Quasiclassical trajectory calculations of collisional energy transfer in propane systems: multiple direct-encounter hard-sphere model
Linhananta, Apichart and Lim, Kieran 2002, Quasiclassical trajectory calculations of collisional energy transfer in propane systems: multiple direct-encounter hard-sphere model, Physical chemistry chemical physics, vol. 4, no. 4, pp. 577-585, doi: 10.1039/b109074g.
Quasiclassical trajectory calculations of collisional energy transfer from highly vibrationally excited propane + rare gas systems are reported. This work extends our hard-sphere model (A. Linhananta and K. F. Lim, Phys. Chem. Chem. Phys., 2000, 2, 1385) to examine the variation of the internal energy during collisions with a rare bath gas. This was accomplished by recording the vibrational and rotational energy of propane after each atom–atom encounter during trajectory simulations of propane + rare gas systems. This provides detailed information of the energy flow during a collision. It was found that collisions with small number of encounters transfer energy efficiently, whereas those with many encounters do not. Detailed analyses reveal that the former collisions arise from trajectories with high initial impact parameter, whereas the latter have small initial impact parameter. The reason behind this is the dependence of collision energy transfer (CET) of large polyatomic molecules on their shape. This is connected to the well-known role of rotational energy transfer (RET) as a gateway for CET.
Notes
Reproduced by permission of the Royal Society of Chemistry
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.