Ranking method for optimizing precision/recall of content-based image retrieval
Zhang, Jun and Ye, Lei 2009, Ranking method for optimizing precision/recall of content-based image retrieval, in Symposia and Workshops on Ubiquitous, Autonomic and Trusted Computing in Conjunction with The UIC2009 and ATC 2009 Conferences, Institute of Electrical and Electronics Engineers, Piscataway, N. J., pp. 356-361, doi: 10.1109/UIC-ATC.2009.9.
The ranking method is a key element of Content-based Image Retrieval (CBIR) system, which can affect the final retrieval performance. In the literature, previous ranking methods based on either distance or probability do not explicitly relate to precision and recall, which are normally used to evaluate the performance of CBIR systems. In this paper, a novel ranking method based on relative density is proposed to improve the probability based approach by ranking images in the class. The proposed method can achieve optimal precision and recall. The experiments conducted on a large photographic collection show significant improvements of retrieval performance.
Notes
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.