Distinguishing DDoS attacks from flash crowds using probability metrics
Li, Ke, Zhou, Wanlei, Li, Ping, Hai, Jing and Liu, Jianwen 2009, Distinguishing DDoS attacks from flash crowds using probability metrics, in NSS 2009 : Proceedings of the third International Conference on Network and System Security, IEEE, Piscataway, N. J., pp. 9-17.
Both Flash crowds and DDoS (Distributed Denial-of-Service) attacks have very similar properties in terms of internet traffic, however Flash crowds are legitimate flows and DDoS attacks are illegitimate flows, and DDoS attacks have been a serious threat to internet security and stability. In this paper we propose a set of novel methods using probability metrics to distinguish DDoS attacks from Flash crowds effectively, and our simulations show that the proposed methods work well. In particular, these mathods can not only distinguish DDoS attacks from Flash crowds clearly, but also can distinguish the anomaly flow being DDoS attacks flow or being Flash crowd flow from Normal network flow effectively. Furthermore, we show our proposed hybrid probability metrics can greatly reduce both false positive and false negative rates in detection.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.