Blind source separation (BSS) has been widely discussed in many real applications. Recently, under the assumption that both of the sources and the mixing matrix are nonnegative, Wang develop an amazing BSS method by using volume maximization. However, the algorithm that they have proposed can guarantee the nonnegativities of the sources only, but cannot obtain a nonnegative mixing matrix necessarily. In this letter, by introducing additional constraints, a method for fully nonnegative constrained iterative volume maximization (FNCIVM) is proposed. The result is with more interpretation, while the algorithm is based on solving a single linear programming problem. Numerical experiments with synthetic signals and real-world images are performed, which show the effectiveness of the proposed method.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.