New insights into the dynamic and metadynamic recrystallization of austenite
Hodgson, Peter D., Cizek, Pavel and Beladi, Hossein 2012, New insights into the dynamic and metadynamic recrystallization of austenite, Materials science forum, vol. 715-716, no. 2012, pp. 259-266, doi: 10.4028/www.scientific.net/MSF.715-716.259.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
New insights into the dynamic and metadynamic recrystallization of austenite
The present work provides a summary of the recent findings obtained from the experimental investigation of the grain structure, crystallographic texture and dislocation substructure evolution in an austenitic Ni-30%Fe model alloy during dynamic recrystallization (DRX) and post-dynamic annealing. It has been found that the DRX texture characteristics become increasingly dominated by the low Taylor factor grains during DRX development, which presumably results from the preferred nucleation and lower consumption rates of these grains. The substructure of DRX grains is “random” in character and displays complex, hierarchical subgrain/cell arrangements characterized by accumulation of misorientations across significant distances. The stored energy within DRX grains appears to be principally consistent with the corresponding Taylor factor values. The changes observed within the fully dynamically recrystallized microstructure during postdynamic annealing have provided a basis to suggest a novel mechanism of metadynamic softening for the current experimental conditions. It is proposed that the initial softening stage involves rapid growth of the dynamically formed nuclei and migration of the mobile boundaries. The subboundaries within DRX grains progressively disintegrate through dislocation climb and dislocation annihilation, which ultimately leads to the formation of dislocation-free grains, and the grain boundary migration gradually becomes slower. As a result, the DRX texture largely remains preserved throughout the annealing process.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.