L-Arginine infusion increases glucose clearance during prolonged exercise in humans
McConell, G.K., Huynh, N. N., Lee-Young, R.S., Canny, B. J. and Wadley, G.D. 2006, L-Arginine infusion increases glucose clearance during prolonged exercise in humans, American journal of physiology : endocrinology and metabolism, vol. 290, no. 1, pp. E60-E66, doi: 10.1152/ajpendo.00263.2005.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
L-Arginine infusion increases glucose clearance during prolonged exercise in humans
Nitric oxide synthase (NOS) inhibition has been shown in humans to attenuate exercise-induced increases in muscle glucose uptake. We examined the effect of infusing the NO precursor L-arginine (L-Arg) on glucose kinetics during exercise in humans. Nine endurance-trained males cycled for 120 min at 72 ± 1% VO2 peak followed immediately by a 15-min "all-out" cycling performance bout. A [6,6-2H]glucose tracer was infused throughout exercise, and either saline alone (Control, CON) or saline containing L-Arg HCl (L-Arg, 30 g at 0.5 g/min) was coinfused in a double-blind, randomized order during the last 60 min of exercise. L-Arg augmented the increases in glucose rate of appearance, glucose rate of disappearance, and glucose clearance rate (L-Arg: 16.1 ± 1.8 ml·min–1·kg–1; CON: 11.9 ± 0.7 ml·min–1·kg–1 at 120 min, P < 0.05) during exercise, with a net effect of reducing plasma glucose concentration during exercise. L-Arg infusion had no significant effect on plasma insulin concentration but attenuated the increase in nonesterified fatty acid and glycerol concentrations during exercise. L-Arg infusion had no effect on cycling exercise performance. In conclusion, L-Arg infusion during exercise significantly increases skeletal muscle glucose clearance in humans. Because plasma insulin concentration was unaffected by L-Arg infusion, greater NO production may have been responsible for this effect.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.