This thesis focuses on the data sparsity issue and the temporal dynamic issue in the context of collaborative filtering, and addresses them with imputation techniques, low-rank subspace techniques and optimizations techniques from the machine learning perspective. A comprehensive survey on the development of collaborative filtering techniques is also included.
Unless expressly stated otherwise, the copyright for items in DRO is owned by the author, with all rights reserved.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO.
If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.
Every reasonable effort has been made to ensure that permission has been obtained for items included in DRO. If you believe that your rights have been infringed by this repository, please contact drosupport@deakin.edu.au.