁵². PAMP recognition leads to activation of many cell types, such as phagocytes and macrophages and the expression of a number of genes including those encoding cytokines $\frac{53,54}{24}$. Cytokines are soluble, low molecular weight polypeptides and glycopeptides that interact with a multicomponent transmembrane receptor complex and activate intracellular signal transduction pathways that induce anti-viral genes as well as others that control the

complex interplay between various cell types involved in the immune response ⁵⁵⁻⁵⁷. Cytokines represent a large family of signaling molecules, including the interferons (IFN), interleukins (IL), colony-stimulating factors (CSF), transforming growth factors (TGF) and tumor necrosis factors (TNF), each of which consists of multiple members ⁵⁸. However, the IFNs produced in the early stages of viral infection are of special interest since they play a crucial role in the broad spectrum cellular defence against the spread of virus ⁵⁹ (**Figure 4-5**).

Figure 4-5 The IFN-mediated antiviral response

The antiviral actions of the type I/III interferon systems have been extensively studied in mammals. Upon sensing foreign nucleic acids host Toll-like receptors activate signals that induce the transcription of IFN genes, the products of which are secreted by the cell and serve to amplify the signal in an autocrine and/or paracrine manner. This is achieved by binding to cognate receptors that relay a signal via downstream signal pathways into the cell nucleus, which leads to the expression of ISGs. These genes encode proteins that block viral infection, growth and spread in a multitude of ways.

4.3 IFNs

IFNs were discovered by Isaacs and Lindenmann while studying influenza virus. They described the first IFN as a substance that was able to interfere with the ability of the virus to infect cells and thus coined the term "interferon" ⁶⁰. It is now recognized that there are in fact several IFNs that are collectively crucial for defence against pathogens, contributing to the induction and regulation of both innate and adaptive antiviral mechanisms ⁶¹⁻⁶³. Three distinct IFN families have been identified in vertebrate species. The families are defined by their use of specific receptor complexes, termed type I, II and III. These are distinguished by their distinctive signaling pathways and patterns of gene induction, although there is considerable overlap in these features between families ⁶⁴⁻⁶⁶. All three IFN families are

important for an effective immune response but only type I and III are directly induced via the PRR pathway ⁵⁹. This suggests that they play a critical role in containing pathogens, providing the host with the means to survive otherwise lethal infections by delaying spread of the pathogen and enabling the adaptive immune system to mount an efficient response ⁶⁷.

4.3.1 Type I IFN

Type I IFNs consist of at least 8 subclasses IFNα, IFNβ, IFNε, IFNκ, IFNω, IFNτ, IFNδ and IFNζ. The first 5 are found in humans with 13 subtypes of IFNα but only a single IFNβ, IFNε, IFNκ and IFNω $\frac{68,69}{2}$. The other subclasses of type I IFNs have so far only been identified in particular species: IFNτ in ruminants $\frac{70}{2}$, IFNδ in pigs $\frac{71}{2}$ and IFNζ in mice $\frac{72}{2}$.

Following induction by viral infection, type I IFNs can act in both a paracrine and autocrine manner ^{73,74}. Of the type I IFNs, IFNα and IFNβ are well characterized, displaying potent antiviral activities. A broad range of cells can produce IFNα and IFNβ rapidly during the early stages of infection in response to the recognition of viral (and bacterial) products via PRRs ^{61,75,76}. In turn IFNs stimulate the expression of more than 300 genes that are called IFN stimulated genes (ISGs) many of which encode antiviral proteins that can collectively interfere with various stages of the viral life cycle ⁷⁷⁻⁷⁹. This early antiviral response is critical to limit the spread of viruses and facilitate onset of the adaptive immune response ⁸⁰. Type I IFNs up-regulate the expression of the major immune histocompatibility complex I (MHC I) expression on many cells ⁸¹ as well as co-stimulatory molecules on antigen presenting cells (APC) ⁸², enhance natural killer cell (NK) cytotoxicity, proliferation and memory functions ⁸³⁻ ⁸⁵⁻, induce differentiation of monocytes to dendritic cells (DC) ⁸⁶, contribute to DC activation and priming abilities ⁸⁷, augment the differentiation of T helper (Th) cells ⁸⁸⁻⁹⁰, modulate antibody production ⁹¹ and induce apoptosis of infected cells ^{92,93}.

The anti-viral, immune stimulating and anti-proliferative properties of IFNs have made them attractive molecules as potential therapeutics for a variety of diseases ^{93,94}. Recombinant IFNα was the first approved bio-therapeutic and has been successfully used in the treatment of chronic hepatitis B (HBV) and hepatitis C (HCV) infections, where it leads to reduced viral loads and decreased incidence of liver cirrhosis and hepatocellular carcinomas ^{95,96}. Type I IFNs have also regularly been used in clinics as anti-cancer treatments, such as hairy cell leukaemia, Kaposi's sarcoma, chronic myelogenous leukaemia and metastatic malignant melanoma ⁹⁷⁻¹⁰⁰. Likewise IFNβ forms a crucial part of long-term treatment for relapsing forms of multiple sclerosis ¹⁰¹. Combination therapy of IFNα with anti-viral drugs like

ribavirin, can improve the treatment efficiency, although clinical drug resistance to IFN α has arisen in the setting of HCV infection $\frac{102,103}{2}$. The successful use of IFN alone and in combination to treat viral infections has been demonstrated experimentally both *in vitro* and *in vivo* $\frac{104-106}{2}$. However, type I IFNs represent a two-sided sword since they can also induce severe adverse effects ranging from diarrhoea, fatigue and depression to flu-like symptoms and hematologic toxicity $\frac{107,108}{2}$.

4.3.2 Type II IFN

Only one type II IFN has been identified, IFNγ, which exists as a single gene in mammals and birds ^{109,110}. This is a pro-inflammatory cytokine that has an essential role in the activation of host defence against intracellular pathogens, representing a hallmark cytokine of Th1 cells ^{111,112}. In contrast to the type I and III IFNs, type II IFN is only produced by cells of the immune system such as NK cells, macrophages, dendritic cells and T cells ^{113,114}. IFNγ has similar actions to other IFNs in certain ways but it also has unique properties. For example, it is the only IFN that can enhance MHC class II expression ^{81,115} and is involved in the regulation of nitric oxide production and the promotion of Th1 differentiation ^{116,117}.

4.3.3 Type III IFN

Type III IFNs were discovered in 2003 through computational analysis of the human genome, which identified three distinct proteins $\frac{118,119}{2}$. These were placed phylogenetically between type I IFNs and IL-10 related cytokines $\frac{120}{2}$, leading to them being given alternate names. Sheppard and colleagues designated them IL-28A, IL-28B and IL-29 while others classified them as type III IFNs, IFNA1 (IL-29), IFNA2 (IL-28A) and IFNA3 (IL-28B) with the latter names now taking precedence $\frac{118}{2}$. These IFNs share 15-19% amino acid (aa) homology with the type I IFNs but only 11-13% aa homology with IL-10, although their intron-exon structure resembles those of IL-10 and IL-10-related cytokines, while the crystal structure of IFNA is structurally closest to the IL-10-related IL-22 $\frac{118,119,121,122}{2}$. The IFNA genes are located in closely positioned clusters on human chromosome 19 and mouse chromosome 7, respectively $\frac{118,119,123}{2}$. In the mouse only two of the three IFNA genes are considered functional $\frac{123,124}{2}$, whereas a fourth IFNA gene has been discovered in humans $\frac{120,125}{2}$. Due to their antiviral and anti-proliferative attributes, type III IFNs have also been used in viral $\frac{126}{2}$ and cancer $\frac{127}{27}$ treatment.

4.3.4 Expression and regulation

Co-induction of type I and III IFNs in response to a range of viral and bacterial components and TRL agonists has been reported in various *in vitro* and *in vivo* settings ^{64,119,128,129}. While

both IFN families can be expressed by almost all cell types, the plasmacytoid DC (pDC) lineage appears to be the greatest producers of both IFNs in vitro 120,130,131. As mentioned earlier, expression of IFNs is triggered by PRRs, including the constitutively-expressed IFN regulatory factor (IRF) 3 and the IFN-induced IRF7 ^{132,133}. Many RNA viruses potently induce IFN λ expression including influenza A virus $\frac{130,134}{12}$, Sindbis virus (SINV) and VSV $\frac{118}{12}$. Furthermore, stimulation with ligands for TLR3, TLR4 and TLR9 significantly increased IFN λ expression, whereas agonists for TLR7/8 were only weak inducers ^{130,134-136}. It has recently been demonstrated that murine macrophages express high levels of type I IFN mRNA but not type III IFN mRNA after herpes simplex virus (HSV) infection ¹³⁵ and that influenza virus infection of human alveolar type II cells elicted high levels of IFN λ but not IFN $\beta^{\frac{137}{2}}$. Characterization of the human type III IFN promoters has revealed the presence of IRF and nuclear factor (NF)- κ B binding sites ¹³⁸. IFN λ 1 expression exhibited an IRF-3 dependence similar to that of IFN β whereas IFN λ 2/3 expression was controlled by IRF-7 similar to IFN α $\frac{139,140}{139,140}$. In addition, the NFKB sites in the promoter region of IFN λ 1 were shown to be critical in DCs, suggesting that NFkB is a key regulator in these cells ¹⁴¹ and providing further evidence that the IFN induction pathways of type I and III IFNs differ. This indicates that more work is needed to fully understand the regulation of IFN λ .

4.3.5 Antiviral actions of IFNλ

IFNs can modulate the immune system, but can also directly interfere with the infection cycle of viruses ¹⁴², which has seen IFNs successfully used in a variety of antiviral treatments ^{102,143,144}. The characterization of IFN λ has largely focused on its antiviral role in the course of infection, where it displays activities reminiscent of type I IFN. Antiviral assays together with gene expression studies have demonstrated that IFN λ induces an antiviral state, with a large number of antiviral genes stimulated ^{137,145}, which are mostly identical to those up-regulated upon type I IFN stimulation ¹⁴⁶. This could point towards redundancy of the immune system that could play a critical role in host survival, as many pathogens have developed mechanisms to evade or inhibit specific aspects of the host immune response ¹⁴⁷. However, differences in type I and type III activity can be observed. For example, studies have suggested IFN λ antiviral activity was weaker than type I IFNs, with higher concentrations required to achieve equivalent induction of antiviral genes ^{128,129}. In addition, the pretreatment of cells with IFN λ before viral challenge can lead to reduced viral replication, as is also seen with IFN α pre-treatment. In contrast, IFN λ treatment post infection had no effect whereas IFN α was still able to inhibit virus replication to some extent ¹⁴⁸. A recent study also

found that rhinovirus infection of bronchial epithelial cells *in vitro* induced IFN λ mRNA and protein expression more strongly at all time points measured, compared to IFN α , which appeared early, and IFN β , which was induced at later time points ¹⁴⁹. Other studies have shown that type III IFNs play a critical role in the control of rotavirus. Mice lacking functional IFN λ but competent for type I IFN could not control infection via the oral route, while administration of type III but not type I IFNs could induce an antiviral state in intestinal epithelial cells, providing evidence that this system is independent of type I IFNs ¹²⁸. Type III IFNs have also been shown to have a modulatory effect on the immune system. IFN λ has been shown to decrease IL-4, IL-5 and IL-13 production ¹⁵⁰, thereby promoting a Th1 rather than Th2 response ^{150,151} *in vitro*.

Type III IFNs may provide an alternative therapeutic avenue for the treatment of virus infections such as hepatitis C in instances of type I IFN resistance $\frac{152,153}{152,153}$. Indeed IFN λ has been used in combination with ribavirin to control HCV infections with promising results $\frac{154}{154}$. There is thus potential for using different drug/IFN combinations, which could result in a further anti-viral synergy while decreasing the dose, diminishing side effects and reducing potential resistant virus isolates from developing $\frac{155,156}{152,156}$. Whilst IFN λ displays similar anti-viral and anti-proliferative activities to type I IFNs their respective outcomes differ in magnitude $\frac{146,152}{152}$. Thus, IFN λ may also elicit reduced adverse side effects that are associated with type I IFN therapy $\frac{157,158}{152,158}$. For example IFN λ was found to activate ISGs to a much lower extent in brain cells, suggesting that type III IFN therapy $\frac{136,159}{136,159}$.

4.3.6 Apoptosis and anti-proliferative actions of IFNλ

Type III IFNs have been shown to exert anti-proliferative and pro-apoptotic effects in the human keratinocyte cell line (HaCaT) as well as suppress tumor growth and induce apoptosis in human glioblastoma, neuroendocrine, lung carcinoma and fibrosarcoma cells *in vitro* as well as in melanoma, fibrosarcoma and colon cancer *in vivo* and in some cases the ability to induce apoptosis was shown to surpass that of IFN α ^{152,160-162}. However, the anti-proliferative and pro-apoptotic actions appear independent, since IFN λ decreased cell proliferation of intestinal carcinoma cells but did not induce apoptosis ¹⁶³. Moreover, when responsive cells were treated with IFN λ and IFN α they showed a greater apoptotic effect than the respective single treatments ¹⁶⁰. This suggests a broad therapeutic potential for type III IFNs in combination with type I IFNs. However, further investigation is required to fully understand how type III IFNs might be used for cancer treatment.

4.4 Class II cytokine receptors

Members of the Class II cytokine receptor family (CRF2) are single pass transmembrane proteins defined by structural similarities in the extracellular domain, which includes the cytokine receptor homology domain (CHD) consisting of two tandem fibronectin type III repeats that is involved in ligand binding, and intracellular sequences¹⁶⁴. They are distinguished from Class I cytokine receptors by differences in key amino acids in the CHD, notably alternative conserved cysteine residues and the absence of the hallmark WSxWS motif ¹⁶⁴. CRF2 chains combine to form heterodimeric receptor complexes. The ligands of CRF2 bind with high affinity to the R1/R α chain, which characteristically has a large intracellular domain. However, binding of the ligand to the R1 chain is not enough to initiate signaling, which requires recruitment of an R2/R β chain that has a smaller intracellular region and lower ligand affinity. This trimeric complex then initiates specific intracellular signaling cascades ¹⁶⁴. This family is composed of 12 distinct receptor chains, which are used for signaling by members of the IFN, IL-10 and IL-10-related cytokines, as well as the unrelated factor VII (FVIIa) to mediate their biological activities ^{164,165}.

4.5 IFN receptors

The three IFN families use distinct receptors to signal, which results in slightly different signaling pathways and ultimately variation in their respective biological activities⁶⁹. The type I IFNs signal through the IFN α R1 and IFN α R2 complex ¹⁶⁶, while IFN γ binds to a complex of IFNyR1 and IFNyR2 $\frac{167}{1}$. In contrast the type III IFNs bind to a receptor that utilizes a unique IFN λ receptor chain 1 (IFN λ R1) in combination with the IL-10R2 chain, which is shared by IL-10, IL-22 and IL-26 receptor complexes ^{118,119,127}. Several of the receptors can be alternatively spliced which leads to both membrane-bound or secreted soluble forms ¹⁶⁴. The soluble receptor forms are usually identical in the extracellular domain but lack the transmembrane and intracellular domains ¹⁶⁸, and are known to participate in signaling and its regulation ¹⁶⁹. For example, mice have an alternative soluble form of IFN α R2 that seems to be independently regulated from the membrane bound form 170.171. These soluble forms have been thought to act as decoys, whereby they inhibit the binding of the ligand to the membrane bound form $\frac{168}{100}$. Thus the soluble form of IFN λ R1 was found to antagonize IFN λ activity 172. However, in vitro studies on IFNaR2 have suggested that the soluble receptor can interact with IFN α and the membrane bound IFN α R1 to promote signaling ¹⁷¹. Therefore, while soluble receptors are clearly important in controlling cytokine signaling pathways and immune responses, their exact role is not yet well understood.

4.6 IFNλ receptor complex

Type III IFNs act through a unique transmembrane receptor complex which consists of the IFN λ R1 and the IL-10R2 chains ^{118,119} (**Figure 4-6**).When either of these chains is absent or neutralized by an antibody, cells are unresponsive to IFN λ ^{119,159}, showing that both IFN λ R1 and IL-10R2 are needed to form a functional receptor ¹⁶⁶. The crystal structure of IFN λ R1 indicates that it is most similar in structure to IL-10R1 and IL-22 binding proteins ¹²¹, which is perhaps not surprising since all interact with IL-10R2. Studies investigating the potential competitive inhibition of other IL-10R2 ligands, IL-10 and IL-22, on IFN λ signaling showed that while the presence of IL-10 was able to suppress the effects of IFN λ by unknown mechanisms, no direct competitive inhibition for binding to the IL-10R2 chain was found ^{173,174}.

Figure 4-6 The IFN lambda receptor signaling cascade

IFN λ signals via a heterodimeric receptor complex consisting of IFN λ R1 and IL-10R2. Ligand binding brings the associated Janus kinase 1 (JAK1) and Tyrosine kinase 2 (TYK2) proteins into close proximity, which leads to cross-phosphorylation and phosphorylation of the receptor complex. This facilitates the recruitment of signaling molecules, notably including STAT1 and STAT2. These also become phosphorylated allowing them to form a trimeric complex with the Interferon Response Factor 9 (IRF9) termed the Interferon Stimulated Gene Factor (ISGF3). ISGF3 can translocated to the nucleus interact with Interferon Stimulated Response Elements (ISREs) to mediate transcription of ISGs.

4.6.1 Expression and distribution

Ultimately the pattern of receptor expression determines which cells respond to a particular ligand. Although type III IFNs bind to a unique receptor complex, the downstream signaling is similar to that of type I IFNs including gene induction and biological activities 175. However in mammals, unlike their type I counterparts, the IFN λ R1 is predominantly expressed on epithelial cells, like skin, lung, intestine, colon, stomach liver and reproductive tract, as well as on specific subsets of immune cells 135,152,159,176-179. It was believed that endothelial and fibroblast cell lines do not express IFN λ R1 but evidence has emerged that show an effect on

endothelial cells of the blood brain barrier and in the neuro-invasion of West Nile virus, clearly demonstrating that endothelial cells have a response to IFN λ ¹⁸⁰. This suggests that the type III IFN system has evolved to protect the barriers like the mucosa and the blood brain barrier against pathogens ¹⁵⁹, in contrast to the type I system, the receptors for which are expressed on all nucleated cells ¹⁸¹. Liver, pancreatic and colorectal carcinoma cell lines also express IFN λ R1 and are therefore susceptible to type III IFN signaling^{142,159,179}.

4.6.2 IFNλ receptor signal transduction

The binding of a cytokine to its cognate receptor initiates a signaling cascade which results in changes of the physiological state of the cell ⁵⁶. A variety of signaling cascades have been identified that are utilized by cytokine receptors to mediate the cell response ¹⁸². One key pathway is named the Janus Kinase-Signal transducer and activator of transcription (JAK-STAT) pathway. The JAK family comprises four members, JAK1, JAK2, JAK3 and Tyrosine kinase 2 (TYK2), and the STAT family comprises seven members, STAT1-4 5a,5b and 6 183,184. IFN λ initially binds to the IFN λ R1 chain, which causes a conformational change that enables recruitment of the IL-10R2 to form a trimer. This activates the intracellularly associated tyrosine kinases JAK1 and TYK2 to mediate phosphorylation of the receptor chains. This creates docking sites for various cytosolic signaling molecules including the latent transcription factors STAT1 and STAT2¹²⁰. Signaling through type III (and type I) IFN receptor complexes results in the formation of a transcription factor complex known as IFN stimulated gene factor 3 (ISGF3) 128,146. This complex consists of 3 proteins, STAT1, STAT2, and IFN regulatory factor-9 (IRF-9) ¹²⁰. Once assembled, ISGF3 translocates to the nucleus where it binds to IFN stimulated response elements (ISREs) in the promoters of various interferon stimulated genes (ISGs) 185. Despite different receptor complexes being employed there is a distinct signaling overlap between type I and III IFNs, largely due to convergent STAT activation, which helps explain why the antiviral outcomes are so similar 128,146,178,185. However, other signaling molecules also contribute to the induction of antiviral genes. For example, activation of mitogen-activated protein kinases (MAPK) like ERK, p38 and JNK leads to recruitment of auxiliary transcription factors that co-operate with the ISGF3 complex to enhance its transcriptional activity 186,187. The type III IFN activates a number of MAP kinases, relying to a greater extend on p38 and JNK for gene induction when compared to the type I IFNs 146,152.

4.7 The chicken IFN system

4.7.1 Chicken type I IFN

Chicken IFNs were those first discovered in 1957 by Isaacs and Lindenmann while growing influenza virus in chicken chorio-allantoic membrane 60. Originally they were named IFN1 and IFN2 but Lowenthal and colleagues proposed the standard type I nomenclature be applied and therefore they were re-named IFN α and IFN β , respectively ¹⁸⁸. In chickens, IFN α consists of a multi-gene family, while only one member of IFNβ has been found. The encoded chicken IFN β shares 58% homology to IFN α but neutralization studies with anti-IFN α antibodies confirmed that IFN β was a distinct cytokine ¹⁸⁹. All type I IFNs are intron-less and located on the Z chromosome, which denotes the male sex chromosome in birds 189,190. The chicken type I IFNs were found to be strongly induced in response to infection by a number of viruses, such as influenza A virus and Newcastle disease virus (NDV) 191. Examination of the promoter regions of chicken type I IFNs has revealed putative binding sites for IRFs in all genes, and an NFkB site only in the IFNB promoter, similar to the situation observed in mammals $\frac{192}{2}$. Recombinant chicken IFN α and IFN β expressed in bacteria or COS cells displayed appreciable antiviral activity that was comparable to their mammalian counterparts $\frac{189}{2}$. Recombinant forms of chicken IFN α suppressed the growth *in vitro* of many viruses, such as Marek's disease virus (MDV) 193, infectious bursal disease virus (IBDV) 194 and infectious bronchitis virus (IBV) $\frac{195}{2}$. Chicken IFN α was also shown to also inhibit the replication of influenza A virus (H9N2) infection in ovo as well as in vivo 196.

4.7.2 Chicken type II IFN

Chicken IFNγ has been identified as a single-copy gene on chromosome 1 ¹⁹⁷. It demonstrates high homology to mammalian IFNγ and has been shown to have similar biological activities, such as induction of nitric oxide production in macrophages, antiviral activities against vesicular stomatitis virus (VSV) *in vitro*, and up-regulation of MHC class II expression ¹⁹⁸⁻²⁰⁰.

4.7.3 Chicken type III IFN

Computational techniques enabled the identification of a single chicken IFN λ gene on chromosome 7 $\frac{65,201}{10}$. The genomic structures of both mammalian and chicken IFN λ genes are similarly organized into 5 exonic regions $\frac{118,119,201}{10}$. The encoded chicken IFN λ has a higher amino acid identity to human IFN λ 2 compared to IFN λ 1 and IFN λ 3, and an even lower identity to the chicken type I or type II IFNs $\frac{201}{10}$. Chicken IFN λ has been recombinantly

expressed and its biological function investigated in a number of assays. Chicken IFN λ displayed inhibitory activity against Semliki Forest virus (SFV) and influenza A virus, in a similar manner to that observed for the type I chicken IFN. However, the overall activity of chicken IFN λ was lower than its type I chicken IFN counterparts, consistent with findings in human and mouse models $\frac{201}{2}$.

4.7.4 Chicken IFN receptors

Only a few chicken CRF2 genes have been cloned or characterized to date. The IFN α R1, IFN α R2, IFN γ R2 and IL-10R2 genes were found to cluster on chicken chromosome 1 in a similar fashion to that seen in the human ²⁰², with IFN γ R1 ²⁰³ also identified. Previous studies have also indicated the presence and activity of the JAK-STAT pathway components in birds ^{204,205}, which would suggest conserved downstream signaling, although functional confirmation remains lacking. IFN λ R1 mRNA expression has been described in chicken heart, liver, kidney, intestine, lung and trachea ²⁰⁶.

4.8 Interferon stimulated genes

The antiviral activity of IFNs is mediated by hundreds of genes upregulated upon IFN stimulation called ISGs ²⁰⁷. These genes encode proteins that are able to interfere with the virus life cycle at different stages and so play a key role in IFN mediated antiviral defence. The antiviral effector ISGs can be grouped into three main categories ²⁰⁷: (i) proteins that act as inhibitors of viral entry like the Myxovirus resistance gene 1 (Mx1) ²⁰⁸; (ii) proteins that interfere with viral replication like the zinc finger antiviral protein (ZAP) ²⁰⁹, the IFN-induced double-stranded RNA dependent protein kinase (PKR) ²¹⁰ or the interferon inducible protein with tetratricopeptide repeats (IFIT) gene family ²¹¹; and, lastly (iii) proteins that inhibit viral budding, like the virus inhibitory protein, endoplasmic reticulum (ER) associated, interferon inducible (Viperin) ²¹².

4.8.1 Mx1

The mouse Mx1 gene belongs to the dynamin GTPase family ²¹³ and was one of the first genes described to affect viral entry. Its encoded protein is specifically involved in blocking viral entry into the nucleus ²¹⁴ via association with vesicular COP I, leading to sequestering of essential viral compartments within the cell ²¹⁵. The chicken Mx1 gene has been studied extensively for its role in influenza virus infections ²¹⁶. Some publications claim that chicken Mx1 is antiviral ²¹⁷ while others show no antiviral benefit ^{216,218,219}. The chicken Mx1 gene is very polymorphic ²¹⁸ with several different haplotypes identified across chicken breeds ²²⁰,

although potential differences between these haplotypes in antiviral protection has yet to be determined.

4.8.2 ZAP

ZAP is an accessory factor that recognizes viral RNA and promotes viral RNA degradation via the RNA exosome ²²¹ thereby inhibiting translation of incoming viral RNA ²²². The chicken homologue of ZAP has previously been identified and characterized ²²³.

4.8.3 PKR

PKR is a RNA-dependent protein kinase that upon recognition of dsRNA phosphorylates the eukaryotic initiation factor- 2α , which then blocks viral protein synthesis by disrupting delivery of tRNAs to the 40S ribosomal subunit ²²⁴. PKR has also been shown to be involved in the activation of signal transduction pathways leading to IFN β gene expression ²²⁵. The chicken PKR gene has been identified and characterized ²²⁶.

4.8.4 IFIT

The various IFIT family members, IFIT1-5, have been shown to play critical roles in antiviral defence in humans and mice ²¹¹. The mechanisms are not completely understood but IFIT1 and IFIT2 have been shown to suppress translation by binding to the eukaryotic initiation factor 3 ²¹¹. Furthermore, IFIT family members can also directly bind to single-stranded RNA ^{211,227} and double-stranded DNA ²²⁸ and thereby reduce viral replication. The chicken IFIT has been mentioned in several publications²²⁹ ^{230,231} but a comprehensive characterization of the gene has not been performed.

4.8.5 Viperin

Viperin has been shown to interfere with the viral life cycle of many viruses by as yet unknown mechanisms ²¹². Some groups have suggested that viperin inhibited replication of certain viruses ^{232,233}, while others have shown that it disturbs lipid rafts to restrict budding of influenza A viruses ²³⁴ and HIV ²³⁵. Chicken viperin has been identified and characterized ²³⁶.

4.9 Rationale

Highly pathogenic avian influenza (HPAI) infections such as H5N1 and H7N9 cause significant morbidity and mortality in chickens worldwide ²³⁷. This has widespread consequences, including devastating effects on the poultry industry ²³⁸ leading to severe economic losses ²³⁹ and bottlenecks in meat supply, since the method of choice to limit the spread of the virus is

the mass culling of infected chicken flocks ²⁴⁰. There is also the potential for zoonotic transmission to humans ^{237,241-243}, with most human infections of HPAI associated with direct transmission from avian hosts with little or no evidence of human-to-human transmission ^{244,245}. Therefore, the ability to stop HPAI infection in chicken would be a very attractive.

Knowledge in the field of mammalian antiviral defence is advanced, with studies in mice playing a crucial role in the advancement of knowledge regarding antiviral immunology and host pathogen interaction ²⁴⁶. In contrast information on the avian immune response currently remains limited. Moreover, there are distinct differences in mouse physiology and immunology compared to natural pathogen reservoir species as well as spill over hosts ^{246,247}. This clearly indicates the need for more studies in avian species to better understand pathogenicity of viruses such as HPAI to underpin the development of means to prevent the spread of these pathogens ²⁴⁸.

4.9.1 Hypothesis

The studies in this thesis seek to investigate the hypothesis that the IFN λ signalling complex is involved in the antiviral immune response in chickens.

4.9.2 Aims

The research addresses following specific aims:

- To characterize the expression of chicken IFNλ and its effect on in vitro and in vivo ISG expression in comparison to IFNα.
- To identify and confirm the chicken IFNλR complex and downstream signaling effector molecules.
- To identify and characterize the chicken IFIT5 gene.

5 Material and Methods

5.1 Cell culture

5.1.1 Chicken splenocytes

Chicken splenocytes were purified as described previously $\frac{201}{201}$. Briefly, spleens from 4-6 week old (unless otherwise specified), specific-pathogen free (SPF) chickens were harvested and dispersed through a 70 µm mesh sieve (BD Falcon). The mononuclear cells were then purified using density gradient centrifugation (Lymphoprep – Nicomed Pharma). After washing, the cells were counted and $4x10^6$ cells per well transferred to 24 well plates (Nunc) and cultured in DMEM high glucose media (Life Technologies) containing 10% (v/v) fetal calf serum and 1000 U/mL penicillin and streptomycin (Sigma).

5.1.2 DF1 cells

DF1 cells were maintained in DMEM high glucose media (Life Technologies) containing 10% (v/v) fetal calf serum and 1000 U/mL penicillin and streptomycin (Sigma) at 37°C with 5% CO₂. After passaging the cells were counted and 6×10^4 cells transferred into a 24 well plates (Nunc) and kept at 37°C with 5% CO₂ overnight.

5.1.3 Transfection

Cells were washed and cultured in 400 μ l Optimem per well. Per well 2 μ l Lipofectamine 2000 (Invitrogen) and 4 nM siRNA were incubated at RT for 30 min then 10% DMSO (v/v) was added and the mix transferred onto the cells. These were incubated at 37°C with 5% CO₂ for 12 h before the media was changed back to full growth media for 48 h.

5.1.4 Cell stimulation

After passaging the cells were counted and $6x10^4$ cells were transferred into a 24 well plates (Nunc) and kept at 37°C with 5% CO₂ overnight.

Cells were stimulated with 50 μ g/mL of poly (I:C) (Invitrogen), 10 μ g/mL lipopolysaccharide (LPS) purified from E. coli strain 0111:B4 (gamma irradiated, 500000 EU/mg) (Sigma Aldrich), 500 ng/mL recombinant chicken IFN α (Genway Biotech) or 50 μ g/mL recombinant chicken IFN α , kindly provided by Dr Tim Adams (CSIRO Manufacturing). The chIFN α was produced in an *E. coli* expression system while the chIFN λ was produced within an mammalian system utilizing CHO cells both were tested for the absence of endotoxins. In some experiments cells were pre-treated with 1 nM Ruxolitinib (Selleck Chemicals) per well for 2 h. The doses

for each compound were initially taken from literature or MSDS and confirmed by in vitro experiments on chicken primary or cell lines to be the most effective dose for (data not shown).

5.2 In vivo studies

5.2.1 Ethics

All animal work was conducted with the approval of the CSIRO Australian Animal Health Laboratory Animal Ethics Committee (permit number 1610). All procedures were conducted according to the guidelines of the National Health and Medical Research Council as described in the Australian code for the Care and Use of Animals for Scientific Purposes. All birds were obtained from Australian SPF Services P/L (Woodend, Australia).

5.2.2 Egg trial (H1N1)

D10 embryonated chicken eggs were inoculated with 100 µl of 1:10000 diluted virus stock A/Puerto Rico/8/1934 H1N1 of 6.4 x 10^8 pfu/mL (kindly provided by Dr. Siying Ye and Dr. John Stambas), incubated at 37°C for 24 or 48 h and then chilled at -20°C for 20 min and post mortems performed. The tissues were placed into 2 mL tubes (Sarstaed) with Graphite beads (Daintree Scientific) and RLT buffer (Qiagen) and homogenized twice for 20 s each. Tissue homogenate was then stored at -80°C for RNA extraction.

5.2.3 Virus propagation

A highly pathogenic avian influenza virus A/duck/Laos/XBY004/2014 (H5N6) (Lao/14), isolated from pooled duck tissues from Lao PDR $\frac{31}{249}$, was used in this study. Virus was propagated according to accepted protocols $\frac{249}{249}$, briefly: After wiping with 70% (v/v) ethanol a small incision was punched into the egg shell the virus was introduced by allantoic cavity inoculation of D9–11 embryonated SPF chicken eggs. The incision was then sealed with wood glue and the eggs incubated at 37°C for 48 h The virus stock was titrated in chicken eggs and the 50% egg infectious dose (EID₅₀)/mL was calculated according to the method of $\frac{250}{250}$.

5.2.4 Animal trial (H5N6)

Six 5-week-old SPF chickens were used for experimental infections. Samples from six uninfected chickens from the same cohort were used as controls. Prior to challenge, serum was collected from each chicken to confirm that birds were serologically negative for avian influenza A virus, as determined by blocking ELISA ²⁵¹. Each chicken was inoculated with a dose of 10⁶ EID₅₀ of Lao/14 in 0.2 mL by the oral-nasal-ocular route. Chickens were observed closely from 22 hpi and were euthanized at a humane endpoint defined as progression to moderate signs of disease, including facial swelling, diarrhoea, hunched posture with ruffled feathers, drooping wings, huddling, recumbency, depression and slow response to stimulation. In accordance with Institutional Animal Welfare Policies, chickens were euthanized by cervical dislocation following heart bleed under anesthesia (44 mg/kg ketamine, and 8 mg/kg xylazine injected intramuscularly). Immediately after euthanasia, swabs (oral and cloacal) were taken and approximately 100 mg of tissue from the spleen and lung were collected into sterile 2 mL tubes containing PBS with antibiotics and a small quantity of 1 mm silicon carbide beads (BioSpec Products). Tissue samples were homogenized twice for 20 s in a FastPrep24 tissue homogenizer (MP Biomedicals) for bioassays. The presence of influenza viral genome within swabs, tissues samples was assessed by extracting total RNA from each sample (MagMax-96 Total RNA Isolation Kit, Life Technologies) for testing using a pan-influenza A matrix gene real-time RT-PCR assay 252. Cycle threshold (Ct) values for each sample were compared to those obtained for a set of RNA transcripts encoding the Lao/14 matrix genome segment to convert each sample Ct value into a value representing the number of copies of the matrix genome segment per μ l of sample. These RNA transcripts were generated using T7 RNA polymerase (Promega) and a plasmid encoding the Lao/14 matrix genome segment cloned into the pGEM-T-Easy cloning vector (Promega). The complete data set can be found in Butler et al 2016 253

5.3 **Bioinformatics**

5.3.1 Primer design and domain prediction

Protein sequences were retrieved from the Ensembl genome database (<u>www.ensembl.org</u>) except for KF956064, which was retrieved from Genbank (<u>www.ncbi.nlm.nih.gov/genbank</u>). Primer design, sequence assembly and initial alignment was performed using CLC-Main Workbench 7.6.3.

5.3.2 Phylogenetic analysis

All Sequences were retrieved from Genbank (<u>www.ncbi.nlm.nih.gov/genbank</u>). Protein alignments used the MUSCLE algorithm and phylogenetic trees were calculated using MEGA 6.0. Accession Numbers of all sequences used in this analysis are given in the Appendix.

Table 2 (IFNs)

Table 3 (IFNλR) Table 4 (IFNAR1) Table 5 (IL10R2) Table 6 (IFITs)

5.4 Molecular methods

5.4.1 RNA isolation and reverse transcription

Total RNA was harvested from cultured cells using the Qiagen RNAeasy extraction kit according to the manufacturer's instruction, and from tissues using TRIzol (Life Technologies). Prior to qRT-PCR for gene expression analysis, RNA samples were subsequently treated with RNAse-free DNase (Promega) and reverse transcribed with a Superscript III cDNA synthesis kit (Life Technologies).

5.4.2 Cloning and sequencing

The chIFIT5 gene was amplified using Platinum *Taq* Master mix (Life Technologies) with gene specific primers (forward primer: 5'-ATGAGTACCATTTCCAAGAAT, reverse primer: 5'-TAGCTTGAGAGGGAAAG) and cloned into the pGEM-T-Easy vector (Promega) using T7 Ligase (Promega) and transformed into *Escherichia coli* DH5 α (Life Technologies), according to manufacturer's instructions. Plasmids were purified using a Qiagen Plasmid Miniprep kit and sequencing was performed by the Micromon Sequencing Facility (Monash University).

5.4.3 Quantitative Real Time PCR (RT-PCR)

Gene expression was quantified in DF1s, splenocytes and lung and spleen tissues by RT-PCR using TaqMan Universal PCR master mix (Life Technologies) with FAM reporter dye and NFQ quencher and primer probe pairs obtained from Applied Biosystems (**Table 7**). Temperature profile for the RT PCRs was: 50°C 2 min, 95°C 10 min, 40 cycles of 95°C 15 sec and 60°C 1 min.

5.4.4 Electrophoretic mobility shift assay (EMSA).

Nuclear extracts were prepared as described previously $\frac{254}{254}$. Briefly, cells were stimulated, pelleted and resuspended in ice-cold hypotonic buffer (2 mM HEPES pH 7.8 (Sigma), 20 mM NaF (Sigma), 1 mM Na₃VO₄ (Sigma), 1 mM DTT (Sigma), 1 mM EDTA (Sigma), 50 µg/mL Protease inhibitors (Sigma), 1 mM Tween-20). Cells were then briefy and the nuclei pelleted by centrifugation at 15,000g for 30 s. Nuclear extracts were prepared by resuspension of the nuclei in high-salt buffer (hypotonic buffer with 420 mM NaCl (Sigma) and 20 % (v/v) glycerol) and extraction of proteins by rocking for 30 min at 4°C. Insoluble materials were removed by centrifugation at 4°C for 15 min at 15,000g and nuclear extracts were stored at -80°C for analysis.

Nuclear extracts were incubated for 20 minutes at room temperature with 32P-labeled double-stranded m67 oligonucleotide (5'-CATTTCCCGTAAATC), a high-affinity mutant of the sis-inducible element (SIE) and poly(dI-dC) in binding buffer (13 mmol/L HEPES, pH 7.8, 80 mmol/L NaCl, 3 mmol/L NaF, 3 mmol/L NaMoO4, 1 mmol/L DTT, 0.15 mmol/L EDTA, 0.15 mmol/L EGTA, and 8% glycerol). The DNA-protein complexes were separated by electrophoresis on 5% polyacrylamide gels containing 5% glycerol in 0.25 x Tris-buffered EDTA (TBE). The gels were dried and subsequently exposed to phosphoimager screens and analyzed with ImageQuant software (Molecular Dynamics).

6 Characterization of chicken IFNλ signaling

6.1 Introduction

The interferons (IFNs) were discovered by Isaacs and Lindenmann in the chorio-allantoic membrane of chicken eggs with the isolated protein first described as "a substance that was able to interfere with the virus' ability to infect cells"⁶⁰. Since then the knowledge about IFNs has increased dramatically, although most these studies have been performed in mammals. IFNs are expressed by virtually all cells of the body upon sensing of viral PAMPs via PRRs such as TLRs ^{38,44}. Of the thirteen TLRs identified six are considered to function as antiviral sensors either through the detection of viral glycoproteins on the cell surface (via TLR2 and 4) or through recognition of dsRNA in the endosome (via TLRs 3,7, 8 and 9) ⁴⁵⁻⁵¹. In addition to the TLRs, intracellular sensors such as RIG-I and MDA-5 are involved in the cytosolic recognition of foreign nucleic acids ⁵² although in chickens MDA-5 appears to have taken over some of the roles of RIG-I that it is absent in this species ²⁵⁵.

Three IFN families have been identified which are called type I, type II and type III. IFNs are assigned to these families according to their receptor specificity and signaling pathways, which defines downstream gene induction although overlaps occur in these features between families $^{64-66}$. Type I IFNs consist of at least 8 subclasses with the IFN α s and IFN β as their most prominent members 1,22 , type II consists of IFN γ and type III comprises IFN λ s of which there are four in humans but only one in the chicken 201 . All types of IFN contribute to the antiviral immune response but only type I and III have a direct antiviral effect 59 , which is mediated by a group of hundreds of antiviral genes called ISGs 207 .

Similarities between type I and type III IFNs have been described concerning gene induction and antiviral properties 146,175 . However, each of these families signal through a unique receptor complex consisting of two chains; for type I IFNs these are IFNAR1 and IFNAR2 256 and for type III IFNs these are IFN λ R1 and IL-10R2 118,119 . Recent studies have identified unique roles for IFN λ s in antiviral defense, and there is emerging evidence that IFN λ s may have functional importance beyond innate antiviral protection 128 .

This Chapter focuses on advancing our understanding of the biological activities of chicken type III IFN particularly the similarities and differences with respect to type I IFN.

6.2 Results

6.2.1 Phylogenetic analysis of the chicken type I/III IFNs

To obtain an initial insight into the relative homology between the chicken and mammalian IFN systems phylogenetic analysis of type I and type III IFNs from chicken, human and mouse was performed (**Figure 6-1**). Unsurprisingly, the IFN α s of both human and mouse clustered together in separate groups, which collectively were distinct from other human and mouse type I IFNs like IFNo, IFN ζ and IFN κ . Chicken type I IFNs, IFN α and IFN β , clustered together in a subgroup linked with human and mouse IFN β and IFN ϵ . The chicken IFN λ grouped with the mammalian IFN λ proteins that clustered by species. This suggested overall conservation, including distinct type I and type III members between chickens and mammals.

6.2.2 Dose response of chicken IFNs to poly (I:C)

Poly (I:C) (PIC) is a powerful inducer of IFNs 257 . It serves as a mimic of viral RNA and so is able to trigger PRRs like the TLR family and MDA-5. To examine induction of IFN α and IFN λ by PIC purified chicken splenocytes were cultured in vitro with different concentrations of PIC for 3 h and IFN mRNA levels analyzed by qRT-PCR (**Figure 6-2**). Both IFNs were induced even by low concentrations of PIC. Indeed, IFN α reached its peak expression with a 5-fold upregulation at 1 µg/mL that was similar up to 100 µg/mL. In contrast IFN λ expression increased up to 10 µg/mL where it maintained a peak level of expression at around 600-fold upregulation compared to the untreated control.

6.2.3 Time course of TLR-dependent stimulation of chicken IFNs

To further investigate the type I versus type III IFN response, the timing of TLR-mediated IFN induction was analyzed following stimulation with PIC as well as lipopolysaccharide (LPS), another TLR agonist ²⁵⁸. Chicken splenocytes were treated with either PIC (**Figure 6-3A**) or LPS (**Figure 6-3B**) and IFN expression measured at different time points. PIC treatment led to a rapid and robust upregulation of both IFNs, being increased after 0.5 h and peaking at 30-fold for IFN α and 100-fold for IFN λ at 1.5-3 h, followed by a decline to close to base-line expression by 24 h post stimulation. LPS treatment, in contrast, failed to induce any significant upregulation of either IFN α or IFN λ at any time points measured.

Figure 6-1 Phylogenetic analysis of the type I/III IFNs

The evolutionary history of the type I and type III IFNs from human, mouse and chicken was inferred by using the Maximum Likelihood method based on the JTT matrix-based model ²⁵⁹. The tree with the highest log likelihood (-10509.0810) is shown. The accession numbers of all sequences used can be found in the Appendix (Table 1).

Figure 6-2 Dose response of chicken IFNs to poly (I:C)

Expression of IFN α and IFN λ mRNA in purified chicken splenocytes from SPF chickens stimulated with poly (I:C) at the concentrations indicated. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05 using a one-way ANOVA test with Fischer's uncorrected LSD test).

Figure 6-3 Time course of TLR-dependent stimulation of chicken IFNs

Expression of IFN α and IFN λ mRNA in purified splenocytes from SPF chickens stimulated with 50 µg/mL PIC (A) and 10 µg/mL LPS (B) over the indicated times. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05, *** p value < 0.001 using a one-way ANOVA test with Fischer's uncorrected LSD test).

6.2.4 Time course of IFN mediated induction of chicken IFN expression

Self-induction and/or positive feedback loops for IFNs exist in mammals, where they play an important role in signal amplification 260 . Since this has not previously been investigated in birds, splenocytes from SPF chickens were exposed to recombinant chicken IFN α **Figure 6-4A**) and recombinant chicken IFN λ (**Figure 6-4B**) and levels of IFN mRNAs quantified. IFN α stimulation did not significantly induce IFN α or IFN λ mRNA expression across all chickens at any time points measured although induction was observed in a subset (two) of chickens. IFN λ treatment in contrast upregulated IFN λ slightly up until 6 h but by 48 h a 3000-fold increase was observed. IFN λ stimulation caused IFN α mRNA levels to decrease until 24 h, but with a later upregulation to 350-fold at 48 h.

6.2.5 Characterization of TLR-dependent ISG responses

TLR responses in chicken cells have been previously described ²⁶¹, but the timing of ISG induction has not been well characterized. Splenocytes from SPF chickens were stimulated with PIC (**Figure 6-5A**) and LPS (**Figure 6-5B**) and ISG expression quantified. The PIC treatment led to a sharp increase in ISG expression at 3 h, with a peak expression level for all ISGs at 6 h post stimulation, followed by a decline to base-line levels after 48 h. Mx1 showed the highest induction of approximately 170-fold followed by Viperin at around 70-fold, with induction of Zap and PKR peaking at around 10-fold at the 6 h time point. LPS stimulation gave a similar kinetics of ISG induction, with peak expression at 6 h and then a decline to base-line expression around 48 h. The magnitude of induction was similar for Viperin (approximately 50-fold) as well as PKR and ZAP (around 12-15-fold), but Mx1 induction was substantially reduced (around 20-fold).

Figure 6-4 Time course of IFN-mediated induction of chicken IFN expression

Expression of IFN α and IFN λ mRNA in purified splenocytes from SPF chickens stimulated with 500 ng/mL IFN α (A) and 50 µg/mL IFN λ (B) over the indicated time course. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (*** p value < 0.001 using a one-way ANOVA test with Fischer's uncorrected LSD test).

Figure 6-5 Characterization of TLR-dependent ISG response

Expression of Mx1, PKR, Viperin and Zap mRNA in purified splenocytes from SPF chickens stimulated with 50 μ g/mL PIC (A) and 10 μ g/mL LPS (B) over the indicated time course. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05, *** p value < 0.001 using a one-way ANOVA test with Fischer's uncorrected LSD test).

6.2.6 Characterization of the type I/III IFN-mediated ISG response

In mammalian systems profound differences between type I and type III interferons have been described, both in the magnitude of the ISG response as well as its timing ¹⁵⁷. To better understand the IFN response in chickens, the time-dependent expression of several well characterized ISGs was evaluated. Splenocytes from SPF chickens were treated with chIFN α (**Figure 6-6A**) or chIFN λ (**Figure 6-6B**). ChIFN α treatment led to a rapid increase of all ISGs investigated with similar kinetics, a sharp rise in expression levels after 3 h with a peak at around 6 h and then a decline to 48 h. Although having similar induction kinetics, the magnitude of the responses differed between the genes, with Mx1 and Viperin showing highest upregulation at around 40 and 30-fold increase, respectively, while both PKR and ZAP expression levels showed an approximately 8-fold increase during the peak at 3 h post stimulation. In contrast, chIFN λ stimulation of these cells led to a considerably delayed induction of ISGs. A small increase was apparent by 1.5 to 3 h, with peak induction at 48 h post stimulation. By this time, both Viperin and Mx1 were highly induced, with a 20-fold and 10-fold increase at the 48 h time point, respectively. No significant increase in ZAP or PKR expression was observed following chIFN λ stimulation.

6.2.7 Characterization of the IFN response following acute HPAI H5N6 infection To evaluate the involvement of type I and III IFNs in vivo, RNA was extracted from spleens and lungs of H5N6 infected and uninfected chickens at 24 h post infection and the levels of IFN α and IFN λ measured by qRT-PCR. In the spleen of infected chickens (**Figure 6-7A**) IFN α was induced 9-fold and IFN λ almost 70-fold compared to uninfected animals. In the lungs (**Figure 6-7B**), the primary site of infection, both IFNs were highly induced, with a 25-fold

increase of IFN α and a 60-fold increase in IFN λ compared to uninfected birds.

6.2.8 Characterization of ISGs expression following acute HPAI H5N6 infection ISGs are key mediators of the antiviral immune response mediated by IFNs. Therefore, the expression of some of the most important antiviral genes was examined during acute HPAI infection. In the spleen of infected chickens Mx1 gene expression was induced 230-fold compared to uninfected controls with PKR being slightly lower at around 40-fold, but no significant upregulation of ZAP expression was observed (**Figure 6-8A**). In the lungs, expression of Mx1 was induced 65-fold and PKR around 60-fold with ZAP again not upregulated (**Figure 6-8B**).

Figure 6-6 Characterization of the type I/III IFN-mediated ISG response

Expression of Mx1, PKR, Viperin and Zap mRNA in purified splenocytes from SPF chickens stimulated with 500 ng/mL IFN α (A) and 50 µg/mL IFN λ (B) over the indicated time course. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05, **** p value of <0.0001 using a one-way ANOVA test with Fischer's uncorrected LSD test).

Expression of IFN α and IFN λ mRNA in the spleen (A) and lung (B) of six 5-week old SPF chickens 24 hours post infection with Influenza virus A/duck/Laos/XBY004/2014 (H5N6). Data is shown as the mean fold change of mRNA expression with the SEM compared to the same tissue of the uninfected birds, normalized against the housekeeping gene GAPDH (* p value < 0.05 using the Students *t* test with Mann Whitney U test).

Figure 6-8 Characterization of ISG response following acute HPAI H5N6 infection

Expression of Mx1, Pkr and Zap mRNA in the spleen (A) and lung (B) of six 5-week old SPF chickens 24 hours post infection with Influenza virus A/duck/Laos/XBY004/2014 (H5N6). Data is shown as the mean fold change of mRNA expression with the SEM compared to the same tissue of the uninfected birds, normalized against the housekeeping gene GAPDH (* p value < 0.05 using the Students *t* test with Mann Whitney U test).

6.2.9 Comparison of type I and III IFN expression between male and female chickens.

Recent evidence from mice and humans suggests that females and males differ in the magnitude of immune responses particularly with regards to IFNs, with a link to female hormone levels also suggested ^{262,263}. To examine this possibility in chickens, splenocytes from immature female and male chickens were treated with PIC (Figure 6-9A/B/C) with blood estradiol levels of each bird measured in parallel (Figure 6-9D). IFNα mRNA levels (Figure 6-9A) were relatively tightly grouped: males tended to have higher levels earlier but females tended to show a significantly higher peak at 2 h. The IFN β mRNA levels (Figure **6-9B**) followed the same trend as IFN α , with significantly higher female expression at 2 h. Interestingly the opposite trend was observed for IFN λ (Figure 6-9C) with males having a generally higher expression albeit only reaching significance at the 2 h time point. The inability to reach significance at other time points was in part due to highly variable IFN λ expression in females compared to the males with several individuals showing negligible IFN λ induction. The concentration of serum estradiol was measured in both groups and indicated that the immature female chickens had higher levels, ranging from 70-90 pg/mL while all the male samples clustered around 60 pg/mL. The experiment was repeated with chicken splenocytes from sexually mature male and female chickens. PIC stimulation (Figure 6-10A) lead to higher mean IFN expression in females which reached statistical significance for IFNλ. The estradiol levels (Figure 6-10B) were significantly higher in females ranging from 300 -1400 pg/mL, with in males again around 60 pg/mL. Single bird correlation of estradiol levels and IFN mRNA expression showed no conclusive pattern in female or male birds (Figure 6-10C/D).

Figure 6-9 Comparison of type I and III expression in immature male and female chickens.

Expression of IFN α (A), IFN β (B), IFN λ (C) mRNA in purified chicken splenocytes from 6 female (circles) and 6 male (triangles) 5-week old SPF chickens stimulated with 50 µg/mL PIC over the time course indicated. Symbols represent fold upregulation of each stimulated splenocytes sample compared to the untreated sample, normalized against the housekeeping gene GAPDH. (For A-C: * p value < 0.05, ** p value < 0.005, *** p value < 0.001 using a two-way ANOVA with Bonferroni's multiple comparisons test) (D) Blood estradiol levels chickens at the time of sacrifice (*** p value < 0.001 using the Students *t* test with Mann Whitney U test).

Figure 6-10 Comparison of type I and III IFN expression in mature male and female chickens.

Expression of IFN α and IFN λ mRNA in purified chicken splenocytes from 6 female (circles) and 5 male (triangles) 12-week old SPF chickens stimulated with 50 µg/mL PIC for 2 h. Symbols represent fold upregulation of each stimulated splenocytes sample compared to the untreated sample, normalized against the housekeeping gene GAPDH (A). (B) Blood estradiol levels of the chickens at the time of sacrifice. (For A: * p value < 0.05 using a two-way ANOVA with Bonferroni's multiple comparisons test, for B ** p value < 0.005 using the Students *t* test with Mann Whitney U test). Depiction of IFN α and IFN λ mRNA levels for females (C) and males (D) (R² values indicate the curve fit for a linear regression).

6.3 Discussion

Like other bird species, chickens have a single IFN λ , compared to four members in humans ¹²⁵ and two in mice ¹²⁴. This Chapter sought to further the knowledge base about chicken IFN λ , particularly in comparison to type I IFNs.

Phylogenetic comparison of chicken type I and III IFNs with those of mice and humans provided insights into their evolution. IFNαs have separately expanded in both humans and mice, forming distinct sub-clades that group together. These formed a larger clade with other type I IFNs, including the single IFNβ and numerous alternate IFNs. It has been argued that this reflects the strong evolutionary pressure on IFN evolution that is thought to be unequal between IFNs 264 . Notably, chicken IFNα and IFNβ clustered together, confirming their presumed divergence from a common precursor, but also suggesting that speciesdependent evolutionary pressure has driven them to remain relatively highly conserved compared to those of other species 68 . The IFNγ proteins formed a distinct cluster, indicative of a conserved role across species 265 , with the human and mouse IFNλs again forming separate sub-clades.

Since their discovery, type III IFNs have been compared to their type I counterparts ^{118,119}. Under certain experimental situations, type III IFNs showed similar gene induction to type I IFNs but elicited a reduced magnitude of antiviral effect ^{266,267}. This has led to the assumption that IFNλs are just a 'weaker' form of type I IFNs. However, other studies have found significant differences between type I and type III IFNs, including the identification of novel roles for the latter 268-270. Whether such differences were present in chickens remained an unanswered question. Therefore, the induction and effects of IFNA were directly compared to IFN α in primary chicken splenocytes. Treatment with well-characterized TLR agonists revealed differences in dose-response, magnitude and timing of IFN induction. It is worth to mention here that all stimulations were executed at 37°C and not the usual temperature for avian cells (42°C) due to limitations of incubation space, which may influence the magnitude of the response to stimuli. PIC is a viral RNA mimic that triggers TLR3 and initiates a strong antiviral response in most cells $\frac{47}{2}$. This was shown to induce IFN α by 3 to 8-fold, whereas IFNλ induction was 30-500-fold. Moreover, peak IFNα induction occurred at a lower dose of PIC (0.5 μ g/mL) compared to IFN λ (10 μ g/mL). In contrast the timing of PIC-mediated induction of IFN α and IFN λ was similar, with a peak at 1.5-3 h, followed by a decline. These results suggest that the two IFNs may have different biological roles, with moderate IFN α induction triggered by even low levels of pathogen, whereas a stronger IFNλ induction

requires higher pathogen levels. This data is consistent with human and mice experiments 257,271 , suggesting that the pattern of IFN induction is conserved. LPS treatment did not upregulate IFN α or IFN λ at any time point, which is in line with observation that infection with gram positive bacteria strongly induce IFN λ in lung epithelia and placenta cells but not gram negative bacteria 272 . Further, studies in human immune cells have shown that only IFN λ 1 can be upregulated by LPS stimulation while IFN λ 2 and λ 3 remain unresponsive in 273 . This suggests that IFN λ 1 may have acquired this feature, which is not a general property of type III IFNs. It is worth noting that large variations in IFN λ induction were observed between birds that limited finer analysis, this may be due to genetic factors as is the case for IFN γ in humans 274 . In addition, the reduced fold induction of IFN α is likely due, at least in part, to the higher basal levels of this IFN.

Amplification of antiviral signals plays an important role in immune defence, not only ensuring that the signal reaches sufficient strength to exert an effective response, but also that it is spread to neighbouring cells. These positive feedback loops have been described extensively for mammalian IFNs ^{128,260,275}. To investigate whether this mechanism was conserved in chickens, purified splenocytes were treated with recombinant IFN α or IFN λ . IFN α treatment showed a trend for rapid IFN α upregulation, which then slowly declined. Although the results lacked statistical significance due to considerable bird-to-bird variation the suggested time frame of self-induction was in agreement with mammalian studies ^{275,276}. IFN λ , in contrast, showed no induction by IFN α at any time point, which is different to studies in mice where IFN α induced a strong IFN λ induction ¹³⁵. However, this could be due to cell-type specific effects, since IFN λ expression is known to vary between cell types ^{137,273}. IFN λ stimulation resulted in a trend for differential regulation of IFN α and IFN λ early, but by 48 h led to a significant upregulation of both IFN α and IFN λ , which was higher for the latter. Based on the time lag involved, this is likely to be an indirect effect, the mechanism of which would require additional study.

ISGs represent the key effectors of the IFN system and as such their expression in response to pathogen related stimuli provides important insight into the chicken innate immune response. Therefore, the expression levels of four well known ISGs were measured in chicken splenocytes stimulated with PIC and LPS. In both cases, Mx1 and Zap showed strong induction that peaked at 3 h. Pkr and Viperin followed a similar trend albeit at a lower fold induction that failed to reach significance in the PIC stimulated cells. The pattern of ISG induction is in broad agreement with published data from mammal and avian in vitro systems, although it is clear that differences exist between cell types ^{223,236,267,277-279}. Although 49 LPS did not induce IFN α or IFN λ it has previously been shown that IFN β is in fact stimulated by LPS and responsible for the ISG upregulation ²⁸⁰.Treatment of splenocytes with recombinant IFNs revealed a difference between IFN α and IFN λ . IFN α was able to stimulate ISGs in a similar manner to PIC with respect to timing and breadth of genes. In contrast, IFN λ was only able to induce Mx1 and Viperin, reaching statistical significance at around 48 h. The rapid but transient induction of ISGs with IFN α but slower and more sustained induction with IFN λ is consistent with observations in mammals ^{267,271,281}. It seems likely that the peak in ISG expression 48 h post IFN λ treatment is a consequence of the large upregulation of IFNs seen concomitantly at this time point, although the specificity of ISG induction would indicate that the effects of IFN α have been modulated in some manner.

To provide more biologically-relevant insights, the effects of influenza virus infection were investigated. There studies utilized a H5N6 influenza A strain isolated from duck that was previously shown to elicit moderate signs of disease after 48 h. HPAI infection induced a significant but moderate upregulation of IFN α (8-fold) with a stronger induction of IFN λ (50fold) in the spleen. In the lungs, induction of IFN α was comparably higher (25-fold), with IFN λ upregulation comparable to the spleen (50-fold). The higher IFN α induction in the lung probably reflects this tissue being the primary site of infection, whereas the higher relative IFN λ induction in both organs is likely due the high base-line IFN α expression that reduced the fold change. The upregulation of both IFNs is, however, consistent with other studies investigating HPAI infection in birds 205,282. Moreover, the fact that both IFNs are induced indicates that this HPAI virus might not interfere significantly with the IFN induction, at least at the mRNA level. HPAI infection resulted in strong induction of Mx1 in both the spleen and lung, whereas Pkr was only significantly upregulated in the spleen. These expression patterns are consistent with the IFN induction observed as well as results in the literature ^{283,284}. In contrast, Zap was not significantly upregulated at the mRNA level in either the spleen or the lung despite previous studies showing high Zap expression that correlated with a shorter survival time during HPAI infections in chickens 285. The reason for this lack of Zap induction remains unknown.

Substantial variability was observed in immune gene expression between birds, which represented a significant issue in this study. Not only did it interfere with the ability to obtain statistically significant results and increase bird numbers required in experiments, but also pointed to a biological cause. Differences in the female and male immune systems have previously been noted in both humans and mice ^{263,286-290}. Exploring this as a potential cause of the variability of IFN expressions in chickens was interesting, since this organism has some 50

key genetic differences in this regard. In particular, the type I IFNs are located in one cluster on the sex (Z) chromosome of chicken, in which ZZ determines males and ZW determines females. Therefore, splenocytes from male or female chickens, both immature and mature, were tested for IFN responsiveness to PIC. Immature chicken splenocytes responded to PIC treatment with a time dependent activation of IFNs, and greater variability amongst females. For IFN α , males responded earlier, but induction in females was significantly higher and more sustained – a trend that also held true for IFN β . One hypothesis for that observation would be that the presence of additional copies of type I IFNs in males enables a more rapid response. Induction of IFN λ was also earlier in males, but in this case the peak was significantly higher compared to females. As expected, estrogen levels were significantly higher in females than in males, being much more variable in the former. In mature chickens, induction was higher for both IFN α and IFN λ in females but only reached significance for IFNλ. Consistent low estrogen levels were again observed in mature males (around 50 pg/mL) with much higher and more variable levels in females (450-1400 pg/mL). Investigation of a possible correlation of estradiol levels and induction levels in mature females as in males showed no significant trend. Further research is required to understand the interactions between sex hormones and IFN responses and to identify causes of the observed variability of IFN induction in birds.

7 Characterization of chicken IFN λ R

7.1 Introduction

Members of the Class II cytokine receptor family (CRF2) are heterodimeric receptors composed of two receptor subunits, denoted as $R1/R\alpha$ and $R2/R\beta$. Each subunit is a single pass transmembrane protein defined by structural similarities in the extracellular domain, which includes the cytokine receptor homology domain (CHD) that is involved in ligand binding and certain sequences in the intracellular domain ¹⁶⁴. CRF2 ligands bind with high affinity to the R1 chain, which characteristically has a larger intracellular domain, whereas the R2 chains have smaller intracellular domain and lower ligand affinities. The binding of the ligand to the R1 chain leads to recruitment of the R2 chain and the trimeric complex then initiates specific intracellular signaling cascades ¹⁶⁴. The family is composed of 12 distinct receptors, which are used for signaling by members of the IFN, IL-10 and IL-10 related cytokines 164,165. Although type I and type III IFNs share similarities in biological activity they utilize different receptors. Unlike type I and type II IFN receptors, which signal through exclusive R1 and R2 subunits, IFN λ R consists of the ligand specific IFN λ R1 along with a IL-10R2, which is shared among IL-10R, IL-22R and IL-26R 119,120,166. When one of these chains is absent from the cell surface, or neutralized by an antibody, cells are unresponsive to IFN $\lambda^{\frac{119,159}{5}}$, showing that both IFN λ R1 and IL-10R2 are needed to form a functional receptor complex.

IFNλ initially binds to the IFNλR1 chain, which causes a conformational change that enables recruitment of the IL-10R2 to form a trimer. This activates the pre-associated intracellular tyrosine kinases JAK1 and TYK2 to mediate phosphorylation of the receptor chains, which creates docking sites for cytosolic STAT1 and STAT2 ¹²⁰. Signaling through type I and type III IFN receptor complexes results in the formation of a transcription factor complex known as IFN stimulated gene factor 3 (ISGF3) ^{128,146}. This complex consists of three proteins, STAT1, STAT2, and IFN regulatory factor-9 (IRF-9) ¹²⁰. Once assembled, ISGF3 then translocates to the nucleus where it binds to IFN stimulated response elements (ISREs) in the promoters of various interferon-stimulated genes (ISGs) ¹⁸⁵. Despite different receptor complexes being employed there is a clear signaling overlap between type I and III IFNs, which is why the antiviral outcomes are so similar ^{128,146,178,185}.

Ultimately receptor expression determines which cells respond to particular IFNs. Different tissues and cell types have a highly specialized need to recognize, and be able to act on

specific signaling molecules. The IFN λ R subunit, IFN λ R1, is predominantly expressed on epithelial cells like these found in skin, lung, intestine, colon and stomach ^{152,159,179} but is undetectable in other cell subtypes, particular fibroblastic and endothelial cells. This contrasts with the type I IFNRs that are expressed on all nucleated cells ¹⁸¹. Skin and mucosal surfaces provide a barrier between the host and the environment which suggests that the type III IFN system has evolved to protect the epithelia against pathogens ¹⁵⁹.

The antiviral activity of type III IFNs compared to type I IFNs is reported to be 'weaker', which appears to be closely related to IFN λ R1 expression ^{64,291}. Initial studies showed that IFN λ R1 knock-out mice were indistinguishable from the wild type mice when challenged by a panel of viruses, unlike IFN α R1 knock-out mice, which were highly susceptible ^{135,176}. However, IFN λ R1 knock-out mice were later found to be susceptible to rotavirus infection whereas type I IFN knock-out mice were similar to the wild type ²⁷⁰.

The results from mammalian studies provides clues as to the roles of IFNs in the chicken. However, the identity of the IFN λ R complex in chickens has not been functionally confirmed and its expression remains poorly characterized. In addition, downstream signaling of IFN λ R is not documented in the avian host with few studies looking at ISG regulation. This Chapter aims to provide a clear picture of the IFN λ R and its downstream signaling cascade to better understand the chicken IFN λ mediated responses.

7.2 Results

7.2.1 Phylogenetic analysis of the type III IFN receptor chains

To evaluate the extent of conservation of the type III IFNR system, a phylogenetic tree was constructed using the Neighbour Joining method with all published and predicted IFN λ R1 sequences (**Figure 7-1**). This revealed that chicken IFN λ R1 clustered with those of other birds which were most closely related to reptile sequences that clustered together, the exception being the anole lizard sequence. Mammals clustered together with a significant distance from the bird-reptile sequences, with fish and amphibian sequences found to be more distantly related. Closer analysis of the bird sequence cluster showed the chicken sequence was most closely related to that of turkey, duck and goose.

Phylogenetic analysis of IL-10R2 sequences gave a tree with similar topology (**Figure 7-2**). Bird sequences again clustered and were most closely related to reptile sequences. Mammal sequences clustered together in a tight group, with amphibians and *Carolina anole* between birds and mammals and fish sequences the most distant. Closest related to the chicken sequence were those of turkey, duck and goose.

7.2.2 Synteny of genes encoding the type III IFN receptor chains

To provide evidence of orthology the conservation of flanking genes was investigated. The human IFNλR1 gene is located on chromosome 10 and is flanked by the MYOM3 and IL-22RA genes upstream and the GRHL3, STPG1, NIPAL3 and RCAN3 downstream (**Figure 7-3A**). The chicken gene was found to be located on chromosome 23 with the predicted upstream flanking genes also MYOM3 and IL-22RA and the downstream genes GRHL3, NIPAL3 and RCAN3. Both the chicken and human IFNλR1 genes consist of 7 exons.

The human IL-10R2 is located in the IFN receptor cluster on chromosome 21 and is flanked by IFNαR2 upstream and IFNαR1 and IFNγR2 downstream (**Figure 7-3B**). The chicken orthologue was also found to be located in the IFN receptor cluster on chicken chromosome 1 and was flanked by IFNαR2 upstream and IFNαR1 and IFNγR2 downstream. The chicken and human IL-10R2 also consisted of 7 exons. This suggests both genes are orthologous with their human counterpart.

Figure 7-1 Phylogenetic analysis of IFN λ R1 proteins

Phylogenetic tree of all IFN λ R1 protein sequences constructed using the Neighbor-Joining method. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The insert shows the closest relatives to the chicken sequence in the avian clade.

Figure 7-2 Phylogenetic analysis of IL-10R2 proteins

Phylogenetic tree of all IL-10R2 protein sequences constructed using Neighbor-Joining method. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. The insert shows the closest relatives of the IL-10R2 gene in the avian clade.

Figure 7-3 Synteny of IFNLR1 and IL10R2

(A) Location of the human IFN λ R1 gene on chromosome 10 and the chicken IFN λ R1 gene on chromosome 23 . The flanking regions show conserved genes upstream (MYOM3, IL-22R1) and downstream (GRHL3, NIPAL3 and RCAN 3. The predicted gene structure of chicken IFN λ R1 shows seven exons and six introns like human IFN λ R1. (B) Location of the human IL-10R2 on chromosome 21and the chicken IL-10R2 on chromosome 1. Conserved flanking genes upstream (IFN α R2) and downstream (IFN α R1, IFN γ R2) genes are shown. The IL-10R2 gene has seven exons and six introns in both species.

7.2.3 Tissue distribution of the type III IFN receptor chains

To gain insight into the role of the IFN λ R complex, its tissue distribution was evaluated. Total RNA was isolated form chicken tissues and purified mononuclear cells from the bone marrow and blood and subjected to qRT-PCR to assess the expression of the genes encoding the two IFN λ R chains (**Figure 7-4**) with the relative expression levels calculated using GAPDH as a housekeeping gene. Assuming comparable amplification efficiency, the expression of IFN λ R1 was universally lower than that of IL-10R2 in all the tissue types. The highest IFN λ R1 expression was seen in the spleen, bursa and particularly PBMCs. The lowest expression of both receptors was found in the brain. To provide additional perspective the relative receptor chain expression was analyzed. The ratio of IL10R2 to IFN λ R1 was found to be 5-fold in spleen, bone marrow and bursa, around 3-fold in the thymus and 7- and 15-fold in PBMCs and brain respectively.

7.2.4 Functional analysis of the chicken type III IFN receptor complex

While there was good circumstantial evidence that a functional chicken IFN λ R complex existed, to provide definitive support a siRNA knockdown strategy was developed in the chicken fibroblast cell line (DF1). Chicken IFN λ R specific siRNA (**Figure 7-5A**) was able to knockdown IFNλR1 mRNA expression by 60% at 48 h post transfection compared to the nontarget control siRNA (eGFP). Similarly, a IL-10R2 siRNA (Figure 7-5B) resulted in an 80% knockdown of IL-10R2 gene expression compared to an eGFP siRNA treated control. These cells were subsequently stimulated with chicken IFN λ (chIFN λ) and analyzed for STAT activation by EMSA (Figure 7-6) and Mx1 gene expression by qRT-PCR (Figure 7-7) as a measure of receptor activation. Strong STAT activation was observed in the control group, which was greatly reduced in the IFN λ R1 siRNA group and almost undetectable in the IL-10R2 siRNA treated group. Similarly, significantly lower expression level of Mx1 was observed post IFN λ stimulation in both the IFN λ R1 siRNA and the IL-10R2 siRNA treatment groups, respectively, when compared to the eGFP (non-target) siRNA treated group. To verify that the signal downstream of the chicken IFN λ R complex utilized JAK1, the selective JAK1 inhibitor Ruxolitinib, was employed. Stimulation of DF1 cells with chIFN λ led to a significant upregulation of Mx1 from the unstimulated state while the cells treated with Ruxolitinib and chIFN λ showed no upregulation (Figure 7-8).

Figure 7-4 Tissue distribution of IFNλR chains

Expression of IFN λ R1 and IL-10R2 mRNA in tissues and cell populations of 6-week old SPF chickens. Relative expression levels of IFN λ R1 (white dots) and IL-10R2 (black diamonds) normalized against the housekeeping gene GAPDH. IFN λ R1/IL-10R2 ratio in each tissue are indicated by blue squares.

Expression of IFN λ R1 (A) and IL-10R2 (B) mRNA in DF1 cells treated with the respective siRNAs and a non-target control siRNA (eGFP). The bars represent relative expression levels of mRNA, normalized against the housekeeping gene GAPDH as a percentage of expression compared to the control. (**** p value < 0.0001 compared using Students *t* test).

Figure 7-6 Effect of IFNλR chain knockdown on STAT activation

EMSA analysis of STAT activation following IFN λ stimulation of DF1 cells with no siRNA (-) or transfected with IFN λ R1 siRNA or IL-10R2 siRNA as indicated in duplicates. Red box indicates the stat complexes, NS indicates nonspecific bands, FP indicates free probe.

Figure 7-7 Effect of IFNλR chain knockdown on Mx1 expression

Expression of Mx1 mRNA in DF1 cells treated with siRNAs targeting IFN λ R1 (black), IL-10R2 (white) or control siRNA (eGFP). The bars represent relative expression levels of mRNA, normalized against the housekeeping gene GAPDH as a percentage of expression compared to the control. (**** p value < 0.0001 compared using a one-way ANOVA test with uncorrected Fischer LSD post-test).

Figure 7-8 Effect of JAK inhibition on IFNλ-mediated Mx1 induction

Expression of Mx1 mRNA in untreated and unstimulated (grey), untreated and IFN λ stimulated (white) and Ruxolitinib-treated and IFN λ stimulated (black) DF1 cells. The bars represent fold change in levels of mRNA expression, normalized against the housekeeping gene GAPDH compared to the untreated/unstimulated group. (**** p value < 0.0001 using a one-way ANOVA test with Bonferroni posttest).

7.3 Discussion

Translated IFNs are transported out of the cell and stimulate cell surface IFN receptors ¹⁶⁴. For IFN λ , the receptor complex comprises IFN λ R1 and IL-10R2 , which relays the signal through the intracellular JAK-STAT pathway ^{118,119}. Type I and type III IFNs stimulate highly similar biological effects largely through their shared downstream signaling components JAK1 and TYK2, which phosphorylate and activate STAT1/STAT2 heterodimers that associate with IRF9 to form the transcriptional complex ISGF3 ²⁹². ISGF3 upregulates the expression of hundreds of antiviral genes that block the virus lifecycle at multiple stages ²⁰⁷. The IFN λ mediated signaling cascade has been very well characterized in mouse and human but little is known about this pathway in chicken. The IL-10R2 was previously characterized and a candidate IFN λ R1 gene had been identified using BLASTN. However, confirmation of the identity of this candidate gene and the dependency of both chains for chicken IFN λ signaling via the JAK/STAT pathway was missing.

The human IFN λ R1 gene has 7 exons and is flanked upstream by MYOM3 and IL-22RA genes, and downstream by GRHL3, STPG1, NIPAL3 and RCAN3 genes. The candidate chicken IFN λ R gene showed identical synteny except for STPE1 for which no chicken homologue could be identified. As shown previously by Reboul et al ²⁰² the structure and location of the second receptor chain gene, IL-10R2, is conserved between chicken and human consisting of seven exons and is located in an IFN receptor cluster, flanked upstream by IFN α R2 and downstream by IFN α R1 and IFN γ R2.

Phylogenetic analysis of the IL-10R2 and IFN λ R1 chains revealed that both chicken sequences clustered with those from other birds. These were collectively most similar to reptiles, which is expected given their shared evolutionary history ²⁹³. For both receptor chains, mammalian sequences clustered tightly together at a significant distance from the avian-reptilian sequences. Fish sequences were found to be the most distant in this analysis, consistent with other published work ⁵⁶.

Expression of both IFN λ R chains was investigated in immune relevant tissues to identify those likely to be responsive to IFN λ in the chicken. In all tissues examined, IL-10R2 was more highly expressed than IFN λ R1. The highest IFN λ R1 expression levels were observed in splenic, bursal tissues and PBMC; similar to results observed in humans ¹⁷². Interestingly purified splenocytes showed even higher IFN λ R1 expression than the whole spleen which may indicate increased expression of IFN λ R1 by white blood cells (data not shown). The highest IL-10R2 expression was in the brain followed by PBMCs, spleen, bone marrow and

bursal tissue, and the lowest thymic tissue. As both chains must be present for an IFN λ mediated immune response these findings indicate that the IFN λ R1 is likely the restrictive receptor as it is universally expressed at a lower level. Although the levels of expression were only investigated at the level of mRNA, previously published work has shown a direct correlation between IFN λ R mRNA expression and responsiveness to chIFN λ ²⁰⁶.

Two chicken cell lines were tested for IFN λ R1 expression and both the Fibroblastic cell line DF1 and the Macrophage cell line HD11 were found to express low levels of the receptor, however as the transfection efficiency was higher in DF1s the work was continued with these cells. An siRNA mediated knockdown strategy was used to target both IFN λ R chains separately. This blunted chIFN λ -induced STAT activation and Mx1 expression by up to 60% compared to controls which corresponded with the knockdown efficiency of the respective siRNAs. The involvement of JAK1 was examined with Ruxolitinib, a selective JAK1 inhibitor used as a treatment for myelofibrosis ²⁹⁴. DF1 cells treated with chIFN λ showed a 6-fold increase in Mx1 mRNA levels, which was completely blocked with Ruxolitinib. These results collectively confirm that chIFN λ requires IFN λ R1, IL-10R2 and JAK1 for STAT complex activation and the subsequent upregulation of ISGs like Mx1.

8.1 Introduction

Avian influenza (AI) viruses, especially the highly pathogenic subtypes, cause significant morbidity and mortality in chickens worldwide ²³⁷. This has widespread consequences, notably including severe economic losses ²³⁹ and the potential of zoonotic transmission to humans ^{237,241-243}. To fully understand how the disease might be combatted in poultry it is essential to characterize the parts of the host immune system responding to influenza virus infection ²⁴⁸.

The innate immune system forms a critical part of the host defence against pathogens and several pathways have been characterized to date. In mammals, innate immune recognition is mediated by a series of germ-line encoded receptors called pathogen recognition receptors (PRR) that detect conserved pathogen-associated molecular patterns (PAMPs) 40. One of the most prominent families of PRR are the Toll-like receptors (TLR) 41. To date, nine conserved TLRs have been found in humans and mice and each one serves a distinct function in PAMP recognition and immune response 53. TLRs essentially function as sentinels, which when activated modulate the expression of multiple immune genes that are involved in the mobilization of a wider immune response $\frac{38,44}{4}$. Infections with viral pathogens may be sensed through TLR3, which recognizes double stranded RNA (dsRNA) and TLRs 7, 8 and 9, which recognize non-self nucleic acids 45-50. Upon viral PAMP engagement, TLRs trigger intracellular signaling cascades that lead to the expression of a variety of pro-inflammatory cytokines and chemokines as well as antiviral genes, which together orchestrate the early host response to infection 53,295. However, important differences between the mammalian and the avian hosts have been found like the absence of TLR9 and RIG-1, while chicken TLR8 seems to be non-functional. Notwithstanding this, TLR3, the most important receptor in dsRNA sensing has been found and characterized 261,296,297. Furthermore, there is evidence to suggest that chicken MDA5 is also a functional analogue of mammalian RIG-1²⁵⁵.

Cytokines comprise a large family of molecules, including interferons (IFNs), interleukins (ILs), colony-stimulating factors (CSFs), transforming growth factors (TGFs) and tumour necrosis factors (TNFs) $\frac{58}{58}$. It is now recognized that several IFNs are collectively crucial for defence against viral pathogens, contributing to the induction and regulation of both innate and adaptive antiviral mechanisms $\frac{61-63}{51}$. Three distinct interferon families, type I, II and III, have been identified in mammalian and avian species, which differ in their amino acid

sequence, receptor specificity, signaling pathways and gene induction, but there is overlap between families ⁶⁴⁻⁶⁶. Although only type I and III IFNs are directly produced in response to viral infections, all types significantly contribute to the generation of an effective antiviral immune response against a wide range of pathogens ⁵⁹. This is achieved by upregulation of hundreds of antiviral genes that act in concert to limit viral spread and replication ²⁰⁷, which includes members of the IFIT family. Human and mouse IFIT1-5 have been shown to play critical roles in antiviral defence ²¹¹. The mechanisms are not completely understood but IFIT1 and IFIT2 have been shown to suppress translation by binding to the eukaryotic initiation factor 3 ²¹¹. IFIT family members can also bind to single stranded RNA ^{211,227} and double stranded DNA ²²⁸ directly and thereby reduce viral replication.

A better understanding of the innate immune system particularly in acute AI infection is needed for the development of targeted therapeutic interventions. In this Chapter the IFIT5 gene of chickens was investigated to gain further insights into the innate defence of this important production animal against viral pathogens. In particular, the response of the chicken IFIT5 gene to different immune stimuli and acute influenza virus infection was assessed.

8.2 Results

8.2.1 Identification and characterization of a putative chicken IFIT5 gene

Bioinformatic analysis of the chicken genome with the human IFIT5 gene sequence using BLASTN identified a potential chicken IFIT5 gene located on chromosome 6 (**Figure 8-1**). It was flanked by CH25H and LIPA upstream and SLC16A and PANK 1 downstream, similar to the human IFIT gene cluster located on chromosome 10. Like human IFIT5, the chicken gene also consisted of 2 exons and 1 intron.

Gene specific primers were used to amplify cDNA from 4-week old White Leghorn chicken splenocytes stimulated with poly (I:C) for 3 h. This generated an approximately 1440 base pair (bp) amplicon (**Figure 8-2**) that was not observed in the no template control. This amplicon was cloned and sequenced (Accession No.: KT180229) revealing nine single nucleotide polymorphisms (SNPs) when compared to the predicted sequence, five of which would lead to amino acid changes in the 470 residue protein.

8.2.2 Conservation of chicken IFIT5

Phylogenetic analysis of IFIT protein sequences (Figure 8-3A) showed that the putative chicken IFIT5 clustered with similar genes from other bird species as well as from turtle. In contrast, mammalian sequences clustered together in distinct families of IFIT1-5 with the exception of chimpanzee IFIT3 and marsupial IFITs, which formed their own clade. Fish sequences were the most distantly related and formed two distinct clades, with reptile (lizard) and amphibian (frog) sequences in between. To illustrate the sequence divergence of bird IFITs compared to human IFIT1-5 a smaller tree was constructed (Figure 8-3B). The chicken IFIT5 protein sequence clustered with the other bird IFITs, whereas the human sequences formed a separate clade. Chicken IFIT5 was most closely related to the turkey IFIT5 sequence with 0.10 amino acids substitutions per site (aas/s) (**Table 1**) followed by the recently cloned duck IFIT5 ²⁹⁸ with 0.47 aas/s. Of the human IFIT proteins, the chicken IFIT5 was most closely-related to human IFIT5 with 0.89 aas/s and IFIT1B with 0.92 aas/s. Domain prediction of the chicken IFIT5 protein sequence identified multiple Tetratricopeptide repeats (TRPs), a hallmark of IFIT genes, with an arrangement of TRPs similar to other bird and human IFIT genes (Figure 8-4A). Protein sequence alignment with human IFIT5 (Figure 8-4B) revealed that 13 out of 16 amino acids previously shown to be critical for function were conserved in chicken IFIT5, including two residues that were important for ssRNA/dsDNA binding selectivity ²²⁸.

Figure 8-1 Chromosomal location and predicted gene structure of chicken IFIT5

Location of the chicken IFIT5 gene on chromosome 6 and the human IFIT5 gene cluster on chromosome 10. Conserved flanking genes upstream (CH25H, LIPA) and downstream (SLC16A, PANK1) and additional human IFIT genes are shown. The predicted gene structure of chicken IFIT5 with 2 exons and one intron is presented.

Figure 8-2 Amplification of the chicken IFIT5 gene

RT-PCR amplification of the ~1440 bp chicken IFIT5 gene using specific primers from poly (I:C) stimulated splenocytes (+). No amplification was observed when the template was omitted (-).

Table 1 Evolutionary distance of homologs from chicken IFIT5 gene

The number of amino acid substitutions per site from between sequences are shown. Analyses were conducted using the JTT matrix-based model. The analysis involved 10 amino acid sequences. All positions with less than 85% site coverage were eliminated. The analyses were conducted in MEGA 7.

Chicken IFIT5									
Turkey IFIT5*	0.10								
Duck IFIT5	0.47	0.47							
Flycatcher IFIT5*	0.67	0.66	0.66						
Zebrafinch IFIT5*	0.65	0.62	0.60	0.33					
Human IFIT1	0.98	0.99	0.99	1.04	1.01				
Human IFIT1B	0.92	0.95	0.97	1.02	0.97	0.40			
Human IFIT2	1.23	1.22	1.18	1.19	1.18	0.93	0.98		
Human IFIT3	1.26	1.22	1.22	1.30	1.25	0.98	0.93	0.58	
Human IFIT5	0.89	0.92	0.90	1.00	0.94	0.58	0.64	0.95	0.98

Figure 8-3 Phylogenetic analysis of IFIT5 proteins

(A) Phylogenetic tree of all IFIT published protein sequences using constructed the Neighbor-Joining method. The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used to infer the phylogenetic tree. (B) Predicted evolutionary history of the indicated human and bird IFIT proteins constructed using the Maximum Likelihood method. Bootstrap values are shown at the nodes as a percentage of 1000 replicates. The scale bar represents 0.1 aa substitutions per site.

Figure 8-4 Domain analysis of human and avian IFITs

(A) Schematic representation of the predicted Tetratricopeptide repeats (TRP) domains within the indicated IFIT protein sequences (* denotes predicted sequences). Numbers on at the end of each sequence indicates protein length. (B) Alignment of chicken and human IFIT5 sequences. Numbers above the sequence denote bp from the start of the aligned sequence, dashes mark gaps in the alignment, and stars indicate the end of sequence. Residues identified as functionally critical in humans are highlighted

8.2.3 Expression of chicken IFIT5 following immune stimulation

To further characterize the chicken IFIT5 gene, its expression in response to immune stimuli was investigated. Some ISGs can be induced by TLR pathways independently of IFN. To assess this chicken splenocytes were treated with 50 μ g/mL poly (I:C) (**Figure 8-5A**) and 10 μ g/mL LPS (**Figure 8-5B**) and the expression of IFIT5 and the well-known chicken Myxovirus resistance protein 1 (Mx1) gene quantified. The poly (I:C) treatment up-regulated both IFIT5 and Mx1 expression, which peaked at 6 h post stimulation at ~90- and 100-fold, respectively. LPS stimulation induced a 15-fold increase in IFIT5 expression from 6-24 h post stimulation followed by a rapid decline to undetectable levels at 48 h, with a similar pattern of Mx1 induction observed.

The interferon inducible nature of mammalian IFITs has been well characterized. To confirm that IFIT5 is an ISG, splenocytes from SPF chickens were treated with recombinant chicken IFN α (**Figure 8-6A**) and IFN λ (**Figure 8-6B**). Following IFN α treatment, IFIT5 was rapidly induced reaching significant levels at 1.5 h with peak expression at 3 h at 75-fold, Mx1 induction was delayed, peaking at 6 h at 45-fold. Both IFIT5 and Mx1 expression remained significantly above base-line until 24 h followed by a decrease at 48 h. Following IFN λ stimulation there was a steady increase in IFIT5 expression with the highest increase in expression of around 25-fold at 48 h post treatment. Mx1 behaved similarly although the fold induction was lower with an approximate 10-fold increase in mRNA levels at 3 h.

8.2.4 Expression of chicken IFIT5 following viral infection

Since IFIT5 is considered an antiviral gene it was important to also characterize the gene expression levels in response to acute infection *in vivo*. Therefore, the expression of IFIT5 and Mx1 was measured in spleen (**Figure 8-7A**) and lung (**Figure 8-7B**) of H5N6 virus-infected SPF chickens. Both IFIT5 and Mx1 were upregulated approximately 400-fold in the lungs and 60-fold in the spleen of infected birds compared to healthy age-matched chickens.

Since eggs are universally used to amplify influenza virus the expression of these genes was also assessed in eggs infected with an H1N1 Influenza A virus (**Figure 8-8**). IFIT5 was upregulated at 24 h post infection reaching significance at 48 h in the CAM, while in muscle and brain no expression was detected at 24 h but expression was observed at 48 h. Mx1 behaved similarly in the CAM although did not reach statistical significance. Mx1 expression in the muscle was upregulated at 24 h with a significant increase at 48 h, while the brain showed no induction at 24 h but increased Mx1 mRNA was detected at 48 h post infection.

Figure 8-5 Expression of IFIT5 and Mx1 in response to TLR agonists

Expression of IFIT5 and Mx1 mRNA in splenocytes from SPF chickens stimulated with 50 μ g/mL poly (I:C) (A) and 10 μ g/mL LPS (B). This is shown as mean fold change with standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05, ** p value < 0.005, *** p value < 0.001 compared to the 0 h time point using a one-way ANOVA test with uncorrected Fischer LSD post-test). The Mx1 data is a duplicate of that already shown in 6.5A/B and serves as a comparison.

Figure 8-6 Expression of IFIT5 and Mx1 in response to IFN stimulation

Expression of IFIT5 and Mx1 mRNA in splenocytes from SPF chickens stimulated with 500 ng/mL IFN α (A), 50 µg/mL IFN λ (B). This is shown as mean fold change with standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH (* p value < 0.05, ** p value < 0.005, *** p value < 0.001 **** p value < 0.001 using a one-way ANOVA test with uncorrected Fischer LSD post-test). The Mx1 data is a duplicate of that already shown in 6.6A/B and serves as a comparison.

Figure 8-7 Expression of IFIT5 and Mx1 in response to viral infections in vivo

Expression of IFIT5 and Mx1 mRNA in six 5-week old SPF chicken spleen (A) and lung (B) at 22 h post infection with Influenza virus A/duck/Laos/XBY004/2014 (H5N6). Bars represent the mean fold change of mRNA expression with SEM compared to the same tissue of the uninfected birds, normalized against the housekeeping gene GAPDH (* p value < 0.05 using the Students *t* test with Mann Whitney U test). The Mx1 data is a duplicate of that already shown in 6.8A/B and serves as a comparison.

Figure 8-8 Expression of IFIT5 and Mx1 in response to viral infections in ovo

Expression of IFIT5 (A) and Mx1 (B) mRNA in D10 embryonated chicken eggs 24 h and 48 h post infection with Influenza virus A/Puerto Rico/8/1934 (H1N1). Bars represent the mean fold change of mRNA expression with SEM compared to the same tissue of uninfected eggs, normalized against the housekeeping gene GAPDH (* p value < 0.05, ** p value < 0.005, using a one-way ANOVA test with uncorrected Fischer LSD post-test).

8.3 Discussion

The IFIT family of proteins is found across diverse species 211,299. However, the mode of action of these proteins is not well understood. In avian species, even less is known, with only limited recent transcriptome studies characterizing their expression profiles 231, 300, 301. The identification and characterization of chicken IFIT5 allows for further in-depth investigation of its role in avian immunity, including in response to virus. Bioinformatic analysis was used to identify the genes and determine its location and structure. The chicken IFIT5 gene was located on chromosome 6, flanked by the CH25H and LIPA genes upstream and SLC16A and PANK1 downstream, which revealed conserved synteny with human and other species ²¹¹. It also consisted of 2 exons and 1 intron like in other species, which strongly suggests common derivation. The chicken IFIT5 was shown by RT-PCR to be 1440 bp in length, encoding a protein of 470 amino acids, which is consistent with mammalian and other avian IFIT proteins investigated. Ten SNPs were identified (Figure 11-2, Appendix) of which five were silent and five were missense mutations (Figure 11-3, Appendix). SNPs in the IFIT5 gene have been described in humans and other species ²¹¹ and could be explained by genetic diversity, in this case variations between individual birds, which may be even greater between chicken breeds 302.

Phylogenetic analysis showed that the bird sequences clustered together but were related to mammalian IFITs. These findings followed the general trend for IFIT genes to cluster with their own class rather than paralogues in other classes, which makes definitive identification of orthology difficult based on sequence alone. Further analysis of the chicken IFIT5 protein sequence indicated it was closely related to other bird IFITs and amongst the human IFIT family was most similar to human IFIT5 with 0.89 aa substitutions per site. Protein sequence alignment and domain prediction analysis revealed conservation of the Tetratricopeptide domains that are the hallmarks of IFITs compared to other bird and human IFITs ^{211,299}.

The crystal structure of the human IFIT5 protein has been solved and aa critical to the function of IFIT5 identified by non-conserved site-directed mutagenesis ²²⁸. Of the 16 critical aa identified, 13 were conserved in the chicken sequence. Amongst the three non-conserved critical aa only one was associated with a decrease in binding affinity to nucleic acids in the human protein, the other two only showed a decrease in tandem with another mutation site. Importantly, the sites that determined substrate specificity to ssRNA or dsDNA (F284 and R294 in humans) were found to be conserved in the chicken sequence, suggesting that IFIT5 can bind to both substrates, although possibly with reduced binding affinity.

The robust induction of IFIT genes in response to immune stimulation and concomitant antiviral function is well established in mammalian systems 303. A similar strong induction of IFIT5 was observed following stimulation of chicken splenocytes with the TLR agonist poly (I:C). Upregulation of mRNA expression started at 3 h and peaked at 6 h post stimulation, which is consistent with observations made in human cells 304, and with similar kinetics to the Mx1 gene, one of the best characterized ISGs in chicken ²²⁰. The TLR4 ligand, bacteriaderived LPS, also induced significant increase for IFIT5 and Mx1 mRNA after 6 h treatment. The induction of IFIT5 started at 3 h and was still significant at 24 h and elevated at 48 h consistent with previously reports observing in human macrophages and neutrophils 278,279. Whether this effect was due to direct transcriptional stimulation or indirectly via the IFN pathway is unclear at this point although it has been proposed that IFITs can be induced directly via PRRs $\frac{303}{2}$. Treatment of splenocytes with IFN α led to a significant upregulation of IFIT5 after 1.5 h with a peak at 3 h that remained high until 24 h, whereas Mx1 was more delayed and reached significant upregulation at 3 h peaking at 6 h post stimulation followed by a decline. IFN λ treatment led to a much slower increase, peaking at 48 h post treatment. Although different in kinetics, the ability of both type I and type III IFNs to induce IFITs clearly demonstrated the interferon stimulated nature of the chicken IFIT5 gene.

During viral infection, IFITs bind to viral RNA and host factors needed for viral replication and thereby limit viral growth ^{211,303}. In chickens, some of the most devastating infections are caused by highly pathogenic avian influenza A viruses of the H5 and H7 subtypes. To determine if the identified IFIT homolog was potentially involved in the host response to this agent lung and spleen samples were analyzed from birds infected with HPAI virus (H5N6). These tissues were selected as representatives of the primary site of infection (lung) and the subsequent immune response (spleen). A significant upregulation of IFIT5 mRNA was observed in both the lung and spleen of infected birds compared to uninfected controls. Little is known about the antiviral defense in chicken eggs despite their wide use as virus substrate and so this was investigated.

Both HPAI viruses A/duck/Laos/XBY004/2014 (H5N6) and A/Vietnam/1194/2004 (H5N1) resulted in the death of the embryo within 24 h of infection, this made sampling of the tissues impossible and a low pathogenic strain was chosen to give more consistent results. The H1N1 infection of eggs led to the induction of IFIT5 in the CAM after 24 and 48 h while significant induction of Mx1 was observed in the muscle. This confirms that IFIT5 expression is highly upregulated during active infection in chicken and might have a critical role.

9 General Discussion

HPAI represents a serious problem, that impacts us on multiple levels. These viruses can lead to severe economic losses, potential bottlenecks in vaccine production and food shortages. Some of the H5 and H7 strains can also infect humans through bird-human transmission and cause high mortality rates with the potential for pandemics ^{28,30}.

Vaccination is the most efficient way to prevent viral spread through populations, although the genetic instability of Influenza viruses makes this a continuous effort with new vaccines annually based on circulating virus strains ³⁰⁵⁻³⁰⁷. There vaccines provide a good level of protection, but they are not always efficient against emerging viruses ²⁴². Vaccination chicken populations with seasonal as well as emerging HPAI strains has so far proven successful in keeping the burden of disease down but is not enough to prevent further spill over ³⁰⁸. Moreover, the key reservoir, the wild aquatic bird population, cannot be vaccinated ³⁰⁸.

Another strategy to counter HPAIs are antiviral therapies which have been successfully deployed in acute cases of human Influenza infection. However, despite multimillion dollar compound screening enterprises ³⁰⁹⁻³¹². The treatment of birds remains problematic and would no doubt lead to resistance of these viruses and negate any beneficial effect for humans in the long run as seen with Relenza in recent years ³¹³⁻³¹⁵.

An alternative strategy to combat HPAI viruses and so protect the human population and the food and vaccine supply, is to focus on disease resistance in the transmission host. In most human HPAI infection the source of infections can be traced back to chickens, which have severe reactions and, in case of some HPAI strains, die within 24-48 h ³¹⁶. The timeframe suggests that these birds are not able to contain the viruses in the first stages of infection, indicating inappropriate innate immune response. In order to develop strategies making chickens resistant to these HPAI strains, it is necessary to understand chicken innate immunity in order to identify in which part of the immune response fails to respond in an appropriate manner.

The first line of defence against viruses are the IFNs, which were incidentally discovered in chicken eggs 60 years ago ⁶⁰. Greater understanding of these important mediators of innate (and adaptive) immunity could lead to insight into the issues around the high mortality rates and severe disease outcomes in birds. Although all IFN types contribute to the antiviral immune response only type I and type III are directly antiviral ⁵⁹. Due to the very short

window between infection, diseases onset and death the focus was on IFN α , the oldest and best characterized antiviral IFN ⁶⁰, and IFN λ ^{119,120}, the newest member of the IFN family. IFN α s has been well characterized in all model species as well as the chicken, while information on IFN λ in mammals is rapidly emerging. Nonetheless it was of considerable importance to study chicken IFN λ function in more detail as mice and human data are not directly applicable due to their multiple variants, IFN λ 1,2,3 and 4 showing distinctive functions as reported by a myriad of studies. Which of these are shared by chicken IFN λ remains unclear, although sequence comparison suggests IFN λ 2 ²⁰¹ is the most highly related. This study has identified similarities between IFN α and IFN λ but also distinct differences, which highlights important non-redundant roles of IFN λ in the antiviral immune response in chickens.

Host receptors such as TLRs 44, RLRs 317 and NLRs 318 detect the presence of pathogens to trigger the interferon-mediated immune response. Compared to their mammalian TLR counterparts, chicken TLR8 is non-functional and TLR9 and RIG-1 are absent. However, TLR3, the most important receptor in dsRNA detection, appears to be present and functional ^{261,296,297}. Furthermore, there is evidence to suggest that chicken MDA5 is also a functional analogue of mammalian RIG-1 ²⁵⁵. Chicken cells were found to respond to the foreign RNA mimic PIC with significant IFN α and IFN λ upregulation even at low doses. IFN λ showed a greater fold induction, but this is probably best explained as a consequence of the relatively high baseline expression of IFN α , which makes the fold change comparably low. In fact, the high baseline IFNα expression has been linked to eliciting an efficient response to viral triggers $\frac{319}{2}$. PIC-dependent IFN α induction was more consistent whereas IFN λ induction was highly variable. Despite this, the expression of both genes followed the same kinetics, peaking after 3-6 h post stimulation with PICs, which is comparable to mammalian systems $\frac{257,271}{257,271}$. LPS, on the other hand, did not upregulate IFN α or IFN λ at any time point. Human studies suggest that only IFN λ 1 can respond to LPS stimulation but not IFN λ 2 or IFN λ 3. Collectively, this data suggests a common PRR mediated induction pathway with these IFNs. In contrast, IFN mediated induction of the IFNs was markedly different. IFN α induced IFN α expression shortly after stimulation, but not IFN λ . IFN α also induced peak ISG expression after 6 h, although whether that is a direct result of PIC stimulation or indirect through the IFNs produced is unknown. In contrast, the IFN λ mediated ISG induction took place at 48 h and so likely indirect, which was also observed in DF1 cells (data not shown) and reportet in human cells ³²⁰. The altered ISG expression kinetics is suggestive of a non-redundant role in immune regulation.

The high level of variance observed in experiments examining IFN and ISG expression levels led to the investigation of possible causes. Differences between the male and female mammalian immune systems have been a field of discussion in scientific literature 289,290,321-³²⁴. This is of particular relevance in chickens since the type I IFNs are located on the sex chromosome (Z). Moreover, in contrast to sex determination in mammals, male chickens are determined but two copies of this chromosome (ZZ) and females by one (ZW). This means that males have additional copies of these genes. Despite this, PIC stimulation of purified splenocytes resulted in a significantly higher expression of type I IFNs in females compared to age-matched males. IFN λ expression, on the other hand, was significantly higher in males than females. In mature chickens both type I and type III IFNs showed higher expression levels in female, although only IFN λ reached significance. Higher expression of IFN α in female DCs has previously been reported and was linked to the relative expression levels of IRF5 324. The influence of estrogen was investigated as a possible explanation but no direct correlation between estrogen levels and IFN expression was observed in individual birds although, the estradiol levels were, as expected, significantly higher females than in males. These data do, however, confirm that female and male birds differ significantly in the magnitude of antiviral response, which provides one explanation for the fluctuations in IFN and ISG induction observed. More research into whether gender differences and other potential sources of variance between birds observed are warranted. This could have important implications for the chicken industry as layers are naturally female and broilers universally male. Understanding the differences in immune response could lead to alternative strategies to prevent or treat infection between those populations.

Receptor expression represents one major control point in tailoring IFN signaling to specific cells ³²⁵ as well as the magnitude of the signal relayed ¹¹⁸. A chicken IFNλR1 candidate was characterized and found to cluster with other birds and reptiles, while mammalian sequences clustered together and those from amphibians and piscine species clustered further away. A similar result was found for IL-10R2. This suggests a functional IFNλR complex was present before avian/mammalian divergence, and has been maintained in both lineages, indicative of important conserved functions in both lineages.

The tissue distribution of IFN λ R complex components was investigated, with a focus on immune relevant tissues. In mammals it is primarily found in epithelial cells but recently evidence has emerged that IFN λ acts on endothelial cells of the blood-brain barrier ¹⁸⁰. Chickens are anatomically very different from mammals with regard to immunity. Chickens lack lymph nodes and so the spleen is an especially important organ involved in pathogen

defence. The thymus is the main organ for T(hymus) ³²⁶ cell development while the Bursa of Fabricius hold the B(ursa) ³²⁷ cell compartment. All tissues investigated expressed the IL-10R2 chain in relatively high levels, with the ratios of IFNλR1 and IL-10R2 always heavily skewed in favor of IL10R2, which suggests that IFNλR1 levels are the limiting factor. However, recently the potentially variable expression of GAPDH across the tissues has been documented could lead to false conclusions ³²⁸. The highest expression of the IFNλR1 chain was observed in PBMCs followed by the spleen, bursa, thymus and the bone marrow, while brain tissue had the lowest expression. Purified chicken splenocytes showed higher IFNλR1 expression relative to the whole tissue. This data suggests that immune reactive tissues tend to express IFNλR1, while immune privileged tissues like the brain do not. An IFNλ-mediated effect on immune cells is therefore highly likely.

To provide evidence that the putative IFN λ R1 and IL-10R2 constitute a functional chicken IFN λ R complex, the expression of each chain was knocked down using siRNA. This demonstrated that both chains were needed for IFN λ -mediated STAT activation and ISG upregulation. Treatment with Ruxolitinib, a selective JAK1 inhibitor, also blocked IFN λ mediated responses. This collectively demonstrates an IFN λ R1/IL-10R2-JAK-STAT-ISG pathway in chickens. Confirming the functionality of this central signaling cascade also opens up possibilities to repurpose drugs for pro-viral treatment. Ruxolitinib, which has FDA approval for used in myelofibrosis ³²⁹ treatment in humans, could be used to inhibit interferon signaling and enhance viral amplification for increasing yield for vaccine production ^{330,331} and sensitivity for diagnostic applications ²⁴⁹.

The use of embryonated eggs for amplification of viruses and the virus-host interaction has been characterized extensively in the past 60 years $\frac{332-346}{332-346}$ but little to no work on the characterization of the egg immune system has been done since the discovery of IFNs in chicken egg $\frac{347}{}$. To gain insight into the developing immune response and potential factors inhibiting or failing to inhibit viral growth, chicken eggs were infected with Influenza A according to the same protocols used by the vaccine production industry and diagnostic laboratories $\frac{348}{}$. The results suggest that IFN α is inhibited by the virus, which can be explained by the agonistic effect of the NS1 protein in H1N1 that is well documented $\frac{349}{}$. However, though IFN expression is repressed or delayed, ISGs are expressed at high levels in a tissue dependent fashion. The inoculation of the virus into the allantoic fluid $\frac{348}{}$ brings the virus into close contact with the inner layer the Chorio-allantoic membrane and the outer layer of embryonic tissue. By 24 h the virus replicates to very high levels in the CAM and by 48 h the virus has spread to every tissue. This data shows that even in the absence of IFN α

the ISGs respond by 24 h to viral invasion, but this is not sufficient to control viral replication as by 48 h the virus has spread to every tissue of the embryo including the brain. This work gives insights into the localisation of viral replication as well as the mounting innate immune response, but more work needs to be done to dissect the various virus sensing and immune response inducing pathways in the developing chicken embryo. The data collected here suggests that the IFN system is well developed although unable to deal with a substantial viral infection in an appropriate manner.

Limited knowledge around the effectors of the IFN-mediated antiviral response, the ISGs, hinders he progress in avian immunology. Compared to mammals the avian ISGs are very poorly characterized, with few genes analyzed. The first human ISG cloned was the interferon-induced proteins with Tetratricopeptide repeats (IFITs) 1 ³⁵⁰. Considerable research has been performed on IFIT family members identifying a key role in anti-viral host defense by inhibiting virus replication through binding and regulating the functions of cellular and viral proteins and RNAs ³⁵¹. The IFIT family consists of four members in human and three in mouse. All identified IFITs have multiple copies of Tetratricopeptide repeats (TRPs), their distinct tertiary structures enable them to bind different partners and affect host-virus interactions differently. Human IFIT1 and IFIT2 are thought interfere with the viral RNA translation by binding to the EIF3 ³⁵². Viral pppRNA is also recognized by IFIT1 which leads to sequestering by an IFIT1, IFIT2 and IFIT3 complex, although only IFIT1 is directly able to interact with ppp RNA. IFIT5 has been shown to also interact with ppp RNA but not with IFIT2 or IFIT3, indicating a non-redundant role in antiviral defense ^{227,353}.

A chicken IFIT homolog has been mentioned in several publications ^{231,284,300,301}, but no in depth characterization of the gene has been performed. A single potential chicken IFIT gene candidate was identified, amplified by RT-PCR and sequenced. The encoded chicken IFIT protein showed greatest homology to the human IFIT5 and was thus named chicken IFIT5. The chicken IFIT5 was most closely related to other bird IFITs and possessed nine TRP domains are distributed over its length similar to other bird and human IFITs. The crystal structure of the human IFIT5 was recently solved with extensive mutation studies identifying residues critical for function ²²⁸. The chicken IFIT5 sequence showed conservation of 12 out of 16 residues identified as important for substrate binding specificity. Collectively, this points towards a functionally conserved IFIT gene in chickens.

The expression of chicken IFIT5 was analyzed in response to different immune stimuli, including infection in vivo and in ovo. IFIT5 was highly induced in chicken cells after

treatment with PIC and LPS, while PIC triggered a significant increase in expression after 3 h with relatively stable expression up until 48 h. In contrast, LPS stimulation induced a peak expression after 6 h followed by a rapid decline. The IFIT5 gene was also induced in response to chIFNs like IFN α and IFN λ with similar kinetics to other ISGs observed, although induction by IFN α reached significant levels after 1.5 h and stayed significantly induced until 24 h. Following viral infection IFIT5 was highly induced in the lung and spleen of chickens infected with H5N6 HPAI and in the chorio-allantoic membrane and the muscle of infected embryonated eggs. This collectively suggests that chicken IFIT5 represents a bone fide ISG, with applicability to studies on chicken innate immune system and contribute to the understanding of HPAI pathogenesis in chickens.

10 References

- Lee, C.W. & Saif, Y.M. Avian influenza virus. *Comp Immunol Microbiol Infect Dis* 32, 301, (2009).
- 2 Swayne, D.E. & Pantin-Jackwood, M. *Avian Influenza*. Vol. 1 (Wiley-Blackwell, 2008).
- 3 Nayak, D.P., Balogun, R.A., Yamada, H., Zhou, Z.H. & Barman, S. Influenza virus morphogenesis and budding. *Virus Res* 143, 147, (2009).
- de Jong, M.D., Simmons, C.P., Thanh, T.T. *et al.* Fatal outcome of human influenza A (H5N1) is associated with high viral load and hypercytokinemia. *Nat Med* 12, 1203, (2006).
- 5 Subbarao, K. & Katz, J. Avian influenza viruses infecting humans. *Cell Mol Life Sci* 57, 1770, (2000).
- 6 Alexander, D.J. & Brown, I.H. **Recent zoonoses caused by influenza A viruses**. *Rev Sci Tech* 19, 197, (2000).
- 7 Burns, K. Cats contract avian influenza virus. J Am Vet Med Assoc 228, 1165, (2006).
- 8 Herlocher, M.L., Elias, S., Truscon, R. *et al.* Ferrets as a transmission model for influenza: sequence changes in HA1 of type A (H3N2) virus. *J Infect Dis* 184, 542, (2001).
- 9 Perkins, L.E. & Swayne, D.E. Pathobiology of A/chicken/Hong Kong/220/97 (H5N1)
 avian influenza virus in seven gallinaceous species. *Vet Pathol* 38, 149, (2001).
- 10 Isoda, N., Sakoda, Y., Kishida, N. *et al.* **Pathogenicity of a highly pathogenic avian** influenza virus, A/chicken/Yamaguchi/7/04 (H5N1) in different species of birds and mammals. *Arch Virol* 151, 1267, (2006).
- 11 Keawcharoen, J., van Riel, D., van Amerongen, G. *et al.* Wild Ducks as Long-Distance Vectors of Highly Pathogenic Avian Influenza Virus (H5N1). *Emerg Infect Dis* 14, 600, (2008).
- 12 Kawaoka, Y. & Neumann, G. Influenza viruses: an introduction. *Methods Mol Biol* 865, 1, (2012).
- 13 Fouchier, R.A., Munster, V., Wallensten, A. *et al.* Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. *J Virol* 79, 2814, (2005).
- 14 Tong, S., Zhu, X., Li, Y. *et al.* **New world bats harbor diverse influenza A viruses**. *PLoS Pathog* 9, e1003657, (2013).
- 15 Tong, S., Li, Y., Rivailler, P. *et al.* A distinct lineage of influenza A virus from bats. *Proc Natl Acad Sci U S A* 109, 4269, (2012).
- Laver, W.G., Gerhard, W., Webster, R.G., Frankel, M.E. & Air, G.M. Antigenic drift in type A influenza virus: peptide mapping and antigenic analysis of A/PR/8/34 (HON1) variants selected with monoclonal antibodies. *Proc Natl Acad Sci U S A* 76, 1425, (1979).
- 17 Schweiger, B., Zadow, I. & Heckler, R. Antigenic drift and variability of influenza viruses. *Med Microbiol Immunol* 191, 133, (2002).
- 18 Poovorawan, Y., Pyungporn, S., Prachayangprecha, S. & Makkoch, J. **Global alert to** avian influenza virus infection: from H5N1 to H7N9. *Pathog Glob Health* 107, 217, (2013).
- 19 Treanor, J. Influenza vaccine--outmaneuvering antigenic shift and drift. N Engl J Med 350, 218, (2004).
- 20 De Jong, J.C., Rimmelzwaan, G.F., Fouchier, R.A. & Osterhaus, A.D. Influenza virus: a master of metamorphosis. *J Infect* 40, 218, (2000).

- 21 Matrosovich, M., Zhou, N., Kawaoka, Y. & Webster, R. The surface glycoproteins of H5 influenza viruses isolated from humans, chickens, and wild aquatic birds have distinguishable properties. *J Virol* 73, 1146, (1999).
- Li, J., Yu, X., Pu, X. *et al.* Environmental connections of novel avian-origin H7N9 influenza virus infection and virus adaptation to the human. *Sci China Life Sci* 56, 485, (2013).
- 23 Connor, R.J., Kawaoka, Y., Webster, R.G. & Paulson, J.C. Receptor specificity in human, avian, and equine H2 and H3 influenza virus isolates. *Virology* 205, 17, (1994).
- 24 Franca, M., Stallknecht, D.E. & Howerth, E.W. Expression and distribution of sialic acid influenza virus receptors in wild birds. *Avian Pathol* 42, 60, (2013).
- 25 Suzuki, Y., Ito, T., Suzuki, T. *et al.* Sialic Acid Species as a Determinant of the Host Range of Influenza A Viruses. *J Virol* 74, 11825, (2000).
- 26 Yamada, S., Suzuki, Y., Suzuki, T. *et al.* Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. *Nature* 444, 378, (2006).
- 27 Chen, Y., Liang, W., Yang, S. *et al.* Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. *Lancet* 381, 1916, (2013).
- 28 WHO. Cumulative number of confirmed human cases for avian Influenza A(H5N1) reported to WHO, 2003-2016
- Spackman, E., Pantin-Jackwood, M., Swayne, D.E., Suarez, D.L. & Kapczynski, D.R.
 Impact of route of exposure and challenge dose on the pathogenesis of H7N9 low
 pathogenicity avian influenza virus in chickens. *Virology* 477, 72, (2015).
- 30 WHO. Influenza at the human-animal interface: Summary and assessment,2016
- 31 Wong, F.Y., Phommachanh, P., Kalpravidh, W. *et al.* **Reassortant highly pathogenic** influenza A(H5N6) virus in Laos. *Emerg Infect Dis* 21, 511, (2015).
- 32 Gerloff, N.A., Khan, S.U., Balish, A. *et al.* Multiple reassortment events among highly pathogenic avian influenza A(H5N1) viruses detected in Bangladesh. *Virology* 450-451, 297, (2014).
- Takayama, I., Hieu, N.T., Shirakura, M. *et al.* Novel Reassortant Avian Influenza
 A(H5N1) Virus in Human, Southern Vietnam, 2014. *Emerg Infect Dis* 22, 557, (2016).
- Ligon, B.L. Avian influenza virus H5N1: a review of its history and information regarding its potential to cause the next pandemic. Semin Pediatr Infect Dis 16, 326, (2005).
- 35 Chmielewski, R. & Swayne, D.E. Avian influenza: public health and food safety concerns. *Annu Rev Food Sci Technol* 2, 37, (2011).
- 36 Cox, N.J. & Subbarao, K. **Global epidemiology of influenza: past and present**. *Annu Rev Med* 51, 407, (2000).
- de la Barrera, C.A. & Reyes-Teran, G. Influenza: forecast for a pandemic. Arch Med Res 36, 628, (2005).
- 38 Akira, S., Takeda, K. & Kaisho, T. **Toll-like receptors: critical proteins linking innate** and acquired immunity. *Nat Immunol* 2, 675, (2001).
- 39 Janeway, C.A., Jr. & Medzhitov, R. Innate immune recognition. *Annu Rev Immunol* 20, 197, (2002).
- 40 Medzhitov, R. & Janeway, C.A., Jr. Innate immunity: the virtues of a nonclonal system of recognition. *Cell* 91, 295, (1997).
- 41 Janeway, C.A., Jr. **The immune system evolved to discriminate infectious nonself from noninfectious self**. *Immunol Today* 13, 11, (1992).

- 42 Sasai, M. & Yamamoto, M. Pathogen recognition receptors: ligands and signaling pathways by Toll-like receptors. *Int Rev Immunol* 32, 116, (2013).
- 43 Baum, A. & Garcia-Sastre, A. Induction of type I interferon by RNA viruses: cellular receptors and their substrates. *Amino Acids* 38, 1283, (2010).
- 44 Kawai, T. & Akira, S. *TLR signaling*. *Semin Immunol* 19, 24, (2007).
- 45 Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. **Toll-like receptor 9-mediated** recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. *J Exp Med* 198, 513, (2003).
- 46 Lund, J.M., Alexopoulou, L., Sato, A. *et al.* **Recognition of single-stranded RNA** viruses by Toll-like receptor 7. *Proc Natl Acad Sci U S A* 101, 5598, (2004).
- Alexopoulou, L., Holt, A.C., Medzhitov, R. & Flavell, R.A. Recognition of doublestranded RNA and activation of NF-kappaB by Toll-like receptor 3. *Nature* 413, 732, (2001).
- 48 Diebold, S.S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. Innate antiviral responses by means of *TLR7*-mediated recognition of single-stranded RNA. *Science* 303, 1529, (2004).
- 49 Hemmi, H., Takeuchi, O., Kawai, T. *et al.* **A Toll-like receptor recognizes bacterial** DNA. *Nature* 408, 740, (2000).
- 50 Gibbard, R.J., Morley, P.J. & Gay, N.J. **Conserved features in the extracellular** domain of human toll-like receptor 8 are essential for pH-dependent signaling. *J Biol Chem* 281, 27503, (2006).
- 51 Xagorari, A. & Chlichlia, K. **Toll-like receptors and viruses: induction of innate** antiviral immune responses. *Open Microbiol J* 2, 49, (2008).
- 52 Barral, P.M., Sarkar, D., Su, Z.Z. *et al.* Functions of the cytoplasmic RNA sensors *RIG-I* and *MDA-5*: key regulators of innate immunity. *Pharmacol Ther* 124, 219, (2009).
- 53 Akira, S., Uematsu, S. & Takeuchi, O. **Pathogen recognition and innate immunity**. *Cell* 124, 783, (2006).
- 54 Beutler, B. & Rietschel, E.T. Innate immune sensing and its roots: the story of endotoxin. *Nat Rev Immunol* 3, 169, (2003).
- 55 Balkwill, F.R. & Burke, F. **The cytokine network**. *Immunol Today* 10, 299, (1989).
- 56 Krause, C.D. & Pestka, S. Evolution of the Class 2 cytokines and receptors, and discovery of new friends and relatives. *Pharmacol Ther* 106, 299, (2005).
- 57 Rahman, M.M. & Eo, S.K. **Prospects and challenges of using chicken cytokines in disease prevention**. *Vaccine* 30, 7165, (2012).
- 58 Belardelli, F. **Role of interferons and other cytokines in the regulation of the immune response**. *APMIS* 103, 161, (1995).
- 59 Samuel, C.E. Antiviral actions of interferons. *Clin Microbiol Rev* 14, 778, (2001).
- 60 Isaacs, A. & Lindenmann, J. Virus interference. I. The interferon. *Proc R Soc Lond B Biol Sci* 147, 258, (1957).
- 61 Malmgaard, L. Induction and regulation of IFNs during viral infections. J Interferon Cytokine Res 24, 439, (2004).
- 62 Pietras, E.M., Saha, S.K. & Cheng, G. **The interferon response to bacterial and viral** infections. *J Endotoxin Res* 12, 246, (2006).
- 63 Le Bon, A. & Tough, D.F. Links between innate and adaptive immunity via type I interferon. *Curr Opin Immunol* 14, 432, (2002).
- 64 Ank, N., West, H. & Paludan, S.R. **IFN-lambda: novel antiviral cytokines**. *J Interferon Cytokine Res* 26, 373, (2006).
- 65 Kaiser, P., Poh, T.Y., Rothwell, L. *et al.* **A genomic analysis of chicken cytokines and chemokines**. *J Interferon Cytokine Res* 25, 467, (2005).
- 66 Chelbi-Alix, M.K. & Wietzerbin, J. Interferon, a growing cytokine family: 50 years of interferon research. *Biochimie* 89, 713, (2007).

- 67 Medzhitov, R. & Janeway, C.A., Jr. Innate immune recognition and control of adaptive immune responses. *Semin Immunol* 10, 351, (1998).
- 68 Roberts, R.M., Liu, L., Guo, Q., Leaman, D. & Bixby, J. **The evolution of the type I** interferons. J Interferon Cytokine Res 18, 805, (1998).
- 69 Pestka, S., Krause, C.D. & Walter, M.R. Interferons, interferon-like cytokines, and their receptors. *Immunol Rev* 202, 8, (2004).
- 70 Leaman, D.W. & Roberts, R.M. Genes for the trophoblast interferons in sheep, goat, and musk ox and distribution of related genes among mammals. J Interferon Res 12, 1, (1992).
- 71 Lefevre, F. & Boulay, V. A novel and atypical type one interferon gene expressed by trophoblast during early pregnancy. *J Biol Chem* 268, 19760, (1993).
- 72 Kawamoto, S., Oritani, K., Asakura, E. *et al.* **A new interferon, limitin, displays** equivalent immunomodulatory and antitumor activities without myelosuppressive properties as compared with interferon-alpha. *Exp Hematol* 32, 797, (2004).
- 73 Durbin, J.E., Fernandez-Sesma, A., Lee, C.K. *et al.* **Type I IFN modulates innate and specific antiviral immunity**. *J Immunol* 164, 4220, (2000).
- 74 Stetson, D.B. & Medzhitov, R. **Type I interferons in host defense**. *Immunity* 25, 373, (2006).
- 75 Bogdan, C., Rollinghoff, M. & Diefenbach, A. **Reactive oxygen and reactive nitrogen** intermediates in innate and specific immunity. *Curr Opin Immunol* 12, 64, (2000).
- 76 Jacobs, B.L. & Langland, J.O. When two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. *Virology* 219, 339, (1996).
- 77 Der, S.D., Zhou, A., Williams, B.R. & Silverman, R.H. **Identification of genes** differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. *Proc Natl Acad Sci U S A* 95, 15623, (1998).
- 78 Sen, G.C. Viruses and interferons. Annu Rev Microbiol 55, 255, (2001).
- 79 de Veer, M.J., Holko, M., Frevel, M. *et al.* Functional classification of interferonstimulated genes identified using microarrays. *J Leukoc Biol* 69, 912, (2001).
- 80 Fensterl, V. & Sen, G.C. Interferons and viral infections. *BioFactors* 35, 14, (2009).
- 81 Halloran, P.F., Urmson, J., Van der Meide, P.H. & Autenried, P. **Regulation of** *MHC* expression in vivo. II. IFN-alpha/beta inducers and recombinant IFN-alpha modulate *MHC* antigen expression in mouse tissues. *J Immunol* 142, 4241, (1989).
- Le Bon, A. & Tough, D.F. **Type I interferon as a stimulus for cross-priming**. *Cytokine Growth Factor Rev* 19, 33, (2008).
- 83 Biron, C.A. Role of early cytokines, including alpha and beta interferons (IFNalpha/beta), in innate and adaptive immune responses to viral infections. *Semin Immunol* 10, 383, (1998).
- 84 Matikainen, S., Paananen, A., Miettinen, M. et al. IFN-alpha and IL-18 synergistically enhance IFN-gamma production in human NK cells: differential regulation of Stat4 activation and IFN-gamma gene expression by IFN-alpha and IL-12. Eur J Immunol 31, 2236, (2001).
- 85 Stackaruk, M.L., Lee, A.J. & Ashkar, A.A. Type I interferon regulation of natural killer cell function in primary and secondary infections. *Expert Rev Vaccines* 12, 875, (2013).
- 86 Paquette, R.L., Hsu, N.C., Kiertscher, S.M. *et al.* Interferon-alpha and granulocytemacrophage colony-stimulating factor differentiate peripheral blood monocytes into potent antigen-presenting cells. *J Leukoc Biol* 64, 358, (1998).
- Montoya, M., Schiavoni, G., Mattei, F. *et al.* Type I interferons produced by dendritic cells promote their phenotypic and functional activation. *Blood* 99, 3263, (2002).

- 88 Curtsinger, J.M., Schmidt, C.S., Mondino, A. *et al.* Inflammatory cytokines provide a third signal for activation of naive CD4+ and CD8+ T cells. *J Immunol* 162, 3256, (1999).
- 89 Wenner, C.A., Guler, M.L., Macatonia, S.E., O'Garra, A. & Murphy, K.M. Roles of IFNgamma and IFN-alpha in *IL-12*-induced T helper cell-1 development. *J Immunol* 156, 1442, (1996).
- 90 Brinkmann, V., Geiger, T., Alkan, S. & Heusser, C.H. Interferon alpha increases the frequency of interferon gamma-producing human CD4+ T cells. *J Exp Med* 178, 1655, (1993).
- 91 Le Bon, A., Schiavoni, G., D'Agostino, G. *et al.* **Type i interferons potently enhance humoral immunity and can promote isotype switching by stimulating dendritic cells in vivo**. *Immunity* 14, 461, (2001).
- 92 Tanaka, N., Sato, M., Lamphier, M.S. et al. Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells 3, 29, (1998).
- 93 Chawla-Sarkar, M., Lindner, D.J., Liu, Y.F. *et al.* **Apoptosis and interferons: role of** interferon-stimulated genes as mediators of apoptosis. *Apoptosis* 8, 237, (2003).
- 94 Benvegnu, L., Chemello, L., Noventa, F. *et al.* **Retrospective analysis of the effect of interferon therapy on the clinical outcome of patients with viral cirrhosis**. *Cancer* 83, 901, (1998).
- 95 Dorr, R.T. Interferon-alpha in malignant and viral diseases. A review. *Drugs* 45, 177, (1993).
- 96 Brassard, D.L., Grace, M.J. & Bordens, R.W. Interferon-alpha as an immunotherapeutic protein. *J Leukoc Biol* 71, 565, (2002).
- Paredes, J. & Krown, S.E. Interferon-alpha therapy in patients with Kaposi's sarcoma and the acquired immunodeficiency syndrome. Int J Immunopharmacol 13 Suppl 1, 77, (1991).
- 98 Talpaz, M., Kantarjian, H.M., McCredie, K.B. *et al.* **Clinical investigation of human alpha interferon in chronic myelogenous leukemia**. *Blood* 69, 1280, (1987).
- 99 Kirkwood, J.M., Ibrahim, J.G., Sondak, V.K., Ernstoff, M.S. & Ross, M. Interferon alfa-2a for melanoma metastases. *Lancet* 359, 978, (2002).
- 100 Sun, W. & Schuchter, L.M. **Metastatic melanoma**. *Curr Treat Options Oncol* 2, 193, (2001).
- 101 Rotondi, M., Mazziotti, G., Biondi, B. *et al.* Long-term treatment with interferonbeta therapy for multiple sclerosis and occurrence of Graves' disease. *J Endocrinol Invest* 23, 321, (2000).
- 102 Pianko, S. & McHutchison, J.G. **Treatment of hepatitis C with interferon and ribavirin**. *J Gastroenterol Hepatol* 15, 581, (2000).
- 103 Hayashi, N. & Takehara, T. Antiviral therapy for chronic hepatitis C: past, present, and future. J Gastroenterol 41, 17, (2006).
- 104 Balish, M.J., Abrams, M.E., Pumfery, A.M. & Brandt, C.R. Enhanced inhibition of herpes simplex virus type 1 growth in human corneal fibroblasts by combinations of interferon-alpha and -gamma. *J Infect Dis* 166, 1401, (1992).
- 105 D'Onofrio, C., Franzese, O., Puglianiello, A. *et al.* **Antiviral activity of individual** versus combined treatments with interferon alpha, beta and gamma on early infection with HTLV-I in vitro. *Int J Immunopharmacol* 14, 1069, (1992).
- 106 Naldini, A. & Fleischmann, W.R., Jr. In vivo myelosuppression by combination interferon treatment: antagonism of MuIFN-gamma and MuIFN-beta myelosuppressive effects. *J Biol Response Mod* 6, 546, (1987).
- 107 Sleijfer, S., Bannink, M., Van Gool, A.R., Kruit, W.H. & Stoter, G. Side effects of interferon-alpha therapy. *Pharm World Sci* 27, 423, (2005).

- 108 Asnis, G.M. & De La Garza, R., 2nd. Interferon-induced depression in chronic hepatitis C: a review of its prevalence, risk factors, biology, and treatment approaches. J Clin Gastroenterol 40, 322, (2006).
- 109 Kaiser, P., Wain, H.M. & Rothwell, L. Structure of the chicken interferon-gamma gene, and comparison to mammalian homologues. *Gene* 207, 25, (1998).
- 110 Derynck, R., Leung, D.W., Gray, P.W. & Goeddel, D.V. Human interferon gamma is encoded by a single class of mRNA. *Nucleic Acids Res* 10, 3605, (1982).
- 111 Vilcek, J.T. Cytokines in 1995. Cytokine Growth Factor Rev 7, 103, (1996).
- 112 Szabo, S.J., Sullivan, B.M., Peng, S.L. & Glimcher, L.H. **Molecular mechanisms** regulating Th1 immune responses. *Annu Rev Immunol* 21, 713, (2003).
- 113 Frucht, D.M., Fukao, T., Bogdan, C. *et al.* **IFN-gamma production by antigenpresenting cells: mechanisms emerge**. *Trends Immunol* 22, 556, (2001).
- 114 Boehm, U., Klamp, T., Groot, M. & Howard, J.C. Cellular responses to interferongamma. *Annu Rev Immunol* 15, 749, (1997).
- 115 Loughlin, A.J., Woodroofe, M.N. & Cuzner, M.L. Modulation of interferon-gammainduced major histocompatibility complex class II and Fc receptor expression on isolated microglia by transforming growth factor-beta 1, interleukin-4, noradrenaline and glucocorticoids. *Immunology* 79, 125, (1993).
- 116 Karupiah, G., Xie, Q.W., Buller, R.M. *et al.* **Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase**. *Science* 261, 1445, (1993).
- 117 Schroder, K., Hertzog, P.J., Ravasi, T. & Hume, D.A. Interferon-gamma: an overview of signals, mechanisms and functions. *J Leukoc Biol* 75, 163, (2004).
- 118 Kotenko, S.V., Gallagher, G., Baurin, V.V. *et al.* **IFN-lambdas mediate antiviral** protection through a distinct class II cytokine receptor complex. *Nat Immunol* 4, 69, (2003).
- 119 Sheppard, P., Kindsvogel, W., Xu, W. *et al. IL-28, IL-29* and their class II cytokine receptor *IL-28R*. *Nat Immunol* 4, 63, (2003).
- 120 Donnelly, R.P. & Kotenko, S.V. Interferon-lambda: a new addition to an old family. *J* Interferon Cytokine Res 30, 555, (2010).
- 121 Miknis, Z.J., Magracheva, E., Li, W. *et al.* Crystal structure of human interferonlambda1 in complex with its high-affinity receptor interferon-lambdaR1. *J Mol Biol* 404, 650, (2010).
- 122 Gad, H.H., Hamming, O.J. & Hartmann, R. **The structure of human interferon lambda and what it has taught us**. *J Interferon Cytokine Res* 30, 565, (2010).
- 123 Bartlett, N.W., Buttigieg, K., Kotenko, S.V. & Smith, G.L. Murine interferon lambdas (type III interferons) exhibit potent antiviral activity in vivo in a poxvirus infection model. J Gen Virol 86, 1589, (2005).
- 124 Lasfar, A., Lewis-Antes, A., Smirnov, S.V. *et al.* Characterization of the mouse IFNlambda ligand-receptor system: IFN-lambdas exhibit antitumor activity against B16 melanoma. *Cancer Res* 66, 4468, (2006).
- 125 O'Brien, T.R., Prokunina-Olsson, L. & Donnelly, R.P. **IFN-lambda4: the paradoxical new member of the interferon lambda family**. *J Interferon Cytokine Res* 34, 829, (2014).
- 126 Donnelly, R.P., Dickensheets, H. & O'Brien, T.R. Interferon-lambda and therapy for chronic hepatitis C virus infection. *Trends Immunol* 32, 443, (2011).
- 127 Lasfar, A., Abushahba, W., Balan, M. & Cohen-Solal, K.A. Interferon lambda: a new sword in cancer immunotherapy. *Clin Dev Immunol* 2011, 349575, (2011).
- 128 Kotenko, S.V. IFN-lambdas. Curr Opin Immunol 23, 583, (2011).
- 129 Meager, A., Visvalingam, K., Dilger, P., Bryan, D. & Wadhwa, M. Biological activity of interleukins-28 and -29: comparison with type I interferons. *Cytokine* 31, 109, (2005).

- 130 Coccia, E.M., Severa, M., Giacomini, E. *et al.* Viral infection and Toll-like receptor agonists induce a differential expression of type I and lambda interferons in human plasmacytoid and monocyte-derived dendritic cells. *Eur J Immunol* 34, 796, (2004).
- 131 Asselin-Paturel, C. & Trinchieri, G. **Production of type I interferons: plasmacytoid** dendritic cells and beyond. *J Exp Med* 202, 461, (2005).
- 132 Sgarbanti, M., Marsili, G., Remoli, A.L., Orsatti, R. & Battistini, A. *IRF-7*: new role in the regulation of genes involved in adaptive immunity. *Ann N Y Acad Sci* 1095, 325, (2007).
- 133 Hiscott, J. **Triggering the innate antiviral response through** *IRF-3* activation. *J Biol Chem* 282, 15325, (2007).
- 134 Siren, J., Imaizumi, T., Sarkar, D. *et al. Retinoic acid inducible gene-I and MDA5 are involved in influenza A virus-induced expression of antiviral cytokines. Microbes Infect* 8, 2013, (2006).
- 135 Ank, N., Iversen, M.B., Bartholdy, C. *et al.* An important role for type III interferon (IFN-lambda/IL-28) in TLR-induced antiviral activity. *J Immunol* 180, 2474, (2008).
- 136 Zhou, L., Wang, X., Wang, Y.J. *et al.* Activation of toll-like receptor-3 induces interferon-lambda expression in human neuronal cells. *Neuroscience* 159, 629, (2009).
- 137 Wang, J., Oberley-Deegan, R., Wang, S. *et al.* Differentiated human alveolar type II cells secrete antiviral *IL-29* (IFN-lambda 1) in response to influenza A infection. *J Immunol* 182, 1296, (2009).
- 138 Onoguchi, K., Yoneyama, M., Takemura, A. *et al.* Viral infections activate types I and III interferon genes through a common mechanism. *J Biol Chem* 282, 7576, (2007).
- 139 Osterlund, P., Veckman, V., Siren, J. *et al.* Gene expression and antiviral activity of alpha/beta interferons and interleukin-29 in virus-infected human myeloid dendritic cells. *J Virol* 79, 9608, (2005).
- 140 Honda, K., Yanai, H., Takaoka, A. & Taniguchi, T. **Regulation of the type I IFN** induction: a current view. *Int Immunol* 17, 1367, (2005).
- 141 Iversen, M.B., Ank, N., Melchjorsen, J. & Paludan, S.R. Expression of type III interferon (IFN) in the vaginal mucosa is mediated primarily by dendritic cells and displays stronger dependence on NF-kappaB than type I IFNs. *J Virol* 84, 4579, (2010).
- 142 Li, M., Liu, X., Zhou, Y. & Su, S.B. Interferon-lambdas: the modulators of antivirus, antitumor, and immune responses. *J Leukoc Biol* 86, 23, (2009).
- 143 Hayden, F.G., Albrecht, J.K., Kaiser, D.L. & Gwaltney, J.M., Jr. Prevention of natural colds by contact prophylaxis with intranasal alpha 2-interferon. N Engl J Med 314, 71, (1986).
- 144 Panigrahi, R., Hazari, S., Chandra, S. *et al.* **Interferon and ribavirin combination** treatment synergistically inhibit HCV internal ribosome entry site mediated translation at the level of polyribosome formation. *PLoS One* 8, e72791, (2013).
- 145 Dickensheets, H., Sheikh, F., Park, O., Gao, B. & Donnelly, R.P. Interferon-lambda induces signal transduction and gene expression in human hepatocytes, but not in lymphocytes or monocytes. *J Leukoc Biol* 93, 377, (2013).
- 146 Zhou, Z., Hamming, O.J., Ank, N. *et al.* **Type III interferon (IFN) induces a type I IFN**like response in a restricted subset of cells through signaling pathways involving both the JAK-STAT pathway and the mitogen-activated protein kinases. *J Virol* 81, 7749, (2007).
- 147 Vossen, M.T., Westerhout, E.M., Soderberg-Naucler, C. & Wiertz, E.J. Viral immune evasion: a masterpiece of evolution. *Immunogenetics* 54, 527, (2002).

- 148 Ma, D., Jiang, D., Qing, M. *et al.* Antiviral effect of interferon lambda against West Nile virus. *Antiviral Res* 83, 53, (2009).
- 149 Khaitov, M.R., Laza-Stanca, V., Edwards, M.R. *et al.* **Respiratory virus induction of** alpha-, beta- and lambda-interferons in bronchial epithelial cells and peripheral blood mononuclear cells. *Allergy* 64, 375, (2009).
- 150 Srinivas, S., Dai, J., Eskdale, J. *et al.* Interferon-lambda1 (interleukin-29) preferentially down-regulates interleukin-13 over other T helper type 2 cytokine responses in vitro. *Immunology* 125, 492, (2008).
- 151 Jordan, W.J., Eskdale, J., Srinivas, S. *et al.* Human interferon lambda-1 (IFNlambda1/*IL-29*) modulates the Th1/Th2 response. *Genes Immun* 8, 254, (2007).
- 152 Brand, S., Beigel, F., Olszak, T. *et al. IL-28A* and *IL-29* mediate antiproliferative and antiviral signals in intestinal epithelial cells and murine CMV infection increases colonic *IL-28A* expression. *Am J Physiol Gastrointest Liver Physiol* 289, G960, (2005).
- 153 Robek, M.D., Boyd, B.S. & Chisari, F.V. Lambda interferon inhibits hepatitis B and C virus replication. *J Virol* 79, 3851, (2005).
- 154 Miller, D.M., Klucher, K.M., Freeman, J.A. *et al.* Interferon lambda as a potential new therapeutic for hepatitis C. *Ann N Y Acad Sci* 1182, 80, (2009).
- 155 Larkin, J., Jin, L., Farmen, M. et al. Synergistic antiviral activity of human interferon combinations in the hepatitis C virus replicon system. J Interferon Cytokine Res 23, 247, (2003).
- 156 Pagliaccetti, N.E., Eduardo, R., Kleinstein, S.H. *et al. Interleukin-29* functions cooperatively with interferon to induce antiviral gene expression and inhibit hepatitis C virus replication. *J Biol Chem* 283, 30079, (2008).
- 157 Marcello, T., Grakoui, A., Barba-Spaeth, G. *et al.* **Interferons alpha and lambda** inhibit hepatitis C virus replication with distinct signal transduction and gene regulation kinetics. *Gastroenterology* 131, 1887, (2006).
- 158 Makowska, Z., Duong, F.H., Trincucci, G., Tough, D.F. & Heim, M.H. Interferon-beta and interferon-lambda signaling is not affected by interferon-induced refractoriness to interferon-alpha in vivo. *Hepatology* 53, 1154, (2011).
- 159 Sommereyns, C., Paul, S., Staeheli, P. & Michiels, T. **IFN-lambda (IFN-lambda) is** expressed in a tissue-dependent fashion and primarily acts on epithelial cells in vivo. *PLoS Pathog* 4, e1000017, (2008).
- 160 Maher, S.G., Sheikh, F., Scarzello, A.J. *et al.* **IFN alpha and IFN lambda differ in their** antiproliferative effects and duration of *JAK/STAT* signaling activity. *Cancer Biol Ther* 7, 1109, (2008).
- 161 Li, W., Huang, X., Liu, Z. *et al.* **Type III interferon induces apoptosis in human lung cancer cells**. *Oncol Rep* 28, 1117, (2012).
- 162 Zitzmann, K., Brand, S., Baehs, S. *et al.* **Novel interferon-lambdas induce antiproliferative effects in neuroendocrine tumor cells**. *Biochem Biophys Res Commun* 344, 1334, (2006).
- 163 Brand, S., Zitzmann, K., Dambacher, J. et al. SOCS-1 inhibits expression of the antiviral proteins 2',5'-OAS and MxA induced by the novel interferon-lambdas IL-28A and IL-29. Biochem Biophys Res Commun 331, 543, (2005).
- 164 Langer, J.A., Cutrone, E.C. & Kotenko, S. The Class II cytokine receptor (CRF2) family: overview and patterns of receptor-ligand interactions. *Cytokine Growth Factor Rev* 15, 33, (2004).
- 165 Kotenko, S.V. & Langer, J.A. Full house: 12 receptors for 27 cytokines. Int Immunopharmacol 4, 593, (2004).
- 166 Uze, G. & Monneron, D. *IL-28* and *IL-29*: newcomers to the interferon family. *Biochimie* 89, 729, (2007).

- 167 Bach, E.A., Aguet, M. & Schreiber, R.D. **The IFN gamma receptor: a paradigm for** cytokine receptor signaling. *Annu Rev Immunol* 15, 563, (1997).
- 168 Heaney, M.L. & Golde, D.W. Soluble cytokine receptors. *Blood* 87, 847, (1996).
- 169 Levine, S.J. **Mechanisms of soluble cytokine receptor generation**. *J Immunol* 173, 5343, (2004).
- 170 Owczarek, C.M., Hwang, S.Y., Holland, K.A. *et al.* **Cloning and characterization of** soluble and transmembrane isoforms of a novel component of the murine type I interferon receptor, *IFNAR 2*. *J Biol Chem* 272, 23865, (1997).
- 171 Hardy, M.P., Owczarek, C.M., Trajanovska, S. *et al.* **The soluble murine type I** interferon receptor *IFNAR-2* is present in serum, is independently regulated, and has both agonistic and antagonistic properties. *Blood* 97, 473, (2001).
- 172 Witte, K., Gruetz, G., Volk, H.D. *et al.* **Despite IFN-lambda receptor expression,** blood immune cells, but not keratinocytes or melanocytes, have an impaired response to type III interferons: implications for therapeutic applications of these cytokines. *Genes Immun* 10, 702, (2009).
- 173 Wolk, K., Witte, E., Reineke, U. *et al.* Is there an interaction between interleukin-10 and interleukin-22? *Genes Immun* 6, 8, (2005).
- 174 Jordan, W.J., Eskdale, J., Boniotto, M. *et al.* Modulation of the human cytokine response by interferon lambda-1 (IFN-lambda1/*IL-29*). *Genes Immun* 8, 13, (2007).
- 175 Z, Z., OJ, H., N, A. *et al.* Type III interferon (IFN) induces a type I IFN-like response in a restricted subset of cells through signaling pathways involving both the JAK-STAT pathway and the mitogen-activated protein kinases. *J Virol* 81, 7749, (2007).
- 176 Mordstein, M., Michiels, T. & Staeheli, P. What have we learned from the *IL28* receptor knockout mouse? *J Interferon Cytokine Res* 30, 579, (2010).
- 177 Pulverer, J.E., Rand, U., Lienenklaus, S. *et al.* **Temporal and spatial resolution of type** I and III interferon responses in vivo. *J Virol* 84, 8626, (2010).
- 178 Durbin, R.K., Kotenko, S.V. & Durbin, J.E. Interferon induction and function at the mucosal surface. *Immunol Rev* 255, 25, (2013).
- 179 Dumoutier, L., Lejeune, D., Hor, S., Fickenscher, H. & Renauld, J.C. **Cloning of a new type II cytokine receptor activating signal transducer and activator of transcription** (*STAT*)1, *STAT2* and *STAT3*. *Biochem J* 370, 391, (2003).
- 180 Lazear, H.M., Daniels, B.P., Pinto, A.K. *et al.* Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier. *Science translational medicine* 7, 284ra59, (2015).
- 181 Prinz, M., Schmidt, H., Mildner, A. *et al.* **Distinct and nonredundant in vivo functions** of *IFNAR* on myeloid cells limit autoimmunity in the central nervous system. *Immunity* 28, 675, (2008).
- 182 Kotenko, S.V. & Pestka, S. *Jak-Stat* signal transduction pathway through the eyes of cytokine class II receptor complexes. *Oncogene* 19, 2557, (2000).
- 183 O'Shea, J.J. & Plenge, R. *JAK* and *STAT* signaling molecules in immunoregulation and immune-mediated disease. *Immunity* 36, 542, (2012).
- 184 Kiu, H. & Nicholson, S.E. **Biology and significance of the** *JAK/STAT* **signalling pathways**. *Growth Factors* 30, 88, (2012).
- 185 Lopusna, K., Rezuchova, I., Betakova, T. *et al.* **Interferons lambda, new cytokines with antiviral activity**. *Acta Virol* 57, 171, (2013).
- 186 Bluthgen, N. & Legewie, S. Systems analysis of MAPK signal transduction. *Essays Biochem* 45, 95, (2008).
- 187 Treisman, R. Regulation of transcription by MAP kinase cascades. *Curr Opin Cell Biol* 8, 205, (1996).
- 188 Lowenthal, J.W., Staeheli, P., Schultz, U., Sekellick, M.J. & Marcus, P.I. Nomenclature of avian interferon proteins. *J Interferon Cytokine Res* 21, 547, (2001).

- 189 Sick, C., Schultz, U. & Staeheli, P. A family of genes coding for two serologically distinct chicken interferons. *J Biol Chem* 271, 7635, (1996).
- 190 Nanda, I., Sick, C., Munster, U. *et al.* **Sex chromosome linkage of chicken and duck type I interferon genes: further evidence of evolutionary conservation of the Z chromosome in birds**. *Chromosoma* 107, 204, (1998).
- 191 Staeheli, P., Puehler, F., Schneider, K., Gobel, T.W. & Kaspers, B. Cytokines of birds: conserved functions--a largely different look. J Interferon Cytokine Res 21, 993, (2001).
- 192 Sick, C., Schultz, U., Munster, U. *et al.* **Promoter structures and differential** responses to viral and nonviral inducers of chicken type I interferon genes. *J Biol Chem* 273, 9749, (1998).
- 193 Levy, A.M., Heller, E.D., Leitner, G. & Davidson, I. Effect of native chicken interferon on MDV replication. *Acta Virol* 43, 121, (1999).
- 194 Mo, C.W., Cao, Y.C. & Lim, B.L. The in vivo and in vitro effects of chicken interferon alpha on infectious bursal disease virus and Newcastle disease virus infection. *Avian Dis* 45, 389, (2001).
- 195 Pei, J., Sekellick, M.J., Marcus, P.I., Choi, I.S. & Collisson, E.W. Chicken interferon type I inhibits infectious bronchitis virus replication and associated respiratory illness. J Interferon Cytokine Res 21, 1071, (2001).
- 196 Xia, C., Liu, J., Wu, Z.G., Lin, C.Y. & Wang, M. The interferon-alpha genes from three chicken lines and its effects on H9N2 influenza viruses. *Anim Biotechnol* 15, 77, (2004).
- 197 Digby, M.R. & Lowenthal, J.W. Cloning and expression of the chicken interferongamma gene. J Interferon Cytokine Res 15, 939, (1995).
- 198 Qi, J., Du, Y., Zhu, X. *et al.* [Soluble expression of chicken interferon-gamma and antiviral activity of purified expression product]. *Wei Sheng Wu Xue Bao* 49, 85, (2009).
- 199 Mallick, A.I., Haq, K., Brisbin, J.T. *et al.* Assessment of bioactivity of a recombinant chicken interferon-gamma expressed using a baculovirus expression system. *J* Interferon Cytokine Res 31, 493, (2011).
- Lambrecht, B., Gonze, M., Morales, D., Meulemans, G. & van den Berg, T.P.
 Comparison of biological activities of natural and recombinant chicken interferongamma. *Vet Immunol Immunopathol* 70, 257, (1999).
- 201 Karpala, A.J., Morris, K.R., Broadway, M.M. *et al.* **Molecular cloning, expression, and characterization of chicken IFN -lambda**. *J Interferon Cytokine Res* 28, 341, (2008).
- 202 Reboul, J., Gardiner, K., Monneron, D., Uze, G. & Lutfalla, G. Comparative genomic analysis of the interferon/interleukin-10 receptor gene cluster. *Genome Res* 9, 242, (1999).
- 203 Han, X., Chen, T. & Wang, M. Molecular cloning and characterization of chicken interferon-gamma receptor alpha-chain. J Interferon Cytokine Res 28, 445, (2008).
- 204 Adachi, H., Takemoto, Y., Bungo, T. & Ohkubo, T. **Chicken leptin receptor is functional in activating JAK-STAT pathway** *in vitro*. J Endocrinol 197, 335, (2008).
- 205 Kuchipudi, S.V., Tellabati, M., Sebastian, S. *et al.* **Highly pathogenic avian influenza** virus infection in chickens but not ducks is associated with elevated host immune and pro-inflammatory responses. *Vet Res* 45, 118, (2014).
- 206 Reuter, A., Soubies, S., Hartle, S. *et al.* Antiviral activity of lambda interferon in chickens. *J Virol* 88, 2835, (2014).
- 207 Schneider, W.M., Chevillotte, M.D. & Rice, C.M. Interferon-stimulated genes: a complex web of host defenses. *Annu Rev Immunol* 32, 513, (2014).
- 208 Gao, S., von der Malsburg, A., Paeschke, S., Behlke, J. & Haller, O. **Structural basis of** oligomerization in the stalk region of dynamin-like MxA. *Nature* 465, 502, (2010).

- 209 Gao, G., Guo, X. & Goff, S.P. Inhibition of retroviral RNA production by ZAP, a CCCHtype zinc finger protein. *Science* 297, 1703, (2002).
- 210 Tu, Y.C., Yu, C.Y., Liang, J.J. *et al.* Blocking double-stranded RNA-activated protein kinase PKR by Japanese encephalitis virus nonstructural protein 2A. *J Virol* 86, 10347, (2012).
- 211 Zhou, X., Michal, J.J., Zhang, L. *et al.* **Interferon induced IFIT family genes in host antiviral defense**. *International journal of biological sciences* 9, 200, (2013).
- 212 Helbig, K.J. & Beard, M.R. The role of *Viperin* in the innate antiviral response. *J Mol Biol* 426, 1210, (2014).
- 213 Horisberger, M.A., Staeheli, P. & Haller, O. Interferon induces a unique protein in mouse cells bearing a gene for resistance to influenza virus. *Proc Natl Acad Sci U S A* 80, 1910, (1983).
- 214 Kochs, G. & Haller, O. Interferon-induced human *MxA* GTPase blocks nuclear import of Thogoto virus nucleocapsids. *Proc Natl Acad Sci U S A* 96, 2082, (1999).
- 215 Reichelt, M., Stertz, S., Krijnse-Locker, J., Haller, O. & Kochs, G. **Missorting of** LaCrosse virus nucleocapsid protein by the interferon-induced *MxA* GTPase involves smooth ER membranes. *Traffic* 5, 772, (2004).
- 216 Sironi, L., Williams, J.L., Moreno-Martin, A.M. *et al.* **Susceptibility of different** chicken lines to H7N1 highly pathogenic avian influenza virus and the role of *Mx* gene polymorphism coding amino acid position 631. *Virology* 380, 152, (2008).
- 217 Ko, J.H., Jin, H.K., Asano, A. *et al.* **Polymorphisms and the differential antiviral activity of the chicken** *Mx* **gene**. *Genome Res* 12, 595, (2002).
- 218 Wang, Y., Brahmakshatriya, V., Lupiani, B. *et al.* Associations of chicken *Mx1* polymorphism with antiviral responses in avian influenza virus infected embryos and broilers. *Poult Sci* 91, 3019, (2012).
- 219 Schusser, B., Reuter, A., von der Malsburg, A. *et al. Mx* is dispensable for interferonmediated resistance of chicken cells against influenza A virus. *J Virol* 85, 8307, (2011).
- 220 Fulton, J.E., Arango, J., Ali, R.A. *et al.* Genetic Variation within the Mx Gene of Commercially Selected Chicken Lines Reveals Multiple Haplotypes, Recombination and a Protein under Selection Pressure. *PLoS One* 9, e108054, (2014).
- 221 Oshiumi, H., Mifsud, E.J. & Daito, T. Links between recognition and degradation of cytoplasmic viral RNA in innate immune response. *Rev Med Virol* 26, 90, (2016).
- 222 MacDonald, M.R., Machlin, E.S., Albin, O.R. & Levy, D.E. **The zinc finger antiviral** protein acts synergistically with an interferon-induced factor for maximal activity against alphaviruses. *J Virol* 81, 13509, (2007).
- 223 Goossens, K.E., Karpala, A.J., Ward, A. & Bean, A.G. Characterisation of chicken ZAP. Dev Comp Immunol 46, 373, (2014).
- 224 Clemens, M.J. & Elia, A. The double-stranded RNA-dependent protein kinase *PKR*: structure and function. *J Interferon Cytokine Res* 17, 503, (1997).
- 225 McAllister, C.S., Taghavi, N. & Samuel, C.E. Protein kinase *PKR* amplification of interferon beta induction occurs through initiation factor *eIF-2alpha*-mediated translational control. *J Biol Chem* 287, 36384, (2012).
- 226 Ko, J.H., Asano, A., Kon, Y., Watanabe, T. & Agui, T. Characterization of the chicken *PKR:* polymorphism of the gene and antiviral activity against vesicular stomatitis virus. *Jpn J Vet Res* 51, 123, (2004).
- 227 Abbas, Y.M., Pichlmair, A., Gorna, M.W., Superti-Furga, G. & Nagar, B. Structural basis for viral 5'-PPP-RNA recognition by human IFIT proteins. *Nature* 494, 60, (2013).
- 228 Feng, F., Yuan, L., Wang, Y.E. *et al.* Crystal structure and nucleotide selectivity of human *IFIT5/ISG58*. *Cell research* 23, 1055, (2013).

- 229 Rychlik, I., Elsheimer-Matulova, M. & Kyrova, K. Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella. *Vet Res* 45, 119, (2014).
- 230 Barber, M.R., Aldridge, J.R., Jr., Webster, R.G. & Magor, K.E. Association of *RIG-I* with innate immunity of ducks to influenza. *Proc Natl Acad Sci U S A* 107, 5913, (2010).
- 231 Matulova, M., Varmuzova, K., Sisak, F. *et al.* Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis. *Vet Res* 44, 37, (2013).
- 232 Wang, S., Wu, X., Pan, T. *et al. Viperin* inhibits hepatitis C virus replication by interfering with binding of *NS5A* to host protein hVAP-33. *J Gen Virol* 93, 83, (2012).
- 233 Helbig, K.J., Carr, J.M., Calvert, J.K. *et al.* Viperin is induced following dengue virus type-2 (DENV-2) infection and has anti-viral actions requiring the C-terminal end of viperin. *PLoS Negl Trop Dis* 7, e2178, (2013).
- 234 Wang, X., Hinson, E.R. & Cresswell, P. The interferon-inducible protein Viperin inhibits influenza virus release by perturbing lipid rafts. Cell Host Microbe 2, 96, (2007).
- 235 Nasr, N., Maddocks, S., Turville, S.G. *et al.* **HIV-1 infection of human macrophages** directly induces viperin which inhibits viral production. *Blood* 120, 778, (2012).
- 236 Goossens, K.E., Karpala, A.J., Rohringer, A., Ward, A. & Bean, A.G. Characterisation of chicken *viperin*. *Mol Immunol* 63, 373, (2015).
- 237 Short, K.R., Richard, M., Verhagen, J.H. *et al.* **One health, multiple challenges: The** inter-species transmission of influenza A virus. *One Health* 1, 1, (2015).
- 238 Taha, F. How Highly Pathogenic Avian Influenza (H5N1) Has Affected World Poultry-Meat Trade. United States Department of Agriculture Outlook No. (LDPM-15902) 27 pp, (October 2007).
- 239 McLeod, A., Morgan, N., Prakash, A. & Hindrichs, J. Ecomomic and Social Impacts of Avian Influenza.
- 240 To, K.K., Ng, K.H., Que, T.L. *et al.* **Avian influenza A H5N1 virus: a continuous threat to humans**. *Emerg Microbes Infect* 1, e25, (2012).
- 241 Claas, E.C., Osterhaus, A.D., van Beek, R. *et al.* Human influenza A H5N1 virus related to a highly pathogenic avian influenza virus. *Lancet* 351, 472, (1998).
- 242 Reperant, L.A., Kuiken, T. & Osterhaus, A.D. Influenza viruses: from birds to humans. *Hum Vaccin Immunother* 8, 7, (2012).
- 243 Russell, C.A., Fonville, J.M., Brown, A.E. *et al.* **The potential for respiratory droplettransmissible A/H5N1 influenza virus to evolve in a mammalian host**. *Science* 336, 1541, (2012).
- 244 Peiris, J.S., de Jong, M.D. & Guan, Y. Avian influenza virus (H5N1): a threat to human health. *Clin Microbiol Rev* 20, 243, (2007).
- 245 Shinya, K., Ebina, M., Yamada, S. *et al.* Avian flu: influenza virus receptors in the human airway. *Nature* 440, 435, (2006).
- 246 Mestas, J. & Hughes, C.C.W. **Of Mice and Not Men: Differences between Mouse and Human Immunology**. *J Immunol* 172, 2731, (2004).
- 247 Bean, A.G., Baker, M.L., Stewart, C.R. *et al.* **Studying immunity to zoonotic diseases in the natural host - keeping it real**. *Nat Rev Immunol*, (2013).
- 248 Bean, A.G., Baker, M.L., Stewart, C.R. *et al.* **Studying immunity to zoonotic diseases in the natural host - keeping it real**. *Nat Rev Immunol* 13, 851, (2013).
- 249 WHO. Manual for the laboratory diagnosis and virological surveillance of influenza,2011
- 250 Reed, L.J. & Muench, H. A simple method of estimating fifty per cent endpoints. *Am J Epidemiol* 27, 493, (1938).

- 251 Curran, J.M., Robertson, I.D., Ellis, T.M. & Selleck, P.W. Evaluation of avian influenza serologic and virologic diagnostic methods in wild Anseriformes and Charadriiformes. *Avian Dis* 58, 53, (2014).
- 252 Heine, H.G., Trinidad, L., Selleck, P. & Lowther, S. Rapid detection of highly pathogenic avian influenza H5N1 virus by TaqMan reverse transcriptasepolymerase chain reaction. *Avian Dis* 51, 370, (2007).
- 253 Butler, J., Stewart, C.R., Layton, D.S. *et al.* Novel Reassortant H5N6 Influenza A Virus from the Lao People's Democratic Republic Is Highly Pathogenic in Chickens. *PLoS One* 11, e0162375, (2016).
- 254 Ward, A.C., Hermans, M.H., Smith, L. *et al.* **Tyrosine-dependent and -independent** mechanisms of *STAT3* activation by the human granulocyte colony-stimulating factor (G-CSF) receptor are differentially utilized depending on G-CSF concentration. *Blood* 93, 113, (1999).
- 255 Karpala, A.J., Stewart, C., McKay, J., Lowenthal, J.W. & Bean, A.G. Characterization of chicken *MDA5* activity: regulation of IFN-beta in the absence of *RIG-I* functionality. *J Immunol* 186, 5397, (2011).
- 256 Bekisz, J., Schmeisser, H., Hernandez, J., Goldman, N.D. & Zoon, K.C. Human interferons alpha, beta and omega. *Growth Factors* 22, 243, (2004).
- 257 Demoulins, T., Baron, M.L., Kettaf, N. *et al.* **Poly (I:C) induced immune response in lymphoid tissues involves three sequential waves of type I IFN expression**. *Virology* 386, 225, (2009).
- 258 Chow, J.C., Young, D.W., Golenbock, D.T., Christ, W.J. & Gusovsky, F. Toll-like Receptor-4 Mediates Lipopolysaccharide-induced Signal Transduction. *Journal of Biological Chemistry* 274, 10689, (1999).
- 259 Jones, D.T., Taylor, W.R. & Thornton, J.M. **The rapid generation of mutation data** matrices from protein sequences. *Comput Appl Biosci* 8, 275, (1992).
- 260 Sato, M., Hata, N., Asagiri, M. *et al.* **Positive feedback regulation of type I IFN genes** by the IFN-inducible transcription factor *IRF-7*. *FEBS Lett* 441, 106, (1998).
- Keestra, A.M., de Zoete, M.R., Bouwman, L.I., Vaezirad, M.M. & van Putten, J.P.
 Unique features of chicken Toll-like receptors. *Dev Comp Immunol* 41, 316, (2013).
- 262 Dionne, P.R., Maria, E.L., William, J. & Sabra, L.K. Elevated 17ß-estradiol protects females from influenza A virus pathogenesis by suppressing inflammatory responses. *PLoS Pathog* 7, e1002149, (2011).
- 263 Mark, C.S., Michael, G.O., Franck, H., Alan, L.S. & Sabra, L.K. 17beta-estradiol alters the activity of conventional and IFN-producing killer dendritic cells. *J Immunol* 180, 1423, (2008).
- 264 Manry, J., Laval, G., Patin, E. *et al.* **Evolutionary genetic dissection of human interferons**. *J Exp Med* 208, 2747, (2011).
- Savan, R., Ravichandran, S., Collins, J.R., Sakai, M. & Young, H.A. Structural conservation of interferon gamma among vertebrates. *Cytokine Growth Factor Rev* 20, 115, (2009).
- 266 Ank, N., West, H., Bartholdy, C. *et al.* Lambda interferon (IFN-lambda), a type III IFN, is induced by viruses and IFNs and displays potent antiviral activity against select virus infections in vivo. *J Virol* 80, 4501, (2006).
- 267 Masuda, Y., Matsuda, A., Usui, T. *et al.* **Biological effects of chicken type III** interferon on expression of interferon-stimulated genes in chickens: comparison with type I and type II interferons. *J Vet Med Sci* 74, 1381, (2012).
- 268 Lin, J.D., Feng, N., Sen, A. *et al.* Distinct Roles of Type I and Type III Interferons in Intestinal Immunity to Homologous and Heterologous Rotavirus Infections. *PLoS Pathog* 12, e1005600, (2016).

- 269 Gautier, G., Humbert, M., Deauvieau, F. *et al.* A type I interferon autocrineparacrine loop is involved in Toll-like receptor-induced interleukin-12p70 secretion by dendritic cells. *J Exp Med* 201, 1435, (2005).
- 270 Pott, J., Mahlakoiv, T., Mordstein, M. *et al.* **IFN-lambda determines the intestinal epithelial antiviral host defense**. *Proc Natl Acad Sci U S A* 108, 7944, (2011).
- 271 Okamoto, M., Oshiumi, H., Azuma, M. *et al. IPS-1* is essential for type III IFN production by hepatocytes and dendritic cells in response to hepatitis C virus infection. *J Immunol* 192, 2770, (2014).
- 272 Bierne, H., Travier, L., Mahlakoiv, T. *et al.* Activation of type III interferon genes by pathogenic bacteria in infected epithelial cells and mouse placenta. *PLoS One* 7, e39080, (2012).
- 273 Hillyer, P., Mane, V.P., Schramm, L.M. *et al.* Expression profiles of human interferon-alpha and interferon-lambda subtypes are ligand- and cell-dependent. *Immunol Cell Biol* 90, 774, (2012).
- 274 Bream, J.H., Ping, A., Zhang, X., Winkler, C. & Young, H.A. A single nucleotide polymorphism in the proximal IFN-gamma promoter alters control of gene transcription. *Genes Immun* 3, 165, (2002).
- 275 Marie, I., Durbin, J.E. & Levy, D.E. Differential viral induction of distinct interferonalpha genes by positive feedback through interferon regulatory factor-7. *EMBO J* 17, 6660, (1998).
- 276 Tailor, P., Tamura, T., Kong, H.J. *et al.* **The feedback phase of type I interferon induction in dendritic cells requires** *interferon regulatory factor 8*. *Immunity* 27, 228, (2007).
- 277 DeWitte-Orr, S.J., Mehta, D.R., Collins, S.E. *et al.* Long double-stranded RNA induces an antiviral response independent of IFN regulatory factor 3, IFN-beta promoter stimulator 1, and IFN. *J Immunol* 183, 6545, (2009).
- 278 Malcolm, K.C. & Worthen, G.S. Lipopolysaccharide stimulates p38-dependent induction of antiviral genes in neutrophils independently of paracrine factors. *J Biol Chem* 278, 15693, (2003).
- 279 Ovstebo, R., Olstad, O.K., Brusletto, B. *et al.* Identification of genes particularly sensitive to lipopolysaccharide (LPS) in human monocytes induced by wild-type versus LPS-deficient Neisseria meningitidis strains. *Infect Immun* 76, 2685, (2008).
- 280 Sheikh, F., Dickensheets, H., Gamero, A.M., Vogel, S.N. & Donnelly, R.P. An essential role for IFN-beta in the induction of IFN-stimulated gene expression by LPS in macrophages. J Leukoc Biol 96, 591, (2014).
- 281 Marcello, T., Grakoui, A., Barba–Spaeth, G. et al. Interferons α and λ Inhibit Hepatitis C Virus Replication With Distinct Signal Transduction and Gene Regulation Kinetics. Gastroenterology 131, 1887, (2006).
- 282 Karpala, A.J., Bingham, J., Schat, K.A. *et al.* **Highly pathogenic (H5N1) avian influenza** induces an inflammatory T helper type 1 cytokine response in the chicken. *J Interferon Cytokine Res* 31, (2011).
- 283 Matsuu, A., Kobayashi, T., Patchimasiri, T. *et al.* **Pathogenicity of Genetically Similar,** H5N1 Highly Pathogenic Avian Influenza Virus Strains in Chicken and the Differences in Sensitivity among Different Chicken Breeds. *PLoS One* 11, e0153649, (2016).
- 284 Ranaware, P.B., Mishra, A., Vijayakumar, P. et al. Genome Wide Host Gene Expression Analysis in Chicken Lungs Infected with Avian Influenza Viruses. PLoS One 11, e0153671, (2016).
- 285 Uchida, Y., Watanabe, C., Takemae, N. *et al.* **Identification of host genes linked with the survivability of chickens infected with recombinant viruses possessing H5N1**

surface antigens from a highly pathogenic avian influenza virus. *J Virol* 86, 2686, (2012).

- 286 Klein, S.L. The effects of hormones on sex differences in infection: from genes to behavior. *Neurosci Biobehav Rev* 24, 627, (2000).
- 287 Klein, S.L. Sex influences immune responses to viruses, and efficacy of prophylaxis and treatments for viral diseases. *Bioessays* 34, 1050, (2012).
- 288 Klein, S.L., Bird, B.H. & Glass, G.E. Sex differences in immune responses and viral shedding following Seoul virus infection in Norway rats. Am J Trop Med Hyg 65, 57, (2001).
- 289 Sabra, L.K., Andrea, H. & Dionne, P.R. Mechanisms of sex disparities in influenza pathogenesis. *J Leukoc Biol* 92, 67, (2012).
- 290 Sabra, L.K., Anne, J. & Andrew, P. **The Xs and Y of immune responses to viral** vaccines. *Lancet Infect Dis* 10, 338, (2010).
- 291 Dumoutier, L., Tounsi, A., Michiels, T. *et al.* **Role of the interleukin** *(IL)-28* receptor tyrosine residues for antiviral and antiproliferative activity of *IL-29/*interferonlambda 1: similarities with type I interferon signaling. *J Biol Chem* 279, 32269, (2004).
- 292 Rauch, I., Muller, M. & Decker, T. The regulation of inflammation by interferons and their STATs. *JAKSTAT* 2, e23820, (2013).
- 293 Huxley, T.H. **Further Evidence of the Affinity between the Dinosaurian Reptiles and Birds**. *Quarterly Journal of the Geological Society* 26, 12, (1870).
- 294 Al-Ali, H.K. & Vannucchi, A.M. Managing patients with myelofibrosis and low platelet counts. *Ann Hematol*, (2016).
- 295 Mogensen, T.H. **Pathogen recognition and inflammatory signaling in innate immune defenses**. *Clin Microbiol Rev* 22, 240, (2009).
- 296 Magor, K.E., Miranzo Navarro, D., Barber, M.R. *et al.* **Defense genes missing from the flight division**. *Dev Comp Immunol* 41, 377, (2013).
- 297 Karpala, A.J., Lowenthal, J.W. & Bean, A.G. Activation of the *TLR3* pathway regulates IFN beta production in chickens. *Dev Comp Immunol* 32, 435, (2008).
- 298 Wang, B., Chen, Y., Mu, C. *et al.* Identification and expression analysis of the interferon-induced protein with tetratricopeptide repeats 5 (*IFIT5*) gene in duck (Anas platyrhynchos domesticus). *PLoS One* 10, e0121065, (2015).
- 299 Liu, Y., Zhang, Y.B., Liu, T.K. & Gui, J.F. Lineage-specific expansion of *IFIT* gene family: an insight into coevolution with IFN gene family. *PLoS One* 8, e66859, (2013).
- 300 Barber, M.R., Aldridge, J.R., Jr., Fleming-Canepa, X. *et al.* Identification of avian *RIG-I* responsive genes during influenza infection. *Mol Immunol* 54, 89, (2013).
- 301 Hui, R.K. & Leung, F.C. Differential Expression Profile of Chicken Embryo Fibroblast DF-1 Cells Infected with Cell-Adapted Infectious Bursal Disease Virus. PLoS One 10, e0111771, (2015).
- 302 Wong, G.K., Liu, B., Wang, J. *et al.* A genetic variation map for chicken with 2.8 million single-nucleotide polymorphisms. *Nature* 432, 717, (2004).
- 303 Diamond, M.S. & Farzan, M. The broad-spectrum antiviral functions of *IFIT* and *IFITM* proteins. *Nat Rev Immunol* 13, 46, (2013).
- Zhang, B., Liu, X., Chen, W. & Chen, L. *IFIT5* potentiates anti-viral response through enhancing innate immune signaling pathways. *Acta Biochim Biophys Sin (Shanghai)* 45, 867, (2013).
- 305 Akcay Ciblak, M., Kanturvardar Tutenyurd, M., Asar, S. *et al.* [Influenza surveillance in nine consecutive seasons, 2003-2012: results from National Influenza Reference Laboratory, Istanbul Faculty Of Medicine, Turkey]. *Mikrobiyol Bul* 46, 575, (2012).

- 306 Anton, A., Marcos, M.A., Torner, N. et al. Virological surveillance of influenza and other respiratory viruses during six consecutive seasons from 2006 to 2012 in Catalonia, Spain. Clin Microbiol Infect 22, 564.e1, (2016).
- 307 Sullivan, S.G., Carville, K.S., Chilver, M. *et al.* **Pooled influenza vaccine effectiveness** estimates for Australia, **2012-2014**. *Epidemiol Infect* 144, 2317, (2016).
- 308 Swayne, D.E., Spackman, E. & Pantin-Jackwood, M. Success factors for avian influenza vaccine use in poultry and potential impact at the wild bird-agricultural interface. *Ecohealth* 11, 94, (2014).
- 309 Maria John, K.M., Enkhtaivan, G., Ayyanar, M. *et al.* Screening of ethnic medicinal plants of South India against influenza (H1N1) and their antioxidant activity. *Saudi J Biol Sci* 22, 191, (2015).
- 310 Gao, Q., Wang, Z., Liu, Z. *et al.* A cell-based high-throughput approach to identify inhibitors of influenza A virus. *Acta Pharm Sin B* 4, 301, (2014).
- 311 Lee, H.C., Salzemann, J., Jacq, N. *et al.* Grid-enabled high-throughput in silico screening against influenza A neuraminidase. *IEEE Trans Nanobioscience* 5, 288, (2006).
- 312 Severson, W.E., McDowell, M., Ananthan, S. *et al.* High-throughput screening of a 100,000-compound library for inhibitors of influenza A virus (H3N2). *J Biomol Screen* 13, 879, (2008).
- 313 Hurt, A.C., Deng, Y.M., Ernest, J. *et al.* **Oseltamivir-resistant influenza viruses** circulating during the first year of the influenza A(H1N1) 2009 pandemic in the Asia-Pacific region, March 2009 to March 2010. *Euro Surveill* 16, (2011).
- 314 Hurt, A.C., Holien, J.K., Parker, M.W. & Barr, I.G. **Oseltamivir resistance and the** H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic influenza viruses. *Drugs* 69, 2523, (2009).
- de Jong, M.D., Tran, T.T., Truong, H.K. *et al.* **Oseltamivir resistance during treatment of influenza A (H5N1) infection**. *N Engl J Med* 353, 2667, (2005).
- 316 Suzuki, K., Okada, H., Itoh, T. *et al.* Association of increased pathogenicity of Asian H5N1 highly pathogenic avian influenza viruses in chickens with highly efficient viral replication accompanied by early destruction of innate immune responses. *J Virol* 83, 7475, (2009).
- 317 Koyama, S., Ishii, K.J., Kumar, H. *et al.* Differential role of *TLR* and *RLR*-signaling in the immune responses to influenza A virus infection and vaccination. *J Immunol* 179, 4711, (2007).
- 318 Fritz, J.H., Ferrero, R.L., Philpott, D.J. & Girardin, S.E. Nod-like proteins in immunity, inflammation and disease. *Nat Immunol* 7, 1250, (2006).
- Hata, N., Sato, M., Takaoka, A. *et al.* Constitutive IFN-alpha/beta signal for efficient IFN-alpha/beta gene induction by virus. *Biochem Biophys Res Commun* 285, 518, (2001).
- 320 Liu, B., Chen, S., Guan, Y. & Chen, L. Type III Interferon Induces Distinct SOCS1 Expression Pattern that Contributes to Delayed but Prolonged Activation of Jak/STAT Signaling Pathway: Implications for Treatment Non-Response in HCV Patients. PLoS One 10, e0133800, (2015).
- 321 Sabra, L.K., Aimee, L.M., Alan, L.S., Gary, K. & Gregory, E.G. Neonatal sex steroids affect responses to Seoul virus infection in male but not female Norway rats. *Brain, behavior, and immunity* 16, 736, (2002).
- 322 Sabra, L.K. & Gregory, A.P. **Personalized vaccinology: one size and dose might not fit both sexes**. *Vaccine* 31, 2599, (2013).
- 323 Wei, L. & Sabra, L.K. Seoul virus-infected rat lung endothelial cells and alveolar macrophages differ in their ability to support virus replication and induce regulatory T cell phenotypes. J Virol 86, 11845, (2012).

- 324 Griesbeck, M., Ziegler, S., Laffont, S. *et al.* Sex Differences in Plasmacytoid Dendritic Cell Levels of *IRF5* Drive Higher IFN-alpha Production in Women. *J Immunol* 195, 5327, (2015).
- de Weerd, N.A. & Nguyen, T. **The interferons and their receptors distribution and regulation**. *Immunol Cell Biol* 90, 483, (2012).
- 326 Marrack, P., Lo, D., Brinster, R. *et al.* **The effect of thymus environment on T cell development and tolerance**. *Cell* 53, 627, (1988).
- 327 McCormack, W.T., Tjoelker, L.W. & Thompson, C.B. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. *Annu Rev Immunol* 9, 219, (1991).
- 328 Olias, P., Adam, I., Meyer, A., Scharff, C. & Gruber, A.D. Reference Genes for Quantitative Gene Expression Studies in Multiple Avian Species. *PLoS One* 9, e99678, (2014).
- 329 FDA. FDA Approves Ruxolitinib. (2016).
- 330 Song, J.M. Advances in novel influenza vaccines: a patent review. *J Microbiol* 54, 403, (2016).
- 331 Brauer, R. & Chen, P. Influenza virus propagation in embryonated chicken eggs. J Vis Exp, 52421, (2015).
- 332 Parodi, A.S. & Lajmanovich, S. Changes in embryonated eggs inoculated with influenza virus. *J Immunol* 58, 109, (1948).
- 333 Finter, N.B., Liu, O.C. & Henle, W. Studies on host-virus interactions in the chick embryo-influenza virus system. X. An experimental analysis of the von Magnus phenomenon. *J Exp Med* 101, 461, (1955).
- 334 Finter, N.B., Liu, O.C., Liberman, M. & Henle, W. Studies on host-virus interactions in the chick embryo-influenza virus system. J Exp Med 100, 33, (1954).
- Henle, W. Studies on host-virus interactions in the chick embryo-influenza virus system; the propagation of virus in conjunction with the host cells. J Exp Med 90, 13, (1949).
- Henle, W. Studies on host-virus interactions in the chick embryo-influenza virus system; adsorption and recovery of seed virus. *J Exp Med* 90, 1, (1949).
- 337 Henle, W. & Henle, G. Studies on host-virus interactions in the chick embryoinfluenza virus system; development of infectivity, hemagglutination, and complement fixation activities during the first infectious cycle. J Exp Med 90, 23, (1949).
- 338 Henle, W. & Liu, O.C. Studies on host-virus interactions in the chick embryoinfluenza virus system. VI. Evidence for multiplicity reactivation of inactivated virus. J Exp Med 94, 305, (1951).
- 339 Henle, W., Liu, O.C. & Finter, N.B. Studies on host-virus interactions in the chick embryo-influenza virus system. IX. The period of liberation of virus from infected cells. *J Exp Med* 100, 53, (1954).
- 340 Henle, W., Liu, O.C., Paucker, K. & Lief, F.S. Studies on host-virus interactions in the chick embryo-influenza virus system. XIV. The relation between tissue-bound and liberated virus materials under various conditions of infection. *J Exp Med* 103, 799, (1956).
- 341 Liu, O.C. & Henle, W. Studies on host-virus interactions in the chick embryoinfluenza virus system. VII. Data concerning the significance of infectivity titration end-points and the separation of clones at limiting dilutions. J Exp Med 97, 889, (1953).
- 342 Liu, O.C. & Henle, W. Studies on host-virus interactions in the chick embryoinfluenza virus system. V. Simultaneous serial passage of the agents of influenza A

and B in relation to variations in the growth cycle of influenza B virus. *J Exp Med* 94, 291, (1951).

- 343 Liu, O.C. & Henle, W. Studies on host-virus interactions in the chick embryoinfluenza virus system. IV. The role of inhibitors of hemagglutination in the evaluation of viral multiplication. J Exp Med 94, 269, (1951).
- 344 Liu, O.C., Paucker, K. & Henle, W. Studies on host-virus interactions in the chick embryo-influenza virus system. XIII. Some aspects of non-infectious virus production. J Exp Med 103, 777, (1956).
- 345 Paucker, K. & Henle, W. Studies on host-virus interactions in the chick embryoinfluenza virus system. XII. Further analyses of yields derived from heatinactivated standard seeds. *J Exp Med* 101, 493, (1955).
- 346 Paucker, K. & Henle, W. Studies on host-virus interactions in the chick embryoinfluenza virus system. XI. The effect of partial inactivation of standard seed virus of 37 degrees C upon the progeny. *J Exp Med* 101, 479, (1955).
- 347 A, I. & J, L. Virus interference. I. The interferon. *Proc R Soc B* 147, 258, (1957).
- 348 WHO. WHO Manual on Animal Influenza Diagnosis and Surveillance,2002
- 349 Haye, K., Burmakina, S., Moran, T., Garcia-Sastre, A. & Fernandez-Sesma, A. **The NS1** protein of a human influenza virus inhibits type I interferon production and the induction of antiviral responses in primary human dendritic and respiratory epithelial cells. *J Virol* 83, 6849, (2009).
- 350 Chebath, J., Merlin, G., Metz, R., Benech, P. & Revel, M. Interferon-induced 56,000 Mr protein and its mRNA in human cells: molecular cloning and partial sequence of the cDNA. *Nucleic Acids Res* 11, 1213, (1983).
- 351 Fensterl, V. & Sen, G.C. Interferon-induced *lfit* proteins: their role in viral pathogenesis. *J Virol* 89, 2462, (2015).
- 352 Guo, J., Hui, D.J., Merrick, W.C. & Sen, G.C. A new pathway of translational regulation mediated by eukaryotic initiation factor 3. *EMBO J* 19, 6891, (2000).
- 353 Pichlmair, A., Lassnig, C., Eberle, C.A. *et al. IFIT1* is an antiviral protein that recognizes 5'-triphosphate RNA. *Nat Immunol* 12, 624, (2011).

11 Appendix

Accession Number	Sign	Species		type	
NP990758	а	chicken	interferon	alpha	
AAX83679.1	b	chicken	interferon	beta	
AAU10091.1	aa	chicken	interferon	gamma	
ABU82742	1	chicken	interferon	lambda	
ADU04501.1	0	chicken	interferon	omega	
AAC41702	b	human	interferon	beta	
AAI00873	e	human	interferon	epsilon	
CAA41626	0	human	interferon	omega	
CAA44325	g	human	interferon	gamma	
CAA72532	a2	human	interferon	alpha	2
EAW56869	13	human	interferon	lambda	3
EAW56870	12	human	interferon	lambda	2
EAW56871	11	human	interferon	lambda	1
EAW58609	al	human	interferon	alpha	1
EAW58610	a8	human	interferon	alpha	8
EAW58612	a13	human	interferon	alpha	13
EAW58613	a6	human	interferon	alpha	6
EAW58615	a5	human	interferon	alpha	5
EAW58616	a14	human	interferon	alpha	14
EAW58617	a17	human	interferon	alpha	17
EAW58618	a16	human	interferon	alpha	16
EAW58619	a10	human	interferon	alpha	10
EAW58620	a7	human	interferon	alpha	7
EAW58621	a4	human	interferon	alpha	4
EAW58623	a21	human	interferon	alpha	21
EAW58563.1	k	human	interferon	kappa	
NP482513660	14	human	interferon	lambda	4
AAA37888	a7	mouse	interferon	alpha	7
AAA37891	b	mouse	interferon	beta	
AAH99376	k	mouse	interferon	kappa	
AAI04353	a12	mouse	interferon	alpha	12
AAI04378	е	mouse	interferon	epsilon	
AAI16873	a11	mouse	interferon	alpha	11
AAI19352	a4	mouse	interferon	alpha	4
AAI20725	a13	mouse	interferon	alpha	13
AAI20912	a5	mouse	interferon	alpha	5
AAI25322	a14	mouse	interferon	alpha	14
AAX58714	12	mouse	interferon	lambda	
AAX58715	13	mouse	interferon	lambda	

Table 2 Accession Numbers of interferon sequences

ACR22510	g	mouse	interferon	gamma	
EDL30963	z	mouse	interferon	zeta	

Table 3 Accession numbers of IFN λ R1 sequences

Accession Number		Species		type		
Humber		opecies		lambd	roconto	
VD011227661 1	Dradictad	Ailuranada malanalausa	Interforen		recepto	1
XP011227001.1	Predicted	Alluropoua melanoleuca	interieron	d la var had		1
				lambd	recepto	
KYO25772.1		Alligator mississippiensis	Interferon	а	r	1
				lambd	recepto	
XP006019447.1	Predicted	Alligator sinensis	Interferon	а	r	1
				lambd	recepto	
AHY86485.1		Anolis carolinensis	Interferon	а	l r	1
				lambd	roconto	-
41000472.1		Annon overneiden	Interferen	lainbu	recepto	1
AJD08473.1		Anser cygnoldes	interieron	a	r	1
				lambd	recepto	
XP012295126.1	Predicted	Aotus nancymaae	Interferon	а	r	1
				lambd	recepto	
XP009866512.1	Predicted	Apaloderma vittatum	Interferon	a	r	1
				lambd	recepto	
VD000274512 1	Bradictad	Antonodytos forstori	Interforen	2	r	1
XF009274512.1	Fledicted	Aptenodytes forsteri	interieron	a		1
				lambd	recepto	
XP011582322.1	Predicted	Aquila chrysaetos canadensis	Interferon	а	r	1
		Balaenoptera acutorostrata		lambd	recepto	
XP007175194.1	Predicted	scammoni	Interferon	a	r	1
				lambd	recepto	
XP010299251 1	Predicted	Balearica regulorum gibbericens	Interferon	a	r	1
XI 010255251.1	Treatered	Balcarica regularari gibbericeps	interieron	lambd	racanta	-
				lambu	recepto	
XP010828357.1	Predicted	Bison bison bison	Interferon	а	r	1
				lambd	recepto	
XP010132822.1	Predicted	Buceros rhinoceros silvestris	Interferon	а	r	1
				lambd	recepto	
XP014804126.1	Predicted	Calidris pugnax	Interferon	а	l r	1
				lambd	recento	-
VD000000000000	Ducational	Callithriu iaaahua	Interferen	annou	recepto	1
XP006996690.1	Predicted		interieron	d	I	1
				lambd	recepto	
XP010955647.1	Predicted	Camelus bactrianus	Interferon	а	r	1
				lambd	recepto	
XP010988103.1	Predicted	Camelus dromedarius	Interferon	а	r	1
				lambd	recepto	
XP014423818 1	Predicted	Camelus ferus	Interferon	2	r	1
XI 014423010.1	Tredicted		interieron	lambd	racanta	-
VD0400007404				lanibu	recepto	
XP013829748.1	Predicted	Capra nircus	Interferon	а	r	1
				lambd	recepto	
XP010170252.1	Predicted	Caprimulgus carolinensis	Interferon	а	r	1
				lambd	recepto	
XP009707716.1	Predicted	Cariama cristata	Interferon	а	l r	1
				lamhd	recento	+-
VD012000622.1	Prodictod	Cavia porcellus	Interforen	2	r r	1
VL0120030271	FIEUICIEU		interieron	a laws!	I magazite	1
				Damba	recepto	.
XP004425789.1	Predicted	Ceratotherium simum simum	Interferon	а	r	1
				lambd	recepto	1
XP009998894.1	Predicted	Chaetura pelagica	Interferon	а	r	1
				lambd	recepto	
XP009880511.1	Predicted	Charadrius vociferus	Interferon	а	r	1
				lambd	reconto	+-
VD0070C0110.1	Due diet!	Chalania mudac	1000-0		recepto	
XPUU/U68110.1	Predicted	cheionia mydas	interferon	а	r	1
				lambd	recepto	1
XP010128944.1	Predicted	Chlamydotis macqueenii	Interferon	а	r	1
				lambd	recepto	
XP005302269.1	Predicted	Chrysemys picta bellii	Interferon	а	r .	1
				lambd	recento	1-
XD010100740 1	Predicted	Colius striatus	Interforon	2	r	1
AF010133743.1	rieuicieu		meneroll	a	1.1	1 -

				lambd	recepto	
XP005513512.1	Predicted	Columba livia	Interferon	а	r	1
XP004679439 1	Predicted	Condylura cristata	Interferon	lambd	recepto r	1
XF004075455.1	Fredicted		Interferon	lambd	recepto	1
XP008633390.1	Predicted	Corvus brachyrhynchos	Interferon	а	r	1
				lambd	recepto	
XP010406501.1	Predicted	Corvus cornix cornix	Interferon	a	r	1
XP007617245.1	Predicted	Cricetulus griseus	Interferon	ambu	recepto	1
				lambd	recepto	-
XP007643617.1	Predicted	Cricetulus griseus	Interferon	а	r	1
VD0005 C0005 1	Duadiated	Cueutus esperius	Interforen	lambd	recepto	1
XP009560095.1	Predicted		Interferon	a Iamhd	recento	1
XP004465448.1	Predicted	Dasypus novemcinctus	Interferon	a	r	1
				lambd	recepto	
XP012887869.1	Predicted	Dipodomys ordii	Interferon	а	r .	1
XP004705411 1	Predicted	Echinons telfairi	Interferon	lambd	recepto	1
///////////////////////////////////////	Tredicted		Interferon	lambd	recepto	-
XP009646796.1	Predicted	Egretta garzetta	Interferon	а	r	1
				lambd	recepto	
XP006883717.1	Predicted	Elephantulus edwardii	Interferon	a	r roconto	1
XP008146305.1	Predicted	Eptesicus fuscus	Interferon	а	r	1
				lambd	recepto	-
XP007522647.1	Predicted	Erinaceus europaeus	Interferon	а	r	1
VD010004278.1	Duadiated	Faculusius	Interforen	lambd	recepto	1
XP010904278.1	Predicted		Interferon	a lambd	recepto	1
XP010154970.1	Predicted	Eurypyga helias	Interferon	a	r	1
				lambd	recepto	
XP005433108.1	Predicted	Falco cherrug	Interferon	a	r .	1
XP005234192 1	Predicted	Falco peregrinus	Interferon	lambd	recepto	1
74 005254152.1	Tredicted		interferon	lambd	recepto	-
XP003989777.1	Predicted	Felis catus	Interferon	а	r	1
				lambd	recepto	
XP016152229.1	Predicted	Ficedula albicollis	Interferon	a Jambd	r recento	1
XP005058494.1	Predicted	Ficedula albicollis	Interferon	a	r	1
				lambd	recepto	
XP010624247.1	Predicted	Fukomys damarensis	Interferon	a	r	1
XD000578178 1	Predicted	Fulmarus glacialis	Interferon	lambd	recepto	1
XF003578178.1	Fredicted		Interferon	lambd	recepto	1
AHF20241.1		Gallus gallus	Interferon	а	r	1
V000005107.1	Duadiatad	Cauda atallata	Interef	lambd	recepto	
XP009805197.1	Predicted	Gavía stellata	Interferon	a lambd	r recento	
XP015261062.1	Predicted	Gekko japonicus	Interferon	a	r	1
				lambd	recepto	
XP005427215.2	Predicted	Geospiza fortis	Interferon	a	r .	1
XP009917474 1	Predicted	Haliaeetus albicilla	Interferon	lambd	recepto r	1
/// 00331/4/4.1			interierun	lambd	recepto	-
XP010574400.1	Predicted	Haliaeetus leucocephalus	Interferon	а	r	1
				lambd	recepto	
xP012929689.1	Predicted	Heterocephalus glaber	Interferon	a	r recento	1
AAI40873.1		Homo sapiens	Interferon	a	r	1
				lambd	recepto	
XP005318127.1	Predicted	Ictidomys tridecemlineatus	Interferon	a	r	1
XD012802070 1	Predicted	laculus iaculus	Interforon	lambd	recepto r	1
AF 012003570.1	redicted		interierun	lambd	recepto	1
XP009951551.1	Predicted	Leptosomus discolor	Interferon	а	r	1

				lambd	recepto	
XP010593387.1	Predicted	Loxodonta africana	Interferon	а	r	1
VD01408C720.1	Dradiated		Interferen	lambd	recepto	1
XP014986729.1	Predicted		Interferon	a Jambd	recento	1
XP011761158.1	Predicted	Macaca nemestrina	Interferon	a	r	1
				lambd	recepto	
XP008918805.1	Predicted	Manacus vitellinus	Interferon	а	r	1
				lambd	recepto	
XP011833300.1	Predicted	Mandrillus leucophaeus	Interferon	a	r	1
XP010721813.1	Predicted	Meleagris gallopavo	Interferon	a	r	1
				lambd	recepto	-
XP012986518.1	Predicted	Melopsittacus undulatus	Interferon	а	r	1
				lambd	recepto	
XP008933896.1	Predicted	Merops nubicus	Interferon	a	r roconto	1
XP012975582.1	Predicted	Mesocricetus auratus	Interferon	a	r	1
				lambd	recepto	-
XP012605910.1	Predicted	Microcebus murinus	Interferon	а	r	1
				lambd	recepto	
XP005353444.1	Predicted	Microtus ochrogaster	Interferon	a	r	1
XP001365104.2	Predicted	Monodelphis domestica	Interferon	a	r	1
				lambd	recepto	
XP005875259.2	Predicted	Myotis brandtii	Interferon	а	r	1
VD0454426024	Due dista d		last sufferences	lambd	recepto	
XP015412682.1	Predicted		Interferon	alambd	r recento	1
XP010021868.1	Predicted	Nestor notabilis	Interferon	a	r	1
				lambd	recepto	-
XP009469068.1	Predicted	Nipponia nippon	Interferon	а	r	1
				lambd	recepto	
XP004592432.1	Predicted	Ocnotona princeps	Interferon	alambd	r recento	1
XP004637786.1	Predicted	Octodon degus	Interferon	a	r	1
				lambd	recepto	
XP012415878.1	Predicted	Odobenus rosmarus divergens	Interferon	a	r	1
XP002716066 1	Predicted	Opyctolagus cupiculus	Interferon	lambd	recepto	1
XI 0027 10000.1	Treatered		Interferon	lambd	recepto	-
XP015393611.1	Predicted	Panthera tigris altaica	Interferon	а	r .	1
				lambd	recepto	
XP005954133.1	Predicted	Pantholops hodgsonii	Interferon	a	r	1
XP003891375.2	Predicted	Panio anubis	Interferon	ambu	recepto	1
				lambd	recepto	-
XP015504532.1	Predicted	Parus major	Interferon	а	r	1
V0000405202.4	Due diete l	Dele serve estimate	Interest	lambd	recepto	
XPUU9486303.1	Predicted	Pelecanus crispus	Interferon	alambd	recento	1
XP010281772.1	Predicted	Phaethon lepturus	Interferon	a	r	1
				lambd	recepto	
XP009513439.1	Predicted	Phalacrocorax carbo	Interferon	a	r	1
XD007121160 1	Predicted	Physeter catodon	Interforon	lambd	recepto	1
AF 007 12 1100.1			interierun	lambd	recepto	-
XP009906845.1	Predicted	Picoides pubescens	Interferon	а	r	1
				lambd	recepto	
XP014113903.1	Predicted	Pseudopodoces humilis	Interferon	a	r	1
XP010080597 1	Predicted	Pterocles gutturalis	Interferon	ambd	recepto r	1
				lambd	recepto	1
AEQ38017.1		Pteropus alecto	Interferon	а	r	1
				lambd	recepto	.
XP009330413.1	Predicted	Pygoscells adellae	Interferon	a lambd	r recento	1
XP012400962.1	Predicted	Sarcophilus harrisii	Interferon	a	r	1
	ſ	1 1		1		

XP009096915.1 Predicted Serinus canaria Interferon a XP016309571.1 Predicted Sinocyclocheilus anshuiensis Interferon a Imbd Sinocyclocheilus anshuiensis Interferon a	r 1 recepto r 1 recepto r 1 recepto r 1	cepto 1 cepto 1 cepto 1
XP016309571.1 Predicted Sinocyclocheilus anshuiensis Interferon a Imbd Imbd<	recepto r 1 recepto r 1 recepto r 1 recepto	cepto 1 cepto 1
XP016309571.1 Predicted Sinocyclocheilus anshuiensis Interferon a Image: Image	r 1 recepto r 1 recepto r 1	cepto 1
lambd	recepto r 1 recepto r 1	cepto 1
	r 1 recepto r 1	1
XP012787040.1 Predicted Sorex araneus Interferon a	recepto r 1	
lambd	r 1	cepto
XP009666548.1 Predicted Struthio camelus australis Interferon a		1
lambd	recepto	cepto
XP014741053.1 Predicted Sturnus vulgaris Interferon a	r 1	1
lambd	recepto	cepto
XP004174443.1 Predicted Taeniopygia guttata Interferon a	r 1	1
lambd	recepto	cepto
XP008060367.1 Predicted Tarsius syrichta Interferon a	r 1	1
lambd	recepto	cepto
XP009987356.1 Predicted Tauraco erythrolophus Interferon a	r 1	1
lambd	recepto	cepto
XP010223088.1 Predicted Tinamus guttatus Interferon a	r 1	1
lambd	recepto	cepto
XP014447446.1 Predicted Tupaia chinensis Interferon a	r 1	1
lambd	recepto	cepto
XP009975065.1 Predicted Tyto alba Interferon a	r 1	1
lambd	recepto	cepto
XP015093173.1 Predicted Vicugna pacos Interferon a	r 1	1
transcript variant lambd	recepto	cepto
ACV32138.1 1 Xenopus tropicalis Interferon a	r 1	1
transcript variant lambd	recepto	cepto
ACV32139.1 2 Xenopus tropicalis Interferon a	r 1	1
transcript variant lambd	recepto	cepto
ACV32140.1 3 Xenopus tropicalis Interferon a	r 1	1
lambd	recepto	cepto
XP005494786.2 Predicted Zonotrichia albicollis Interferon a	r 1	1
lambd	recepto	cepto
NP001184131.1 Precurser Danio rerio Interferon a	r 1	1

Table 4 Accession Numbers of IFNAR1 sequences

Accession Number		Species		type		
XP014918068.1	Predicted	Acinonyx jubatus	Interferon	alpha/beta	receptor	alpha
XP002919632.2	Predicted	Ailuropoda melanoleuca	Interferon	alpha/beta	receptor	alpha
KYO22780.1		Alligator mississippiensis	Interferon	alpha/beta	receptor	alpha
XP008120201.1	Predicted	Anolis carolinensis	Interferon	alpha/beta	receptor	alpha
AJD38996.1		Anser cygnoides	Interferon	alpha/beta	receptor	alpha
XP012302648.1	Predicted	Aotus nancymaae	Interferon	alpha/beta	receptor	alpha
XP009868282.1	Predicted	Apaloderma vittatum	Interferon	alpha/beta	receptor	alpha
XP009281347.1	Predicted	Aptenodytes forsteri	Interferon	alpha/beta	receptor	alpha
XP013810825.1	Predicted	Apteryx australis mantelli	Interferon	alpha/beta	receptor	alpha
XP010860591.1	Predicted	Bison bison bison	Interferon	alpha/beta	receptor	alpha
XP005893409.1	Predicted	Bos mutus	Interferon	alpha/beta	receptor	alpha
XP006048305.1	Predicted	Bubalus bubalis	Interferon	alpha/beta	receptor	alpha
XP010143146.1	Predicted	Buceros rhinoceros silvestris	Interferon	alpha/beta	receptor	alpha
XP014793775.1	Predicted	Calidris pugnax	Interferon	alpha/beta	receptor	alpha
XP002761441.1	Predicted	Callithrix jacchus	Interferon	alpha/beta	receptor	alpha
XP008494921.1	Predicted	Calypte anna	Interferon	alpha/beta	receptor	alpha
XP010954868.1	Predicted	Camelus bactrianus	Interferon	alpha/beta	receptor	alpha
XP013819137.1	Predicted	Capra hircus	Interferon	alpha/beta	receptor	alpha

XP010166276.1	Predicted	Caprimulgus carolinensis	Interferon	alpha/beta	receptor	alpha
XP008065125.1	Predicted	Carlito syrichta	Interferon	alpha/beta	receptor	alpha
XP010002987.1	Predicted	Chaetura pelagica	Interferon	alpha/beta	receptor	alph
XP009893221.1	Predicted	Charadrius vociferus	Interferon	alpha/beta	receptor	alph
XP006862663.1	Predicted	Chrysochloris asiatica	Interferon	alpha/beta	receptor	alph
XP011815546.1	Predicted	Colobus angolensis palliatus	Interferon	alpha/beta	receptor	alph
XP013225464.1	Predicted	Columba livia	Interferon	alpha/beta	receptor	alph
XP008638917.1	Predicted	Corvus brachyrhynchos	Interferon	alpha/beta	receptor	alph
XP007619344.2	Predicted	Cricetulus griseus	Interferon	alpha/beta	receptor	alph
XP009565463.1	Predicted	Cuculus canorus	Interferon	alpha/beta	receptor	alph
XP012373471.1	Predicted	Dasypus novemcinctus	Interferon	alpha/beta	receptor	alph
XP012882888.1	Predicted	Dipodomys ordii	Interferon	alpha/beta	receptor	alph
XP004711386.1	Predicted	Echinops telfairi	Interferon	alpha/beta	receptor	alph
XP009639194.1	Predicted	Egretta garzetta	Interferon	alpha/beta	receptor	alph
XP006886853.1	Predicted	Elephantulus edwardii	Interferon	alpha/beta	receptor	alph
XP008144026.1	Predicted	Eptesicus fuscus	Interferon	alpha/beta	receptor	alph
XP014699230.1	Predicted	Equus asinus	Interferon	alpha/beta	receptor	alph
XP001494689.3	Predicted	Equus caballus	Interferon	alpha/beta	receptor	alph
XP008515476.1	Predicted	Equus przewalskii	Interferon	alpha/beta	receptor	alph
XP007519772.1	Predicted	Erinaceus europaeus	Interferon	alpha/beta	receptor	alph
XP010157283.1	Predicted	Eurypyga helias	Interferon	alpha/beta	receptor	alph
XP005438665.1	Predicted	Falco cherrug	Interferon	alpha/beta	receptor	alph
XP005234444.1	Predicted	Falco peregrinus	Interferon	alpha/beta	receptor	alph
XP011284053.1	Predicted	Felis catus	Interferon	alpha/beta	receptor	alph
XP010607017.1	Predicted	Fukomys damarensis	Interferon	alpha/beta	receptor	alph
AAD13669.1		Gallus gallus	Interferon	alpha/beta	receptor	alpł
XP014165295.1	Predicted	Geospiza fortis	Interferon	alpha/beta	receptor	alph
XP004062764.1	Predicted	Gorilla gorilla gorilla	Interferon	alpha/beta	receptor	alph
XP010583626.1	Predicted	Haliaeetus leucocephalus	Interferon	alpha/beta	receptor	alph
XP004842365.1	Predicted	Heterocephalus glaber	Interferon	alpha/beta	receptor	alph
AAT49100.1		Homo sapiens	Interferon	alpha/beta	receptor	alph
XP012803362.1	Predicted	Jaculus jaculus	Interferon	alpha/beta	receptor	alph
XP006012924.1	Predicted	Latimeria chalumnae	Interferon	alpha/beta	receptor	alph
XP006749269.1	Predicted	Leptonychotes weddellii	Interferon	alpha/beta	receptor	alph
XP009949621.1	Predicted	Leptosomus discolor	Interferon	alpha/beta	receptor	alph
XP007447468.1	Predicted	Lipotes vexillifer	Interferon	alpha/beta	receptor	alpł
XP011724842.1	Predicted	Macaca nemestrina	Interferon	alpha/beta	receptor	alph
XP008924472.1	Predicted	Manacus vitellinus	Interferon	alpha/beta	receptor	alph
XP011854503.1	Predicted	Mandrillus leucophaeus	Interferon	alpha/beta	receptor	alph
XP015334189.1	Predicted	Marmota marmota marmota	Interferon	alpha/beta	receptor	alph
XP010721604.1	Predicted	Meleagris gallopavo	Interferon	alpha/beta	receptor	alph
XP012971606.1	Predicted	Mesocricetus auratus	Interferon	alpha/beta	receptor	alph
XP012602506.1	Predicted	Microcebus murinus	Interferon	alpha/beta	receptor	alph
VD016060000 1	Predicted	Minionterus natalensis	Interferon	alpha/beta	recentor	alnh
AAH52217.1		Mus musculus	Interferon	alpha/beta	receptor	alpha
---------------	-----------	---------------------------------	------------	------------	----------	-------
XP004757568.1	Predicted	Mustela putorius furo	Interferon	alpha/beta	receptor	alpha
XP014390685.1	Predicted	Myotis brandtii	Interferon	alpha/beta	receptor	alph
XP015415723.1	Predicted	Myotis davidii	Interferon	alpha/beta	receptor	alph
XP010017322.1	Predicted	Nestor notabilis	Interferon	alpha/beta	receptor	alph
XP009471830.1	Predicted	Nipponia nippon	Interferon	alpha/beta	receptor	alph
XP012373317.1	Predicted	Octodon degus	Interferon	alpha/beta	receptor	alph
XP004406365.1	Predicted	Odobenus rosmarus divergens	Interferon	alpha/beta	receptor	alph
ETE57640.1		Ophiophagus hannah	Interferon	alpha/beta	receptor	alph
XP009931683.1	Predicted	Opisthocomus hoazin	Interferon	alpha/beta	receptor	alph
XP004264572.1	Predicted	Orcinus orca	Interferon	alpha/beta	receptor	alph
XP007667937.1	Predicted	Ornithorhynchus anatinus	Interferon	alpha/beta	receptor	alph
XP007939497.1	Predicted	Orycteropus afer afer	Interferon	alpha/beta	receptor	alph
XP007090486.1	Predicted	Panthera tigris altaica	Interferon	alpha/beta	receptor	alph
NP001162254.1		Papio anubis	Interferon	alpha/beta	receptor	alph
XP006126098.1	Predicted	Pelodiscus sinensis	Interferon	alpha/beta	receptor	alph
XP007115989.1	Predicted	Physeter catodon	Interferon	alpha/beta	receptor	alph
XP009905697.1	Predicted	Picoides pubescens	Interferon	alpha/beta	receptor	alph
XP002830697.2	Predicted	Pongo abelii	Interferon	alpha/beta	receptor	alph
XP012512783.1	Predicted	Propithecus coquereli	Interferon	alpha/beta	receptor	alph
XP015675028.1	Predicted	Protobothrops mucrosquamatus	Interferon	alpha/beta	receptor	alph
XP006921038.1	Predicted	Pteropus alecto	Interferon	alpha/beta	receptor	alph
XP011363988.1	Predicted	Pteropus vampyrus	Interferon	alpha/beta	receptor	alpł
XP009326292.1	Predicted	Pygoscelis adeliae	Interferon	alpha/beta	receptor	alpł
XP016017904.1	Predicted	Rousettus aegyptiacus	Interferon	alpha/beta	receptor	alph
XP003927702.1	Predicted	Saimiri boliviensis boliviensis	Interferon	alpha/beta	receptor	alph
XP009098361.1	Predicted	Serinus canaria	Interferon	alpha/beta	receptor	alpł
XP004620396.1	Predicted	Sorex araneus	Interferon	alpha/beta	receptor	alph
XP009665899.1	Predicted	Struthio camelus australis	Interferon	alpha/beta	receptor	alpł
XP014745867.1	Predicted	Sturnus vulgaris	Interferon	alpha/beta	receptor	alph
BAD06315.1		Sus scrofa	Interferon	alpha/beta	receptor	alph
JAG69468.1		Sus scrofa domesticus	Interferon	alpha/beta	receptor	alph
XP012424842.1	Predicted	Taeniopygia guttata	Interferon	alpha/beta	receptor	alph
XP010211787.1	Predicted	Tinamus guttatus	Interferon	alpha/beta	receptor	alph
XP006153941.1	Predicted	Tupaia chinensis	Interferon	alpha/beta	receptor	alph
XP004317420.1	Predicted	Tursiops truncatus	Interferon	alpha/beta	receptor	alph

Table 5 Accession Numbers of IL10R2 sequences

Accession Number		Species			type	
XP6032721	PREDICTED:	Alligator sinensis.	Interleukin	10	receptor	beta
AGC95877.1		Anas platyrhynchos	interleukin	10	receptor	beta
XP8120200	PREDICTED:	Anolis carolinensis.	interleukin	10	receptor	beta
XP013048351.1	PREDICTED:	Anser cygnoides domesticus	Interleukin	10	receptor	beta

XP009865443.1	PREDICTED:	Apaloderma vittatum	interleukin	10	receptor	beta
XP9865443	PREDICTED:	Apalodermavittatum.	interleukin	10	receptor	beta
XP009281346.1	PREDICTED:	Aptenodytes forsteri	interleukin	10	receptor	beta
XP9281346	PREDICTED:	Aptenodytesforsteri.	Interleukin	10	receptor	beta
XP011592119.1	PREDICTED:	Aquila chrysaetos canadensis	interleukin	10	receptor	beta
XP7183767	PREDICTED:	Balaenopteraacutorostrata scammoni.	Interleukin	10	receptor	beta
XP5893408	PREDICTED:	Bos mutus.	interleukin	10	receptor	beta
AAI23562		Bos taurus.	Interleukin	10	receptor	beta
XP6048306	PREDICTED:	Bubalusbubalis.	Interleukin	10	receptor	beta
XP014793464.1	PREDICTED:	Calidris pugnax	interleukin	10	receptor	beta
XP535581	PREDICTED:	Canis lupusfamiliaris.	interleukin	10	receptor	beta
XP5674740	PREDICTED:	Capra hircus.	interleukin	10	receptor	beta
XP3467317	PREDICTED:	Cavia porcellus.	interleukin	10	receptor	beta
XP4429624	PREDICTED:	Ceratotheriumsimum simum.	Interleukin	10	receptor	beta
XP010002989.1	PREDICTED:	Chaetura pelagica	interleukin	10	receptor	beta
XP10002989	PREDICTED:	Chaeturapelagica.	interleukin	10	receptor	beta
XP009893222.1	PREDICTED:	Charadrius vociferus	Interleukin	10	receptor	beta
XP9893222	PREDICTED:	Charadriusvociferus.	interleukin	10	receptor	beta
XP007063661.1	PREDICTED:	Chelonia mydas	Interleukin	10	receptor	beta
XP7063661	PREDICTED:	Chelonia mydas.	interleukin	10	receptor	beta
XP7962829	PREDICTED:	Chlorocebussabaeus.	interleukin	10	receptor	beta
XP6862662	PREDICTED:	Chrysochlorisasiatica.	interleukin	10	receptor	beta
XP005511441.1	PREDICTED:	Columba livia	interleukin	10	receptor	beta
XP5511441	PREDICTED:	Columba livia.	interleukin	10	receptor	beta
XP4675580	PREDICTED:	Condyluracristata.	interleukin	10	receptor	beta
XP008638918.1	PREDICTED:	Corvus brachyrhynchos	Interleukin	10	receptor	beta
XP8638918	PREDICTED:	Corvus brachyrhynchos.	interleukin	10	receptor	beta
XP009565422.1	PREDICTED:	Cuculus canorus	interleukin	10	receptor	beta
XP9565422	PREDICTED:	Cuculus canorus.	interleukin	10	receptor	beta
XP4474575	PREDICTED:	Dasypusnovemcinctus.	interleukin	10	receptor	beta
XP4711385	PREDICTED:	Echinopstelfairi.	interleukin	10	receptor	beta
XP009639193.1	PREDICTED:	Egretta garzetta	interleukin	10	receptor	beta
XP9639193	PREDICTED:	Egretta garzetta.	interleukin	10	receptor	beta
XP6886855	PREDICTED:	Elephantulusedwardii.	interleukin	10	receptor	beta
XP8144027	PREDICTED:	Eptesicus fuscus.	interleukin	10	receptor	beta
XP7519798	PREDICTED:	Erinaceuseuropaeus.	interleukin	10	receptor	beta
XP014134992.1	PREDICTED:	Falco cherrug	interleukin	10	receptor	beta
XP5438666	PREDICTED:	Falco cherrug.	interleukin	10	receptor	beta
XP013152260.1	PREDICTED:	Falco peregrinus	interleukin	10	receptor	beta
XP5234443	PREDICTED:	Falco peregrinus.	interleukin	10	receptor	beta
XP8565345	PREDICTED:	Galeopterus variegatus.	interleukin	10	receptor	beta
AAD13678		Gallus gallus.	interleukin	10	receptor	beta
XP5427850	PREDICTED:	Geospiza fortis.	interleukin	10	receptor	beta
XP4062758	PREDICTED:	gorilla gorilla.	interleukin	10	receptor	beta

XP010583627.1	PREDICTED:	Haliaeetus leucocephalus	interleukin	10	receptor	beta
AAH01903		Homo sapiens.	interleukin	10	receptor	beta
AHH37769.1		Ictalurus punctatus	interleukin	10	receptor	beta
XP5323582	PREDICTED:	Ictidomystridecemlineatus.	Interleukin	10	receptor	beta
XP4654632	PREDICTED:	Jaculus jaculus.	interleukin	10	receptor	beta
XP6749268	PREDICTED:	Leptonychotesweddellii.	interleukin	10	receptor	beta
XP008924473.1	PREDICTED:	Manacus vitellinus	interleukin	10	receptor	beta
XP8924473	PREDICTED:	Manacus vitellinus.	interleukin	10	receptor	beta
XP010721250.1	PREDICTED:	Meleagris gallopavo	interleukin	10	receptor	beta
XP5151846	PREDICTED:	Melopsittacus und ulatus.	interleukin	10	receptor	beta
XP010182246.1	PREDICTED:	Mesitornis unicolor	interleukin	10	receptor	beta
XP10182246	PREDICTED:	Mesitornisunicolor.	Interleukin	10	receptor	beta
XP5345262	PREDICTED:	Microtusochrogaster.	Interleukin	10	receptor	beta
XP7493332	PREDICTED:	Monodelphisdomestica.	Interleukin	10	receptor	beta
AAI45792		Mus musculus.	Interleukin	10	receptor	beta
XP5860815	PREDICTED:	Myotis brandtii.	interleukin	10	receptor	beta
XP6753184	PREDICTED:	Myotis davidii.	interleukin	10	receptor	beta
XP010011567.1	PREDICTED:	Nestor notabilis	interleukin	10	receptor	beta
XP10011567	PREDICTED:	Nestor notabilis.	interleukin	10	receptor	beta
XP009471772.1	PREDICTED:	Nipponia nippon	interleukin	10	receptor	beta
XP9471772	PREDICTED:	Nipponia nippon.	Interleukin	10	receptor	beta
XP3263916	PREDICTED:	Nomascusleucogenys.	interleukin	10	receptor	beta
XP4588675	PREDICTED:	Ochotonaprinceps.	interleukin	10	receptor	beta
XP4645413	PREDICTED:	Octodon degus.	interleukin	10	receptor	beta
XP4406336	PREDICTED:	Odobenus rosmarusdivergens.	Interleukin	10	receptor	beta
XP009931682.1	PREDICTED:	Opisthocomus hoazin	Interleukin	10	receptor	beta
XP9931682	PREDICTED:	Opisthocomushoazin.	interleukin	10	receptor	beta
XP4264570	PREDICTED:	Orcinus orca.	interleukin	10	receptor	beta
XP1514079	PREDICTED:	Ornithorhynchusanatinus.	interleukin	10	receptor	beta
XP7939498	PREDICTED:	Orycteropus aferafer.	interleukin	10	receptor	beta
XP3797149	PREDICTED:	Otolemurgarnettii	interleukin	10	receptor	beta
JAA32934		Pan troglodytes	interleukin	10	receptor	beta
XP7090484	PREDICTED:	Panthera tigrisaltaica.	interleukin	10	receptor	beta
XP5954316	PREDICTED:	Pantholops hodgsonii.	interleukin	10	receptor	beta
XP006126099.1	PREDICTED:	Pelodiscus sinensis	interleukin	10	receptor	beta
XP6126099	PREDICTED:	Pelodiscus sinensis.	interleukin	10	receptor	beta
XP6983640	PREDICTED:	Peromyscusmaniculatus bairdii.	interleukin	10	receptor	beta
XP010292505.1	PREDICTED:	Phaethon lepturus	interleukin	10	receptor	beta
XP10292505	PREDICTED:	Phaethonlepturus.	interleukin	10	receptor	beta
XP5526692	PREDICTED:	Pseudopodoceshumilis.	interleukin	10	receptor	beta
AEQ38018		Pteropus alecto.	interleukin	10	receptor	beta
XP009326291.1	PREDICTED:	Pygoscelis adeliae	interleukin	10	receptor	beta
XP3927704	PREDICTED:	Saimiriboliviensis boliviensis.	interleukin	10	receptor	beta
XP009098360.1	PREDICTED:	Serinus canaria	interleukin	10	receptor	beta

XP9098360	PREDICTED:	Serinus canaria.	interleukin	10	receptor	beta
XP4620397	PREDICTED:	Sorex araneus.	interleukin	10	receptor	beta
XP009665944.1	PREDICTED:	Struthio camelus australis	interleukin	10	receptor	beta
XP9665944	PREDICTED:	Struthio camelusaustralis.	interleukin	10	receptor	beta
XP014745841.1	PREDICTED:	Sturnus vulgaris	interleukin	10	receptor	beta
BAD06316		Sus scrofa.	interleukin	10	receptor	beta
XP012424838.1	PREDICTED:	Taeniopygia guttata	Interleukin	10	receptor	beta
XP010211788.1	PREDICTED:	Tinamus guttatus	interleukin	10	receptor	beta
XP10211788	PREDICTED:	Tinamus guttatus.	Interleukin	10	receptor	beta
XP4317421	PREDICTED:	Tursiopstruncatus.	interleukin	10	receptor	beta
XP009967534.1	PREDICTED:	Tyto alba	interleukin	10	receptor	beta
XP9967534	PREDICTED:	Tyto alba.	interleukin	10	receptor	beta
XP6216099	PREDICTED:	Vicugna pacos.	interleukin	10	receptor	beta
NP1165294	precursor	Xenopus (Silurana)tropicalis.	interleukin	10	receptor	beta
NP1087014	precursor	Xenopus laevis.	interleukin	10	receptor	beta

Table 6 Accession Numbers of IFIT sequences

Accession Number		Species	type
ENSAMEG0000020101		Ailuropoda melanoleuca	IFIT2
ENSAMEG00000018958		Ailuropoda melanoleuca	IFIT5
ENSAMEG0000020102	predicted	Ailuropoda melanoleuca	IFIT
ENSAMEG0000020103	predicted	Ailuropoda melanoleuca	IFIT
KF956064		Anas platyrhynchos	IFIT
ENSACAG00000024133	predicted	Anolis carolinensis	IFIT
ENSACAG00000027620	predicted	Anolis carolinensis	IFIT
ENSBTAG0000007881		Bos taurus	IFIT1
ENSBTAG00000034918		Bos taurus	IFIT2
ENSBTAG0000009768		Bos taurus	IFIT3
ENSBTAG00000017367		Bos taurus	IFIT5
ENSCJAG0000005746		Callithrix jacchus	IFIT1
ENSCJAG0000005737		Callithrix jacchus	IFIT2
ENSCJAG0000005741		Callithrix jacchus	IFIT3
ENSCJAG00000011216		Callithrix jacchus	IFIT5
ENSCAFG0000009617		Canis familiaris	IFIT1
ENSCAFG0000009612		Canis familiaris	IFIT2
ENSCAFG00000031614		Canis familiaris	IFIT3
ENSCAFG0000007151	predicted	Canis familiaris	IFIT
ENSCAFG00000031100	predicted	Canis familiaris	IFIT
ENSCPOG0000009345		Cavia porcellus	IFIT1B
ENSCPOG0000008531		Cavia porcellus	IFIT5
ENSCHOG0000005879		Choloepus hoffmanni	IFIT2
ENSCHOG0000003530		Choloepus hoffmanni	IFIT3
ENSCHOG0000004669		Choloepus hoffmanni	IFIT5

ENSCHOG0000004664	predicted	Choloepus hoffmanni	IFIT
ENSCHOG0000004668	predicted	Choloepus hoffmanni	IFIT
ENSDNOG0000044243		Dasypus novemcinctus	IFIT2
ENSDNOG0000000986		Dasypus novemcinctus	IFIT3
ENSDNOG0000008825		Dasypus novemcinctus	IFIT5
ENSDNOG0000008816	predicted	Dasypus novemcinctus	IFIT
ENSDNOG0000045605	predicted	Dasypus novemcinctus	IFIT
ENSDORG0000003058	predicted	Dipodomys ordii	IFIT
ENSDORG0000012514	predicted	Dipodomys ordii	IFIT
ENSDORG0000012515	predicted	Dipodomys ordii	IFIT
ENSETEG00000014714		Echinops telfairi	IFIT5
ENSECAG00000004433		Equus caballus	IFIT1
ENSECAG0000010153		Equus caballus	IFIT4
ENSECAG0000004349		Equus caballus	IFIT5
ENSEEUG0000000242		Erinaceus europaeus	IFIT3
ENSEEUG0000002041		Erinaceus europaeus	IFIT5
ENSFCAG00000011708		Felis catus	IFIT2
ENSFCAG0000018779		Felis catus	IFIT3
ENSFCAG0000005933	predicted	Felis catus	IFIT
ENSFCAG0000007421	predicted	Felis catus	IFIT
ENSFCAG00000012538	predicted	Felis catus	IFIT
ENSFCAG00000031175	predicted	Felis catus	IFIT
ENSFALG0000007677	predicted	Ficedula albicollis	IFIT
ENSGGOG0000023234		Gorilla gorilla	IFIT1
ENSGGOG0000023376		Gorilla gorilla	IFIT1
ENSGGOG0000010407		Gorilla gorilla	IFIT2
ENSGGOG0000012012		Gorilla gorilla	IFIT3
ENSGGOG0000003981		Gorilla gorilla	IFIT5
ENSGGOG0000022599	predicted	Gorilla gorilla	IFIT
ENSG00000185745		Homo sapiens	IFIT1
ENSG00000204010		Homo sapiens	IFIT1
ENSG00000119922		Homo sapiens	IFIT2
ENSG00000119917		Homo sapiens	IFIT3
ENSG00000152778		Homo sapiens	IFIT5
ENSSTOG0000024733		Ictidomys tridecemlineatus	IFIT1
ENSSTOG0000022564		Ictidomys tridecemlineatus	IFIT2
ENSSTOG0000013100		Ictidomys tridecemlineatus	IFIT3
ENSSTOG0000028876		Ictidomys tridecemlineatus	IFIT5
ENSSTOG0000007101	predicted	Ictidomys tridecemlineatus	IFIT
ENSSTOG0000024810	predicted	Ictidomys tridecemlineatus	IFIT
ENSSTOG0000026318	predicted	Ictidomys tridecemlineatus	IFIT
ENSSTOG0000026437	predicted	Ictidomys tridecemlineatus	IFIT
ENSSTOG0000027912	predicted	Ictidomys tridecemlineatus	IFIT
	predicted	Latimeria chalumnae	IFIT

ENSLACG0000004753	predicted	Latimeria chalumnae	IFIT
ENSLAFG0000008209		Loxodonta africana	IFIT3
ENSLAFG00000011455		Loxodonta africana	IFIT5
ENSLAFG0000008208	predicted	Loxodonta africana	IFIT
ENSLAFG0000028666	predicted	Loxodonta africana	IFIT
ENSMEUG0000002401		Macropus eugenii	IFIT5
ENSMGAG0000015330	predicted	Meleagris gallopavo	IFIT
ENSMICG00000014624		Microcebus murinus	IFIT3
ENSMICG00000016819		Microcebus murinus	IFIT5
ENSMICG00000014633	predicted	Microcebus murinus	IFIT
ENSMICG00000014997	predicted	Microcebus murinus	IFIT
ENSMODG0000007358	predicted	Monodelphis domestica	IFIT
ENSMODG0000024881	predicted	Monodelphis domestica	IFIT
ENSMODG0000024882	predicted	Monodelphis domestica	IFIT
ENSMODG0000028143	predicted	Monodelphis domestica	IFIT
ENSMUSG0000034459		Mus musculus	IFIT1
ENSMUSG0000045932		Mus musculus	IFIT2
ENSMUSG0000074896		Mus musculus	IFIT3
ENSMPUG0000006489		Mustela putorius furo	IFIT2
ENSMPUG00000020198		Mustela putorius furo	IFIT3
ENSMPUG00000017274		Mustela putorius furo	IFIT5
ENSMPUG0000020197	predicted	Mustela putorius furo	IFIT
ENSMPUG0000006482	predicted	Mustela putorius furo	IFIT
ENSMLUG0000016645		Myotis lucifugus	IFIT2
ENSMLUG0000016653		Myotis lucifugus	IFIT3
ENSMLUG0000005766		Myotis lucifugus	IFIT5
ENSMLUG0000016659	predicted	Myotis lucifugus	IFIT
ENSMLUG0000024075	predicted	Myotis lucifugus	IFIT
ENSNLEG00000012308		Nomascus leucogenys	IFIT1
ENSNLEG00000018636		Nomascus leucogenys	IFIT1B
ENSNLEG00000018635		Nomascus leucogenys	IFIT2
ENSNLEG00000019258		Nomascus leucogenys	IFIT3
ENSNLEG00000019104		Nomascus leucogenys	IFIT5
ENSOPRG00000015105		Ochotona princeps	IFIT2
ENSOPRG00000015110		Ochotona princeps	IFIT3
ENSOPRG00000014668		Ochotona princeps	IFIT5
ENSOPRG0000000056	predicted	Ochotona princeps	IFIT
ENSOPRG00000015788	predicted	Ochotona princeps	IFIT
ENSOPRG00000015791	predicted	Ochotona princeps	IFIT
ENSOANG0000005322	predicted	Ornithorhynchus anatinus	IFIT
ENSOANG0000007390	predicted	Ornithorhynchus anatinus	IFIT
ENSOANG0000010184	predicted	Ornithorhynchus anatinus	IFIT
ENSOCUG0000024939		Oryctolagus cuniculus	IFIT2
	1	1	1

ENSOCUG00000024570		Oryctolagus cuniculus	IFIT5
ENSOCUG0000004197	predicted	Oryctolagus cuniculus	IFIT
ENSOCUG0000005438	predicted	Oryctolagus cuniculus	IFIT
ENSOCUG0000005445	predicted	Oryctolagus cuniculus	IFIT
ENSORLG0000008314	predicted	Oryzias latipes	IFIT
ENSORLG0000013161	predicted	Oryzias latipes	IFIT
ENSORLG0000013238	predicted	Oryzias latipes	IFIT
ENSORLG00000013495	predicted	Oryzias latipes	IFIT
ENSORLG0000013503	predicted	Oryzias latipes	IFIT
ENSORLG0000019695	predicted	Oryzias latipes	IFIT
ENSORLG0000020438	predicted	Oryzias latipes	IFIT
ENSORLG0000020439	predicted	Oryzias latipes	IFIT
ENSOGAG00000031058		Otolemur garnettii	IFIT1
ENSOGAG0000027677		Otolemur garnettii	IFIT2
ENSOGAG0000002215		Otolemur garnettii	IFIT3
ENSOGAG0000009660		Otolemur garnettii	IFIT5
ENSOARG00000015177		Ovis aries	IFIT1
ENSOARG0000015169		Ovis aries	IFIT2
ENSOARG00000014800		Ovis aries	IFIT3
ENSOARG00000014815		Ovis aries	IFIT5
ENSPTRG00000029833		Pan troglodytes	IFIT18
ENSPTRG0000002733		Pan troglodytes	IFIT2
ENSPTRG00000029834		Pan troglodytes	IFIT3
ENSPTRG0000002736		Pan troglodytes	IFIT5
ENSPANG0000021700		Papio anubis	IFIT1
ENSPANG0000010650		Papio anubis	IFIT18
ENSPANG0000021698		Papio anubis	IFIT2
ENSPANG0000021699		Papio anubis	IFIT3
ENSPANG0000021702		Papio anubis	IFIT5
ENSPSIG0000000678	predicted	Pelodiscus sinensis	IFIT
ENSPPYG0000002466		Pongo abelii	IFIT1
ENSPPYG0000002465		Pongo abelii	IFIT1B
ENSPPYG0000002463		Pongo abelii	IFIT2
ENSPPYG0000002464		Pongo abelii	IFIT3
ENSPPYG0000002467		Pongo abelii	IFIT5
ENSPCAG00000014616		Procavia capensis	IFIT5
ENSPVAG0000003647		Pteropus vampyrus	IFIT5
ENSRNOG00000019050		Rattus norvegicus	IFIT1
ENSRNOG0000036603		Rattus norvegicus	IFIT1
ENSRNOG0000036604		Rattus norvegicus	IFIT2
ENSRNOG0000022839		Rattus norvegicus	IFIT3
ENSSHAG0000001370	predicted	Sarcophilus harrisii	IFIT
ENSSHAG0000002618	predicted	Sarcophilus harrisii	IFIT

ENSSARG0000001228		Sorex araneus	IFIT5
ENSSSCG00000010453		Sus scrofa	IFIT1
ENSSSCG00000010451		Sus scrofa	IFIT2
ENSSSCG00000010452		Sus scrofa	IFIT3
ENSSSCG00000010454		Sus scrofa	IFIT5
ENSTGUG0000008354	predicted	Taeniopygia guttata	IFIT
ENSTSYG0000010287		Tarsius syrichta	IFIT1
ENSTSYG00000011715		Tarsius syrichta	IFIT5
ENSTSYG0000019338	predicted	Tarsius syrichta	IFIT
ENSTSYG0000019354	predicted	Tarsius syrichta	IFIT
ENSTNIG0000002787		Tetraodon nigroviridis	IFIT2
ENSTBEG0000002666		Tupaia belangeri	IFIT3
ENSTBEG0000002771	predicted	Tupaia belangeri	IFIT
ENSTBEG0000003552	predicted	Tupaia belangeri	IFIT
ENSTTRG00000015419		Tursiops truncatus	IFIT1
ENSTTRG00000015421		Tursiops truncatus	IFIT5
ENSVPAG0000007869		Vicugna pacos	IFIT3
ENSVPAG0000007871		Vicugna pacos	IFIT1
ENSVPAG0000007868		Vicugna pacos	IFIT2
ENSVPAG00000011508		Vicugna pacos	IFIT5
ENSXETG00000021822		Xenopus tropicalis	IFIT1
ENSXETG00000021818		Xenopus tropicalis	IFIT5
ENSXETG00000015254	predicted	Xenopus tropicalis	IFIT
ENSXETG00000016292	predicted	Xenopus tropicalis	IFIT
ENSXETG00000021819	predicted	Xenopus tropicalis	IFIT

Table 7 qRT-PCR Primer and Probe sequences

Target Gene	Forward Primer Seq.	Reverse Primer Seq.	Reporter 1 Sequence
ch GAPDH	CCCCAATGTCTCTGTTGTTGAC	CAGCCTTCACTACCCTCTTGAT	CTTGGCTGGTTTCTCC
ch IFNα	GGACATGGCTCCCACACTAC	TCCAGGATGGTGTCGTTGAAG	CAGCGCGTCTTGCTC
ch IFNβ	ACAACTTCCTACAGCACAACAACTA	GCCTGGAGGCGGACATG	TCCCAGGTACAAGCACTG
ch IFNλ	CATCGGAAGTGGGACATAGCT	CCTCCACCAGGGTGATTCG	TCAGGTACCGACAGCTC
ch IFNλR1	GGATCTCCACCAGATGTGTTGTAC	GGAACCTTTATCCATTTGTCCATACG	CTGTGAGGTATGAAAGCAA
ch IL-10R2	CGCAAAGGCAACCTAAGTTATACTG	TTGGTTGTCACATTGTTAAAATTCTGCTT	CCAGGCCAAAAGCATT
ch ISG IFIT5	CAGAATTTAATGCCGGCTATGC	TGCAAGTAAAGCCAAAAGATAAGTGT	TCTGAAGCGTGCACTGAAACTGAATCCAA
ch ISG MX	GTCCAAGAGGCTGAATAACAGAGAA	GGTCGGATCTTTCTGTCATATTGGT	CTGCTGCCTCATCCTT
ch ISG PKR	GCAGAAGTAAGAGTGAGGCAAATGA	GCCACCTTTACCAATAGGCTCTAT	CTGTGGATGAAAGGTTTC
ch ISG Viperin	CTGATCAGGGAACGGTGGTT	ACGTTGACTTCCTCATTAAAACTATCACA	CAAGAAGTATGGTGAATATTT
ch ISG 7AP	AAATTGAAAAAGCCTATTGTGACCCAAA	GGAGAGGGTCATTGTCTGGAAATT	CTGCTGCACTGCTGTTT

Figure 11-1 IFN alpha mRNA expression post IFN alpha stimulation

Expression of IFN α and IFN λ mRNA in purified splenocytes from SPF chickens stimulated with 500 ng/mL IFN α over the indicated time course. The bars represent the mean fold change of 3 chicken spleens with the standard error of the mean (SEM) compared to the untreated sample, normalized against the housekeeping gene GAPDH.

		20		40		60		80		100	3
predicted IFIT5 KT180229.1	ATGAGTACCA ATGAGTACCA	TTTCCAAGAA TTTCCAAGAA	TTCCTTGAAG TTCCTTGAAG	AACTCCCTGC AACTCCCTGC	TGCAGCTAGA TGCAGCTAGA	ATGTTATTTT ATGTTATTTT	ACATGGACTT ACATGGACTT	TGCTGAAGGA TGCTGAAGGA	GGATGTAGAT GGATGTAGAT	CTTGACAGTC	; 100 ; 100
Conservation		120		140		160		180		200	0
predicted IFIT5 KT180229.1	TGGAAGAATC TGGAAGAATC	I AATAGAGGAT AATAGAGGAT	CAGATTGAGT CAGATTGAGT	I TTTTCATAAA TTTTCATAAA	ACCCAACATT ACCCAACATT	I TCAAATTACA TCAAATTACA	ATCTACTATC ATCTACTATC	I TTATGTATAC TTATGTATAC	CACCTAAAGC CACCTAAAGC	I TCTCAGATGA TCTCAGATGA	200
Conservation		220		240		260		280		300	0
predicted IFIT5 KT180229.1 Conservation	AGCAGCTCTG AGAAGCTCTG	GAATATCTCC GAATATCTCC	AAAAAGCTGA AAAAAGCTGA	AGAAGAAATT AGAAGAAATT	AAAAAATACT AAAAAATACT	ATCCAGGTGA ATCCAGGTGA	AATTGACAGG AATTGACAGG	AGAAGTCTCG AGAAGTCTCG	TTACCTGGGG TTACCTGGGG	GAACTACGCT GAACTACGCT	300 300
Conscivation		320		340	<i>C</i>	300	i i i i i i i i i i i i i i i i i i i	380	8	400	5
predicted IFIT5 KT180229.1	TGGATCTACT TGGATCTACT	ACCACATGGG ACCACATGGG	CAGATATGAA CAGATATGAA	GAAGCTCAAG GAAGCTCAAG	TGTATATAAA TGTATATAAA	TAAAGTGGAA TAAAGTGGAA	AACAGCTGCA AACAGCTGCA	AAAAGCTTTC AAAAGCTTTC	AAATACTGCT AAATACTGCT	CATTTGAAGA	400
Conservation		420		440	(460	î.	480	<i>a</i>	500	5
predicted IFIT5 KT180229.1	TTCAACTTCC TTCAGCTTCC	AGAGATCTAT AGAGATCTAT	GCTGAGCAAG GCTGAGCAAG	GATTTGCACT GATTTGCACT	ATTAAAATTT ATTAAAATTT	GGAGGAAAGT GGAGGAAAGT	ACTATAACAG ACTATAACAG	AGCGAAAGAG AGCAAAAGAG	TGCTTCAAAA TGCTTCAAAA	ATGCTCTGAG ATGCTCTGAG	500 500
Conservation		520		540		560	6	580	9	600	0
predicted IFIT5 KT180229.1	GGAAGAACCC GGAAGAACCC	I AACAACCCAG AACAACCCAG	AATTTAATGC AATTTAATGC	CGGCTATGCA CGGTTATGCA	ATAGCAGTGT ATAGCAGTGT	ATCGTTTGGA ATCGTTTGGA	AGAATTTTCT AGAATTTTCT	I TACAGAAGAT TACAGAAGAT	GTGAAGAAGT GTGAAGAAGT	GGACTCATCC GGACTCATCC	600 600
Conservation		620		640	fee	660	1	680	9	700	2
predicted IFIT5 KT180229.1	CTGGAGCCTC CTGGAGCCTC	TGAAGCGTGC TGAAGCGTGC	ACTGAAACTG ACTGAAACTG	AATCCAATGG AATCCAATGG	ACACTTATCT ACACTTATCT	TTTGGCTTTA TTTGGCTTTA	CTTGCATTGA CTTGCATTGA	AACTTCAGGA AACTTCAGGA	TTCAGATCAA TTCAGATCAA	GTTGATGAAG GTTGATGAAG	700 700
Conservation		720		740		780	1	780		800	0
predicted IFIT5 KT180229.1	CAGAGAAATG CAGAGAAATG	CATCGAAGAA CATTGAAGAA	GGAATGAAGA CGAATGAAGA	AAACCCCTTA AAACCCCTTA	TCTTCCCTAC TCTTCCCTAC	TTCCTGAGAT TTCCTGAGAT	ATGCTGCTAA ATGCTGCTAA	ATTCTACAGA ATTCTACAGA	AGGAAAAAAG AGGAAAAAAG	I AACTGGACAA AACTGGACAA	800
Conservation		820		840		800		880	0	900	n
predicted IFIT5 KT180229.1	GGCACAAGAG GGCACAAGAG	GTTTTGGAGA GTTTTGGAGA	GAGCCCTAGA GAGCCCTAGA	AATATCACCA AATATCACCA	AAATCTACCT	TTTTGCTTCA TTTTGCTTCA	CCAGCTAGGA CCAGCTAGGA	CTCTGCTATC CTCTGCTACC	GAGCAAAGCT GAGCAAAGCT	GTATGAGTTG	900
Conservation		920		940		980		980		1.000	0
predicted IFIT5 KT180229.1	AAAAACAGTA AAAAACAGTA	CAAGATATCC CAAGATATCC	ACCTCAAGAT ACCTCAAGAT	CAAATAGAAG CAAATAGAAG	AGCTCATTCA AGCTCATTCA	AATTTGCATT AATTTGCATT	TCTCATTTCA TCTCATTTCA	AAGTGGTGAC AAGTGGTGAC	AGAGCAAAAG AGAGCAAAAG	CCAAAATTTT CCAAAATTTT	1000
Conservation		4.00						1.00			
predicted IFIT5 KT180229.1	TTAGTGCCCT TTAGTGCCCT	AATTGACTTG AATTGACTTG	GCAAGGATGT GCAAGGATGT	ATGCGGAGGC ATGCGGAGGC	AAATATGTAT AAATATGTAT	CAAAAAGCAG CGAAAAGCAG	AAGAGACGTT AAGAGACGTT	TCAGAAAGCC TCAGAAAGCC	CTGAATGTAA CTGAATGTAA	ATATTCTGAC	; 1100 ; 1100
Conservation		1.12	1	1.14	0	1.18	0	1.18	0	1.200	0
predicted IFIT5 KT180229.1	TTGCTCCGAT TTGCTCCAAT	AAACAAGAAA AAACAAGAAA	TATACTATTT TATGCTATTT	TTATGGAAAT TTATGGAAAT	TTTCTGCAAT TTTCTGCAAT	ATAAAAAGAA ATAAAAAGAA	ATCAGAATCT ATCAGAATCT	GAAGCAATTA GAAGCAATTA	AATATTACAA AATATTACAA	AGAGGGGGCTA AGAGGGGCTA	1200
Conservation		1.22		1.24		1.08		1.20		1.200	
		1.22	TOOLOLALA	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1010110011		1.100100177			4200
KT180229.1 Conservation	AAAAATGGTA	ACTACTGTTT	TGCAGAGAAG	ATCAGACAAT	ACCTAAAGAG	ACTGTTGGAA	AAGAGAATTC	AAGGAGGATT	AGGAGGTGAA	GATGATTTCA	1300
		1,320		1.340	2	1,36 I	0	1,380	2	1,400	2
predicted IFIT5 KT180229.1 Conservation	GTACACTTGG GTACACTTGG	ACTCATTCAT ACTCATTCAT	AAACTAGATG AAACTAGATG	GTGAGAAGCT GTGAGAAGCT	TGAAGCAATT TGAAGCAATT	GAATGTTATG GAATGTTATG	AGAAAGCCAA AGAAAGCCAA	TGAATATAAT TGAATATAAT	CCAGACAATG CCAGACAATG	AAGAATATCT	1400 1400
		1,420		1,440							
predicted IFIT5 KT180229.1	GAGTGTGTTA GAGTGTGTTA	TTGGAGCTAC TTGGAGCTAC	GACTTTCCCT GACTTTCCCT	CTCAAGCTGA CTCAAGCTGA	1440 1440						

Figure 11-2 Alignment of th predicted and sequenced chicken IFIT5 sequence

Gene Alignment of the sequenced (KT180229.1) and the predicted sequence of IFIT5. Numbers on at the end of each sequence indicates gene length. Red indicates conserved base pairs and black indicated a SNP.

	20		40		60		80		
		ĩ		Ĩ		ĩ		Ĩ	
KT180229.1	MSTISKNSLK	NSLLQLECYF	TWTLLKEDVD	LDSLEESIED	QIEFFIKPNI	SNYNLLSYVY	HLKLSDEEAL	EYLQKAEEEI	80
IFIT5 cDNA ensembl	MSTISKNSLK	NSLLQLECYF	TWTLLKEDVD	LDSLEESIED	QIEFFIKPNI	SNYNLLSYVY	HLKLSDEAAL	EYLQKAEEEI	80
Consensus	MSTISKNSLK	NSLLQLECYF	TWTLLKEDVD	LDSLEESIED	QIEFFIKPNI	SNYNLLSYVY	HLKLSDEXAL	EYLQKAEEEI	
Conservation									
		100		120		140		160	
KT180229.1	KKYYPGEIDR	RSLVTWGNYA	WIYYHMGRYE	EAQVYINKVE	NSCKKLSNTA	HLKIQLPEIY	AEQGFALLKF	GGKYYNRAKE	160
IFIT5 cDNA ensembl	KKYYPGEIDR	RSLVTWGNYA	WIYYHMGRYE	EAQVYINKVE	NSCKKLSNTA	HLKIQLPEIY	AEQGFALLKF	GGKYYNRAKE	160
Consensus	KKYYPGEIDR	RSLVTWGNYA	WIYYHMGRYE	EAQVYINKVE	NSCKKLSNTA	HLKIQLPEIY	AEQGFALLKF	GGKYYNRAKE	
Conservation									
	180		200		220		240		
KT180229 1	CEKNALREEP	NNPEENAGYA	LAVYRIEEES	YRRCEEVDSS	LEPIKRALKI	NPMDTYLLAL	LALKLODSDO	VDEAEKCIEE	240
IFIT5 cDNA ensembl	CEKNALREEP	NNPEFNAGYA	IAVYRLEEFS	YRRCEEVDSS	LEPLKRALKL	NPMDTYLLAL	LALKLODSDQ	VDEAEKCIEE	240
Consensus	CEKNALREEP	NNPEFNAGYA	IAVYRLEEFS	YRRCEEVDSS	LEPLKRALKL	NPMDTYLLAL	LALKLODSDQ	VDEAEKCIEE	
Conservation	of intereet		interneeer o	THREELIBOO		HI MB I I EENE	Ententedoood	TREMETER	
Concontation		260		280		300		320)
KT180229.1		260 1 ELRYAAKEYR	BRKELDKAOE	280 	KSTELLHOLG		KNSTRYPPOD		320
KT180229.1	RMKKTPYLPY GMKKTPYLPY	260 I FLRYAAKFYR FLRYAAKFYR	RKKELDKAQE RKKELDKAQE	280 I VLERALEISP VLERALEISP	KSTFLLHQLG KSTFLLHQLG	300 I LCYRAKLYEL LCYRAKLYEL	KNSTRYPPQD KNSTRYPPQD	320 1 QIEELIQICI QIEELIQICI	320 320
KT180229.1 IFIT5 cDNA ensembl	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY	260 I FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR	RKKELDKAQE RKKELDKAQE	280 I VLERALE I SP VLERALE I SP	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG	300 I LCYRAKLYEL LCYRAKLYEL	KNSTRYPPQD KNSTRYPPQD KNSTRYPPOD	320 I QIEELIQICI QIEELIQICI	320 320
KT180229.1 IFIT5 cDNA ensembl Consensus	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY	260 I FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR	RKKELDKAQE RKKELDKAQE RKKELDKAQE	280 I VLERALEISP VLERALEISP VLERALEISP	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG	300 I LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD	320 I QIEELIQICI QIEELIQICI QIEELIQICI	320 320
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY	260 I FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR 340	RKKELDKAQE RKKELDKAQE RKKELDKAQE	280 I VLERALE I SP VLERALE I SP VLERALE I SP 360	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG	300 I LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL 380	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD	32(I QIEELIQICI QIEELIQICI QIEELIQICI 40(320 320
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY	FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR ³⁴⁰ 1	RKKELDKAQE RKKELDKAQE RKKELDKAQE	280 I VLERALE ISP VLERALE ISP VLERALE ISP I SKAEETECKA	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG	1 LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL 380 1 KOELCYEVGN	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD	320 QIEELIQICI QIEELIQICI QIEELIQICI 400 1 EAIKYYKEGI	320 320
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation KT180229.1	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK	260 I FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR 9KFFSALIDL PKFFSALIDL	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY	2800 I VLERALE ISP VLERALE ISP VLERALE ISP XLERALE ISP I RKAEETFOKA OKAEETFOKA	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN	3000 I LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL KQEICYFYGN KQEICYFYGN	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD FLQYKKKSES	320 QIEELIQICI QIEELIQICI QIEELIQICI 400 1 EAIKYYKEGL FAIKYYKEGL	320 320 . 400 400
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation KT180229.1 IFIT5 cDNA ensembl Consensembl	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK SHFKVVTEQK	260 JFLRYAAKFYR FLRYAAKFYR FLRYAAKFYR JA00 J PKFFSALIDL PKFFSALIDL PKFFSALIDL	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY	2800 I VLERALE ISP VLERALE ISP VLERALE ISP VLERALE ISP I RKAEETFQKA XKAEETFQKA	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD	1000 LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL KQEICYFYGN KQEICYFYGN KQEIYYFYGN	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES	322 I QIEELIQICI QIEELIQICI QIEELIQICI EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL	320 320 400 400
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation KT180229.1 IFIT5 cDNA ensembl Consensus Consensus	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK SHFKVVTEQK	260 FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR 1 PKFFSAL IDL PKFFSAL IDL PKFFSAL IDL	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY	2800 I VLERALE ISP VLERALE ISP VLERALE ISP I RKAEETFQKA XKAEETFQKA XKAEETFQKA	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD LNVNILTCSX	300 I LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL I KQEICYFYGN KQEICYFYGN KQEIXYFYGN	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES	322 I QIEELIQICI QIEELIQICI QIEELIQICI I EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL	320 320 400 400
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation KT180229.1 IFIT5 cDNA ensembl Consensus Conservation	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK SHFKVVTEQK	260 J FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR J PKFFSALIDL PKFFSALIDL PKFFSALIDL	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY	2800 I VLERALE ISP VLERALE ISP VLERALE ISP VLERALE ISP RKAEETFQKA XKAEETFQKA XKAEETFQKA	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD LNVNILTCSX	300 I LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL KQEICYFYGN KQEICYFYGN KQEIXYFYGN	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES	322 I QIEELIQICI QIEELIQICI QIEELIQICI EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL	320 320 400 400
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation KT180229.1 IFIT5 cDNA ensembl Consensus Conservation	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK SHFKVVTEQK	FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR PKFFSALIDL PKFFSALIDL PKFFSALIDL PKFFSALIDL FKFFSALIDL	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY	280 IP VLERALE ISP VLERALE ISP VLERALE ISP VLERALE ISP RKAEETFQKA XKAEETFQKA XKAEETFQKA 440	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD LNVNILTCSX	100 LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL 100 100 100 100 100 100 100 10	KNSTRYPPQD KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES	322 I QIEELIQICI QIEELIQICI QIEELIQICI EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL 480 480 480 480 480 480 480 480 480 480	320 320 400 400
KT1802291 IFIT5 cDNA ensembl Conservation KT1802291 IFIT5 cDNA ensembl Conservation KT1802291	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK SHFKVVTEQK	FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR PKFFSALIDL PKFFSALIDL PKFFSALIDL IRQYLKRLLE	RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY KRIQGLGGE	280 VLERALE ISP VLERALE ISP VLERALE ISP RKAEETFQKA QKAEETFQKA XKAEETFQKA 440 DDFSTLGLIH	KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD LNVNILTCSZ KLDGEKLEAI	300 LCYRAKLYEL LCYRAKLYEL SUPPORT KQEICYFYGN KQEICYFYGN KQEIXYFYGN KQEIXYFYGN ECYEKANEYN	KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES FLQYKKKSES	322 QIEELIQICI QIEELIQICI QIEELIQICI A00 EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL LELRLSLSS	320 320 400 400 480
KT180229.1 IFIT5 cDNA ensembl Consensus Conservation IFIT5 cDNA ensembl Consensus Conservation KT180229.1 IFIT5 cDNA ensembl	RMKKTPYLPY GMKKTPYLPY XMKKTPYLPY SHFKVVTEQK SHFKVVTEQK KNGNYCFAEK KNGNYCFAEK	FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR PKFFSALIDL PKFFSALIDL PKFFSALIDL 1R0YLKRLLE IR0YLKRLLE	RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY KRIQGGLGGE KRIQGGLGGE	2000 J VLERALE ISP VLERALE ISP VLERALE ISP I RKAEETFQKA GKAEETFQKA 1 DDFSTLGLIH DDFSTLGLIH	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSN LNVNILTCSX KLDGEKLEAI KLDGEKLEAI	100 LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL KQEIYCYFYGN KQEIYYFYGN KQEIXYFYGN ECYEKANEYN ECYEKANEYN	KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES PDNEEYLSVL PDNEEYLSVL	321 QIEELIQICI QIEELIQICI QIEELIQICI BAIKYYKEGL EAIKYYKEGL EAIKYYKEGL LELRLSLSS*	320 320 400 400 480 480
KT180229.1 IFIT5 cDNA ensembl Conservation KT180229.1 IFIT5 cDNA ensembl Conservation KT180229.1 IFIT5 cDNA ensembl Conservation	RMKKTPYLPY GMKKTPYLPY SMKKTPYLPY SHFKVVTEQK SHFKVVTEQK KNGNYCFAEK KNGNYCFAEK	280 FLRYAAKFYR FLRYAAKFYR FLRYAAKFYR PKFFSALIDL PKFFSALIDL PKFFSALIDL IRQYLKRLLE IRQYLKRLLE	RKKELDKAQE RKKELDKAQE RKKELDKAQE ARMYAEANMY ARMYAEANMY ARMYAEANMY KRIQGGLGGE KRIQGGLGGE	280 VLERALE ISP VLERALE ISP VLERALE ISP VLERALE ISP 3800 RKAEETFOKA XKAEETFOKA XKAEETFOKA XKAEETFOKA 1 DDFSTLGLIH DDFSTLGLIH DDFSTLGLIH	KSTFLLHQLG KSTFLLHQLG KSTFLLHQLG LNVNILTCSN LNVNILTCSD LNVNILTCSX KLDGEKLEAI KLDGEKLEAI	300 LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL LCYRAKLYEL KQEICYFYGN KQEIYYFYGN KQEIXYFYGN ECYEKANEYN ECYEKANEYN ECYEKANEYN	KNSTRYPPQD KNSTRYPPQD FLQYKKKSES FLQYKKKSES FLQYKKKSES PDNEEYLSVL PDNEEYLSVL PDNEEYLSVL	33 QIEELIQIC QIEELIQIC QIEELIQIC EAIKYYKEGL EAIKYYKEGL EAIKYYKEGL LELRLSLSS* LELRLSLSS*	320 320 400 400 480 480

Figure 11-3 in silico translated protein sequence alignment of the predicted and sequenced chicken IFIT5 sequence

Protein alignment of the sequenced and in silico translated IFIT5(KT180229.1) and the predicted and translated sequence. Numbers on at the end of each sequence indicates protein length. Red indicates conserved amino acids and black indicated a SNP.