Fast finite-time consensus of a class of high-order uncertain nonlinear systems
Khoo, Suiyang, Trinh, Hieu, Man, Zhihong and Shen, Weixiang 2010, Fast finite-time consensus of a class of high-order uncertain nonlinear systems, in ICIEA 2010 : Proceedings of the 5th IEEE Conference on Industrial Electronics and Applications, IEEE Xplore, New York, N.Y., pp. 2076-2081, doi: 10.1109/ICIEA.2010.5516692.
This paper poses and solves a new problem of consensus control where the task is to make the fixed-topology multi-agent network, with each agent described by an uncertain nonlinear system in chained form, to reach consensus in a fast finite time. Our development starts with a set of new sliding mode surfaces. It is proven that, on these sliding mode surfaces, consensus can be achieved if the communication graph has the proposed directed spanning tree. Next, we introduce the multi-surface sliding mode control to drive the sliding variables to the sliding mode surfaces in a fast finite time. The control Lyapunov function for fast finite time stability, motivated by the fast terminal sliding mode control, is used to prove the reachability of the sliding mode surface. A recursive design procedure is provided, which guarantees the boundedness of the control input.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.