Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2− and P(O)2(R)2− anions with potential application for corrosion mitigation of magnesium alloys
Sun, Jiazeng, Howlett, Patrick C., MacFarlane, Douglas R., Lin, Ji and Forsyth, Maria 2008, Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2− and P(O)2(R)2− anions with potential application for corrosion mitigation of magnesium alloys, Electrochimica acta, vol. 54, no. 2, pp. 254-260, doi: 10.1016/j.electacta.2008.08.020.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2− and P(O)2(R)2− anions with potential application for corrosion mitigation of magnesium alloys
Formatted title
Synthesis and physical property characterisation of phosphonium ionic liquids based on P(O)2(OR)2− and P(O)2(R)2− anions with potential application for corrosion mitigation of magnesium alloys
Phosphonium cation based ionic liquids (ILs) have become of interest due to their unique chemical and electrochemical stability as well as their promising tribological properties. At the same time, interest has also grown in the use of phosphate and phosphinate based ionic liquids for corrosion protection of reactive metals. In this work we describe the synthesis and characterization of six novel ionic liquids based on the tetraalkylphosponium cation coupled with organophosphate and organophosphinate anions and their sulfur analogues. The conductivity and viscosity of these ILs has been measured and discussed in terms of the nature of the interactions, effect of anion basicity and the extent of ionic character. The reaction of the IL with a ZE41 magnesium aerospace alloy surface is also demonstrated.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.