Ex vivo expansion of haematopoietic stem/progenitor cells from human umbilical cord blood on acellular scaffolds prepared from MS-5 stromal cell line
Tiwari, Abhilasha, Tursky, Melinda L., Mushahary, Dolly, Wasnik, Samiksha, Collier, Fiona M., Suma, Kantipudi, Kirkland, Mark A. and Pande, Gopal 2012, Ex vivo expansion of haematopoietic stem/progenitor cells from human umbilical cord blood on acellular scaffolds prepared from MS-5 stromal cell line, Journal of tissue engineering and regenerative medicine, vol. 7, pp. 871-883, doi: 10.1002/term.1479.
Attached Files
Name
Description
MIMEType
Size
Downloads
Title
Ex vivo expansion of haematopoietic stem/progenitor cells from human umbilical cord blood on acellular scaffolds prepared from MS-5 stromal cell line
Lineage-specific expansion of haematopoietic stem/progenitor cells (HSPCs) from human umbilical cord blood (UCB) is desirable because of their several applications in translational medicine, e.g. treatment of cancer, bonemarrowfailure and immunodeficiencies. The currentmethods forHSPC expansion use either cellular feeder layers and/or soluble growth factors and selected matrix components coated on different surfaces. The use of cell-free extracellular matrices from bone marrow cells for this purpose has not previously been reported. We have prepared insoluble, cell- free matrices from a murine bone marrow stromal cell line (MS-5) grown under four different conditions, i.e. in presence or absence of osteogenic medium, each incubated under 5% and 20% O2 tensions. These acellularmatrices were used as biological scaffolds for the lineage-specific expansion of magnetically sorted CD34+ cells and the results were evaluated by flow cytometry and colony-forming assays. We could get up to 80-fold expansion of some HSPCs on one of the matrices and our results indicated that oxygen tension played a significant role in determining the expansion capacity of the matrices. A comparative proteomic analysis of the matrices indicated differential expression of proteins, such as aldehyde dehydrogenase and gelsolin, which have previously been identified as playing a role in HSPC maintenance and expansion. Our approach may be of value in identifying factors relevant to tissue engineering-based ex vivo HSPC expansion, and itmay also provide insights into the constitution of the niche in which these cells reside in the bone marrow.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.