Properties of a carbon-fibre composite modified by electrospun poly (vinylidene fluoride)
Magniez, K., De Lavigne, C. and Fox, B.L. 2010, Properties of a carbon-fibre composite modified by electrospun poly (vinylidene fluoride), in Proceedings of the Vth International Conference on Times of Polymers (TOP) and Composites; 2010, American Institute of Physics, [Melville, N.Y.], pp. 22-24.
The interlaminar toughening of a carbon-fibre reinforced composite by incorporation of electrospun polyvinylidene fluoride (PVDF) nanofibrous membranes was explored in this work. The nanofibres were electrospun directly onto commercial pre-impregnated carbon fibre materials under optimised conditions and PVDF was found to primarily crystallise in its β phase polymorphic form. There is strong evidence from DMTA analysis to suggest that a partial miscibility between the amorphous phases of the PVDF nanofibres and the epoxy exists. The improved plastic deformation at the crack tip after inclusion of the nanofibres was directly translated to a 57% increase in the mode II interlaminar fracture toughness (in-plane shear failure). Conversely, the fracture toughness in mode I (opening failure) was slightly lower than the reference by approximately 20%, and the results were interpreted from the complex micromechanisms of failure arising from the changes in polymorphism of the PVDF.
ISBN
9780735408043
Language
eng
Field of Research
091202 Composite and Hybrid Materials
Socio Economic Objective
970109 Expanding Knowledge in Engineering
HERDC Research category
E2 Full written paper - non-refereed / Abstract reviewed
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.