Zhang, Jun and Ye, Lei 2008, Properties of series feature aggregation schemes, in ICITA 2008 : Fifth international conference on information technology & applications, ICITA, Bathurst, N.S.W., pp. 361-364.
International Conference on Information Technology and Applications
Start page
361
End page
364
Total pages
4
Publisher
ICITA
Place of publication
Bathurst, N.S.W.
Summary
Feature aggregation is a critical technique in content-based image retrieval (CBIR) that combines multiple feature distances to obtain image dissimilarity. Conventional parallel feature aggregation (PFA) schemes failed to effectively filter out the irrelevant images using individual visual features before ranking images in collection. Series feature aggregation (SFA) is a new scheme that aims to address this problem. This paper investigates three important properties of SFA that are significant for design of systems. They reveal the irrelevance of feature order and the convertibility of SFA and PFA as well as the superior performance of SFA. Furthermore, based on Gaussian kernel density estimator, the authors propose a new method to estimate the visual threshold, which is the key parameter of SFA. Experiments, conducted with IAPR TC-12 benchmark image collection (ImageCLEF2006) that contains over 20,000 photographic images and defined queries, have shown that SFA can outperform conventional PFA schemes.
ISBN
9780980326727 0980326729
Language
eng
Field of Research
080704 Information Retrieval and Web Search 080109 Pattern Recognition and Data Mining
Socio Economic Objective
890301 Electronic Information Storage and Retrieval Services
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.